xref: /openbmc/linux/fs/btrfs/transaction.c (revision 8684014d)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		while (!list_empty(&transaction->pending_chunks)) {
68 			struct extent_map *em;
69 
70 			em = list_first_entry(&transaction->pending_chunks,
71 					      struct extent_map, list);
72 			list_del_init(&em->list);
73 			free_extent_map(em);
74 		}
75 		kmem_cache_free(btrfs_transaction_cachep, transaction);
76 	}
77 }
78 
79 static void clear_btree_io_tree(struct extent_io_tree *tree)
80 {
81 	spin_lock(&tree->lock);
82 	while (!RB_EMPTY_ROOT(&tree->state)) {
83 		struct rb_node *node;
84 		struct extent_state *state;
85 
86 		node = rb_first(&tree->state);
87 		state = rb_entry(node, struct extent_state, rb_node);
88 		rb_erase(&state->rb_node, &tree->state);
89 		RB_CLEAR_NODE(&state->rb_node);
90 		/*
91 		 * btree io trees aren't supposed to have tasks waiting for
92 		 * changes in the flags of extent states ever.
93 		 */
94 		ASSERT(!waitqueue_active(&state->wq));
95 		free_extent_state(state);
96 		if (need_resched()) {
97 			spin_unlock(&tree->lock);
98 			cond_resched();
99 			spin_lock(&tree->lock);
100 		}
101 	}
102 	spin_unlock(&tree->lock);
103 }
104 
105 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106 					 struct btrfs_fs_info *fs_info)
107 {
108 	struct btrfs_root *root, *tmp;
109 
110 	down_write(&fs_info->commit_root_sem);
111 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112 				 dirty_list) {
113 		list_del_init(&root->dirty_list);
114 		free_extent_buffer(root->commit_root);
115 		root->commit_root = btrfs_root_node(root);
116 		if (is_fstree(root->objectid))
117 			btrfs_unpin_free_ino(root);
118 		clear_btree_io_tree(&root->dirty_log_pages);
119 	}
120 	up_write(&fs_info->commit_root_sem);
121 }
122 
123 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
124 					 unsigned int type)
125 {
126 	if (type & TRANS_EXTWRITERS)
127 		atomic_inc(&trans->num_extwriters);
128 }
129 
130 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
131 					 unsigned int type)
132 {
133 	if (type & TRANS_EXTWRITERS)
134 		atomic_dec(&trans->num_extwriters);
135 }
136 
137 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
138 					  unsigned int type)
139 {
140 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
141 }
142 
143 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
144 {
145 	return atomic_read(&trans->num_extwriters);
146 }
147 
148 /*
149  * either allocate a new transaction or hop into the existing one
150  */
151 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
152 {
153 	struct btrfs_transaction *cur_trans;
154 	struct btrfs_fs_info *fs_info = root->fs_info;
155 
156 	spin_lock(&fs_info->trans_lock);
157 loop:
158 	/* The file system has been taken offline. No new transactions. */
159 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
160 		spin_unlock(&fs_info->trans_lock);
161 		return -EROFS;
162 	}
163 
164 	cur_trans = fs_info->running_transaction;
165 	if (cur_trans) {
166 		if (cur_trans->aborted) {
167 			spin_unlock(&fs_info->trans_lock);
168 			return cur_trans->aborted;
169 		}
170 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
171 			spin_unlock(&fs_info->trans_lock);
172 			return -EBUSY;
173 		}
174 		atomic_inc(&cur_trans->use_count);
175 		atomic_inc(&cur_trans->num_writers);
176 		extwriter_counter_inc(cur_trans, type);
177 		spin_unlock(&fs_info->trans_lock);
178 		return 0;
179 	}
180 	spin_unlock(&fs_info->trans_lock);
181 
182 	/*
183 	 * If we are ATTACH, we just want to catch the current transaction,
184 	 * and commit it. If there is no transaction, just return ENOENT.
185 	 */
186 	if (type == TRANS_ATTACH)
187 		return -ENOENT;
188 
189 	/*
190 	 * JOIN_NOLOCK only happens during the transaction commit, so
191 	 * it is impossible that ->running_transaction is NULL
192 	 */
193 	BUG_ON(type == TRANS_JOIN_NOLOCK);
194 
195 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
196 	if (!cur_trans)
197 		return -ENOMEM;
198 
199 	spin_lock(&fs_info->trans_lock);
200 	if (fs_info->running_transaction) {
201 		/*
202 		 * someone started a transaction after we unlocked.  Make sure
203 		 * to redo the checks above
204 		 */
205 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
206 		goto loop;
207 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
208 		spin_unlock(&fs_info->trans_lock);
209 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
210 		return -EROFS;
211 	}
212 
213 	atomic_set(&cur_trans->num_writers, 1);
214 	extwriter_counter_init(cur_trans, type);
215 	init_waitqueue_head(&cur_trans->writer_wait);
216 	init_waitqueue_head(&cur_trans->commit_wait);
217 	cur_trans->state = TRANS_STATE_RUNNING;
218 	/*
219 	 * One for this trans handle, one so it will live on until we
220 	 * commit the transaction.
221 	 */
222 	atomic_set(&cur_trans->use_count, 2);
223 	cur_trans->start_time = get_seconds();
224 
225 	cur_trans->delayed_refs.href_root = RB_ROOT;
226 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
227 	cur_trans->delayed_refs.num_heads_ready = 0;
228 	cur_trans->delayed_refs.num_heads = 0;
229 	cur_trans->delayed_refs.flushing = 0;
230 	cur_trans->delayed_refs.run_delayed_start = 0;
231 
232 	/*
233 	 * although the tree mod log is per file system and not per transaction,
234 	 * the log must never go across transaction boundaries.
235 	 */
236 	smp_mb();
237 	if (!list_empty(&fs_info->tree_mod_seq_list))
238 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
239 			"creating a fresh transaction\n");
240 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
241 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
242 			"creating a fresh transaction\n");
243 	atomic64_set(&fs_info->tree_mod_seq, 0);
244 
245 	spin_lock_init(&cur_trans->delayed_refs.lock);
246 
247 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
248 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
249 	INIT_LIST_HEAD(&cur_trans->switch_commits);
250 	INIT_LIST_HEAD(&cur_trans->pending_ordered);
251 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
252 	extent_io_tree_init(&cur_trans->dirty_pages,
253 			     fs_info->btree_inode->i_mapping);
254 	fs_info->generation++;
255 	cur_trans->transid = fs_info->generation;
256 	fs_info->running_transaction = cur_trans;
257 	cur_trans->aborted = 0;
258 	spin_unlock(&fs_info->trans_lock);
259 
260 	return 0;
261 }
262 
263 /*
264  * this does all the record keeping required to make sure that a reference
265  * counted root is properly recorded in a given transaction.  This is required
266  * to make sure the old root from before we joined the transaction is deleted
267  * when the transaction commits
268  */
269 static int record_root_in_trans(struct btrfs_trans_handle *trans,
270 			       struct btrfs_root *root)
271 {
272 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
273 	    root->last_trans < trans->transid) {
274 		WARN_ON(root == root->fs_info->extent_root);
275 		WARN_ON(root->commit_root != root->node);
276 
277 		/*
278 		 * see below for IN_TRANS_SETUP usage rules
279 		 * we have the reloc mutex held now, so there
280 		 * is only one writer in this function
281 		 */
282 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
283 
284 		/* make sure readers find IN_TRANS_SETUP before
285 		 * they find our root->last_trans update
286 		 */
287 		smp_wmb();
288 
289 		spin_lock(&root->fs_info->fs_roots_radix_lock);
290 		if (root->last_trans == trans->transid) {
291 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
292 			return 0;
293 		}
294 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
295 			   (unsigned long)root->root_key.objectid,
296 			   BTRFS_ROOT_TRANS_TAG);
297 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
298 		root->last_trans = trans->transid;
299 
300 		/* this is pretty tricky.  We don't want to
301 		 * take the relocation lock in btrfs_record_root_in_trans
302 		 * unless we're really doing the first setup for this root in
303 		 * this transaction.
304 		 *
305 		 * Normally we'd use root->last_trans as a flag to decide
306 		 * if we want to take the expensive mutex.
307 		 *
308 		 * But, we have to set root->last_trans before we
309 		 * init the relocation root, otherwise, we trip over warnings
310 		 * in ctree.c.  The solution used here is to flag ourselves
311 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
312 		 * fixing up the reloc trees and everyone must wait.
