1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "tree-log.h" 19 #include "volumes.h" 20 #include "dev-replace.h" 21 #include "qgroup.h" 22 #include "block-group.h" 23 #include "space-info.h" 24 25 #define BTRFS_ROOT_TRANS_TAG 0 26 27 /* 28 * Transaction states and transitions 29 * 30 * No running transaction (fs tree blocks are not modified) 31 * | 32 * | To next stage: 33 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 34 * V 35 * Transaction N [[TRANS_STATE_RUNNING]] 36 * | 37 * | New trans handles can be attached to transaction N by calling all 38 * | start_transaction() variants. 39 * | 40 * | To next stage: 41 * | Call btrfs_commit_transaction() on any trans handle attached to 42 * | transaction N 43 * V 44 * Transaction N [[TRANS_STATE_COMMIT_START]] 45 * | 46 * | Will wait for previous running transaction to completely finish if there 47 * | is one 48 * | 49 * | Then one of the following happes: 50 * | - Wait for all other trans handle holders to release. 51 * | The btrfs_commit_transaction() caller will do the commit work. 52 * | - Wait for current transaction to be committed by others. 53 * | Other btrfs_commit_transaction() caller will do the commit work. 54 * | 55 * | At this stage, only btrfs_join_transaction*() variants can attach 56 * | to this running transaction. 57 * | All other variants will wait for current one to finish and attach to 58 * | transaction N+1. 59 * | 60 * | To next stage: 61 * | Caller is chosen to commit transaction N, and all other trans handle 62 * | haven been released. 63 * V 64 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 65 * | 66 * | The heavy lifting transaction work is started. 67 * | From running delayed refs (modifying extent tree) to creating pending 68 * | snapshots, running qgroups. 69 * | In short, modify supporting trees to reflect modifications of subvolume 70 * | trees. 71 * | 72 * | At this stage, all start_transaction() calls will wait for this 73 * | transaction to finish and attach to transaction N+1. 74 * | 75 * | To next stage: 76 * | Until all supporting trees are updated. 77 * V 78 * Transaction N [[TRANS_STATE_UNBLOCKED]] 79 * | Transaction N+1 80 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 81 * | need to write them back to disk and update | 82 * | super blocks. | 83 * | | 84 * | At this stage, new transaction is allowed to | 85 * | start. | 86 * | All new start_transaction() calls will be | 87 * | attached to transid N+1. | 88 * | | 89 * | To next stage: | 90 * | Until all tree blocks are super blocks are | 91 * | written to block devices | 92 * V | 93 * Transaction N [[TRANS_STATE_COMPLETED]] V 94 * All tree blocks and super blocks are written. Transaction N+1 95 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 96 * data structures will be cleaned up. | Life goes on 97 */ 98 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 99 [TRANS_STATE_RUNNING] = 0U, 100 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 101 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 102 __TRANS_ATTACH | 103 __TRANS_JOIN | 104 __TRANS_JOIN_NOSTART), 105 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 106 __TRANS_ATTACH | 107 __TRANS_JOIN | 108 __TRANS_JOIN_NOLOCK | 109 __TRANS_JOIN_NOSTART), 110 [TRANS_STATE_COMPLETED] = (__TRANS_START | 111 __TRANS_ATTACH | 112 __TRANS_JOIN | 113 __TRANS_JOIN_NOLOCK | 114 __TRANS_JOIN_NOSTART), 115 }; 116 117 void btrfs_put_transaction(struct btrfs_transaction *transaction) 118 { 119 WARN_ON(refcount_read(&transaction->use_count) == 0); 120 if (refcount_dec_and_test(&transaction->use_count)) { 121 BUG_ON(!list_empty(&transaction->list)); 122 WARN_ON(!RB_EMPTY_ROOT( 123 &transaction->delayed_refs.href_root.rb_root)); 124 WARN_ON(!RB_EMPTY_ROOT( 125 &transaction->delayed_refs.dirty_extent_root)); 126 if (transaction->delayed_refs.pending_csums) 127 btrfs_err(transaction->fs_info, 128 "pending csums is %llu", 129 transaction->delayed_refs.pending_csums); 130 /* 131 * If any block groups are found in ->deleted_bgs then it's 132 * because the transaction was aborted and a commit did not 133 * happen (things failed before writing the new superblock 134 * and calling btrfs_finish_extent_commit()), so we can not 135 * discard the physical locations of the block groups. 136 */ 137 while (!list_empty(&transaction->deleted_bgs)) { 138 struct btrfs_block_group *cache; 139 140 cache = list_first_entry(&transaction->deleted_bgs, 141 struct btrfs_block_group, 142 bg_list); 143 list_del_init(&cache->bg_list); 144 btrfs_unfreeze_block_group(cache); 145 btrfs_put_block_group(cache); 146 } 147 WARN_ON(!list_empty(&transaction->dev_update_list)); 148 kfree(transaction); 149 } 150 } 151 152 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 153 { 154 struct btrfs_transaction *cur_trans = trans->transaction; 155 struct btrfs_fs_info *fs_info = trans->fs_info; 156 struct btrfs_root *root, *tmp; 157 struct btrfs_caching_control *caching_ctl, *next; 158 159 down_write(&fs_info->commit_root_sem); 160 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 161 dirty_list) { 162 list_del_init(&root->dirty_list); 163 free_extent_buffer(root->commit_root); 164 root->commit_root = btrfs_root_node(root); 165 extent_io_tree_release(&root->dirty_log_pages); 166 btrfs_qgroup_clean_swapped_blocks(root); 167 } 168 169 /* We can free old roots now. */ 170 spin_lock(&cur_trans->dropped_roots_lock); 171 while (!list_empty(&cur_trans->dropped_roots)) { 172 root = list_first_entry(&cur_trans->dropped_roots, 173 struct btrfs_root, root_list); 174 list_del_init(&root->root_list); 175 spin_unlock(&cur_trans->dropped_roots_lock); 176 btrfs_free_log(trans, root); 177 btrfs_drop_and_free_fs_root(fs_info, root); 178 spin_lock(&cur_trans->dropped_roots_lock); 179 } 180 spin_unlock(&cur_trans->dropped_roots_lock); 181 182 /* 183 * We have to update the last_byte_to_unpin under the commit_root_sem, 184 * at the same time we swap out the commit roots. 