xref: /openbmc/linux/fs/btrfs/transaction.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "locking.h"
17 #include "tree-log.h"
18 #include "inode-map.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 
23 #define BTRFS_ROOT_TRANS_TAG 0
24 
25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
26 	[TRANS_STATE_RUNNING]		= 0U,
27 	[TRANS_STATE_BLOCKED]		=  __TRANS_START,
28 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
29 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
30 					   __TRANS_ATTACH |
31 					   __TRANS_JOIN),
32 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
33 					   __TRANS_ATTACH |
34 					   __TRANS_JOIN |
35 					   __TRANS_JOIN_NOLOCK),
36 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
37 					   __TRANS_ATTACH |
38 					   __TRANS_JOIN |
39 					   __TRANS_JOIN_NOLOCK),
40 };
41 
42 void btrfs_put_transaction(struct btrfs_transaction *transaction)
43 {
44 	WARN_ON(refcount_read(&transaction->use_count) == 0);
45 	if (refcount_dec_and_test(&transaction->use_count)) {
46 		BUG_ON(!list_empty(&transaction->list));
47 		WARN_ON(!RB_EMPTY_ROOT(
48 				&transaction->delayed_refs.href_root.rb_root));
49 		if (transaction->delayed_refs.pending_csums)
50 			btrfs_err(transaction->fs_info,
51 				  "pending csums is %llu",
52 				  transaction->delayed_refs.pending_csums);
53 		while (!list_empty(&transaction->pending_chunks)) {
54 			struct extent_map *em;
55 
56 			em = list_first_entry(&transaction->pending_chunks,
57 					      struct extent_map, list);
58 			list_del_init(&em->list);
59 			free_extent_map(em);
60 		}
61 		/*
62 		 * If any block groups are found in ->deleted_bgs then it's
63 		 * because the transaction was aborted and a commit did not
64 		 * happen (things failed before writing the new superblock
65 		 * and calling btrfs_finish_extent_commit()), so we can not
66 		 * discard the physical locations of the block groups.
67 		 */
68 		while (!list_empty(&transaction->deleted_bgs)) {
69 			struct btrfs_block_group_cache *cache;
70 
71 			cache = list_first_entry(&transaction->deleted_bgs,
72 						 struct btrfs_block_group_cache,
73 						 bg_list);
74 			list_del_init(&cache->bg_list);
75 			btrfs_put_block_group_trimming(cache);
76 			btrfs_put_block_group(cache);
77 		}
78 		kfree(transaction);
79 	}
80 }
81 
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 	spin_lock(&tree->lock);
85 	/*
86 	 * Do a single barrier for the waitqueue_active check here, the state
87 	 * of the waitqueue should not change once clear_btree_io_tree is
88 	 * called.
89 	 */
90 	smp_mb();
91 	while (!RB_EMPTY_ROOT(&tree->state)) {
92 		struct rb_node *node;
93 		struct extent_state *state;
94 
95 		node = rb_first(&tree->state);
96 		state = rb_entry(node, struct extent_state, rb_node);
97 		rb_erase(&state->rb_node, &tree->state);
98 		RB_CLEAR_NODE(&state->rb_node);
99 		/*
100 		 * btree io trees aren't supposed to have tasks waiting for
101 		 * changes in the flags of extent states ever.
102 		 */
103 		ASSERT(!waitqueue_active(&state->wq));
104 		free_extent_state(state);
105 
106 		cond_resched_lock(&tree->lock);
107 	}
108 	spin_unlock(&tree->lock);
109 }
110 
111 static noinline void switch_commit_roots(struct btrfs_transaction *trans)
112 {
113 	struct btrfs_fs_info *fs_info = trans->fs_info;
114 	struct btrfs_root *root, *tmp;
115 
116 	down_write(&fs_info->commit_root_sem);
117 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
118 				 dirty_list) {
119 		list_del_init(&root->dirty_list);
120 		free_extent_buffer(root->commit_root);
121 		root->commit_root = btrfs_root_node(root);
122 		if (is_fstree(root->root_key.objectid))
123 			btrfs_unpin_free_ino(root);
124 		clear_btree_io_tree(&root->dirty_log_pages);
125 	}
126 
127 	/* We can free old roots now. */
128 	spin_lock(&trans->dropped_roots_lock);
129 	while (!list_empty(&trans->dropped_roots)) {
130 		root = list_first_entry(&trans->dropped_roots,
131 					struct btrfs_root, root_list);
132 		list_del_init(&root->root_list);
133 		spin_unlock(&trans->dropped_roots_lock);
134 		btrfs_drop_and_free_fs_root(fs_info, root);
135 		spin_lock(&trans->dropped_roots_lock);
136 	}
137 	spin_unlock(&trans->dropped_roots_lock);
138 	up_write(&fs_info->commit_root_sem);
139 }
140 
141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
142 					 unsigned int type)
143 {
144 	if (type & TRANS_EXTWRITERS)
145 		atomic_inc(&trans->num_extwriters);
146 }
147 
148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
149 					 unsigned int type)
150 {
151 	if (type & TRANS_EXTWRITERS)
152 		atomic_dec(&trans->num_extwriters);
153 }
154 
155 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
156 					  unsigned int type)
157 {
158 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
159 }
160 
161 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
162 {
163 	return atomic_read(&trans->num_extwriters);
164 }
165 
166 /*
167  * either allocate a new transaction or hop into the existing one
168  */
169 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
170 				     unsigned int type)
171 {
172 	struct btrfs_transaction *cur_trans;
173 
174 	spin_lock(&fs_info->trans_lock);
175 loop:
176 	/* The file system has been taken offline. No new transactions. */
177 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
178 		spin_unlock(&fs_info->trans_lock);
179 		return -EROFS;
180 	}
181 
182 	cur_trans = fs_info->running_transaction;
183 	if (cur_trans) {
184 		if (cur_trans->aborted) {
185 			spin_unlock(&fs_info->trans_lock);
186 			return cur_trans->aborted;
187 		}
188 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
189 			spin_unlock(&fs_info->trans_lock);
190 			return -EBUSY;
191 		}
192 		refcount_inc(&cur_trans->use_count);
193 		atomic_inc(&cur_trans->num_writers);
194 		extwriter_counter_inc(cur_trans, type);
195 		spin_unlock(&fs_info->trans_lock);
196 		return 0;
197 	}
198 	spin_unlock(&fs_info->trans_lock);
199 
200 	/*
201 	 * If we are ATTACH, we just want to catch the current transaction,
202 	 * and commit it. If there is no transaction, just return ENOENT.
203 	 */
204 	if (type == TRANS_ATTACH)
205 		return -ENOENT;
206 
207 	/*
208 	 * JOIN_NOLOCK only happens during the transaction commit, so
209 	 * it is impossible that ->running_transaction is NULL
210 	 */
211 	BUG_ON(type == TRANS_JOIN_NOLOCK);
212 
213 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
214 	if (!cur_trans)
215 		return -ENOMEM;
216 
217 	spin_lock(&fs_info->trans_lock);
218 	if (fs_info->running_transaction) {
219 		/*
220 		 * someone started a transaction after we unlocked.  Make sure
221 		 * to redo the checks above
222 		 */
223 		kfree(cur_trans);
224 		goto loop;
225 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
226 		spin_unlock(&fs_info->trans_lock);
227 		kfree(cur_trans);
228 		return -EROFS;
229 	}
230 
231 	cur_trans->fs_info = fs_info;
232 	atomic_set(&cur_trans->num_writers, 1);
233 	extwriter_counter_init(cur_trans, type);
234 	init_waitqueue_head(&cur_trans->writer_wait);
235 	init_waitqueue_head(&cur_trans->commit_wait);
236 	cur_trans->state = TRANS_STATE_RUNNING;
237 	/*
238 	 * One for this trans handle, one so it will live on until we
239 	 * commit the transaction.
240 	 */
241 	refcount_set(&cur_trans->use_count, 2);
242 	cur_trans->flags = 0;
243 	cur_trans->start_time = ktime_get_seconds();
244 
245 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
246 
247 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
248 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
249 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
250 
251 	/*
252 	 * although the tree mod log is per file system and not per transaction,
253 	 * the log must never go across transaction boundaries.