313 		 *
314 		 * When this is zero, they can trust root->last_trans and fly
315 		 * through btrfs_record_root_in_trans without having to take the
316 		 * lock.  smp_wmb() makes sure that all the writes above are
317 		 * done before we pop in the zero below
318 		 */
319 		btrfs_init_reloc_root(trans, root);
320 		smp_mb__before_atomic();
321 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
322 	}
323 	return 0;
324 }
325 
326 
327 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
328 			       struct btrfs_root *root)
329 {
330 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
331 		return 0;
332 
333 	/*
334 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
335 	 * and barriers
336 	 */
337 	smp_rmb();
338 	if (root->last_trans == trans->transid &&
339 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
340 		return 0;
341 
342 	mutex_lock(&root->fs_info->reloc_mutex);
343 	record_root_in_trans(trans, root);
344 	mutex_unlock(&root->fs_info->reloc_mutex);
345 
346 	return 0;
347 }
348 
349 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
350 {
351 	return (trans->state >= TRANS_STATE_BLOCKED &&
352 		trans->state < TRANS_STATE_UNBLOCKED &&
353 		!trans->aborted);
354 }
355 
356 /* wait for commit against the current transaction to become unblocked
357  * when this is done, it is safe to start a new transaction, but the current
358  * transaction might not be fully on disk.
359  */
360 static void wait_current_trans(struct btrfs_root *root)
361 {
362 	struct btrfs_transaction *cur_trans;
363 
364 	spin_lock(&root->fs_info->trans_lock);
365 	cur_trans = root->fs_info->running_transaction;
366 	if (cur_trans && is_transaction_blocked(cur_trans)) {
367 		atomic_inc(&cur_trans->use_count);
368 		spin_unlock(&root->fs_info->trans_lock);
369 
370 		wait_event(root->fs_info->transaction_wait,
371 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
372 			   cur_trans->aborted);
373 		btrfs_put_transaction(cur_trans);
374 	} else {
375 		spin_unlock(&root->fs_info->trans_lock);
376 	}
377 }
378 
379 static int may_wait_transaction(struct btrfs_root *root, int type)
380 {
381 	if (root->fs_info->log_root_recovering)
382 		return 0;
383 
384 	if (type == TRANS_USERSPACE)
385 		return 1;
386 
387 	if (type == TRANS_START &&
388 	    !atomic_read(&root->fs_info->open_ioctl_trans))
389 		return 1;
390 
391 	return 0;
392 }
393 
394 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
395 {
396 	if (!root->fs_info->reloc_ctl ||
397 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
398 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
399 	    root->reloc_root)
400 		return false;
401 
402 	return true;
403 }
404 
405 static struct btrfs_trans_handle *
406 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
407 		  enum btrfs_reserve_flush_enum flush)
408 {
409 	struct btrfs_trans_handle *h;
410 	struct btrfs_transaction *cur_trans;
411 	u64 num_bytes = 0;
412 	u64 qgroup_reserved = 0;
413 	bool reloc_reserved = false;
414 	int ret;
415 
416 	/* Send isn't supposed to start transactions. */
417 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
418 
419 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
420 		return ERR_PTR(-EROFS);
421 
422 	if (current->journal_info) {
423 		WARN_ON(type & TRANS_EXTWRITERS);
424 		h = current->journal_info;
425 		h->use_count++;
426 		WARN_ON(h->use_count > 2);
427 		h->orig_rsv = h->block_rsv;
428 		h->block_rsv = NULL;
429 		goto got_it;
430 	}
431 
432 	/*
433 	 * Do the reservation before we join the transaction so we can do all
434 	 * the appropriate flushing if need be.
435 	 */
436 	if (num_items > 0 && root != root->fs_info->chunk_root) {
437 		if (root->fs_info->quota_enabled &&
438 		    is_fstree(root->root_key.objectid)) {
439 			qgroup_reserved = num_items * root->nodesize;
440 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
441 			if (ret)
442 				return ERR_PTR(ret);
443 		}
444 
445 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
446 		/*
447 		 * Do the reservation for the relocation root creation
448 		 */
449 		if (need_reserve_reloc_root(root)) {
450 			num_bytes += root->nodesize;
451 			reloc_reserved = true;
452 		}
453 
454 		ret = btrfs_block_rsv_add(root,
455 					  &root->fs_info->trans_block_rsv,
456 					  num_bytes, flush);
457 		if (ret)
458 			goto reserve_fail;
459 	}
460 again:
461 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
462 	if (!h) {
463 		ret = -ENOMEM;
464 		goto alloc_fail;
465 	}
466 
467 	/*
468 	 * If we are JOIN_NOLOCK we're already committing a transaction and
469 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
470 	 * because we're already holding a ref.  We need this because we could
471 	 * have raced in and did an fsync() on a file which can kick a commit
472 	 * and then we deadlock with somebody doing a freeze.
473 	 *
474 	 * If we are ATTACH, it means we just want to catch the current
475 	 * transaction and commit it, so we needn't do sb_start_intwrite().
476 	 */
477 	if (type & __TRANS_FREEZABLE)
478 		sb_start_intwrite(root->fs_info->sb);
479 
480 	if (may_wait_transaction(root, type))
481 		wait_current_trans(root);
482 
483 	do {
484 		ret = join_transaction(root, type);
485 		if (ret == -EBUSY) {
486 			wait_current_trans(root);
487 			if (unlikely(type == TRANS_ATTACH))
488 				ret = -ENOENT;
489 		}
490 	} while (ret == -EBUSY);
491 
492 	if (ret < 0) {
493 		/* We must get the transaction if we are JOIN_NOLOCK. */
494 		BUG_ON(type == TRANS_JOIN_NOLOCK);
495 		goto join_fail;
496 	}
497 
498 	cur_trans = root->fs_info->running_transaction;
499 
500 	h->transid = cur_trans->transid;
501 	h->transaction = cur_trans;
502 	h->blocks_used = 0;
503 	h->bytes_reserved = 0;
504 	h->root = root;
505 	h->delayed_ref_updates = 0;
506 	h->use_count = 1;
507 	h->adding_csums = 0;
508 	h->block_rsv = NULL;
509 	h->orig_rsv = NULL;
510 	h->aborted = 0;
511 	h->qgroup_reserved = 0;
512 	h->delayed_ref_elem.seq = 0;
513 	h->type = type;
514 	h->allocating_chunk = false;
515 	h->reloc_reserved = false;
516 	h->sync = false;
517 	INIT_LIST_HEAD(&h->qgroup_ref_list);
518 	INIT_LIST_HEAD(&h->new_bgs);
519 	INIT_LIST_HEAD(&h->ordered);
520 
521 	smp_mb();
522 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
523 	    may_wait_transaction(root, type)) {
524 		current->journal_info = h;
525 		btrfs_commit_transaction(h, root);
526 		goto again;
527 	}
528 
529 	if (num_bytes) {
530 		trace_btrfs_space_reservation(root->fs_info, "transaction",
531 					      h->transid, num_bytes, 1);
532 		h->block_rsv = &root->fs_info->trans_block_rsv;
533 		h->bytes_reserved = num_bytes;
534 		h->reloc_reserved = reloc_reserved;
535 	}
536 	h->qgroup_reserved = qgroup_reserved;
537 
538 got_it:
539 	btrfs_record_root_in_trans(h, root);
540 
541 	if (!current->journal_info && type != TRANS_USERSPACE)
542 		current->journal_info = h;
543 	return h;
544 
545 join_fail:
546 	if (type & __TRANS_FREEZABLE)
547 		sb_end_intwrite(root->fs_info->sb);
548 	kmem_cache_free(btrfs_trans_handle_cachep, h);
549 alloc_fail:
550 	if (num_bytes)
551 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
552 					num_bytes);
553 reserve_fail:
554 	if (qgroup_reserved)
555 		btrfs_qgroup_free(root, qgroup_reserved);
556 	return ERR_PTR(ret);
557 }
558 
559 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
560 						   int num_items)
561 {
562 	return start_transaction(root, num_items, TRANS_START,
563 				 BTRFS_RESERVE_FLUSH_ALL);
564 }
565 
566 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
567 					struct btrfs_root *root, int num_items)
568 {
569 	return start_transaction(root, num_items, TRANS_START,
570 				 BTRFS_RESERVE_FLUSH_LIMIT);
571 }
572 
573 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
574 {
575 	return start_transaction(root, 0, TRANS_JOIN, 0);
576 }
577 
578 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
579 {
580 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
581 }
582 
583 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
584 {
585 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
586 }
587 
588 /*
589  * btrfs_attach_transaction() - catch the running transaction
590  *
591  * It is used when we want to commit the current the transaction, but
592  * don't want to start a new one.