185 * 186 * This is because we must have a real view of the last spot the caching 187 * kthreads were while caching. Consider the following views of the 188 * extent tree for a block group 189 * 190 * commit root 191 * +----+----+----+----+----+----+----+ 192 * |\\\\| |\\\\|\\\\| |\\\\|\\\\| 193 * +----+----+----+----+----+----+----+ 194 * 0 1 2 3 4 5 6 7 195 * 196 * new commit root 197 * +----+----+----+----+----+----+----+ 198 * | | | |\\\\| | |\\\\| 199 * +----+----+----+----+----+----+----+ 200 * 0 1 2 3 4 5 6 7 201 * 202 * If the cache_ctl->progress was at 3, then we are only allowed to 203 * unpin [0,1) and [2,3], because the caching thread has already 204 * processed those extents. We are not allowed to unpin [5,6), because 205 * the caching thread will re-start it's search from 3, and thus find 206 * the hole from [4,6) to add to the free space cache. 207 */ 208 spin_lock(&fs_info->block_group_cache_lock); 209 list_for_each_entry_safe(caching_ctl, next, 210 &fs_info->caching_block_groups, list) { 211 struct btrfs_block_group *cache = caching_ctl->block_group; 212 213 if (btrfs_block_group_done(cache)) { 214 cache->last_byte_to_unpin = (u64)-1; 215 list_del_init(&caching_ctl->list); 216 btrfs_put_caching_control(caching_ctl); 217 } else { 218 cache->last_byte_to_unpin = caching_ctl->progress; 219 } 220 } 221 spin_unlock(&fs_info->block_group_cache_lock); 222 up_write(&fs_info->commit_root_sem); 223 } 224 225 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 226 unsigned int type) 227 { 228 if (type & TRANS_EXTWRITERS) 229 atomic_inc(&trans->num_extwriters); 230 } 231 232 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 233 unsigned int type) 234 { 235 if (type & TRANS_EXTWRITERS) 236 atomic_dec(&trans->num_extwriters); 237 } 238 239 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 240 unsigned int type) 241 { 242 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 243 } 244 245 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 246 { 247 return atomic_read(&trans->num_extwriters); 248 } 249 250 /* 251 * To be called after all the new block groups attached to the transaction 252 * handle have been created (btrfs_create_pending_block_groups()). 253 */ 254 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 255 { 256 struct btrfs_fs_info *fs_info = trans->fs_info; 257 258 if (!trans->chunk_bytes_reserved) 259 return; 260 261 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 262 263 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 264 trans->chunk_bytes_reserved, NULL); 265 trans->chunk_bytes_reserved = 0; 266 } 267 268 /* 269 * either allocate a new transaction or hop into the existing one 270 */ 271 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 272 unsigned int type) 273 { 274 struct btrfs_transaction *cur_trans; 275 276 spin_lock(&fs_info->trans_lock); 277 loop: 278 /* The file system has been taken offline. No new transactions. */ 279 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 280 spin_unlock(&fs_info->trans_lock); 281 return -EROFS; 282 } 283 284 cur_trans = fs_info->running_transaction; 285 if (cur_trans) { 286 if (TRANS_ABORTED(cur_trans)) { 287 spin_unlock(&fs_info->trans_lock); 288 return cur_trans->aborted; 289 } 290 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 291 spin_unlock(&fs_info->trans_lock); 292 return -EBUSY; 293 } 294 refcount_inc(&cur_trans->use_count); 295 atomic_inc(&cur_trans->num_writers); 296 extwriter_counter_inc(cur_trans, type); 297 spin_unlock(&fs_info->trans_lock); 298 return 0; 299 } 300 spin_unlock(&fs_info->trans_lock); 301 302 /* 303 * If we are ATTACH, we just want to catch the current transaction, 304 * and commit it. If there is no transaction, just return ENOENT. 305 */ 306 if (type == TRANS_ATTACH) 307 return -ENOENT; 308 309 /* 310 * JOIN_NOLOCK only happens during the transaction commit, so 311 * it is impossible that ->running_transaction is NULL 312 */ 313 BUG_ON(type == TRANS_JOIN_NOLOCK); 314 315 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 316 if (!cur_trans) 317 return -ENOMEM; 318 319 spin_lock(&fs_info->trans_lock); 320 if (fs_info->running_transaction) { 321 /* 322 * someone started a transaction after we unlocked. Make sure 323 * to redo the checks above 324 */ 325 kfree(cur_trans); 326 goto loop; 327 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 328 spin_unlock(&fs_info->trans_lock); 329 kfree(cur_trans); 330 return -EROFS; 331 } 332 333 cur_trans->fs_info = fs_info; 334 atomic_set(&cur_trans->pending_ordered, 0); 335 init_waitqueue_head(&cur_trans->pending_wait); 336 atomic_set(&cur_trans->num_writers, 1); 337 extwriter_counter_init(cur_trans, type); 338 init_waitqueue_head(&cur_trans->writer_wait); 339 init_waitqueue_head(&cur_trans->commit_wait); 340 cur_trans->state = TRANS_STATE_RUNNING; 341 /* 342 * One for this trans handle, one so it will live on until we 343 * commit the transaction. 344 */ 345 refcount_set(&cur_trans->use_count, 2); 346 cur_trans->flags = 0; 347 cur_trans->start_time = ktime_get_seconds(); 348 349 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 350 351 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 352 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 353 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 354 355 /* 356 * although the tree mod log is per file system and not per transaction, 357 * the log must never go across transaction boundaries. 