254 	 */
255 	smp_mb();
256 	if (!list_empty(&fs_info->tree_mod_seq_list))
257 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
258 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
259 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
260 	atomic64_set(&fs_info->tree_mod_seq, 0);
261 
262 	spin_lock_init(&cur_trans->delayed_refs.lock);
263 
264 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
265 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
266 	INIT_LIST_HEAD(&cur_trans->switch_commits);
267 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
268 	INIT_LIST_HEAD(&cur_trans->io_bgs);
269 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
270 	mutex_init(&cur_trans->cache_write_mutex);
271 	cur_trans->num_dirty_bgs = 0;
272 	spin_lock_init(&cur_trans->dirty_bgs_lock);
273 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
274 	spin_lock_init(&cur_trans->dropped_roots_lock);
275 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
276 	extent_io_tree_init(&cur_trans->dirty_pages,
277 			     fs_info->btree_inode);
278 	fs_info->generation++;
279 	cur_trans->transid = fs_info->generation;
280 	fs_info->running_transaction = cur_trans;
281 	cur_trans->aborted = 0;
282 	spin_unlock(&fs_info->trans_lock);
283 
284 	return 0;
285 }
286 
287 /*
288  * this does all the record keeping required to make sure that a reference
289  * counted root is properly recorded in a given transaction.  This is required
290  * to make sure the old root from before we joined the transaction is deleted
291  * when the transaction commits
292  */
293 static int record_root_in_trans(struct btrfs_trans_handle *trans,
294 			       struct btrfs_root *root,
295 			       int force)
296 {
297 	struct btrfs_fs_info *fs_info = root->fs_info;
298 
299 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
300 	    root->last_trans < trans->transid) || force) {
301 		WARN_ON(root == fs_info->extent_root);
302 		WARN_ON(!force && root->commit_root != root->node);
303 
304 		/*
305 		 * see below for IN_TRANS_SETUP usage rules
306 		 * we have the reloc mutex held now, so there
307 		 * is only one writer in this function
308 		 */
309 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
310 
311 		/* make sure readers find IN_TRANS_SETUP before
312 		 * they find our root->last_trans update
313 		 */
314 		smp_wmb();
315 
316 		spin_lock(&fs_info->fs_roots_radix_lock);
317 		if (root->last_trans == trans->transid && !force) {
318 			spin_unlock(&fs_info->fs_roots_radix_lock);
319 			return 0;
320 		}
321 		radix_tree_tag_set(&fs_info->fs_roots_radix,
322 				   (unsigned long)root->root_key.objectid,
323 				   BTRFS_ROOT_TRANS_TAG);
324 		spin_unlock(&fs_info->fs_roots_radix_lock);
325 		root->last_trans = trans->transid;
326 
327 		/* this is pretty tricky.  We don't want to
328 		 * take the relocation lock in btrfs_record_root_in_trans
329 		 * unless we're really doing the first setup for this root in
330 		 * this transaction.
331 		 *
332 		 * Normally we'd use root->last_trans as a flag to decide
333 		 * if we want to take the expensive mutex.
334 		 *
335 		 * But, we have to set root->last_trans before we
336 		 * init the relocation root, otherwise, we trip over warnings
337 		 * in ctree.c.  The solution used here is to flag ourselves
338 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
339 		 * fixing up the reloc trees and everyone must wait.
340 		 *
341 		 * When this is zero, they can trust root->last_trans and fly
342 		 * through btrfs_record_root_in_trans without having to take the
343 		 * lock.  smp_wmb() makes sure that all the writes above are
344 		 * done before we pop in the zero below
345 		 */
346 		btrfs_init_reloc_root(trans, root);
347 		smp_mb__before_atomic();
348 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
349 	}
350 	return 0;
351 }
352 
353 
354 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
355 			    struct btrfs_root *root)
356 {
357 	struct btrfs_fs_info *fs_info = root->fs_info;
358 	struct btrfs_transaction *cur_trans = trans->transaction;
359 
360 	/* Add ourselves to the transaction dropped list */
361 	spin_lock(&cur_trans->dropped_roots_lock);
362 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
363 	spin_unlock(&cur_trans->dropped_roots_lock);
364 
365 	/* Make sure we don't try to update the root at commit time */
366 	spin_lock(&fs_info->fs_roots_radix_lock);
367 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
368 			     (unsigned long)root->root_key.objectid,
369 			     BTRFS_ROOT_TRANS_TAG);
370 	spin_unlock(&fs_info->fs_roots_radix_lock);
371 }
372 
373 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
374 			       struct btrfs_root *root)
375 {
376 	struct btrfs_fs_info *fs_info = root->fs_info;
377 
378 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
379 		return 0;
380 
381 	/*
382 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
383 	 * and barriers
384 	 */
385 	smp_rmb();
386 	if (root->last_trans == trans->transid &&
387 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
388 		return 0;
389 
390 	mutex_lock(&fs_info->reloc_mutex);
391 	record_root_in_trans(trans, root, 0);
392 	mutex_unlock(&fs_info->reloc_mutex);
393 
394 	return 0;
395 }
396 
397 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
398 {
399 	return (trans->state >= TRANS_STATE_BLOCKED &&
400 		trans->state < TRANS_STATE_UNBLOCKED &&
401 		!trans->aborted);
402 }
403 
404 /* wait for commit against the current transaction to become unblocked
405  * when this is done, it is safe to start a new transaction, but the current
406  * transaction might not be fully on disk.
407  */
408 static void wait_current_trans(struct btrfs_fs_info *fs_info)
409 {
410 	struct btrfs_transaction *cur_trans;
411 
412 	spin_lock(&fs_info->trans_lock);
413 	cur_trans = fs_info->running_transaction;
414 	if (cur_trans && is_transaction_blocked(cur_trans)) {
415 		refcount_inc(&cur_trans->use_count);
416 		spin_unlock(&fs_info->trans_lock);
417 
418 		wait_event(fs_info->transaction_wait,
419 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
420 			   cur_trans->aborted);
421 		btrfs_put_transaction(cur_trans);
422 	} else {
423 		spin_unlock(&fs_info->trans_lock);
424 	}
425 }
426 
427 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
428 {
429 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
430 		return 0;
431 
432 	if (type == TRANS_START)
433 		return 1;
434 
435 	return 0;
436 }
437 
438 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
439 {
440 	struct btrfs_fs_info *fs_info = root->fs_info;
441 
442 	if (!fs_info->reloc_ctl ||
443 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
444 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
445 	    root->reloc_root)
446 		return false;
447 
448 	return true;
449 }
450 
451 static struct btrfs_trans_handle *
452 start_transaction(struct btrfs_root *root, unsigned int num_items,
453 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
454 		  bool enforce_qgroups)
455 {
456 	struct btrfs_fs_info *fs_info = root->fs_info;
457 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
458 	struct btrfs_trans_handle *h;
459 	struct btrfs_transaction *cur_trans;
460 	u64 num_bytes = 0;
461 	u64 qgroup_reserved = 0;
462 	bool reloc_reserved = false;
463 	int ret;
464 
465 	/* Send isn't supposed to start transactions. */
466 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
467 
468 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
469 		return ERR_PTR(-EROFS);
470 
471 	if (current->journal_info) {
472 		WARN_ON(type & TRANS_EXTWRITERS);
473 		h = current->journal_info;
474 		refcount_inc(&h->use_count);
475 		WARN_ON(refcount_read(&h->use_count) > 2);
476 		h->orig_rsv = h->block_rsv;
477 		h->block_rsv = NULL;
478 		goto got_it;
479 	}
480 
481 	/*
482 	 * Do the reservation before we join the transaction so we can do all
483 	 * the appropriate flushing if need be.
484 	 */
485 	if (num_items && root != fs_info->chunk_root) {
486 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
487 		u64 delayed_refs_bytes = 0;
488 
489 		qgroup_reserved = num_items * fs_info->nodesize;
490 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
491 				enforce_qgroups);
492 		if (ret)
493 			return ERR_PTR(ret);
494 
495 		/*
496 		 * We want to reserve all the bytes we may need all at once, so
497 		 * we only do 1 enospc flushing cycle per transaction start.  We
498 		 * accomplish this by simply assuming we'll do 2 x num_items
499 		 * worth of delayed refs updates in this trans handle, and
500 		 * refill that amount for whatever is missing in the reserve.
501 		 */
502 		num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
503 		if (delayed_refs_rsv->full == 0) {
504 			delayed_refs_bytes = num_bytes;
505 			num_bytes <<= 1;
506 		}
507 
508 		/*
509 		 * Do the reservation for the relocation root creation
510 		 */
511 		if (need_reserve_reloc_root(root)) {
512 			num_bytes += fs_info->nodesize;
513 			reloc_reserved = true;
514 		}
515 
516 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
517 		if (ret)
518 			goto reserve_fail;
519 		if (delayed_refs_bytes) {
520 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
521 							  delayed_refs_bytes);
522 			num_bytes -= delayed_refs_bytes;
523 		}
524 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
525 		   !delayed_refs_rsv->full) {
526 		/*
527 		 * Some people call with btrfs_start_transaction(root, 0)
528 		 * because they can be throttled, but have some other mechanism
529 		 * for reserving space.  We still want these guys to refill the
530 		 * delayed block_rsv so just add 1 items worth of reservation
531 		 * here.
532 		 */
533 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
534 		if (ret)
535 			goto reserve_fail;
536 	}
537 again:
538 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
539 	if (!h) {
540 		ret = -ENOMEM;
541 		goto alloc_fail;
542 	}
543 
544 	/*
545 	 * If we are JOIN_NOLOCK we're already committing a transaction and
546 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
547 	 * because we're already holding a ref.  We need this because we could
548 	 * have raced in and did an fsync() on a file which can kick a commit
549 	 * and then we deadlock with somebody doing a freeze.
550 	 *
551 	 * If we are ATTACH, it means we just want to catch the current
552 	 * transaction and commit it, so we needn't do sb_start_intwrite().