593  *
594  * Note: If this function return -ENOENT, it just means there is no
595  * running transaction. But it is possible that the inactive transaction
596  * is still in the memory, not fully on disk. If you hope there is no
597  * inactive transaction in the fs when -ENOENT is returned, you should
598  * invoke
599  *     btrfs_attach_transaction_barrier()
600  */
601 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
602 {
603 	return start_transaction(root, 0, TRANS_ATTACH, 0);
604 }
605 
606 /*
607  * btrfs_attach_transaction_barrier() - catch the running transaction
608  *
609  * It is similar to the above function, the differentia is this one
610  * will wait for all the inactive transactions until they fully
611  * complete.
612  */
613 struct btrfs_trans_handle *
614 btrfs_attach_transaction_barrier(struct btrfs_root *root)
615 {
616 	struct btrfs_trans_handle *trans;
617 
618 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
619 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
620 		btrfs_wait_for_commit(root, 0);
621 
622 	return trans;
623 }
624 
625 /* wait for a transaction commit to be fully complete */
626 static noinline void wait_for_commit(struct btrfs_root *root,
627 				    struct btrfs_transaction *commit)
628 {
629 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
630 }
631 
632 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
633 {
634 	struct btrfs_transaction *cur_trans = NULL, *t;
635 	int ret = 0;
636 
637 	if (transid) {
638 		if (transid <= root->fs_info->last_trans_committed)
639 			goto out;
640 
641 		/* find specified transaction */
642 		spin_lock(&root->fs_info->trans_lock);
643 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
644 			if (t->transid == transid) {
645 				cur_trans = t;
646 				atomic_inc(&cur_trans->use_count);
647 				ret = 0;
648 				break;
649 			}
650 			if (t->transid > transid) {
651 				ret = 0;
652 				break;
653 			}
654 		}
655 		spin_unlock(&root->fs_info->trans_lock);
656 
657 		/*
658 		 * The specified transaction doesn't exist, or we
659 		 * raced with btrfs_commit_transaction
660 		 */
661 		if (!cur_trans) {
662 			if (transid > root->fs_info->last_trans_committed)
663 				ret = -EINVAL;
664 			goto out;
665 		}
666 	} else {
667 		/* find newest transaction that is committing | committed */
668 		spin_lock(&root->fs_info->trans_lock);
669 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
670 					    list) {
671 			if (t->state >= TRANS_STATE_COMMIT_START) {
672 				if (t->state == TRANS_STATE_COMPLETED)
673 					break;
674 				cur_trans = t;
675 				atomic_inc(&cur_trans->use_count);
676 				break;
677 			}
678 		}
679 		spin_unlock(&root->fs_info->trans_lock);
680 		if (!cur_trans)
681 			goto out;  /* nothing committing|committed */
682 	}
683 
684 	wait_for_commit(root, cur_trans);
685 	btrfs_put_transaction(cur_trans);
686 out:
687 	return ret;
688 }
689 
690 void btrfs_throttle(struct btrfs_root *root)
691 {
692 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
693 		wait_current_trans(root);
694 }
695 
696 static int should_end_transaction(struct btrfs_trans_handle *trans,
697 				  struct btrfs_root *root)
698 {
699 	if (root->fs_info->global_block_rsv.space_info->full &&
700 	    btrfs_check_space_for_delayed_refs(trans, root))
701 		return 1;
702 
703 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
704 }
705 
706 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
707 				 struct btrfs_root *root)
708 {
709 	struct btrfs_transaction *cur_trans = trans->transaction;
710 	int updates;
711 	int err;
712 
713 	smp_mb();
714 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
715 	    cur_trans->delayed_refs.flushing)
716 		return 1;
717 
718 	updates = trans->delayed_ref_updates;
719 	trans->delayed_ref_updates = 0;
720 	if (updates) {
721 		err = btrfs_run_delayed_refs(trans, root, updates);
722 		if (err) /* Error code will also eval true */
723 			return err;
724 	}
725 
726 	return should_end_transaction(trans, root);
727 }
728 
729 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
730 			  struct btrfs_root *root, int throttle)
731 {
732 	struct btrfs_transaction *cur_trans = trans->transaction;
733 	struct btrfs_fs_info *info = root->fs_info;
734 	unsigned long cur = trans->delayed_ref_updates;
735 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
736 	int err = 0;
737 	int must_run_delayed_refs = 0;
738 
739 	if (trans->use_count > 1) {
740 		trans->use_count--;
741 		trans->block_rsv = trans->orig_rsv;
742 		return 0;
743 	}
744 
745 	btrfs_trans_release_metadata(trans, root);
746 	trans->block_rsv = NULL;
747 
748 	if (!list_empty(&trans->new_bgs))
749 		btrfs_create_pending_block_groups(trans, root);
750 
751 	if (!list_empty(&trans->ordered)) {
752 		spin_lock(&info->trans_lock);
753 		list_splice(&trans->ordered, &cur_trans->pending_ordered);
754 		spin_unlock(&info->trans_lock);
755 	}
756 
757 	trans->delayed_ref_updates = 0;
758 	if (!trans->sync) {
759 		must_run_delayed_refs =
760 			btrfs_should_throttle_delayed_refs(trans, root);
761 		cur = max_t(unsigned long, cur, 32);
762 
763 		/*
764 		 * don't make the caller wait if they are from a NOLOCK
765 		 * or ATTACH transaction, it will deadlock with commit
766 		 */
767 		if (must_run_delayed_refs == 1 &&
768 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
769 			must_run_delayed_refs = 2;
770 	}
771 
772 	if (trans->qgroup_reserved) {
773 		/*
774 		 * the same root has to be passed here between start_transaction
775 		 * and end_transaction. Subvolume quota depends on this.
776 		 */
777 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
778 		trans->qgroup_reserved = 0;
779 	}
780 
781 	btrfs_trans_release_metadata(trans, root);
782 	trans->block_rsv = NULL;
783 
784 	if (!list_empty(&trans->new_bgs))
785 		btrfs_create_pending_block_groups(trans, root);
786 
787 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
788 	    should_end_transaction(trans, root) &&
789 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
790 		spin_lock(&info->trans_lock);
791 		if (cur_trans->state == TRANS_STATE_RUNNING)
792 			cur_trans->state = TRANS_STATE_BLOCKED;
793 		spin_unlock(&info->trans_lock);
794 	}
795 
796 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
797 		if (throttle)
798 			return btrfs_commit_transaction(trans, root);
799 		else
800 			wake_up_process(info->transaction_kthread);
801 	}
802 
803 	if (trans->type & __TRANS_FREEZABLE)
804 		sb_end_intwrite(root->fs_info->sb);
805 
806 	WARN_ON(cur_trans != info->running_transaction);
807 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
808 	atomic_dec(&cur_trans->num_writers);
809 	extwriter_counter_dec(cur_trans, trans->type);
810 
811 	smp_mb();
812 	if (waitqueue_active(&cur_trans->writer_wait))
813 		wake_up(&cur_trans->writer_wait);
814 	btrfs_put_transaction(cur_trans);
815 
816 	if (current->journal_info == trans)
817 		current->journal_info = NULL;
818 
819 	if (throttle)
820 		btrfs_run_delayed_iputs(root);
821 
822 	if (trans->aborted ||
823 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
824 		wake_up_process(info->transaction_kthread);
825 		err = -EIO;
826 	}
827 	assert_qgroups_uptodate(trans);
828 
829 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
830 	if (must_run_delayed_refs) {
831 		btrfs_async_run_delayed_refs(root, cur,
832 					     must_run_delayed_refs == 1);
833 	}
834 	return err;
835 }
836 
837 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
838 			  struct btrfs_root *root)
839 {
840 	return __btrfs_end_transaction(trans, root, 0);
841 }
842 
843 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
844 				   struct btrfs_root *root)
845 {
846 	return __btrfs_end_transaction(trans, root, 1);
847 }
848 
849 /*
850  * when btree blocks are allocated, they have some corresponding bits set for
851  * them in one of two extent_io trees.  This is used to make sure all of
852  * those extents are sent to disk but does not wait on them
853  */
854 int btrfs_write_marked_extents(struct btrfs_root *root,
855 			       struct extent_io_tree *dirty_pages, int mark)
856 {
857 	int err = 0;
858 	int werr = 0;
859 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
860 	struct extent_state *cached_state = NULL;
861 	u64 start = 0;
862 	u64 end;
863 
864 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
865 				      mark, &cached_state)) {
866 		bool wait_writeback = false;
867 
868 		err = convert_extent_bit(dirty_pages, start, end,
869 					 EXTENT_NEED_WAIT,
870 					 mark, &cached_state, GFP_NOFS);
871 		/*
872 		 * convert_extent_bit can return -ENOMEM, which is most of the
873 		 * time a temporary error. So when it happens, ignore the error
874 		 * and wait for writeback of this range to finish - because we
875 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
876 		 * to btrfs_wait_marked_extents() would not know that writeback
877 		 * for this range started and therefore wouldn't wait for it to
878 		 * finish - we don't want to commit a superblock that points to
879 		 * btree nodes/leafs for which writeback hasn't finished yet
880 		 * (and without errors).