358 */ 359 smp_mb(); 360 if (!list_empty(&fs_info->tree_mod_seq_list)) 361 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 362 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 363 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 364 atomic64_set(&fs_info->tree_mod_seq, 0); 365 366 spin_lock_init(&cur_trans->delayed_refs.lock); 367 368 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 369 INIT_LIST_HEAD(&cur_trans->dev_update_list); 370 INIT_LIST_HEAD(&cur_trans->switch_commits); 371 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 372 INIT_LIST_HEAD(&cur_trans->io_bgs); 373 INIT_LIST_HEAD(&cur_trans->dropped_roots); 374 mutex_init(&cur_trans->cache_write_mutex); 375 spin_lock_init(&cur_trans->dirty_bgs_lock); 376 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 377 spin_lock_init(&cur_trans->dropped_roots_lock); 378 list_add_tail(&cur_trans->list, &fs_info->trans_list); 379 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 380 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 381 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 382 IO_TREE_FS_PINNED_EXTENTS, NULL); 383 fs_info->generation++; 384 cur_trans->transid = fs_info->generation; 385 fs_info->running_transaction = cur_trans; 386 cur_trans->aborted = 0; 387 spin_unlock(&fs_info->trans_lock); 388 389 return 0; 390 } 391 392 /* 393 * This does all the record keeping required to make sure that a shareable root 394 * is properly recorded in a given transaction. This is required to make sure 395 * the old root from before we joined the transaction is deleted when the 396 * transaction commits. 397 */ 398 static int record_root_in_trans(struct btrfs_trans_handle *trans, 399 struct btrfs_root *root, 400 int force) 401 { 402 struct btrfs_fs_info *fs_info = root->fs_info; 403 404 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 405 root->last_trans < trans->transid) || force) { 406 WARN_ON(root == fs_info->extent_root); 407 WARN_ON(!force && root->commit_root != root->node); 408 409 /* 410 * see below for IN_TRANS_SETUP usage rules 411 * we have the reloc mutex held now, so there 412 * is only one writer in this function 413 */ 414 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 415 416 /* make sure readers find IN_TRANS_SETUP before 417 * they find our root->last_trans update 418 */ 419 smp_wmb(); 420 421 spin_lock(&fs_info->fs_roots_radix_lock); 422 if (root->last_trans == trans->transid && !force) { 423 spin_unlock(&fs_info->fs_roots_radix_lock); 424 return 0; 425 } 426 radix_tree_tag_set(&fs_info->fs_roots_radix, 427 (unsigned long)root->root_key.objectid, 428 BTRFS_ROOT_TRANS_TAG); 429 spin_unlock(&fs_info->fs_roots_radix_lock); 430 root->last_trans = trans->transid; 431 432 /* this is pretty tricky. We don't want to 433 * take the relocation lock in btrfs_record_root_in_trans 434 * unless we're really doing the first setup for this root in 435 * this transaction. 436 * 437 * Normally we'd use root->last_trans as a flag to decide 438 * if we want to take the expensive mutex. 439 * 440 * But, we have to set root->last_trans before we 441 * init the relocation root, otherwise, we trip over warnings 442 * in ctree.c. The solution used here is to flag ourselves 443 * with root IN_TRANS_SETUP. When this is 1, we're still 444 * fixing up the reloc trees and everyone must wait. 445 * 446 * When this is zero, they can trust root->last_trans and fly 447 * through btrfs_record_root_in_trans without having to take the 448 * lock. smp_wmb() makes sure that all the writes above are 449 * done before we pop in the zero below 450 */ 451 btrfs_init_reloc_root(trans, root); 452 smp_mb__before_atomic(); 453 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 454 } 455 return 0; 456 } 457 458 459 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 460 struct btrfs_root *root) 461 { 462 struct btrfs_fs_info *fs_info = root->fs_info; 463 struct btrfs_transaction *cur_trans = trans->transaction; 464 465 /* Add ourselves to the transaction dropped list */ 466 spin_lock(&cur_trans->dropped_roots_lock); 467 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 468 spin_unlock(&cur_trans->dropped_roots_lock); 469 470 /* Make sure we don't try to update the root at commit time */ 471 spin_lock(&fs_info->fs_roots_radix_lock); 472 radix_tree_tag_clear(&fs_info->fs_roots_radix, 473 (unsigned long)root->root_key.objectid, 474 BTRFS_ROOT_TRANS_TAG); 475 spin_unlock(&fs_info->fs_roots_radix_lock); 476 } 477 478 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 479 struct btrfs_root *root) 480 { 481 struct btrfs_fs_info *fs_info = root->fs_info; 482 483 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 484 return 0; 485 486 /* 487 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 488 * and barriers 489 */ 490 smp_rmb(); 491 if (root->last_trans == trans->transid && 492 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 493 return 0; 494 495 mutex_lock(&fs_info->reloc_mutex); 496 record_root_in_trans(trans, root, 0); 497 mutex_unlock(&fs_info->reloc_mutex); 498 499 return 0; 500 } 501 502 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 503 { 504 return (trans->state >= TRANS_STATE_COMMIT_START && 505 trans->state < TRANS_STATE_UNBLOCKED && 506 !TRANS_ABORTED(trans)); 507 } 508 509 /* wait for commit against the current transaction to become unblocked 510 * when this is done, it is safe to start a new transaction, but the current 511 * transaction might not be fully on disk. 512 */ 513 static void wait_current_trans(struct btrfs_fs_info *fs_info) 514 { 515 struct btrfs_transaction *cur_trans; 516 517 spin_lock(&fs_info->trans_lock); 518 cur_trans = fs_info->running_transaction; 519 if (cur_trans && is_transaction_blocked(cur_trans)) { 520 refcount_inc(&cur_trans->use_count); 521 spin_unlock(&fs_info->trans_lock); 522 523 wait_event(fs_info->transaction_wait, 524 cur_trans->state >= TRANS_STATE_UNBLOCKED || 525 TRANS_ABORTED(cur_trans)); 526 btrfs_put_transaction(cur_trans); 