553 	 */
554 	if (type & __TRANS_FREEZABLE)
555 		sb_start_intwrite(fs_info->sb);
556 
557 	if (may_wait_transaction(fs_info, type))
558 		wait_current_trans(fs_info);
559 
560 	do {
561 		ret = join_transaction(fs_info, type);
562 		if (ret == -EBUSY) {
563 			wait_current_trans(fs_info);
564 			if (unlikely(type == TRANS_ATTACH))
565 				ret = -ENOENT;
566 		}
567 	} while (ret == -EBUSY);
568 
569 	if (ret < 0)
570 		goto join_fail;
571 
572 	cur_trans = fs_info->running_transaction;
573 
574 	h->transid = cur_trans->transid;
575 	h->transaction = cur_trans;
576 	h->root = root;
577 	refcount_set(&h->use_count, 1);
578 	h->fs_info = root->fs_info;
579 
580 	h->type = type;
581 	h->can_flush_pending_bgs = true;
582 	INIT_LIST_HEAD(&h->new_bgs);
583 
584 	smp_mb();
585 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
586 	    may_wait_transaction(fs_info, type)) {
587 		current->journal_info = h;
588 		btrfs_commit_transaction(h);
589 		goto again;
590 	}
591 
592 	if (num_bytes) {
593 		trace_btrfs_space_reservation(fs_info, "transaction",
594 					      h->transid, num_bytes, 1);
595 		h->block_rsv = &fs_info->trans_block_rsv;
596 		h->bytes_reserved = num_bytes;
597 		h->reloc_reserved = reloc_reserved;
598 	}
599 
600 got_it:
601 	btrfs_record_root_in_trans(h, root);
602 
603 	if (!current->journal_info)
604 		current->journal_info = h;
605 	return h;
606 
607 join_fail:
608 	if (type & __TRANS_FREEZABLE)
609 		sb_end_intwrite(fs_info->sb);
610 	kmem_cache_free(btrfs_trans_handle_cachep, h);
611 alloc_fail:
612 	if (num_bytes)
613 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
614 					num_bytes);
615 reserve_fail:
616 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
617 	return ERR_PTR(ret);
618 }
619 
620 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
621 						   unsigned int num_items)
622 {
623 	return start_transaction(root, num_items, TRANS_START,
624 				 BTRFS_RESERVE_FLUSH_ALL, true);
625 }
626 
627 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
628 					struct btrfs_root *root,
629 					unsigned int num_items,
630 					int min_factor)
631 {
632 	struct btrfs_fs_info *fs_info = root->fs_info;
633 	struct btrfs_trans_handle *trans;
634 	u64 num_bytes;
635 	int ret;
636 
637 	/*
638 	 * We have two callers: unlink and block group removal.  The
639 	 * former should succeed even if we will temporarily exceed
640 	 * quota and the latter operates on the extent root so
641 	 * qgroup enforcement is ignored anyway.
642 	 */
643 	trans = start_transaction(root, num_items, TRANS_START,
644 				  BTRFS_RESERVE_FLUSH_ALL, false);
645 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
646 		return trans;
647 
648 	trans = btrfs_start_transaction(root, 0);
649 	if (IS_ERR(trans))
650 		return trans;
651 
652 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
653 	ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
654 				       num_bytes, min_factor);
655 	if (ret) {
656 		btrfs_end_transaction(trans);
657 		return ERR_PTR(ret);
658 	}
659 
660 	trans->block_rsv = &fs_info->trans_block_rsv;
661 	trans->bytes_reserved = num_bytes;
662 	trace_btrfs_space_reservation(fs_info, "transaction",
663 				      trans->transid, num_bytes, 1);
664 
665 	return trans;
666 }
667 
668 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
669 {
670 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
671 				 true);
672 }
673 
674 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
675 {
676 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
677 				 BTRFS_RESERVE_NO_FLUSH, true);
678 }
679 
680 /*
681  * btrfs_attach_transaction() - catch the running transaction
682  *
683  * It is used when we want to commit the current the transaction, but
684  * don't want to start a new one.
685  *
686  * Note: If this function return -ENOENT, it just means there is no
687  * running transaction. But it is possible that the inactive transaction
688  * is still in the memory, not fully on disk. If you hope there is no
689  * inactive transaction in the fs when -ENOENT is returned, you should
690  * invoke
691  *     btrfs_attach_transaction_barrier()
692  */
693 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
694 {
695 	return start_transaction(root, 0, TRANS_ATTACH,
696 				 BTRFS_RESERVE_NO_FLUSH, true);
697 }
698 
699 /*
700  * btrfs_attach_transaction_barrier() - catch the running transaction
701  *
702  * It is similar to the above function, the difference is this one
703  * will wait for all the inactive transactions until they fully
704  * complete.
705  */
706 struct btrfs_trans_handle *
707 btrfs_attach_transaction_barrier(struct btrfs_root *root)
708 {
709 	struct btrfs_trans_handle *trans;
710 
711 	trans = start_transaction(root, 0, TRANS_ATTACH,
712 				  BTRFS_RESERVE_NO_FLUSH, true);
713 	if (trans == ERR_PTR(-ENOENT))
714 		btrfs_wait_for_commit(root->fs_info, 0);
715 
716 	return trans;
717 }
718 
719 /* wait for a transaction commit to be fully complete */
720 static noinline void wait_for_commit(struct btrfs_transaction *commit)
721 {
722 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
723 }
724 
725 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
726 {
727 	struct btrfs_transaction *cur_trans = NULL, *t;
728 	int ret = 0;
729 
730 	if (transid) {
731 		if (transid <= fs_info->last_trans_committed)
732 			goto out;
733 
734 		/* find specified transaction */
735 		spin_lock(&fs_info->trans_lock);
736 		list_for_each_entry(t, &fs_info->trans_list, list) {
737 			if (t->transid == transid) {
738 				cur_trans = t;
739 				refcount_inc(&cur_trans->use_count);
740 				ret = 0;
741 				break;
742 			}
743 			if (t->transid > transid) {
744 				ret = 0;
745 				break;
746 			}
747 		}
748 		spin_unlock(&fs_info->trans_lock);
749 
750 		/*
751 		 * The specified transaction doesn't exist, or we
752 		 * raced with btrfs_commit_transaction
753 		 */
754 		if (!cur_trans) {
755 			if (transid > fs_info->last_trans_committed)
756 				ret = -EINVAL;
757 			goto out;
758 		}
759 	} else {
760 		/* find newest transaction that is committing | committed */
761 		spin_lock(&fs_info->trans_lock);
762 		list_for_each_entry_reverse(t, &fs_info->trans_list,
763 					    list) {
764 			if (t->state >= TRANS_STATE_COMMIT_START) {
765 				if (t->state == TRANS_STATE_COMPLETED)
766 					break;
767 				cur_trans = t;
768 				refcount_inc(&cur_trans->use_count);
769 				break;
770 			}
771 		}
772 		spin_unlock(&fs_info->trans_lock);
773 		if (!cur_trans)
774 			goto out;  /* nothing committing|committed */
775 	}
776 
777 	wait_for_commit(cur_trans);
778 	btrfs_put_transaction(cur_trans);
779 out:
780 	return ret;
781 }
782 
783 void btrfs_throttle(struct btrfs_fs_info *fs_info)
784 {
785 	wait_current_trans(fs_info);
786 }
787 
788 static int should_end_transaction(struct btrfs_trans_handle *trans)
789 {
790 	struct btrfs_fs_info *fs_info = trans->fs_info;
791 
792 	if (btrfs_check_space_for_delayed_refs(fs_info))
793 		return 1;
794 
795 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
796 }
797 
798 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
799 {
800 	struct btrfs_transaction *cur_trans = trans->transaction;
801 
802 	smp_mb();
803 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
804 	    cur_trans->delayed_refs.flushing)
805 		return 1;
806 
807 	return should_end_transaction(trans);
808 }
809 
810 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
811 
812 {
813 	struct btrfs_fs_info *fs_info = trans->fs_info;
814 
815 	if (!trans->block_rsv) {
816 		ASSERT(!trans->bytes_reserved);
817 		return;
818 	}
819 
820 	if (!trans->bytes_reserved)
821 		return;
822 
823 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
824 	trace_btrfs_space_reservation(fs_info, "transaction",
825 				      trans->transid, trans->bytes_reserved, 0);
826 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
827 				trans->bytes_reserved);
828 	trans->bytes_reserved = 0;
829 }
830 
831 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
832 				   int throttle)
833 {
834 	struct btrfs_fs_info *info = trans->fs_info;
835 	struct btrfs_transaction *cur_trans = trans->transaction;
836 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
837 	int err = 0;
838 
839 	if (refcount_read(&trans->use_count) > 1) {
840 		refcount_dec(&trans->use_count);
841 		trans->block_rsv = trans->orig_rsv;
842 		return 0;
843 	}
844 
845 	btrfs_trans_release_metadata(trans);
846 	trans->block_rsv = NULL;
847 
848 	if (!list_empty(&trans->new_bgs))
849 		btrfs_create_pending_block_groups(trans);
850 
851 	btrfs_trans_release_chunk_metadata(trans);
852 
853 	if (lock && should_end_transaction(trans) &&
854 	    READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
855 		spin_lock(&info->trans_lock);
856 		if (cur_trans->state == TRANS_STATE_RUNNING)
857 			cur_trans->state = TRANS_STATE_BLOCKED;
858 		spin_unlock(&info->trans_lock);
859 	}
860 
861 	if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
862 		if (throttle)
863 			return btrfs_commit_transaction(trans);
864 		else
865 			wake_up_process(info->transaction_kthread);
866 	}
867 
868 	if (trans->type & __TRANS_FREEZABLE)
869 		sb_end_intwrite(info->sb);
870 
871 	WARN_ON(cur_trans != info->running_transaction);
872 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
873 	atomic_dec(&cur_trans->num_writers);
874 	extwriter_counter_dec(cur_trans, trans->type);
875 
876 	cond_wake_up(&cur_trans->writer_wait);
877 	btrfs_put_transaction(cur_trans);
878 
879 	if (current->journal_info == trans)
880 		current->journal_info = NULL;
881 
882 	if (throttle)
883 		btrfs_run_delayed_iputs(info);
884 
885 	if (trans->aborted ||
886 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
887 		wake_up_process(info->transaction_kthread);
888 		err = -EIO;
889 	}
890 
891 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
892 	return err;
893 }
894 
895 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
896 {
897 	return __btrfs_end_transaction(trans, 0);
898 }
899 
900 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
901 {
902 	return __btrfs_end_transaction(trans, 1);
903 }
904 
905 /*
906  * when btree blocks are allocated, they have some corresponding bits set for
907  * them in one of two extent_io trees.  This is used to make sure all of
908  * those extents are sent to disk but does not wait on them
909  */
910 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
911 			       struct extent_io_tree *dirty_pages, int mark)
912 {
913 	int err = 0;
914 	int werr = 0;
915 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
916 	struct extent_state *cached_state = NULL;
917 	u64 start = 0;
918 	u64 end;
919 
920 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
921 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
922 				      mark, &cached_state)) {
923 		bool wait_writeback = false;
924 
925 		err = convert_extent_bit(dirty_pages, start, end,
926 					 EXTENT_NEED_WAIT,
927 					 mark, &cached_state);
928 		/*
929 		 * convert_extent_bit can return -ENOMEM, which is most of the
930 		 * time a temporary error. So when it happens, ignore the error
931 		 * and wait for writeback of this range to finish - because we
932 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
933 		 * to __btrfs_wait_marked_extents() would not know that
934 		 * writeback for this range started and therefore wouldn't
935 		 * wait for it to finish - we don't want to commit a
936 		 * superblock that points to btree nodes/leafs for which
937 		 * writeback hasn't finished yet (and without errors).