881 		 * We cleanup any entries left in the io tree when committing
882 		 * the transaction (through clear_btree_io_tree()).
883 		 */
884 		if (err == -ENOMEM) {
885 			err = 0;
886 			wait_writeback = true;
887 		}
888 		if (!err)
889 			err = filemap_fdatawrite_range(mapping, start, end);
890 		if (err)
891 			werr = err;
892 		else if (wait_writeback)
893 			werr = filemap_fdatawait_range(mapping, start, end);
894 		free_extent_state(cached_state);
895 		cached_state = NULL;
896 		cond_resched();
897 		start = end + 1;
898 	}
899 	return werr;
900 }
901 
902 /*
903  * when btree blocks are allocated, they have some corresponding bits set for
904  * them in one of two extent_io trees.  This is used to make sure all of
905  * those extents are on disk for transaction or log commit.  We wait
906  * on all the pages and clear them from the dirty pages state tree
907  */
908 int btrfs_wait_marked_extents(struct btrfs_root *root,
909 			      struct extent_io_tree *dirty_pages, int mark)
910 {
911 	int err = 0;
912 	int werr = 0;
913 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
914 	struct extent_state *cached_state = NULL;
915 	u64 start = 0;
916 	u64 end;
917 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
918 	bool errors = false;
919 
920 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
921 				      EXTENT_NEED_WAIT, &cached_state)) {
922 		/*
923 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
924 		 * When committing the transaction, we'll remove any entries
925 		 * left in the io tree. For a log commit, we don't remove them
926 		 * after committing the log because the tree can be accessed
927 		 * concurrently - we do it only at transaction commit time when
928 		 * it's safe to do it (through clear_btree_io_tree()).
929 		 */
930 		err = clear_extent_bit(dirty_pages, start, end,
931 				       EXTENT_NEED_WAIT,
932 				       0, 0, &cached_state, GFP_NOFS);
933 		if (err == -ENOMEM)
934 			err = 0;
935 		if (!err)
936 			err = filemap_fdatawait_range(mapping, start, end);
937 		if (err)
938 			werr = err;
939 		free_extent_state(cached_state);
940 		cached_state = NULL;
941 		cond_resched();
942 		start = end + 1;
943 	}
944 	if (err)
945 		werr = err;
946 
947 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
948 		if ((mark & EXTENT_DIRTY) &&
949 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
950 				       &btree_ino->runtime_flags))
951 			errors = true;
952 
953 		if ((mark & EXTENT_NEW) &&
954 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
955 				       &btree_ino->runtime_flags))
956 			errors = true;
957 	} else {
958 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
959 				       &btree_ino->runtime_flags))
960 			errors = true;
961 	}
962 
963 	if (errors && !werr)
964 		werr = -EIO;
965 
966 	return werr;
967 }
968 
969 /*
970  * when btree blocks are allocated, they have some corresponding bits set for
971  * them in one of two extent_io trees.  This is used to make sure all of
972  * those extents are on disk for transaction or log commit
973  */
974 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
975 				struct extent_io_tree *dirty_pages, int mark)
976 {
977 	int ret;
978 	int ret2;
979 	struct blk_plug plug;
980 
981 	blk_start_plug(&plug);
982 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
983 	blk_finish_plug(&plug);
984 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
985 
986 	if (ret)
987 		return ret;
988 	if (ret2)
989 		return ret2;
990 	return 0;
991 }
992 
993 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
994 				     struct btrfs_root *root)
995 {
996 	int ret;
997 
998 	ret = btrfs_write_and_wait_marked_extents(root,
999 					   &trans->transaction->dirty_pages,
1000 					   EXTENT_DIRTY);
1001 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1002 
1003 	return ret;
1004 }
1005 
1006 /*
1007  * this is used to update the root pointer in the tree of tree roots.
1008  *
1009  * But, in the case of the extent allocation tree, updating the root
1010  * pointer may allocate blocks which may change the root of the extent
1011  * allocation tree.
1012  *
1013  * So, this loops and repeats and makes sure the cowonly root didn't
1014  * change while the root pointer was being updated in the metadata.
1015  */
1016 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1017 			       struct btrfs_root *root)
1018 {
1019 	int ret;
1020 	u64 old_root_bytenr;
1021 	u64 old_root_used;
1022 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1023 
1024 	old_root_used = btrfs_root_used(&root->root_item);
1025 	btrfs_write_dirty_block_groups(trans, root);
1026 
1027 	while (1) {
1028 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1029 		if (old_root_bytenr == root->node->start &&
1030 		    old_root_used == btrfs_root_used(&root->root_item))
1031 			break;
1032 
1033 		btrfs_set_root_node(&root->root_item, root->node);
1034 		ret = btrfs_update_root(trans, tree_root,
1035 					&root->root_key,
1036 					&root->root_item);
1037 		if (ret)
1038 			return ret;
1039 
1040 		old_root_used = btrfs_root_used(&root->root_item);
1041 		ret = btrfs_write_dirty_block_groups(trans, root);
1042 		if (ret)
1043 			return ret;
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 /*
1050  * update all the cowonly tree roots on disk
1051  *
1052  * The error handling in this function may not be obvious. Any of the
1053  * failures will cause the file system to go offline. We still need
1054  * to clean up the delayed refs.
1055  */
1056 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1057 					 struct btrfs_root *root)
1058 {
1059 	struct btrfs_fs_info *fs_info = root->fs_info;
1060 	struct list_head *next;
1061 	struct extent_buffer *eb;
1062 	int ret;
1063 
1064 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1065 	if (ret)
1066 		return ret;
1067 
1068 	eb = btrfs_lock_root_node(fs_info->tree_root);
1069 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1070 			      0, &eb);
1071 	btrfs_tree_unlock(eb);
1072 	free_extent_buffer(eb);
1073 
1074 	if (ret)
1075 		return ret;
1076 
1077 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1078 	if (ret)
1079 		return ret;
1080 
1081 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1082 	if (ret)
1083 		return ret;
1084 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1085 	if (ret)
1086 		return ret;
1087 	ret = btrfs_run_qgroups(trans, root->fs_info);
1088 	if (ret)
1089 		return ret;
1090 
1091 	/* run_qgroups might have added some more refs */
1092 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1093 	if (ret)
1094 		return ret;
1095 
1096 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1097 		next = fs_info->dirty_cowonly_roots.next;
1098 		list_del_init(next);
1099 		root = list_entry(next, struct btrfs_root, dirty_list);
1100 
1101 		if (root != fs_info->extent_root)
1102 			list_add_tail(&root->dirty_list,
1103 				      &trans->transaction->switch_commits);
1104 		ret = update_cowonly_root(trans, root);
1105 		if (ret)
1106 			return ret;
1107 	}
1108 
1109 	list_add_tail(&fs_info->extent_root->dirty_list,
1110 		      &trans->transaction->switch_commits);
1111 	btrfs_after_dev_replace_commit(fs_info);
1112 
1113 	return 0;
1114 }
1115 
1116 /*
1117  * dead roots are old snapshots that need to be deleted.  This allocates
1118  * a dirty root struct and adds it into the list of dead roots that need to
1119  * be deleted
1120  */
1121 void btrfs_add_dead_root(struct btrfs_root *root)
1122 {
1123 	spin_lock(&root->fs_info->trans_lock);
1124 	if (list_empty(&root->root_list))
1125 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1126 	spin_unlock(&root->fs_info->trans_lock);
1127 }
1128 
1129 /*
1130  * update all the cowonly tree roots on disk
1131  */
1132 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1133 				    struct btrfs_root *root)
1134 {
1135 	struct btrfs_root *gang[8];
1136 	struct btrfs_fs_info *fs_info = root->fs_info;
1137 	int i;
1138 	int ret;
1139 	int err = 0;
1140 
1141 	spin_lock(&fs_info->fs_roots_radix_lock);
1142 	while (1) {
1143 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1144 						 (void **)gang, 0,
1145 						 ARRAY_SIZE(gang),
1146 						 BTRFS_ROOT_TRANS_TAG);
1147 		if (ret == 0)
1148 			break;
1149 		for (i = 0; i < ret; i++) {
1150 			root = gang[i];
1151 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1152 					(unsigned long)root->root_key.objectid,
1153 					BTRFS_ROOT_TRANS_TAG);
1154 			spin_unlock(&fs_info->fs_roots_radix_lock);
1155 
1156 			btrfs_free_log(trans, root);
1157 			btrfs_update_reloc_root(trans, root);
1158 			btrfs_orphan_commit_root(trans, root);
1159 
1160 			btrfs_save_ino_cache(root, trans);
1161 
1162 			/* see comments in should_cow_block() */
1163 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1164 			smp_mb__after_atomic();
1165 
1166 			if (root->commit_root != root->node) {
1167 				list_add_tail(&root->dirty_list,
1168 					&trans->transaction->switch_commits);
1169 				btrfs_set_root_node(&root->root_item,
1170 						    root->node);
1171 			}
1172 
1173 			err = btrfs_update_root(trans, fs_info->tree_root,
1174 						&root->root_key,
1175 						&root->root_item);
1176 			spin_lock(&fs_info->fs_roots_radix_lock);
1177 			if (err)
1178 				break;
1179 		}
1180 	}
1181 	spin_unlock(&fs_info->fs_roots_radix_lock);
1182 	return err;
1183 }
1184 
1185 /*
1186  * defrag a given btree.