527 } else { 528 spin_unlock(&fs_info->trans_lock); 529 } 530 } 531 532 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 533 { 534 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 535 return 0; 536 537 if (type == TRANS_START) 538 return 1; 539 540 return 0; 541 } 542 543 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 544 { 545 struct btrfs_fs_info *fs_info = root->fs_info; 546 547 if (!fs_info->reloc_ctl || 548 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 549 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 550 root->reloc_root) 551 return false; 552 553 return true; 554 } 555 556 static struct btrfs_trans_handle * 557 start_transaction(struct btrfs_root *root, unsigned int num_items, 558 unsigned int type, enum btrfs_reserve_flush_enum flush, 559 bool enforce_qgroups) 560 { 561 struct btrfs_fs_info *fs_info = root->fs_info; 562 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 563 struct btrfs_trans_handle *h; 564 struct btrfs_transaction *cur_trans; 565 u64 num_bytes = 0; 566 u64 qgroup_reserved = 0; 567 bool reloc_reserved = false; 568 bool do_chunk_alloc = false; 569 int ret; 570 571 /* Send isn't supposed to start transactions. */ 572 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 573 574 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 575 return ERR_PTR(-EROFS); 576 577 if (current->journal_info) { 578 WARN_ON(type & TRANS_EXTWRITERS); 579 h = current->journal_info; 580 refcount_inc(&h->use_count); 581 WARN_ON(refcount_read(&h->use_count) > 2); 582 h->orig_rsv = h->block_rsv; 583 h->block_rsv = NULL; 584 goto got_it; 585 } 586 587 /* 588 * Do the reservation before we join the transaction so we can do all 589 * the appropriate flushing if need be. 590 */ 591 if (num_items && root != fs_info->chunk_root) { 592 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 593 u64 delayed_refs_bytes = 0; 594 595 qgroup_reserved = num_items * fs_info->nodesize; 596 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 597 enforce_qgroups); 598 if (ret) 599 return ERR_PTR(ret); 600 601 /* 602 * We want to reserve all the bytes we may need all at once, so 603 * we only do 1 enospc flushing cycle per transaction start. We 604 * accomplish this by simply assuming we'll do 2 x num_items 605 * worth of delayed refs updates in this trans handle, and 606 * refill that amount for whatever is missing in the reserve. 607 */ 608 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 609 if (flush == BTRFS_RESERVE_FLUSH_ALL && 610 delayed_refs_rsv->full == 0) { 611 delayed_refs_bytes = num_bytes; 612 num_bytes <<= 1; 613 } 614 615 /* 616 * Do the reservation for the relocation root creation 617 */ 618 if (need_reserve_reloc_root(root)) { 619 num_bytes += fs_info->nodesize; 620 reloc_reserved = true; 621 } 622 623 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 624 if (ret) 625 goto reserve_fail; 626 if (delayed_refs_bytes) { 627 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 628 delayed_refs_bytes); 629 num_bytes -= delayed_refs_bytes; 630 } 631 632 if (rsv->space_info->force_alloc) 633 do_chunk_alloc = true; 634 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 635 !delayed_refs_rsv->full) { 636 /* 637 * Some people call with btrfs_start_transaction(root, 0) 638 * because they can be throttled, but have some other mechanism 639 * for reserving space. We still want these guys to refill the 640 * delayed block_rsv so just add 1 items worth of reservation 641 * here. 642 */ 643 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 644 if (ret) 645 goto reserve_fail; 646 } 647 again: 648 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 649 if (!h) { 650 ret = -ENOMEM; 651 goto alloc_fail; 652 } 653 654 /* 655 * If we are JOIN_NOLOCK we're already committing a transaction and 656 * waiting on this guy, so we don't need to do the sb_start_intwrite 657 * because we're already holding a ref. We need this because we could 658 * have raced in and did an fsync() on a file which can kick a commit 659 * and then we deadlock with somebody doing a freeze. 660 * 661 * If we are ATTACH, it means we just want to catch the current 662 * transaction and commit it, so we needn't do sb_start_intwrite(). 663 */ 664 if (type & __TRANS_FREEZABLE) 665 sb_start_intwrite(fs_info->sb); 666 667 if (may_wait_transaction(fs_info, type)) 668 wait_current_trans(fs_info); 669 670 do { 671 ret = join_transaction(fs_info, type); 672 if (ret == -EBUSY) { 673 wait_current_trans(fs_info); 674 if (unlikely(type == TRANS_ATTACH || 675 type == TRANS_JOIN_NOSTART)) 676 ret = -ENOENT; 677 } 678 } while (ret == -EBUSY); 679 680 if (ret < 0) 681 goto join_fail; 682 683 cur_trans = fs_info->running_transaction; 684 685 h->transid = cur_trans->transid; 686 h->transaction = cur_trans; 687 h->root = root; 688 refcount_set(&h->use_count, 1); 689 h->fs_info = root->fs_info; 690 691 h->type = type; 692 h->can_flush_pending_bgs = true; 693 INIT_LIST_HEAD(&h->new_bgs); 694 695 smp_mb(); 696 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 697 may_wait_transaction(fs_info, type)) { 698 current->journal_info = h; 699 btrfs_commit_transaction(h); 700 goto again; 701 } 702 703 if (num_bytes) { 704 trace_btrfs_space_reservation(fs_info, "transaction", 705 h->transid, num_bytes, 1); 706 h->block_rsv = &fs_info->trans_block_rsv; 707 h->bytes_reserved = num_bytes; 708 h->reloc_reserved = reloc_reserved; 709 } 710 711 got_it: 712 if (!current->journal_info) 713 current->journal_info = h; 714 715 /* 716 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 717 * ALLOC_FORCE the first run through, and then we won't allocate for 718 * anybody else who races in later. We don't care about the return 719 * value here. 720 */ 721 if (do_chunk_alloc && num_bytes) { 722 u64 flags = h->block_rsv->space_info->flags; 723 724 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 725 CHUNK_ALLOC_NO_FORCE); 726 } 727 728 /* 729 * btrfs_record_root_in_trans() needs to alloc new extents, and may 730 * call btrfs_join_transaction() while we're also starting a 731 * transaction. 