938 		 * We cleanup any entries left in the io tree when committing
939 		 * the transaction (through clear_btree_io_tree()).
940 		 */
941 		if (err == -ENOMEM) {
942 			err = 0;
943 			wait_writeback = true;
944 		}
945 		if (!err)
946 			err = filemap_fdatawrite_range(mapping, start, end);
947 		if (err)
948 			werr = err;
949 		else if (wait_writeback)
950 			werr = filemap_fdatawait_range(mapping, start, end);
951 		free_extent_state(cached_state);
952 		cached_state = NULL;
953 		cond_resched();
954 		start = end + 1;
955 	}
956 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
957 	return werr;
958 }
959 
960 /*
961  * when btree blocks are allocated, they have some corresponding bits set for
962  * them in one of two extent_io trees.  This is used to make sure all of
963  * those extents are on disk for transaction or log commit.  We wait
964  * on all the pages and clear them from the dirty pages state tree
965  */
966 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
967 				       struct extent_io_tree *dirty_pages)
968 {
969 	int err = 0;
970 	int werr = 0;
971 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
972 	struct extent_state *cached_state = NULL;
973 	u64 start = 0;
974 	u64 end;
975 
976 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
977 				      EXTENT_NEED_WAIT, &cached_state)) {
978 		/*
979 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
980 		 * When committing the transaction, we'll remove any entries
981 		 * left in the io tree. For a log commit, we don't remove them
982 		 * after committing the log because the tree can be accessed
983 		 * concurrently - we do it only at transaction commit time when
984 		 * it's safe to do it (through clear_btree_io_tree()).
985 		 */
986 		err = clear_extent_bit(dirty_pages, start, end,
987 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
988 		if (err == -ENOMEM)
989 			err = 0;
990 		if (!err)
991 			err = filemap_fdatawait_range(mapping, start, end);
992 		if (err)
993 			werr = err;
994 		free_extent_state(cached_state);
995 		cached_state = NULL;
996 		cond_resched();
997 		start = end + 1;
998 	}
999 	if (err)
1000 		werr = err;
1001 	return werr;
1002 }
1003 
1004 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1005 		       struct extent_io_tree *dirty_pages)
1006 {
1007 	bool errors = false;
1008 	int err;
1009 
1010 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1011 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1012 		errors = true;
1013 
1014 	if (errors && !err)
1015 		err = -EIO;
1016 	return err;
1017 }
1018 
1019 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1020 {
1021 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1022 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1023 	bool errors = false;
1024 	int err;
1025 
1026 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1027 
1028 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1029 	if ((mark & EXTENT_DIRTY) &&
1030 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1031 		errors = true;
1032 
1033 	if ((mark & EXTENT_NEW) &&
1034 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1035 		errors = true;
1036 
1037 	if (errors && !err)
1038 		err = -EIO;
1039 	return err;
1040 }
1041 
1042 /*
1043  * When btree blocks are allocated the corresponding extents are marked dirty.
1044  * This function ensures such extents are persisted on disk for transaction or
1045  * log commit.
1046  *
1047  * @trans: transaction whose dirty pages we'd like to write
1048  */
1049 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1050 {
1051 	int ret;
1052 	int ret2;
1053 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1054 	struct btrfs_fs_info *fs_info = trans->fs_info;
1055 	struct blk_plug plug;
1056 
1057 	blk_start_plug(&plug);
1058 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1059 	blk_finish_plug(&plug);
1060 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1061 
1062 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1063 
1064 	if (ret)
1065 		return ret;
1066 	else if (ret2)
1067 		return ret2;
1068 	else
1069 		return 0;
1070 }
1071 
1072 /*
1073  * this is used to update the root pointer in the tree of tree roots.
1074  *
1075  * But, in the case of the extent allocation tree, updating the root
1076  * pointer may allocate blocks which may change the root of the extent
1077  * allocation tree.
1078  *
1079  * So, this loops and repeats and makes sure the cowonly root didn't
1080  * change while the root pointer was being updated in the metadata.
1081  */
1082 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1083 			       struct btrfs_root *root)
1084 {
1085 	int ret;
1086 	u64 old_root_bytenr;
1087 	u64 old_root_used;
1088 	struct btrfs_fs_info *fs_info = root->fs_info;
1089 	struct btrfs_root *tree_root = fs_info->tree_root;
1090 
1091 	old_root_used = btrfs_root_used(&root->root_item);
1092 
1093 	while (1) {
1094 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1095 		if (old_root_bytenr == root->node->start &&
1096 		    old_root_used == btrfs_root_used(&root->root_item))
1097 			break;
1098 
1099 		btrfs_set_root_node(&root->root_item, root->node);
1100 		ret = btrfs_update_root(trans, tree_root,
1101 					&root->root_key,
1102 					&root->root_item);
1103 		if (ret)
1104 			return ret;
1105 
1106 		old_root_used = btrfs_root_used(&root->root_item);
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 /*
1113  * update all the cowonly tree roots on disk
1114  *
1115  * The error handling in this function may not be obvious. Any of the
1116  * failures will cause the file system to go offline. We still need
1117  * to clean up the delayed refs.
1118  */
1119 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1120 {
1121 	struct btrfs_fs_info *fs_info = trans->fs_info;
1122 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1123 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1124 	struct list_head *next;
1125 	struct extent_buffer *eb;
1126 	int ret;
1127 
1128 	eb = btrfs_lock_root_node(fs_info->tree_root);
1129 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1130 			      0, &eb);
1131 	btrfs_tree_unlock(eb);
1132 	free_extent_buffer(eb);
1133 
1134 	if (ret)
1135 		return ret;
1136 
1137 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1138 	if (ret)
1139 		return ret;
1140 
1141 	ret = btrfs_run_dev_stats(trans, fs_info);
1142 	if (ret)
1143 		return ret;
1144 	ret = btrfs_run_dev_replace(trans, fs_info);
1145 	if (ret)
1146 		return ret;
1147 	ret = btrfs_run_qgroups(trans);
1148 	if (ret)
1149 		return ret;
1150 
1151 	ret = btrfs_setup_space_cache(trans, fs_info);
1152 	if (ret)
1153 		return ret;
1154 
1155 	/* run_qgroups might have added some more refs */
1156 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1157 	if (ret)
1158 		return ret;
1159 again:
1160 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1161 		struct btrfs_root *root;
1162 		next = fs_info->dirty_cowonly_roots.next;
1163 		list_del_init(next);
1164 		root = list_entry(next, struct btrfs_root, dirty_list);
1165 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1166 
1167 		if (root != fs_info->extent_root)
1168 			list_add_tail(&root->dirty_list,
1169 				      &trans->transaction->switch_commits);
1170 		ret = update_cowonly_root(trans, root);
1171 		if (ret)
1172 			return ret;
1173 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1174 		if (ret)
1175 			return ret;
1176 	}
1177 
1178 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1179 		ret = btrfs_write_dirty_block_groups(trans, fs_info);
1180 		if (ret)
1181 			return ret;
1182 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1183 		if (ret)
1184 			return ret;
1185 	}
1186 
1187 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1188 		goto again;
1189 
1190 	list_add_tail(&fs_info->extent_root->dirty_list,
1191 		      &trans->transaction->switch_commits);
1192 
1193 	/* Update dev-replace pointer once everything is committed */
1194 	fs_info->dev_replace.committed_cursor_left =
1195 		fs_info->dev_replace.cursor_left_last_write_of_item;
1196 
1197 	return 0;
1198 }
1199 
1200 /*
1201  * dead roots are old snapshots that need to be deleted.  This allocates
1202  * a dirty root struct and adds it into the list of dead roots that need to
1203  * be deleted
1204  */
1205 void btrfs_add_dead_root(struct btrfs_root *root)
1206 {
1207 	struct btrfs_fs_info *fs_info = root->fs_info;
1208 
1209 	spin_lock(&fs_info->trans_lock);
1210 	if (list_empty(&root->root_list))
1211 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1212 	spin_unlock(&fs_info->trans_lock);
1213 }
1214 
1215 /*
1216  * update all the cowonly tree roots on disk
1217  */
1218 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1219 {
1220 	struct btrfs_fs_info *fs_info = trans->fs_info;
1221 	struct btrfs_root *gang[8];
1222 	int i;
1223 	int ret;
1224 	int err = 0;
1225 
1226 	spin_lock(&fs_info->fs_roots_radix_lock);
1227 	while (1) {
1228 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1229 						 (void **)gang, 0,
1230 						 ARRAY_SIZE(gang),
1231 						 BTRFS_ROOT_TRANS_TAG);
1232 		if (ret == 0)
1233 			break;
1234 		for (i = 0; i < ret; i++) {
1235 			struct btrfs_root *root = gang[i];
1236 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1237 					(unsigned long)root->root_key.objectid,
1238 					BTRFS_ROOT_TRANS_TAG);
1239 			spin_unlock(&fs_info->fs_roots_radix_lock);
1240 
1241 			btrfs_free_log(trans, root);
1242 			btrfs_update_reloc_root(trans, root);
1243 
1244 			btrfs_save_ino_cache(root, trans);
1245 
1246 			/* see comments in should_cow_block() */
1247 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1248 			smp_mb__after_atomic();
1249 
1250 			if (root->commit_root != root->node) {
1251 				list_add_tail(&root->dirty_list,
1252 					&trans->transaction->switch_commits);
1253 				btrfs_set_root_node(&root->root_item,
1254 						    root->node);
1255 			}
1256 
1257 			err = btrfs_update_root(trans, fs_info->tree_root,
1258 						&root->root_key,
1259 						&root->root_item);
1260 			spin_lock(&fs_info->fs_roots_radix_lock);
1261 			if (err)
1262 				break;
1263 			btrfs_qgroup_free_meta_all_pertrans(root);
1264 		}
1265 	}
1266 	spin_unlock(&fs_info->fs_roots_radix_lock);
1267 	return err;
1268 }
1269 
1270 /*
1271  * defrag a given btree.