1187  * Every leaf in the btree is read and defragged.
1188  */
1189 int btrfs_defrag_root(struct btrfs_root *root)
1190 {
1191 	struct btrfs_fs_info *info = root->fs_info;
1192 	struct btrfs_trans_handle *trans;
1193 	int ret;
1194 
1195 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1196 		return 0;
1197 
1198 	while (1) {
1199 		trans = btrfs_start_transaction(root, 0);
1200 		if (IS_ERR(trans))
1201 			return PTR_ERR(trans);
1202 
1203 		ret = btrfs_defrag_leaves(trans, root);
1204 
1205 		btrfs_end_transaction(trans, root);
1206 		btrfs_btree_balance_dirty(info->tree_root);
1207 		cond_resched();
1208 
1209 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1210 			break;
1211 
1212 		if (btrfs_defrag_cancelled(root->fs_info)) {
1213 			pr_debug("BTRFS: defrag_root cancelled\n");
1214 			ret = -EAGAIN;
1215 			break;
1216 		}
1217 	}
1218 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1219 	return ret;
1220 }
1221 
1222 /*
1223  * new snapshots need to be created at a very specific time in the
1224  * transaction commit.  This does the actual creation.
1225  *
1226  * Note:
1227  * If the error which may affect the commitment of the current transaction
1228  * happens, we should return the error number. If the error which just affect
1229  * the creation of the pending snapshots, just return 0.
1230  */
1231 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1232 				   struct btrfs_fs_info *fs_info,
1233 				   struct btrfs_pending_snapshot *pending)
1234 {
1235 	struct btrfs_key key;
1236 	struct btrfs_root_item *new_root_item;
1237 	struct btrfs_root *tree_root = fs_info->tree_root;
1238 	struct btrfs_root *root = pending->root;
1239 	struct btrfs_root *parent_root;
1240 	struct btrfs_block_rsv *rsv;
1241 	struct inode *parent_inode;
1242 	struct btrfs_path *path;
1243 	struct btrfs_dir_item *dir_item;
1244 	struct dentry *dentry;
1245 	struct extent_buffer *tmp;
1246 	struct extent_buffer *old;
1247 	struct timespec cur_time = CURRENT_TIME;
1248 	int ret = 0;
1249 	u64 to_reserve = 0;
1250 	u64 index = 0;
1251 	u64 objectid;
1252 	u64 root_flags;
1253 	uuid_le new_uuid;
1254 
1255 	path = btrfs_alloc_path();
1256 	if (!path) {
1257 		pending->error = -ENOMEM;
1258 		return 0;
1259 	}
1260 
1261 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1262 	if (!new_root_item) {
1263 		pending->error = -ENOMEM;
1264 		goto root_item_alloc_fail;
1265 	}
1266 
1267 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1268 	if (pending->error)
1269 		goto no_free_objectid;
1270 
1271 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1272 
1273 	if (to_reserve > 0) {
1274 		pending->error = btrfs_block_rsv_add(root,
1275 						     &pending->block_rsv,
1276 						     to_reserve,
1277 						     BTRFS_RESERVE_NO_FLUSH);
1278 		if (pending->error)
1279 			goto no_free_objectid;
1280 	}
1281 
1282 	key.objectid = objectid;
1283 	key.offset = (u64)-1;
1284 	key.type = BTRFS_ROOT_ITEM_KEY;
1285 
1286 	rsv = trans->block_rsv;
1287 	trans->block_rsv = &pending->block_rsv;
1288 	trans->bytes_reserved = trans->block_rsv->reserved;
1289 
1290 	dentry = pending->dentry;
1291 	parent_inode = pending->dir;
1292 	parent_root = BTRFS_I(parent_inode)->root;
1293 	record_root_in_trans(trans, parent_root);
1294 
1295 	/*
1296 	 * insert the directory item
1297 	 */
1298 	ret = btrfs_set_inode_index(parent_inode, &index);
1299 	BUG_ON(ret); /* -ENOMEM */
1300 
1301 	/* check if there is a file/dir which has the same name. */
1302 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1303 					 btrfs_ino(parent_inode),
1304 					 dentry->d_name.name,
1305 					 dentry->d_name.len, 0);
1306 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1307 		pending->error = -EEXIST;
1308 		goto dir_item_existed;
1309 	} else if (IS_ERR(dir_item)) {
1310 		ret = PTR_ERR(dir_item);
1311 		btrfs_abort_transaction(trans, root, ret);
1312 		goto fail;
1313 	}
1314 	btrfs_release_path(path);
1315 
1316 	/*
1317 	 * pull in the delayed directory update
1318 	 * and the delayed inode item
1319 	 * otherwise we corrupt the FS during
1320 	 * snapshot
1321 	 */
1322 	ret = btrfs_run_delayed_items(trans, root);
1323 	if (ret) {	/* Transaction aborted */
1324 		btrfs_abort_transaction(trans, root, ret);
1325 		goto fail;
1326 	}
1327 
1328 	record_root_in_trans(trans, root);
1329 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1330 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1331 	btrfs_check_and_init_root_item(new_root_item);
1332 
1333 	root_flags = btrfs_root_flags(new_root_item);
1334 	if (pending->readonly)
1335 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1336 	else
1337 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1338 	btrfs_set_root_flags(new_root_item, root_flags);
1339 
1340 	btrfs_set_root_generation_v2(new_root_item,
1341 			trans->transid);
1342 	uuid_le_gen(&new_uuid);
1343 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1344 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1345 			BTRFS_UUID_SIZE);
1346 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1347 		memset(new_root_item->received_uuid, 0,
1348 		       sizeof(new_root_item->received_uuid));
1349 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1350 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1351 		btrfs_set_root_stransid(new_root_item, 0);
1352 		btrfs_set_root_rtransid(new_root_item, 0);
1353 	}
1354 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1355 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1356 	btrfs_set_root_otransid(new_root_item, trans->transid);
1357 
1358 	old = btrfs_lock_root_node(root);
1359 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1360 	if (ret) {
1361 		btrfs_tree_unlock(old);
1362 		free_extent_buffer(old);
1363 		btrfs_abort_transaction(trans, root, ret);
1364 		goto fail;
1365 	}
1366 
1367 	btrfs_set_lock_blocking(old);
1368 
1369 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1370 	/* clean up in any case */
1371 	btrfs_tree_unlock(old);
1372 	free_extent_buffer(old);
1373 	if (ret) {
1374 		btrfs_abort_transaction(trans, root, ret);
1375 		goto fail;
1376 	}
1377 
1378 	/*
1379 	 * We need to flush delayed refs in order to make sure all of our quota
1380 	 * operations have been done before we call btrfs_qgroup_inherit.