732 * 733 * Thus it need to be called after current->journal_info initialized, 734 * or we can deadlock. 735 */ 736 btrfs_record_root_in_trans(h, root); 737 738 return h; 739 740 join_fail: 741 if (type & __TRANS_FREEZABLE) 742 sb_end_intwrite(fs_info->sb); 743 kmem_cache_free(btrfs_trans_handle_cachep, h); 744 alloc_fail: 745 if (num_bytes) 746 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 747 num_bytes, NULL); 748 reserve_fail: 749 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 750 return ERR_PTR(ret); 751 } 752 753 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 754 unsigned int num_items) 755 { 756 return start_transaction(root, num_items, TRANS_START, 757 BTRFS_RESERVE_FLUSH_ALL, true); 758 } 759 760 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 761 struct btrfs_root *root, 762 unsigned int num_items) 763 { 764 return start_transaction(root, num_items, TRANS_START, 765 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 766 } 767 768 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 769 { 770 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 771 true); 772 } 773 774 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 775 { 776 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 777 BTRFS_RESERVE_NO_FLUSH, true); 778 } 779 780 /* 781 * Similar to regular join but it never starts a transaction when none is 782 * running or after waiting for the current one to finish. 783 */ 784 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 785 { 786 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 787 BTRFS_RESERVE_NO_FLUSH, true); 788 } 789 790 /* 791 * btrfs_attach_transaction() - catch the running transaction 792 * 793 * It is used when we want to commit the current the transaction, but 794 * don't want to start a new one. 795 * 796 * Note: If this function return -ENOENT, it just means there is no 797 * running transaction. But it is possible that the inactive transaction 798 * is still in the memory, not fully on disk. If you hope there is no 799 * inactive transaction in the fs when -ENOENT is returned, you should 800 * invoke 801 * btrfs_attach_transaction_barrier() 802 */ 803 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 804 { 805 return start_transaction(root, 0, TRANS_ATTACH, 806 BTRFS_RESERVE_NO_FLUSH, true); 807 } 808 809 /* 810 * btrfs_attach_transaction_barrier() - catch the running transaction 811 * 812 * It is similar to the above function, the difference is this one 813 * will wait for all the inactive transactions until they fully 814 * complete. 815 */ 816 struct btrfs_trans_handle * 817 btrfs_attach_transaction_barrier(struct btrfs_root *root) 818 { 819 struct btrfs_trans_handle *trans; 820 821 trans = start_transaction(root, 0, TRANS_ATTACH, 822 BTRFS_RESERVE_NO_FLUSH, true); 823 if (trans == ERR_PTR(-ENOENT)) 824 btrfs_wait_for_commit(root->fs_info, 0); 825 826 return trans; 827 } 828 829 /* wait for a transaction commit to be fully complete */ 830 static noinline void wait_for_commit(struct btrfs_transaction *commit) 831 { 832 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 833 } 834 835 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 836 { 837 struct btrfs_transaction *cur_trans = NULL, *t; 838 int ret = 0; 839 840 if (transid) { 841 if (transid <= fs_info->last_trans_committed) 842 goto out; 843 844 /* find specified transaction */ 845 spin_lock(&fs_info->trans_lock); 846 list_for_each_entry(t, &fs_info->trans_list, list) { 847 if (t->transid == transid) { 848 cur_trans = t; 849 refcount_inc(&cur_trans->use_count); 850 ret = 0; 851 break; 852 } 853 if (t->transid > transid) { 854 ret = 0; 855 break; 856 } 857 } 858 spin_unlock(&fs_info->trans_lock); 859 860 /* 861 * The specified transaction doesn't exist, or we 862 * raced with btrfs_commit_transaction 863 */ 864 if (!cur_trans) { 865 if (transid > fs_info->last_trans_committed) 866 ret = -EINVAL; 867 goto out; 868 } 869 } else { 870 /* find newest transaction that is committing | committed */ 871 spin_lock(&fs_info->trans_lock); 872 list_for_each_entry_reverse(t, &fs_info->trans_list, 873 list) { 874 if (t->state >= TRANS_STATE_COMMIT_START) { 875 if (t->state == TRANS_STATE_COMPLETED) 876 break; 877 cur_trans = t; 878 refcount_inc(&cur_trans->use_count); 879 break; 880 } 881 } 882 spin_unlock(&fs_info->trans_lock); 883 if (!cur_trans) 884 goto out; /* nothing committing|committed */ 885 } 886 887 wait_for_commit(cur_trans); 888 btrfs_put_transaction(cur_trans); 889 out: 890 return ret; 891 } 892 893 void btrfs_throttle(struct btrfs_fs_info *fs_info) 894 { 895 wait_current_trans(fs_info); 896 } 897 898 static bool should_end_transaction(struct btrfs_trans_handle *trans) 899 { 900 struct btrfs_fs_info *fs_info = trans->fs_info; 901 902 if (btrfs_check_space_for_delayed_refs(fs_info)) 903 return true; 904 905 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 906 } 907 908 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 909 { 910 struct btrfs_transaction *cur_trans = trans->transaction; 911 912 smp_mb(); 913 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 914 cur_trans->delayed_refs.flushing) 915 return true; 916 917 return should_end_transaction(trans); 918 } 919 920 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 921 922 { 923 struct btrfs_fs_info *fs_info = trans->fs_info; 924 925 if (!trans->block_rsv) { 926 ASSERT(!trans->bytes_reserved); 927 return; 928 } 929 930 if (!trans->bytes_reserved) 931 return; 932 933 