1272  * Every leaf in the btree is read and defragged.
1273  */
1274 int btrfs_defrag_root(struct btrfs_root *root)
1275 {
1276 	struct btrfs_fs_info *info = root->fs_info;
1277 	struct btrfs_trans_handle *trans;
1278 	int ret;
1279 
1280 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1281 		return 0;
1282 
1283 	while (1) {
1284 		trans = btrfs_start_transaction(root, 0);
1285 		if (IS_ERR(trans))
1286 			return PTR_ERR(trans);
1287 
1288 		ret = btrfs_defrag_leaves(trans, root);
1289 
1290 		btrfs_end_transaction(trans);
1291 		btrfs_btree_balance_dirty(info);
1292 		cond_resched();
1293 
1294 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1295 			break;
1296 
1297 		if (btrfs_defrag_cancelled(info)) {
1298 			btrfs_debug(info, "defrag_root cancelled");
1299 			ret = -EAGAIN;
1300 			break;
1301 		}
1302 	}
1303 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1304 	return ret;
1305 }
1306 
1307 /*
1308  * Do all special snapshot related qgroup dirty hack.
1309  *
1310  * Will do all needed qgroup inherit and dirty hack like switch commit
1311  * roots inside one transaction and write all btree into disk, to make
1312  * qgroup works.
1313  */
1314 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1315 				   struct btrfs_root *src,
1316 				   struct btrfs_root *parent,
1317 				   struct btrfs_qgroup_inherit *inherit,
1318 				   u64 dst_objectid)
1319 {
1320 	struct btrfs_fs_info *fs_info = src->fs_info;
1321 	int ret;
1322 
1323 	/*
1324 	 * Save some performance in the case that qgroups are not
1325 	 * enabled. If this check races with the ioctl, rescan will
1326 	 * kick in anyway.
1327 	 */
1328 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1329 		return 0;
1330 
1331 	/*
1332 	 * Ensure dirty @src will be committed.  Or, after coming
1333 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1334 	 * recorded root will never be updated again, causing an outdated root
1335 	 * item.
1336 	 */
1337 	record_root_in_trans(trans, src, 1);
1338 
1339 	/*
1340 	 * We are going to commit transaction, see btrfs_commit_transaction()
1341 	 * comment for reason locking tree_log_mutex
1342 	 */
1343 	mutex_lock(&fs_info->tree_log_mutex);
1344 
1345 	ret = commit_fs_roots(trans);
1346 	if (ret)
1347 		goto out;
1348 	ret = btrfs_qgroup_account_extents(trans);
1349 	if (ret < 0)
1350 		goto out;
1351 
1352 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1353 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1354 				   inherit);
1355 	if (ret < 0)
1356 		goto out;
1357 
1358 	/*
1359 	 * Now we do a simplified commit transaction, which will:
1360 	 * 1) commit all subvolume and extent tree
1361 	 *    To ensure all subvolume and extent tree have a valid
1362 	 *    commit_root to accounting later insert_dir_item()
1363 	 * 2) write all btree blocks onto disk
1364 	 *    This is to make sure later btree modification will be cowed
1365 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1366 	 * In this simplified commit, we don't really care about other trees
1367 	 * like chunk and root tree, as they won't affect qgroup.
1368 	 * And we don't write super to avoid half committed status.
1369 	 */
1370 	ret = commit_cowonly_roots(trans);
1371 	if (ret)
1372 		goto out;
1373 	switch_commit_roots(trans->transaction);
1374 	ret = btrfs_write_and_wait_transaction(trans);
1375 	if (ret)
1376 		btrfs_handle_fs_error(fs_info, ret,
1377 			"Error while writing out transaction for qgroup");
1378 
1379 out:
1380 	mutex_unlock(&fs_info->tree_log_mutex);
1381 
1382 	/*
1383 	 * Force parent root to be updated, as we recorded it before so its
1384 	 * last_trans == cur_transid.
1385 	 * Or it won't be committed again onto disk after later
1386 	 * insert_dir_item()
1387 	 */
1388 	if (!ret)
1389 		record_root_in_trans(trans, parent, 1);
1390 	return ret;
1391 }
1392 
1393 /*
1394  * new snapshots need to be created at a very specific time in the
1395  * transaction commit.  This does the actual creation.
1396  *
1397  * Note:
1398  * If the error which may affect the commitment of the current transaction
1399  * happens, we should return the error number. If the error which just affect
1400  * the creation of the pending snapshots, just return 0.
1401  */
1402 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1403 				   struct btrfs_pending_snapshot *pending)
1404 {
1405 
1406 	struct btrfs_fs_info *fs_info = trans->fs_info;
1407 	struct btrfs_key key;
1408 	struct btrfs_root_item *new_root_item;
1409 	struct btrfs_root *tree_root = fs_info->tree_root;
1410 	struct btrfs_root *root = pending->root;
1411 	struct btrfs_root *parent_root;
1412 	struct btrfs_block_rsv *rsv;
1413 	struct inode *parent_inode;
1414 	struct btrfs_path *path;
1415 	struct btrfs_dir_item *dir_item;
1416 	struct dentry *dentry;
1417 	struct extent_buffer *tmp;
1418 	struct extent_buffer *old;
1419 	struct timespec64 cur_time;
1420 	int ret = 0;
1421 	u64 to_reserve = 0;
1422 	u64 index = 0;
1423 	u64 objectid;
1424 	u64 root_flags;
1425 	uuid_le new_uuid;
1426 
1427 	ASSERT(pending->path);
1428 	path = pending->path;
1429 
1430 	ASSERT(pending->root_item);
1431 	new_root_item = pending->root_item;
1432 
1433 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1434 	if (pending->error)
1435 		goto no_free_objectid;
1436 
1437 	/*
1438 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1439 	 * accounted by later btrfs_qgroup_inherit().