1381 	 */
1382 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1383 	if (ret) {
1384 		btrfs_abort_transaction(trans, root, ret);
1385 		goto fail;
1386 	}
1387 
1388 	ret = btrfs_qgroup_inherit(trans, fs_info,
1389 				   root->root_key.objectid,
1390 				   objectid, pending->inherit);
1391 	if (ret) {
1392 		btrfs_abort_transaction(trans, root, ret);
1393 		goto fail;
1394 	}
1395 
1396 	/* see comments in should_cow_block() */
1397 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1398 	smp_wmb();
1399 
1400 	btrfs_set_root_node(new_root_item, tmp);
1401 	/* record when the snapshot was created in key.offset */
1402 	key.offset = trans->transid;
1403 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1404 	btrfs_tree_unlock(tmp);
1405 	free_extent_buffer(tmp);
1406 	if (ret) {
1407 		btrfs_abort_transaction(trans, root, ret);
1408 		goto fail;
1409 	}
1410 
1411 	/*
1412 	 * insert root back/forward references
1413 	 */
1414 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1415 				 parent_root->root_key.objectid,
1416 				 btrfs_ino(parent_inode), index,
1417 				 dentry->d_name.name, dentry->d_name.len);
1418 	if (ret) {
1419 		btrfs_abort_transaction(trans, root, ret);
1420 		goto fail;
1421 	}
1422 
1423 	key.offset = (u64)-1;
1424 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1425 	if (IS_ERR(pending->snap)) {
1426 		ret = PTR_ERR(pending->snap);
1427 		btrfs_abort_transaction(trans, root, ret);
1428 		goto fail;
1429 	}
1430 
1431 	ret = btrfs_reloc_post_snapshot(trans, pending);
1432 	if (ret) {
1433 		btrfs_abort_transaction(trans, root, ret);
1434 		goto fail;
1435 	}
1436 
1437 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1438 	if (ret) {
1439 		btrfs_abort_transaction(trans, root, ret);
1440 		goto fail;
1441 	}
1442 
1443 	ret = btrfs_insert_dir_item(trans, parent_root,
1444 				    dentry->d_name.name, dentry->d_name.len,
1445 				    parent_inode, &key,
1446 				    BTRFS_FT_DIR, index);
1447 	/* We have check then name at the beginning, so it is impossible. */
1448 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1449 	if (ret) {
1450 		btrfs_abort_transaction(trans, root, ret);
1451 		goto fail;
1452 	}
1453 
1454 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1455 					 dentry->d_name.len * 2);
1456 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1457 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1458 	if (ret) {
1459 		btrfs_abort_transaction(trans, root, ret);
1460 		goto fail;
1461 	}
1462 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1463 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1464 	if (ret) {
1465 		btrfs_abort_transaction(trans, root, ret);
1466 		goto fail;
1467 	}
1468 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1469 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1470 					  new_root_item->received_uuid,
1471 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1472 					  objectid);
1473 		if (ret && ret != -EEXIST) {
1474 			btrfs_abort_transaction(trans, root, ret);
1475 			goto fail;
1476 		}
1477 	}
1478 fail:
1479 	pending->error = ret;
1480 dir_item_existed:
1481 	trans->block_rsv = rsv;
1482 	trans->bytes_reserved = 0;
1483 no_free_objectid:
1484 	kfree(new_root_item);
1485 root_item_alloc_fail:
1486 	btrfs_free_path(path);
1487 	return ret;
1488 }
1489 
1490 /*
1491  * create all the snapshots we've scheduled for creation
1492  */
1493 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1494 					     struct btrfs_fs_info *fs_info)
1495 {
1496 	struct btrfs_pending_snapshot *pending, *next;
1497 	struct list_head *head = &trans->transaction->pending_snapshots;
1498 	int ret = 0;
1499 
1500 	list_for_each_entry_safe(pending, next, head, list) {
1501 		list_del(&pending->list);
1502 		ret = create_pending_snapshot(trans, fs_info, pending);
1503 		if (ret)
1504 			break;
1505 	}
1506 	return ret;
1507 }
1508 
1509 static void update_super_roots(struct btrfs_root *root)
1510 {
1511 	struct btrfs_root_item *root_item;
1512 	struct btrfs_super_block *super;
1513 
1514 	super = root->fs_info->super_copy;
1515 
1516 	root_item = &root->fs_info->chunk_root->root_item;
1517 	super->chunk_root = root_item->bytenr;
1518 	super->chunk_root_generation = root_item->generation;
1519 	super->chunk_root_level = root_item->level;
1520 
1521 	root_item = &root->fs_info->tree_root->root_item;
1522 	super->root = root_item->bytenr;
1523 	super->generation = root_item->generation;
1524 	super->root_level = root_item->level;
1525 	if (btrfs_test_opt(root, SPACE_CACHE))
1526 		super->cache_generation = root_item->generation;
1527 	if (root->fs_info->update_uuid_tree_gen)
1528 		super->uuid_tree_generation = root_item->generation;
1529 }
1530 
1531 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1532 {
1533 	struct btrfs_transaction *trans;
1534 	int ret = 0;
1535 
1536 	spin_lock(&info->trans_lock);
1537 	trans = info->running_transaction;
1538 	if (trans)
1539 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1540 	spin_unlock(&info->trans_lock);
1541 	return ret;
1542 }
1543 
1544 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1545 {
1546 	struct btrfs_transaction *trans;
1547 	int ret = 0;
1548 
1549 	spin_lock(&info->trans_lock);
1550 	trans = info->running_transaction;
1551 	if (trans)
1552 		ret = is_transaction_blocked(trans);
1553 	spin_unlock(&info->trans_lock);
1554 	return ret;
1555 }
1556 
1557 /*
1558  * wait for the current transaction commit to start and block subsequent
1559  * transaction joins
1560  */
1561 static void wait_current_trans_commit_start(struct btrfs_root *root,
1562 					    struct btrfs_transaction *trans)
1563 {
1564 	wait_event(root->fs_info->transaction_blocked_wait,
1565 		   trans->state >= TRANS_STATE_COMMIT_START ||
1566 		   trans->aborted);
1567 }
1568 
1569 /*
1570  * wait for the current transaction to start and then become unblocked.
1571  * caller holds ref.
1572  */
1573 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1574 					 struct btrfs_transaction *trans)
1575 {
1576 	wait_event(root->fs_info->transaction_wait,
1577 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1578 		   trans->aborted);
1579 }
1580 
1581 /*
1582  * commit transactions asynchronously. once btrfs_commit_transaction_async
1583  * returns, any subsequent transaction will not be allowed to join.
1584  */
1585 struct btrfs_async_commit {
1586 	struct btrfs_trans_handle *newtrans;
1587 	struct btrfs_root *root;
1588 	struct work_struct work;
1589 };
1590 
1591 static void do_async_commit(struct work_struct *work)
1592 {
1593 	struct btrfs_async_commit *ac =
1594 		container_of(work, struct btrfs_async_commit, work);
1595 
1596 	/*
1597 	 * We've got freeze protection passed with the transaction.
1598 	 * Tell lockdep about it.
1599 	 */
1600 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1601 		rwsem_acquire_read(
1602 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1603 		     0, 1, _THIS_IP_);
1604 
1605 	current->journal_info = ac->newtrans;
1606 
1607 	btrfs_commit_transaction(ac->newtrans, ac->root);
1608 	kfree(ac);
1609 }
1610 
1611 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1612 				   struct btrfs_root *root,
1613 				   int wait_for_unblock)
1614 {
1615 	struct btrfs_async_commit *ac;
1616 	struct btrfs_transaction *cur_trans;
1617 
1618 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1619 	if (!ac)
1620 		return -ENOMEM;
1621 
1622 	INIT_WORK(&ac->work, do_async_commit);
1623 	ac->root = root;
1624 	ac->newtrans = btrfs_join_transaction(root);
1625 	if (IS_ERR(ac->newtrans)) {
1626 		int err = PTR_ERR(ac->newtrans);
1627 		kfree(ac);
1628 		return err;
1629 	}
1630 
1631 	/* take transaction reference */
1632 	cur_trans = trans->transaction;
1633 	atomic_inc(&cur_trans->use_count);
1634 
1635 	btrfs_end_transaction(trans, root);
1636 
1637 	/*
1638 	 * Tell lockdep we've released the freeze rwsem, since the
1639 	 * async commit thread will be the one to unlock it.
1640 	 */
1641 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1642 		rwsem_release(
1643 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1644 			1, _THIS_IP_);
1645 
1646 	schedule_work(&ac->work);
1647 
1648 	/* wait for transaction to start and unblock */
1649 	if (wait_for_unblock)
1650 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1651 	else
1652 		wait_current_trans_commit_start(root, cur_trans);
1653 
1654 	if (current->journal_info == trans)
1655 		current->journal_info = NULL;
1656 
1657 	btrfs_put_transaction(cur_trans);
1658 	return 0;
1659 }
1660 
1661 
1662 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1663 				struct btrfs_root *root, int err)
1664 {
1665 	struct btrfs_transaction *cur_trans = trans->transaction;
1666 	DEFINE_WAIT(wait);
1667 
1668 	WARN_ON(trans->use_count > 1);
1669 
1670 	btrfs_abort_transaction(trans, root, err);
1671 
1672 	spin_lock(&root->fs_info->trans_lock);
1673 
1674 	/*
1675 	 * If the transaction is removed from the list, it means this
1676 	 * transaction has been committed successfully, so it is impossible
1677 	 * to call the cleanup function.