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 934 trace_btrfs_space_reservation(fs_info, "transaction", 935 trans->transid, trans->bytes_reserved, 0); 936 btrfs_block_rsv_release(fs_info, trans->block_rsv, 937 trans->bytes_reserved, NULL); 938 trans->bytes_reserved = 0; 939 } 940 941 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 942 int throttle) 943 { 944 struct btrfs_fs_info *info = trans->fs_info; 945 struct btrfs_transaction *cur_trans = trans->transaction; 946 int err = 0; 947 948 if (refcount_read(&trans->use_count) > 1) { 949 refcount_dec(&trans->use_count); 950 trans->block_rsv = trans->orig_rsv; 951 return 0; 952 } 953 954 btrfs_trans_release_metadata(trans); 955 trans->block_rsv = NULL; 956 957 btrfs_create_pending_block_groups(trans); 958 959 btrfs_trans_release_chunk_metadata(trans); 960 961 if (trans->type & __TRANS_FREEZABLE) 962 sb_end_intwrite(info->sb); 963 964 WARN_ON(cur_trans != info->running_transaction); 965 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 966 atomic_dec(&cur_trans->num_writers); 967 extwriter_counter_dec(cur_trans, trans->type); 968 969 cond_wake_up(&cur_trans->writer_wait); 970 btrfs_put_transaction(cur_trans); 971 972 if (current->journal_info == trans) 973 current->journal_info = NULL; 974 975 if (throttle) 976 btrfs_run_delayed_iputs(info); 977 978 if (TRANS_ABORTED(trans) || 979 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 980 wake_up_process(info->transaction_kthread); 981 if (TRANS_ABORTED(trans)) 982 err = trans->aborted; 983 else 984 err = -EROFS; 985 } 986 987 kmem_cache_free(btrfs_trans_handle_cachep, trans); 988 return err; 989 } 990 991 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 992 { 993 return __btrfs_end_transaction(trans, 0); 994 } 995 996 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 997 { 998 return __btrfs_end_transaction(trans, 1); 999 } 1000 1001 /* 1002 * when btree blocks are allocated, they have some corresponding bits set for 1003 * them in one of two extent_io trees. This is used to make sure all of 1004 * those extents are sent to disk but does not wait on them 1005 */ 1006 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1007 struct extent_io_tree *dirty_pages, int mark) 1008 { 1009 int err = 0; 1010 int werr = 0; 1011 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1012 struct extent_state *cached_state = NULL; 1013 u64 start = 0; 1014 u64 end; 1015 1016 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1017 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1018 mark, &cached_state)) { 1019 bool wait_writeback = false; 1020 1021 err = convert_extent_bit(dirty_pages, start, end, 1022 EXTENT_NEED_WAIT, 1023 mark, &cached_state); 1024 /* 1025 * convert_extent_bit can return -ENOMEM, which is most of the 1026 * time a temporary error. So when it happens, ignore the error 1027 * and wait for writeback of this range to finish - because we 1028 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1029 * to __btrfs_wait_marked_extents() would not know that 1030 * writeback for this range started and therefore wouldn't 1031 * wait for it to finish - we don't want to commit a 1032 * superblock that points to btree nodes/leafs for which 1033 * writeback hasn't finished yet (and without errors). 1034 * We cleanup any entries left in the io tree when committing 1035 * the transaction (through extent_io_tree_release()). 1036 */ 1037 if (err == -ENOMEM) { 1038 err = 0; 1039 wait_writeback = true; 1040 } 1041 if (!err) 1042 err = filemap_fdatawrite_range(mapping, start, end); 1043 if (err) 1044 werr = err; 1045 else if (wait_writeback) 1046 werr = filemap_fdatawait_range(mapping, start, end); 1047 free_extent_state(cached_state); 1048 cached_state = NULL; 1049 cond_resched(); 1050 start = end + 1; 1051 } 1052 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1053 return werr; 1054 } 1055 1056 /* 1057 * when btree blocks are allocated, they have some corresponding bits set for 1058 * them in one of two extent_io trees. This is used to make sure all of 1059 * those extents are on disk for transaction or log commit. We wait 1060 * on all the pages and clear them from the dirty pages state tree 1061 */ 1062 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1063 struct extent_io_tree *dirty_pages) 1064 { 1065 int err = 0; 1066 int werr = 0; 1067 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1068 struct extent_state *cached_state = NULL; 1069 u64 start = 0; 1070 u64 end; 1071 1072 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1073 EXTENT_NEED_WAIT, &cached_state)) { 1074 /* 1075 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1076 * When committing the transaction, we'll remove any entries 1077 * left in the io tree. For a log commit, we don't remove them 1078 * after committing the log because the tree can be accessed 1079 * concurrently - we do it only at transaction commit time when 1080 * it's safe to do it (through extent_io_tree_release()). 1081 */ 1082 err = clear_extent_bit(dirty_pages, start, end, 1083 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1084 if (err == -ENOMEM) 1085 err = 0; 1086 if (!err) 1087 err = filemap_fdatawait_range(mapping, start, end); 1088 if (err) 1089 werr = err; 1090 free_extent_state(cached_state); 1091 cached_state = NULL; 1092 cond_resched(); 1093 start = end + 1; 1094 } 1095 if (err) 1096 werr = err; 1097 return werr; 1098 } 1099 1100 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1101 struct extent_io_tree *dirty_pages) 1102 { 1103 bool errors = false; 1104 int err; 1105 1106 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1107 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1108 errors = true; 1109 1110 if (errors && !err) 1111 err = -EIO; 1112 return err; 1113 } 1114 1115 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1116 { 1117 struct btrfs_fs_info *fs_info = log_root->fs_info; 1118 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1119 bool errors = false; 1120 int err; 1121 1122 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1123 1124 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1125 if ((mark & EXTENT_DIRTY) && 1126 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1127 errors = true; 1128 1129 if ((mark & EXTENT_NEW) && 1130 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1131 errors = true; 1132 1133 if (errors && !err) 1134 err = -EIO; 1135 return err; 1136 } 1137 1138 /* 1139 * When btree blocks are allocated the corresponding extents are marked dirty. 