1440 	 */
1441 	btrfs_set_skip_qgroup(trans, objectid);
1442 
1443 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1444 
1445 	if (to_reserve > 0) {
1446 		pending->error = btrfs_block_rsv_add(root,
1447 						     &pending->block_rsv,
1448 						     to_reserve,
1449 						     BTRFS_RESERVE_NO_FLUSH);
1450 		if (pending->error)
1451 			goto clear_skip_qgroup;
1452 	}
1453 
1454 	key.objectid = objectid;
1455 	key.offset = (u64)-1;
1456 	key.type = BTRFS_ROOT_ITEM_KEY;
1457 
1458 	rsv = trans->block_rsv;
1459 	trans->block_rsv = &pending->block_rsv;
1460 	trans->bytes_reserved = trans->block_rsv->reserved;
1461 	trace_btrfs_space_reservation(fs_info, "transaction",
1462 				      trans->transid,
1463 				      trans->bytes_reserved, 1);
1464 	dentry = pending->dentry;
1465 	parent_inode = pending->dir;
1466 	parent_root = BTRFS_I(parent_inode)->root;
1467 	record_root_in_trans(trans, parent_root, 0);
1468 
1469 	cur_time = current_time(parent_inode);
1470 
1471 	/*
1472 	 * insert the directory item
1473 	 */
1474 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1475 	BUG_ON(ret); /* -ENOMEM */
1476 
1477 	/* check if there is a file/dir which has the same name. */
1478 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1479 					 btrfs_ino(BTRFS_I(parent_inode)),
1480 					 dentry->d_name.name,
1481 					 dentry->d_name.len, 0);
1482 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1483 		pending->error = -EEXIST;
1484 		goto dir_item_existed;
1485 	} else if (IS_ERR(dir_item)) {
1486 		ret = PTR_ERR(dir_item);
1487 		btrfs_abort_transaction(trans, ret);
1488 		goto fail;
1489 	}
1490 	btrfs_release_path(path);
1491 
1492 	/*
1493 	 * pull in the delayed directory update
1494 	 * and the delayed inode item
1495 	 * otherwise we corrupt the FS during
1496 	 * snapshot
1497 	 */
1498 	ret = btrfs_run_delayed_items(trans);
1499 	if (ret) {	/* Transaction aborted */
1500 		btrfs_abort_transaction(trans, ret);
1501 		goto fail;
1502 	}
1503 
1504 	record_root_in_trans(trans, root, 0);
1505 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1506 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1507 	btrfs_check_and_init_root_item(new_root_item);
1508 
1509 	root_flags = btrfs_root_flags(new_root_item);
1510 	if (pending->readonly)
1511 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1512 	else
1513 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1514 	btrfs_set_root_flags(new_root_item, root_flags);
1515 
1516 	btrfs_set_root_generation_v2(new_root_item,
1517 			trans->transid);
1518 	uuid_le_gen(&new_uuid);
1519 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1520 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1521 			BTRFS_UUID_SIZE);
1522 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1523 		memset(new_root_item->received_uuid, 0,
1524 		       sizeof(new_root_item->received_uuid));
1525 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1526 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1527 		btrfs_set_root_stransid(new_root_item, 0);
1528 		btrfs_set_root_rtransid(new_root_item, 0);
1529 	}
1530 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1531 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1532 	btrfs_set_root_otransid(new_root_item, trans->transid);
1533 
1534 	old = btrfs_lock_root_node(root);
1535 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1536 	if (ret) {
1537 		btrfs_tree_unlock(old);
1538 		free_extent_buffer(old);
1539 		btrfs_abort_transaction(trans, ret);
1540 		goto fail;
1541 	}
1542 
1543 	btrfs_set_lock_blocking(old);
1544 
1545 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1546 	/* clean up in any case */
1547 	btrfs_tree_unlock(old);
1548 	free_extent_buffer(old);
1549 	if (ret) {
1550 		btrfs_abort_transaction(trans, ret);
1551 		goto fail;
1552 	}
1553 	/* see comments in should_cow_block() */
1554 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1555 	smp_wmb();
1556 
1557 	btrfs_set_root_node(new_root_item, tmp);
1558 	/* record when the snapshot was created in key.offset */
1559 	key.offset = trans->transid;
1560 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1561 	btrfs_tree_unlock(tmp);
1562 	free_extent_buffer(tmp);
1563 	if (ret) {
1564 		btrfs_abort_transaction(trans, ret);
1565 		goto fail;
1566 	}
1567 
1568 	/*
1569 	 * insert root back/forward references
1570 	 */
1571 	ret = btrfs_add_root_ref(trans, objectid,
1572 				 parent_root->root_key.objectid,
1573 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1574 				 dentry->d_name.name, dentry->d_name.len);
1575 	if (ret) {
1576 		btrfs_abort_transaction(trans, ret);
1577 		goto fail;
1578 	}
1579 
1580 	key.offset = (u64)-1;
1581 	pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1582 	if (IS_ERR(pending->snap)) {
1583 		ret = PTR_ERR(pending->snap);
1584 		btrfs_abort_transaction(trans, ret);
1585 		goto fail;
1586 	}
1587 
1588 	ret = btrfs_reloc_post_snapshot(trans, pending);
1589 	if (ret) {
1590 		btrfs_abort_transaction(trans, ret);
1591 		goto fail;
1592 	}
1593 
1594 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1595 	if (ret) {
1596 		btrfs_abort_transaction(trans, ret);
1597 		goto fail;
1598 	}
1599 
1600 	/*
1601 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1602 	 * snapshot hack to do fast snapshot.
1603 	 * To co-operate with that hack, we do hack again.
1604 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1605 	 */
1606 	ret = qgroup_account_snapshot(trans, root, parent_root,
1607 				      pending->inherit, objectid);
1608 	if (ret < 0)
1609 		goto fail;
1610 
1611 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1612 				    dentry->d_name.len, BTRFS_I(parent_inode),
1613 				    &key, BTRFS_FT_DIR, index);
1614 	/* We have check then name at the beginning, so it is impossible. */
1615 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1616 	if (ret) {
1617 		btrfs_abort_transaction(trans, ret);
1618 		goto fail;
1619 	}
1620 
1621 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1622 					 dentry->d_name.len * 2);
1623 	parent_inode->i_mtime = parent_inode->i_ctime =
1624 		current_time(parent_inode);
1625 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1626 	if (ret) {
1627 		btrfs_abort_transaction(trans, ret);
1628 		goto fail;
1629 	}
1630 	ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1631 				  objectid);
1632 	if (ret) {
1633 		btrfs_abort_transaction(trans, ret);
1634 		goto fail;
1635 	}
1636 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1637 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1638 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1639 					  objectid);
1640 		if (ret && ret != -EEXIST) {
1641 			btrfs_abort_transaction(trans, ret);
1642 			goto fail;
1643 		}
1644 	}
1645 
1646 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1647 	if (ret) {
1648 		btrfs_abort_transaction(trans, ret);
1649 		goto fail;
1650 	}
1651 
1652 fail:
1653 	pending->error = ret;
1654 dir_item_existed:
1655 	trans->block_rsv = rsv;
1656 	trans->bytes_reserved = 0;
1657 clear_skip_qgroup:
1658 	btrfs_clear_skip_qgroup(trans);
1659 no_free_objectid:
1660 	kfree(new_root_item);
1661 	pending->root_item = NULL;
1662 	btrfs_free_path(path);
1663 	pending->path = NULL;
1664 
1665 	return ret;
1666 }
1667 
1668 /*
1669  * create all the snapshots we've scheduled for creation
1670  */
1671 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1672 {
1673 	struct btrfs_pending_snapshot *pending, *next;
1674 	struct list_head *head = &trans->transaction->pending_snapshots;
1675 	int ret = 0;
1676 
1677 	list_for_each_entry_safe(pending, next, head, list) {
1678 		list_del(&pending->list);
1679 		ret = create_pending_snapshot(trans, pending);
1680 		if (ret)
1681 			break;
1682 	}
1683 	return ret;
1684 }
1685 
1686 static void update_super_roots(struct btrfs_fs_info *fs_info)
1687 {
1688 	struct btrfs_root_item *root_item;
1689 	struct btrfs_super_block *super;
1690 
1691 	super = fs_info->super_copy;
1692 
1693 	root_item = &fs_info->chunk_root->root_item;
1694 	super->chunk_root = root_item->bytenr;
1695 	super->chunk_root_generation = root_item->generation;
1696 	super->chunk_root_level = root_item->level;
1697 
1698 	root_item = &fs_info->tree_root->root_item;
1699 	super->root = root_item->bytenr;
1700 	super->generation = root_item->generation;
1701 	super->root_level = root_item->level;
1702 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1703 		super->cache_generation = root_item->generation;
1704 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1705 		super->uuid_tree_generation = root_item->generation;
1706 }
1707 
1708 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1709 {
1710 	struct btrfs_transaction *trans;
1711 	int ret = 0;
1712 
1713 	spin_lock(&info->trans_lock);
1714 	trans = info->running_transaction;
1715 	if (trans)
1716 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1717 	spin_unlock(&info->trans_lock);
1718 	return ret;
1719 }
1720 
1721 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1722 {
1723 	struct btrfs_transaction *trans;
1724 	int ret = 0;
1725 
1726 	spin_lock(&info->trans_lock);
1727 	trans = info->running_transaction;
1728 	if (trans)
1729 		ret = is_transaction_blocked(trans);
1730 	spin_unlock(&info->trans_lock);
1731 	return ret;
1732 }
1733 
1734 /*
1735  * wait for the current transaction commit to start and block subsequent
1736  * transaction joins
1737  */
1738 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1739 					    struct btrfs_transaction *trans)
1740 {
1741 	wait_event(fs_info->transaction_blocked_wait,
1742 		   trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1743 }
1744 
1745 /*
1746  * wait for the current transaction to start and then become unblocked.
1747  * caller holds ref.
1748  */
1749 static void wait_current_trans_commit_start_and_unblock(
1750 					struct btrfs_fs_info *fs_info,
1751 					struct btrfs_transaction *trans)
1752 {
1753 	wait_event(fs_info->transaction_wait,
1754 		   trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1755 }
1756 
1757 /*
1758  * commit transactions asynchronously. once btrfs_commit_transaction_async
1759  * returns, any subsequent transaction will not be allowed to join.
1760  */
1761 struct btrfs_async_commit {
1762 	struct btrfs_trans_handle *newtrans;
1763 	struct work_struct work;
1764 };
1765 
1766 static void do_async_commit(struct work_struct *work)
1767 {
1768 	struct btrfs_async_commit *ac =
1769 		container_of(work, struct btrfs_async_commit, work);
1770 
1771 	/*
1772 	 * We've got freeze protection passed with the transaction.
1773 	 * Tell lockdep about it.
1774 	 */
1775 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1776 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1777 
1778 	current->journal_info = ac->newtrans;
1779 
1780 	btrfs_commit_transaction(ac->newtrans);
1781 	kfree(ac);
1782 }
1783 
1784 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1785 				   int wait_for_unblock)
1786 {
1787 	struct btrfs_fs_info *fs_info = trans->fs_info;
1788 	struct btrfs_async_commit *ac;
1789 	struct btrfs_transaction *cur_trans;
1790 
1791 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1792 	if (!ac)
1793 		return -ENOMEM;
1794 
1795 	INIT_WORK(&ac->work, do_async_commit);
1796 	ac->newtrans = btrfs_join_transaction(trans->root);
1797 	if (IS_ERR(ac->newtrans)) {
1798 		int err = PTR_ERR(ac->newtrans);
1799 		kfree(ac);
1800 		return err;
1801 	}
1802 
1803 	/* take transaction reference */
1804 	cur_trans = trans->transaction;
1805 	refcount_inc(&cur_trans->use_count);
1806 
1807 	btrfs_end_transaction(trans);
1808 
1809 	/*
1810 	 * Tell lockdep we've released the freeze rwsem, since the
1811 	 * async commit thread will be the one to unlock it.