1678 	 */
1679 	BUG_ON(list_empty(&cur_trans->list));
1680 
1681 	list_del_init(&cur_trans->list);
1682 	if (cur_trans == root->fs_info->running_transaction) {
1683 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1684 		spin_unlock(&root->fs_info->trans_lock);
1685 		wait_event(cur_trans->writer_wait,
1686 			   atomic_read(&cur_trans->num_writers) == 1);
1687 
1688 		spin_lock(&root->fs_info->trans_lock);
1689 	}
1690 	spin_unlock(&root->fs_info->trans_lock);
1691 
1692 	btrfs_cleanup_one_transaction(trans->transaction, root);
1693 
1694 	spin_lock(&root->fs_info->trans_lock);
1695 	if (cur_trans == root->fs_info->running_transaction)
1696 		root->fs_info->running_transaction = NULL;
1697 	spin_unlock(&root->fs_info->trans_lock);
1698 
1699 	if (trans->type & __TRANS_FREEZABLE)
1700 		sb_end_intwrite(root->fs_info->sb);
1701 	btrfs_put_transaction(cur_trans);
1702 	btrfs_put_transaction(cur_trans);
1703 
1704 	trace_btrfs_transaction_commit(root);
1705 
1706 	if (current->journal_info == trans)
1707 		current->journal_info = NULL;
1708 	btrfs_scrub_cancel(root->fs_info);
1709 
1710 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1711 }
1712 
1713 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1714 {
1715 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1716 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1717 	return 0;
1718 }
1719 
1720 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1721 {
1722 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1723 		btrfs_wait_ordered_roots(fs_info, -1);
1724 }
1725 
1726 static inline void
1727 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1728 			   struct btrfs_fs_info *fs_info)
1729 {
1730 	struct btrfs_ordered_extent *ordered;
1731 
1732 	spin_lock(&fs_info->trans_lock);
1733 	while (!list_empty(&cur_trans->pending_ordered)) {
1734 		ordered = list_first_entry(&cur_trans->pending_ordered,
1735 					   struct btrfs_ordered_extent,
1736 					   trans_list);
1737 		list_del_init(&ordered->trans_list);
1738 		spin_unlock(&fs_info->trans_lock);
1739 
1740 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1741 						   &ordered->flags));
1742 		btrfs_put_ordered_extent(ordered);
1743 		spin_lock(&fs_info->trans_lock);
1744 	}
1745 	spin_unlock(&fs_info->trans_lock);
1746 }
1747 
1748 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1749 			     struct btrfs_root *root)
1750 {
1751 	struct btrfs_transaction *cur_trans = trans->transaction;
1752 	struct btrfs_transaction *prev_trans = NULL;
1753 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1754 	int ret;
1755 
1756 	/* Stop the commit early if ->aborted is set */
1757 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1758 		ret = cur_trans->aborted;
1759 		btrfs_end_transaction(trans, root);
1760 		return ret;
1761 	}
1762 
1763 	/* make a pass through all the delayed refs we have so far
1764 	 * any runnings procs may add more while we are here
1765 	 */
1766 	ret = btrfs_run_delayed_refs(trans, root, 0);
1767 	if (ret) {
1768 		btrfs_end_transaction(trans, root);
1769 		return ret;
1770 	}
1771 
1772 	btrfs_trans_release_metadata(trans, root);
1773 	trans->block_rsv = NULL;
1774 	if (trans->qgroup_reserved) {
1775 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1776 		trans->qgroup_reserved = 0;
1777 	}
1778 
1779 	cur_trans = trans->transaction;
1780 
1781 	/*
1782 	 * set the flushing flag so procs in this transaction have to
1783 	 * start sending their work down.
1784 	 */
1785 	cur_trans->delayed_refs.flushing = 1;
1786 	smp_wmb();
1787 
1788 	if (!list_empty(&trans->new_bgs))
1789 		btrfs_create_pending_block_groups(trans, root);
1790 
1791 	ret = btrfs_run_delayed_refs(trans, root, 0);
1792 	if (ret) {
1793 		btrfs_end_transaction(trans, root);
1794 		return ret;
1795 	}
1796 
1797 	spin_lock(&root->fs_info->trans_lock);
1798 	list_splice(&trans->ordered, &cur_trans->pending_ordered);
1799 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1800 		spin_unlock(&root->fs_info->trans_lock);
1801 		atomic_inc(&cur_trans->use_count);
1802 		ret = btrfs_end_transaction(trans, root);
1803 
1804 		wait_for_commit(root, cur_trans);
1805 
1806 		btrfs_put_transaction(cur_trans);
1807 
1808 		return ret;
1809 	}
1810 
1811 	cur_trans->state = TRANS_STATE_COMMIT_START;
1812 	wake_up(&root->fs_info->transaction_blocked_wait);
1813 
1814 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1815 		prev_trans = list_entry(cur_trans->list.prev,
1816 					struct btrfs_transaction, list);
1817 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1818 			atomic_inc(&prev_trans->use_count);
1819 			spin_unlock(&root->fs_info->trans_lock);
1820 
1821 			wait_for_commit(root, prev_trans);
1822 
1823 			btrfs_put_transaction(prev_trans);
1824 		} else {
1825 			spin_unlock(&root->fs_info->trans_lock);
1826 		}
1827 	} else {
1828 		spin_unlock(&root->fs_info->trans_lock);
1829 	}
1830 
1831 	extwriter_counter_dec(cur_trans, trans->type);
1832 
1833 	ret = btrfs_start_delalloc_flush(root->fs_info);
1834 	if (ret)
1835 		goto cleanup_transaction;
1836 
1837 	ret = btrfs_run_delayed_items(trans, root);
1838 	if (ret)
1839 		goto cleanup_transaction;
1840 
1841 	wait_event(cur_trans->writer_wait,
1842 		   extwriter_counter_read(cur_trans) == 0);
1843 
1844 	/* some pending stuffs might be added after the previous flush. */
1845 	ret = btrfs_run_delayed_items(trans, root);
1846 	if (ret)
1847 		goto cleanup_transaction;
1848 
1849 	btrfs_wait_delalloc_flush(root->fs_info);
1850 
1851 	btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1852 
1853 	btrfs_scrub_pause(root);
1854 	/*
1855 	 * Ok now we need to make sure to block out any other joins while we
1856 	 * commit the transaction.  We could have started a join before setting
1857 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1858 	 */
1859 	spin_lock(&root->fs_info->trans_lock);
1860 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1861 	spin_unlock(&root->fs_info->trans_lock);
1862 	wait_event(cur_trans->writer_wait,
1863 		   atomic_read(&cur_trans->num_writers) == 1);
1864 
1865 	/* ->aborted might be set after the previous check, so check it */
1866 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1867 		ret = cur_trans->aborted;
1868 		goto scrub_continue;
1869 	}
1870 	/*
1871 	 * the reloc mutex makes sure that we stop
1872 	 * the balancing code from coming in and moving
1873 	 * extents around in the middle of the commit
1874 	 */
1875 	mutex_lock(&root->fs_info->reloc_mutex);
1876 
1877 	/*
1878 	 * We needn't worry about the delayed items because we will
1879 	 * deal with them in create_pending_snapshot(), which is the
1880 	 * core function of the snapshot creation.
1881 	 */
1882 	ret = create_pending_snapshots(trans, root->fs_info);
1883 	if (ret) {
1884 		mutex_unlock(&root->fs_info->reloc_mutex);
1885 		goto scrub_continue;
1886 	}
1887 
1888 	/*
1889 	 * We insert the dir indexes of the snapshots and update the inode
1890 	 * of the snapshots' parents after the snapshot creation, so there
1891 	 * are some delayed items which are not dealt with. Now deal with
1892 	 * them.
1893 	 *
1894 	 * We needn't worry that this operation will corrupt the snapshots,
1895 	 * because all the tree which are snapshoted will be forced to COW
1896 	 * the nodes and leaves.