1812 	 */
1813 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1814 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1815 
1816 	schedule_work(&ac->work);
1817 
1818 	/* wait for transaction to start and unblock */
1819 	if (wait_for_unblock)
1820 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1821 	else
1822 		wait_current_trans_commit_start(fs_info, cur_trans);
1823 
1824 	if (current->journal_info == trans)
1825 		current->journal_info = NULL;
1826 
1827 	btrfs_put_transaction(cur_trans);
1828 	return 0;
1829 }
1830 
1831 
1832 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1833 {
1834 	struct btrfs_fs_info *fs_info = trans->fs_info;
1835 	struct btrfs_transaction *cur_trans = trans->transaction;
1836 
1837 	WARN_ON(refcount_read(&trans->use_count) > 1);
1838 
1839 	btrfs_abort_transaction(trans, err);
1840 
1841 	spin_lock(&fs_info->trans_lock);
1842 
1843 	/*
1844 	 * If the transaction is removed from the list, it means this
1845 	 * transaction has been committed successfully, so it is impossible
1846 	 * to call the cleanup function.
1847 	 */
1848 	BUG_ON(list_empty(&cur_trans->list));
1849 
1850 	list_del_init(&cur_trans->list);
1851 	if (cur_trans == fs_info->running_transaction) {
1852 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1853 		spin_unlock(&fs_info->trans_lock);
1854 		wait_event(cur_trans->writer_wait,
1855 			   atomic_read(&cur_trans->num_writers) == 1);
1856 
1857 		spin_lock(&fs_info->trans_lock);
1858 	}
1859 	spin_unlock(&fs_info->trans_lock);
1860 
1861 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1862 
1863 	spin_lock(&fs_info->trans_lock);
1864 	if (cur_trans == fs_info->running_transaction)
1865 		fs_info->running_transaction = NULL;
1866 	spin_unlock(&fs_info->trans_lock);
1867 
1868 	if (trans->type & __TRANS_FREEZABLE)
1869 		sb_end_intwrite(fs_info->sb);
1870 	btrfs_put_transaction(cur_trans);
1871 	btrfs_put_transaction(cur_trans);
1872 
1873 	trace_btrfs_transaction_commit(trans->root);
1874 
1875 	if (current->journal_info == trans)
1876 		current->journal_info = NULL;
1877 	btrfs_scrub_cancel(fs_info);
1878 
1879 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1880 }
1881 
1882 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1883 {
1884 	/*
1885 	 * We use writeback_inodes_sb here because if we used
1886 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1887 	 * Currently are holding the fs freeze lock, if we do an async flush
1888 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1889 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1890 	 * from already being in a transaction and our join_transaction doesn't
1891 	 * have to re-take the fs freeze lock.
1892 	 */
1893 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1894 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1895 	return 0;
1896 }
1897 
1898 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1899 {
1900 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1901 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1902 }
1903 
1904 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1905 {
1906 	struct btrfs_fs_info *fs_info = trans->fs_info;
1907 	struct btrfs_transaction *cur_trans = trans->transaction;
1908 	struct btrfs_transaction *prev_trans = NULL;
1909 	int ret;
1910 
1911 	/* Stop the commit early if ->aborted is set */
1912 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
1913 		ret = cur_trans->aborted;
1914 		btrfs_end_transaction(trans);
1915 		return ret;
1916 	}
1917 
1918 	btrfs_trans_release_metadata(trans);
1919 	trans->block_rsv = NULL;
1920 
1921 	/* make a pass through all the delayed refs we have so far
1922 	 * any runnings procs may add more while we are here
1923 	 */
1924 	ret = btrfs_run_delayed_refs(trans, 0);
1925 	if (ret) {
1926 		btrfs_end_transaction(trans);
1927 		return ret;
1928 	}
1929 
1930 	cur_trans = trans->transaction;
1931 
1932 	/*
1933 	 * set the flushing flag so procs in this transaction have to
1934 	 * start sending their work down.
1935 	 */
1936 	cur_trans->delayed_refs.flushing = 1;
1937 	smp_wmb();
1938 
1939 	if (!list_empty(&trans->new_bgs))
1940 		btrfs_create_pending_block_groups(trans);
1941 
1942 	ret = btrfs_run_delayed_refs(trans, 0);
1943 	if (ret) {
1944 		btrfs_end_transaction(trans);
1945 		return ret;
1946 	}
1947 
1948 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1949 		int run_it = 0;
1950 
1951 		/* this mutex is also taken before trying to set
1952 		 * block groups readonly.  We need to make sure
1953 		 * that nobody has set a block group readonly
1954 		 * after a extents from that block group have been
1955 		 * allocated for cache files.  btrfs_set_block_group_ro
1956 		 * will wait for the transaction to commit if it
1957 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1958 		 *
1959 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1960 		 * only one process starts all the block group IO.  It wouldn't
1961 		 * hurt to have more than one go through, but there's no
1962 		 * real advantage to it either.
1963 		 */
1964 		mutex_lock(&fs_info->ro_block_group_mutex);
1965 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1966 				      &cur_trans->flags))
1967 			run_it = 1;
1968 		mutex_unlock(&fs_info->ro_block_group_mutex);
1969 
1970 		if (run_it) {
1971 			ret = btrfs_start_dirty_block_groups(trans);
1972 			if (ret) {
1973 				btrfs_end_transaction(trans);
1974 				return ret;
1975 			}
1976 		}
1977 	}
1978 
1979 	spin_lock(&fs_info->trans_lock);
1980 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1981 		spin_unlock(&fs_info->trans_lock);
1982 		refcount_inc(&cur_trans->use_count);
1983 		ret = btrfs_end_transaction(trans);
1984 
1985 		wait_for_commit(cur_trans);
1986 
1987 		if (unlikely(cur_trans->aborted))
1988 			ret = cur_trans->aborted;
1989 
1990 		btrfs_put_transaction(cur_trans);
1991 
1992 		return ret;
1993 	}
1994 
1995 	cur_trans->state = TRANS_STATE_COMMIT_START;
1996 	wake_up(&fs_info->transaction_blocked_wait);
1997 
1998 	if (cur_trans->list.prev != &fs_info->trans_list) {
1999 		prev_trans = list_entry(cur_trans->list.prev,
2000 					struct btrfs_transaction, list);
2001 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2002 			refcount_inc(&prev_trans->use_count);
2003 			spin_unlock(&fs_info->trans_lock);
2004 
2005 			wait_for_commit(prev_trans);
2006 			ret = prev_trans->aborted;
2007 
2008 			btrfs_put_transaction(prev_trans);
2009 			if (ret)
2010 				goto cleanup_transaction;
2011 		} else {
2012 			spin_unlock(&fs_info->trans_lock);
2013 		}
2014 	} else {
2015 		spin_unlock(&fs_info->trans_lock);
2016 	}
2017 
2018 	extwriter_counter_dec(cur_trans, trans->type);
2019 
2020 	ret = btrfs_start_delalloc_flush(fs_info);
2021 	if (ret)
2022 		goto cleanup_transaction;
2023 
2024 	ret = btrfs_run_delayed_items(trans);
2025 	if (ret)
2026 		goto cleanup_transaction;
2027 
2028 	wait_event(cur_trans->writer_wait,
2029 		   extwriter_counter_read(cur_trans) == 0);
2030 
2031 	/* some pending stuffs might be added after the previous flush. */
2032 	ret = btrfs_run_delayed_items(trans);
2033 	if (ret)
2034 		goto cleanup_transaction;
2035 
2036 	btrfs_wait_delalloc_flush(fs_info);
2037 
2038 	btrfs_scrub_pause(fs_info);
2039 	/*
2040 	 * Ok now we need to make sure to block out any other joins while we
2041 	 * commit the transaction.  We could have started a join before setting
2042 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2043 	 */
2044 	spin_lock(&fs_info->trans_lock);
2045 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2046 	spin_unlock(&fs_info->trans_lock);
2047 	wait_event(cur_trans->writer_wait,
2048 		   atomic_read(&cur_trans->num_writers) == 1);
2049 
2050 	/* ->aborted might be set after the previous check, so check it */
2051 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2052 		ret = cur_trans->aborted;
2053 		goto scrub_continue;
2054 	}
2055 	/*
2056 	 * the reloc mutex makes sure that we stop
2057 	 * the balancing code from coming in and moving
2058 	 * extents around in the middle of the commit
2059 	 */
2060 	mutex_lock(&fs_info->reloc_mutex);
2061 
2062 	/*
2063 	 * We needn't worry about the delayed items because we will
2064 	 * deal with them in create_pending_snapshot(), which is the
2065 	 * core function of the snapshot creation.
2066 	 */
2067 	ret = create_pending_snapshots(trans);
2068 	if (ret) {
2069 		mutex_unlock(&fs_info->reloc_mutex);
2070 		goto scrub_continue;
2071 	}
2072 
2073 	/*
2074 	 * We insert the dir indexes of the snapshots and update the inode
2075 	 * of the snapshots' parents after the snapshot creation, so there
2076 	 * are some delayed items which are not dealt with. Now deal with
2077 	 * them.
2078 	 *
2079 	 * We needn't worry that this operation will corrupt the snapshots,
2080 	 * because all the tree which are snapshoted will be forced to COW
2081 	 * the nodes and leaves.
2082 	 */
2083 	ret = btrfs_run_delayed_items(trans);
2084 	if (ret) {
2085 		mutex_unlock(&fs_info->reloc_mutex);
2086 		goto scrub_continue;
2087 	}
2088 
2089 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2090 	if (ret) {
2091 		mutex_unlock(&fs_info->reloc_mutex);
2092 		goto scrub_continue;
2093 	}
2094 
2095 	/*
2096 	 * make sure none of the code above managed to slip in a
2097 	 * delayed item
2098 	 */
2099 	btrfs_assert_delayed_root_empty(fs_info);
2100 
2101 	WARN_ON(cur_trans != trans->transaction);
2102 
2103 	/* btrfs_commit_tree_roots is responsible for getting the
2104 	 * various roots consistent with each other.  Every pointer
2105 	 * in the tree of tree roots has to point to the most up to date
2106 	 * root for every subvolume and other tree.  So, we have to keep
2107 	 * the tree logging code from jumping in and changing any
2108 	 * of the trees.
2109 	 *
2110 	 * At this point in the commit, there can't be any tree-log
2111 	 * writers, but a little lower down we drop the trans mutex
2112 	 * and let new people in.  By holding the tree_log_mutex
2113 	 * from now until after the super is written, we avoid races
2114 	 * with the tree-log code.
2115 	 */
2116 	mutex_lock(&fs_info->tree_log_mutex);
2117 
2118 	ret = commit_fs_roots(trans);
2119 	if (ret) {
2120 		mutex_unlock(&fs_info->tree_log_mutex);
2121 		mutex_unlock(&fs_info->reloc_mutex);
2122 		goto scrub_continue;
2123 	}
2124 
2125 	/*
2126 	 * Since the transaction is done, we can apply the pending changes
2127 	 * before the next transaction.
2128 	 */
2129 	btrfs_apply_pending_changes(fs_info);
2130 
2131 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2132 	 * safe to free the root of tree log roots
2133 	 */
2134 	btrfs_free_log_root_tree(trans, fs_info);
2135 
2136 	/*
2137 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2138 	 * new delayed refs. Must handle them or qgroup can be wrong.
2139 	 */
2140 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2141 	if (ret) {
2142 		mutex_unlock(&fs_info->tree_log_mutex);
2143 		mutex_unlock(&fs_info->reloc_mutex);
2144 		goto scrub_continue;
2145 	}
2146 
2147 	/*
2148 	 * Since fs roots are all committed, we can get a quite accurate
2149 	 * new_roots. So let's do quota accounting.
2150 	 */
2151 	ret = btrfs_qgroup_account_extents(trans);
2152 	if (ret < 0) {
2153 		mutex_unlock(&fs_info->tree_log_mutex);
2154 		mutex_unlock(&fs_info->reloc_mutex);
2155 		goto scrub_continue;
2156 	}
2157 
2158 	ret = commit_cowonly_roots(trans);
2159 	if (ret) {
2160 		mutex_unlock(&fs_info->tree_log_mutex);
2161 		mutex_unlock(&fs_info->reloc_mutex);
2162 		goto scrub_continue;
2163 	}
2164 
2165 	/*
2166 	 * The tasks which save the space cache and inode cache may also
2167 	 * update ->aborted, check it.
2168 	 */
2169 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2170 		ret = cur_trans->aborted;
2171 		mutex_unlock(&fs_info->tree_log_mutex);
2172 		mutex_unlock(&fs_info->reloc_mutex);
2173 		goto scrub_continue;
2174 	}
2175 
2176 	btrfs_prepare_extent_commit(fs_info);
2177 
2178 	cur_trans = fs_info->running_transaction;
2179 
2180 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2181 			    fs_info->tree_root->node);
2182 	list_add_tail(&fs_info->tree_root->dirty_list,
2183 		      &cur_trans->switch_commits);
2184 
2185 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2186 			    fs_info->chunk_root->node);
2187 	list_add_tail(&fs_info->chunk_root->dirty_list,
2188 		      &cur_trans->switch_commits);
2189 
2190 	switch_commit_roots(cur_trans);
2191 
2192 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2193 	ASSERT(list_empty(&cur_trans->io_bgs));
2194 	update_super_roots(fs_info);
2195 
2196 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2197 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2198 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2199 	       sizeof(*fs_info->super_copy));
2200 
2201 	btrfs_update_commit_device_size(fs_info);
2202 	btrfs_update_commit_device_bytes_used(cur_trans);
2203 
2204 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2205 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2206 
2207 	btrfs_trans_release_chunk_metadata(trans);
2208 
2209 	spin_lock(&fs_info->trans_lock);
2210 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2211 	fs_info->running_transaction = NULL;
2212 	spin_unlock(&fs_info->trans_lock);
2213 	mutex_unlock(&fs_info->reloc_mutex);
2214 
2215 	wake_up(&fs_info->transaction_wait);
2216 
2217 	ret = btrfs_write_and_wait_transaction(trans);
2218 	if (ret) {
2219 		btrfs_handle_fs_error(fs_info, ret,
2220 				      "Error while writing out transaction");
2221 		mutex_unlock(&fs_info->tree_log_mutex);
2222 		goto scrub_continue;
2223 	}
2224 
2225 	ret = write_all_supers(fs_info, 0);
2226 	/*
2227 	 * the super is written, we can safely allow the tree-loggers
2228 	 * to go about their business
2229 	 */
2230 	mutex_unlock(&fs_info->tree_log_mutex);
2231 	if (ret)
2232 		goto scrub_continue;
2233 
2234 	btrfs_finish_extent_commit(trans);
2235 
2236 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2237 		btrfs_clear_space_info_full(fs_info);
2238 
2239 	fs_info->last_trans_committed = cur_trans->transid;
2240 	/*
2241 	 * We needn't acquire the lock here because there is no other task
2242 	 * which can change it.
2243 	 */
2244 	cur_trans->state = TRANS_STATE_COMPLETED;
2245 	wake_up(&cur_trans->commit_wait);
2246 	clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2247 
2248 	spin_lock(&fs_info->trans_lock);
2249 	list_del_init(&cur_trans->list);
2250 	spin_unlock(&fs_info->trans_lock);
2251 
2252 	btrfs_put_transaction(cur_trans);
2253 	btrfs_put_transaction(cur_trans);
2254 
2255 	if (trans->type & __TRANS_FREEZABLE)
2256 		sb_end_intwrite(fs_info->sb);
2257 
2258 	trace_btrfs_transaction_commit(trans->root);
2259 
2260 	btrfs_scrub_continue(fs_info);
2261 
2262 	if (current->journal_info == trans)
2263 		current->journal_info = NULL;
2264 
2265 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2266 
2267 	return ret;
2268 
2269 scrub_continue:
2270 	btrfs_scrub_continue(fs_info);
2271 cleanup_transaction:
2272 	btrfs_trans_release_metadata(trans);
2273 	btrfs_trans_release_chunk_metadata(trans);
2274 	trans->block_rsv = NULL;
2275 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2276 	if (current->journal_info == trans)
2277 		current->journal_info = NULL;
2278 	cleanup_transaction(trans, ret);
2279 
2280 	return ret;
2281 }
2282 
2283 /*
2284  * return < 0 if error
2285  * 0 if there are no more dead_roots at the time of call
2286  * 1 there are more to be processed, call me again
2287  *
2288  * The return value indicates there are certainly more snapshots to delete, but
2289  * if there comes a new one during processing, it may return 0. We don't mind,
2290  * because btrfs_commit_super will poke cleaner thread and it will process it a
2291  * few seconds later.
2292  */
2293 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2294 {
2295 	int ret;
2296 	struct btrfs_fs_info *fs_info = root->fs_info;
2297 
2298 	spin_lock(&fs_info->trans_lock);
2299 	if (list_empty(&fs_info->dead_roots)) {
2300 		spin_unlock(&fs_info->trans_lock);
2301 		return 0;
2302 	}
2303 	root = list_first_entry(&fs_info->dead_roots,
2304 			struct btrfs_root, root_list);
2305 	list_del_init(&root->root_list);
2306 	spin_unlock(&fs_info->trans_lock);
2307 
2308 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2309 
2310 	btrfs_kill_all_delayed_nodes(root);
2311 
2312 	if (btrfs_header_backref_rev(root->node) <
2313 			BTRFS_MIXED_BACKREF_REV)
2314 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2315 	else
2316 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2317 
2318 	return (ret < 0) ? 0 : 1;
2319 }
2320 
2321 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2322 {
2323 	unsigned long prev;
2324 	unsigned long bit;
2325 
2326 	prev = xchg(&fs_info->pending_changes, 0);
2327 	if (!prev)
2328 		return;
2329 
2330 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2331 	if (prev & bit)
2332 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2333 	prev &= ~bit;
2334 
2335 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2336 	if (prev & bit)
2337 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2338 	prev &= ~bit;
2339 
2340 	bit = 1 << BTRFS_PENDING_COMMIT;
2341 	if (prev & bit)
2342 		btrfs_debug(fs_info, "pending commit done");
2343 	prev &= ~bit;
2344 
2345 	if (prev)
2346 		btrfs_warn(fs_info,
2347 			"unknown pending changes left 0x%lx, ignoring", prev);
2348 }
2349