1897 	 */
1898 	ret = btrfs_run_delayed_items(trans, root);
1899 	if (ret) {
1900 		mutex_unlock(&root->fs_info->reloc_mutex);
1901 		goto scrub_continue;
1902 	}
1903 
1904 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1905 	if (ret) {
1906 		mutex_unlock(&root->fs_info->reloc_mutex);
1907 		goto scrub_continue;
1908 	}
1909 
1910 	/*
1911 	 * make sure none of the code above managed to slip in a
1912 	 * delayed item
1913 	 */
1914 	btrfs_assert_delayed_root_empty(root);
1915 
1916 	WARN_ON(cur_trans != trans->transaction);
1917 
1918 	/* btrfs_commit_tree_roots is responsible for getting the
1919 	 * various roots consistent with each other.  Every pointer
1920 	 * in the tree of tree roots has to point to the most up to date
1921 	 * root for every subvolume and other tree.  So, we have to keep
1922 	 * the tree logging code from jumping in and changing any
1923 	 * of the trees.
1924 	 *
1925 	 * At this point in the commit, there can't be any tree-log
1926 	 * writers, but a little lower down we drop the trans mutex
1927 	 * and let new people in.  By holding the tree_log_mutex
1928 	 * from now until after the super is written, we avoid races
1929 	 * with the tree-log code.
1930 	 */
1931 	mutex_lock(&root->fs_info->tree_log_mutex);
1932 
1933 	ret = commit_fs_roots(trans, root);
1934 	if (ret) {
1935 		mutex_unlock(&root->fs_info->tree_log_mutex);
1936 		mutex_unlock(&root->fs_info->reloc_mutex);
1937 		goto scrub_continue;
1938 	}
1939 
1940 	/*
1941 	 * Since the transaction is done, we can apply the pending changes
1942 	 * before the next transaction.
1943 	 */
1944 	btrfs_apply_pending_changes(root->fs_info);
1945 
1946 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1947 	 * safe to free the root of tree log roots
1948 	 */
1949 	btrfs_free_log_root_tree(trans, root->fs_info);
1950 
1951 	ret = commit_cowonly_roots(trans, root);
1952 	if (ret) {
1953 		mutex_unlock(&root->fs_info->tree_log_mutex);
1954 		mutex_unlock(&root->fs_info->reloc_mutex);
1955 		goto scrub_continue;
1956 	}
1957 
1958 	/*
1959 	 * The tasks which save the space cache and inode cache may also
1960 	 * update ->aborted, check it.
1961 	 */
1962 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1963 		ret = cur_trans->aborted;
1964 		mutex_unlock(&root->fs_info->tree_log_mutex);
1965 		mutex_unlock(&root->fs_info->reloc_mutex);
1966 		goto scrub_continue;
1967 	}
1968 
1969 	btrfs_prepare_extent_commit(trans, root);
1970 
1971 	cur_trans = root->fs_info->running_transaction;
1972 
1973 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1974 			    root->fs_info->tree_root->node);
1975 	list_add_tail(&root->fs_info->tree_root->dirty_list,
1976 		      &cur_trans->switch_commits);
1977 
1978 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1979 			    root->fs_info->chunk_root->node);
1980 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
1981 		      &cur_trans->switch_commits);
1982 
1983 	switch_commit_roots(cur_trans, root->fs_info);
1984 
1985 	assert_qgroups_uptodate(trans);
1986 	update_super_roots(root);
1987 
1988 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1989 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1990 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1991 	       sizeof(*root->fs_info->super_copy));
1992 
1993 	btrfs_update_commit_device_size(root->fs_info);
1994 	btrfs_update_commit_device_bytes_used(root, cur_trans);
1995 
1996 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
1997 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
1998 
1999 	spin_lock(&root->fs_info->trans_lock);
2000 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2001 	root->fs_info->running_transaction = NULL;
2002 	spin_unlock(&root->fs_info->trans_lock);
2003 	mutex_unlock(&root->fs_info->reloc_mutex);
2004 
2005 	wake_up(&root->fs_info->transaction_wait);
2006 
2007 	ret = btrfs_write_and_wait_transaction(trans, root);
2008 	if (ret) {
2009 		btrfs_error(root->fs_info, ret,
2010 			    "Error while writing out transaction");
2011 		mutex_unlock(&root->fs_info->tree_log_mutex);
2012 		goto scrub_continue;
2013 	}
2014 
2015 	ret = write_ctree_super(trans, root, 0);
2016 	if (ret) {
2017 		mutex_unlock(&root->fs_info->tree_log_mutex);
2018 		goto scrub_continue;
2019 	}
2020 
2021 	/*
2022 	 * the super is written, we can safely allow the tree-loggers
2023 	 * to go about their business
2024 	 */
2025 	mutex_unlock(&root->fs_info->tree_log_mutex);
2026 
2027 	btrfs_finish_extent_commit(trans, root);
2028 
2029 	root->fs_info->last_trans_committed = cur_trans->transid;
2030 	/*
2031 	 * We needn't acquire the lock here because there is no other task
2032 	 * which can change it.
2033 	 */
2034 	cur_trans->state = TRANS_STATE_COMPLETED;
2035 	wake_up(&cur_trans->commit_wait);
2036 
2037 	spin_lock(&root->fs_info->trans_lock);
2038 	list_del_init(&cur_trans->list);
2039 	spin_unlock(&root->fs_info->trans_lock);
2040 
2041 	btrfs_put_transaction(cur_trans);
2042 	btrfs_put_transaction(cur_trans);
2043 
2044 	if (trans->type & __TRANS_FREEZABLE)
2045 		sb_end_intwrite(root->fs_info->sb);
2046 
2047 	trace_btrfs_transaction_commit(root);
2048 
2049 	btrfs_scrub_continue(root);
2050 
2051 	if (current->journal_info == trans)
2052 		current->journal_info = NULL;
2053 
2054 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2055 
2056 	if (current != root->fs_info->transaction_kthread)
2057 		btrfs_run_delayed_iputs(root);
2058 
2059 	return ret;
2060 
2061 scrub_continue:
2062 	btrfs_scrub_continue(root);
2063 cleanup_transaction:
2064 	btrfs_trans_release_metadata(trans, root);
2065 	trans->block_rsv = NULL;
2066 	if (trans->qgroup_reserved) {
2067 		btrfs_qgroup_free(root, trans->qgroup_reserved);
2068 		trans->qgroup_reserved = 0;
2069 	}
2070 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2071 	if (current->journal_info == trans)
2072 		current->journal_info = NULL;
2073 	cleanup_transaction(trans, root, ret);
2074 
2075 	return ret;
2076 }
2077 
2078 /*
2079  * return < 0 if error
2080  * 0 if there are no more dead_roots at the time of call
2081  * 1 there are more to be processed, call me again
2082  *
2083  * The return value indicates there are certainly more snapshots to delete, but
2084  * if there comes a new one during processing, it may return 0. We don't mind,
2085  * because btrfs_commit_super will poke cleaner thread and it will process it a
2086  * few seconds later.
2087  */
2088 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2089 {
2090 	int ret;
2091 	struct btrfs_fs_info *fs_info = root->fs_info;
2092 
2093 	spin_lock(&fs_info->trans_lock);
2094 	if (list_empty(&fs_info->dead_roots)) {
2095 		spin_unlock(&fs_info->trans_lock);
2096 		return 0;
2097 	}
2098 	root = list_first_entry(&fs_info->dead_roots,
2099 			struct btrfs_root, root_list);
2100 	list_del_init(&root->root_list);
2101 	spin_unlock(&fs_info->trans_lock);
2102 
2103 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2104 
2105 	btrfs_kill_all_delayed_nodes(root);
2106 
2107 	if (btrfs_header_backref_rev(root->node) <
2108 			BTRFS_MIXED_BACKREF_REV)
2109 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2110 	else
2111 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2112 
2113 	return (ret < 0) ? 0 : 1;
2114 }
2115 
2116 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2117 {
2118 	unsigned long prev;
2119 	unsigned long bit;
2120 
2121 	prev = cmpxchg(&fs_info->pending_changes, 0, 0);
2122 	if (!prev)
2123 		return;
2124 
2125 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2126 	if (prev & bit)
2127 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2128 	prev &= ~bit;
2129 
2130 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2131 	if (prev & bit)
2132 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2133 	prev &= ~bit;
2134 
2135 	bit = 1 << BTRFS_PENDING_COMMIT;
2136 	if (prev & bit)
2137 		btrfs_debug(fs_info, "pending commit done");
2138 	prev &= ~bit;
2139 
2140 	if (prev)
2141 		btrfs_warn(fs_info,
2142 			"unknown pending changes left 0x%lx, ignoring", prev);
2143 }
2144