1140 * This function ensures such extents are persisted on disk for transaction or 1141 * log commit. 1142 * 1143 * @trans: transaction whose dirty pages we'd like to write 1144 */ 1145 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1146 { 1147 int ret; 1148 int ret2; 1149 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1150 struct btrfs_fs_info *fs_info = trans->fs_info; 1151 struct blk_plug plug; 1152 1153 blk_start_plug(&plug); 1154 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1155 blk_finish_plug(&plug); 1156 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1157 1158 extent_io_tree_release(&trans->transaction->dirty_pages); 1159 1160 if (ret) 1161 return ret; 1162 else if (ret2) 1163 return ret2; 1164 else 1165 return 0; 1166 } 1167 1168 /* 1169 * this is used to update the root pointer in the tree of tree roots. 1170 * 1171 * But, in the case of the extent allocation tree, updating the root 1172 * pointer may allocate blocks which may change the root of the extent 1173 * allocation tree. 1174 * 1175 * So, this loops and repeats and makes sure the cowonly root didn't 1176 * change while the root pointer was being updated in the metadata. 1177 */ 1178 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1179 struct btrfs_root *root) 1180 { 1181 int ret; 1182 u64 old_root_bytenr; 1183 u64 old_root_used; 1184 struct btrfs_fs_info *fs_info = root->fs_info; 1185 struct btrfs_root *tree_root = fs_info->tree_root; 1186 1187 old_root_used = btrfs_root_used(&root->root_item); 1188 1189 while (1) { 1190 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1191 if (old_root_bytenr == root->node->start && 1192 old_root_used == btrfs_root_used(&root->root_item)) 1193 break; 1194 1195 btrfs_set_root_node(&root->root_item, root->node); 1196 ret = btrfs_update_root(trans, tree_root, 1197 &root->root_key, 1198 &root->root_item); 1199 if (ret) 1200 return ret; 1201 1202 old_root_used = btrfs_root_used(&root->root_item); 1203 } 1204 1205 return 0; 1206 } 1207 1208 /* 1209 * update all the cowonly tree roots on disk 1210 * 1211 * The error handling in this function may not be obvious. Any of the 1212 * failures will cause the file system to go offline. We still need 1213 * to clean up the delayed refs. 1214 */ 1215 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1216 { 1217 struct btrfs_fs_info *fs_info = trans->fs_info; 1218 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1219 struct list_head *io_bgs = &trans->transaction->io_bgs; 1220 struct list_head *next; 1221 struct extent_buffer *eb; 1222 int ret; 1223 1224 eb = btrfs_lock_root_node(fs_info->tree_root); 1225 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1226 0, &eb, BTRFS_NESTING_COW); 1227 btrfs_tree_unlock(eb); 1228 free_extent_buffer(eb); 1229 1230 if (ret) 1231 return ret; 1232 1233 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1234 if (ret) 1235 return ret; 1236 1237 ret = btrfs_run_dev_stats(trans); 1238 if (ret) 1239 return ret; 1240 ret = btrfs_run_dev_replace(trans); 1241 if (ret) 1242 return ret; 1243 ret = btrfs_run_qgroups(trans); 1244 if (ret) 1245 return ret; 1246 1247 ret = btrfs_setup_space_cache(trans); 1248 if (ret) 1249 return ret; 1250 1251 /* run_qgroups might have added some more refs */ 1252 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1253 if (ret) 1254 return ret; 1255 again: 1256 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1257 struct btrfs_root *root; 1258 next = fs_info->dirty_cowonly_roots.next; 1259 list_del_init(next); 1260 root = list_entry(next, struct btrfs_root, dirty_list); 1261 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1262 1263 if (root != fs_info->extent_root) 1264 list_add_tail(&root->dirty_list, 1265 &trans->transaction->switch_commits); 1266 ret = update_cowonly_root(trans, root); 1267 if (ret) 1268 return ret; 1269 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1270 if (ret) 1271 return ret; 1272 } 1273 1274 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1275 ret = btrfs_write_dirty_block_groups(trans); 1276 if (ret) 1277 return ret; 1278 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1279 if (ret) 1280 return ret; 1281 } 1282 1283 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1284 goto again; 1285 1286 list_add_tail(&fs_info->extent_root->dirty_list, 1287 &trans->transaction->switch_commits); 1288 1289 /* Update dev-replace pointer once everything is committed */ 1290 fs_info->dev_replace.committed_cursor_left = 1291 fs_info->dev_replace.cursor_left_last_write_of_item; 1292 1293 return 0; 1294 } 1295 1296 /* 1297 * dead roots are old snapshots that need to be deleted. This allocates 1298 * a dirty root struct and adds it into the list of dead roots that need to 1299 * be deleted 1300 */ 1301 void btrfs_add_dead_root(struct btrfs_root *root) 1302 { 1303 struct btrfs_fs_info *fs_info = root->fs_info; 1304 1305 spin_lock(&fs_info->trans_lock); 1306 if (list_empty(&root->root_list)) { 1307 btrfs_grab_root(root); 1308 list_add_tail(&root->root_list, &fs_info->dead_roots); 1309 } 1310 spin_unlock(&fs_info->trans_lock); 1311 } 1312 1313 /* 1314 * update all the cowonly tree roots on disk 1315 */ 1316 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1317 { 1318 struct btrfs_fs_info *fs_info = trans->fs_info; 1319 struct btrfs_root *gang[8]; 1320 int i; 1321 int ret; 1322 int err = 0; 1323 1324 spin_lock(&fs_info->fs_roots_radix_lock); 1325 while (1) { 1326 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1327 (void **)gang, 0, 1328 ARRAY_SIZE(gang), 1329 BTRFS_ROOT_TRANS_TAG); 1330 if (ret == 0) 1331 break; 1332 for (i = 0; i < ret; i++) { 1333 struct btrfs_root *root = gang[i]; 1334 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1335 (unsigned long)root->root_key.objectid, 1336 BTRFS_ROOT_TRANS_TAG); 1337 spin_unlock(&fs_info->fs_roots_radix_lock); 1338 1339 btrfs_free_log(trans, root); 1340 btrfs_update_reloc_root(trans, root); 1341 1342 /* see comments in should_cow_block() */ 1343 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1344 smp_mb__after_atomic(); 1345 1346 if (root->commit_root != root->node) { 1347 list_add_tail(&root->dirty_list, 1348 &trans->transaction->switch_commits); 1349 btrfs_set_root_node(&root->root_item, 1350 root->node); 1351 } 1352 1353 err = btrfs_update_root(trans, fs_info->tree_root, 1354 &root->root_key, 1355 &root->root_item); 1356 spin_lock(&fs_info->fs_roots_radix_lock); 1357 if (err) 1358 break; 1359 btrfs_qgroup_free_meta_all_pertrans(root); 1360 } 1361 } 1362 spin_unlock(&fs_info->fs_roots_radix_lock); 1363 return err; 1364 } 1365 1366 /* 1367 * defrag a given btree. 1368 * Every leaf in the btree is read and defragged. 1369 */ 1370 int btrfs_defrag_root(struct btrfs_root *root) 1371 { 1372 struct btrfs_fs_info *info = root->fs_info; 1373 struct btrfs_trans_handle *trans; 1374 int ret; 1375 1376 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1377 return 0; 1378 1379 while (1) { 1380 trans = btrfs_start_transaction(root, 0); 1381 if (IS_ERR(trans)) 1382 return PTR_ERR(trans); 1383 1384 ret = btrfs_defrag_leaves(trans, root); 1385 1386 btrfs_end_transaction(trans); 1387 btrfs_btree_balance_dirty(info); 1388 cond_resched(); 1389 1390 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1391 break; 1392 1393 if (btrfs_defrag_cancelled(info)) { 1394 btrfs_debug(info, "defrag_root cancelled"); 1395 ret = -EAGAIN; 1396 break; 1397 } 1398 } 1399 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1400 return ret; 1401 } 1402 1403 /* 1404 * Do all special snapshot related qgroup dirty hack. 1405 * 1406 * Will do all needed qgroup inherit and dirty hack like switch commit 1407 * roots inside one transaction and write all btree into disk, to make 1408 * qgroup works. 1409 */ 1410 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1411 struct btrfs_root *src, 1412 struct btrfs_root *parent, 1413 struct btrfs_qgroup_inherit *inherit, 1414 u64 dst_objectid) 1415 { 1416 struct btrfs_fs_info *fs_info = src->fs_info; 1417 int ret; 1418 1419 /* 1420 * Save some performance in the case that qgroups are not 1421 * enabled. If this check races with the ioctl, rescan will 1422 * kick in anyway. 1423 */ 1424 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1425 return 0; 1426 1427 /* 1428 * Ensure dirty @src will be committed. Or, after coming 1429 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1430 * recorded root will never be updated again, causing an outdated root 1431 * item. 1432 */ 1433 record_root_in_trans(trans, src, 1); 1434 1435 /* 1436 * We are going to commit transaction, see btrfs_commit_transaction() 1437 * comment for reason locking tree_log_mutex 1438 */ 1439 mutex_lock(&fs_info->tree_log_mutex); 1440 1441 ret = commit_fs_roots(trans); 1442 if (ret) 1443 goto out; 1444 ret = btrfs_qgroup_account_extents(trans); 1445 if (ret < 0) 1446 goto out; 1447 1448 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1449 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1450 inherit); 1451 if (ret < 0) 1452 goto out; 1453 1454 /* 1455 * Now we do a simplified commit transaction, which will: 1456 * 1) commit all subvolume and extent tree 1457 * To ensure all subvolume and extent tree have a valid 1458 * commit_root to accounting later insert_dir_item() 1459 * 2) write all btree blocks onto disk 1460 * This is to make sure later btree modification will be cowed 1461 * Or commit_root can be populated and cause wrong qgroup numbers 1462 * In this simplified commit, we don't really care about other trees 1463 * like chunk and root tree, as they won't affect qgroup. 1464 * And we don't write super to avoid half committed status. 1465 */ 1466 ret = commit_cowonly_roots(trans); 1467 if (ret) 1468 goto out; 1469 switch_commit_roots(trans); 1470 ret = btrfs_write_and_wait_transaction(trans); 1471 if (ret) 1472 btrfs_handle_fs_error(fs_info, ret, 1473 "Error while writing out transaction for qgroup"); 1474 1475 out: 1476 mutex_unlock(&fs_info->tree_log_mutex); 1477 1478 /* 1479 * Force parent root to be updated, as we recorded it before so its 1480 * last_trans == cur_transid. 1481 * Or it won't be committed again onto disk after later 1482 * insert_dir_item() 1483 */ 1484 if (!ret) 1485 record_root_in_trans(trans, parent, 1); 1486 return ret; 1487 } 1488 1489 /* 1490 * new snapshots need to be created at a very specific time in the 1491 * transaction commit. This does the actual creation. 1492 * 1493 * Note: 1494 * If the error which may affect the commitment of the current transaction 1495 * happens, we should return the error number. If the error which just affect 1496 * the creation of the pending snapshots, just return 0. 1497 */ 1498 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1499 struct btrfs_pending_snapshot *pending) 1500 { 1501 1502 struct btrfs_fs_info *fs_info = trans->fs_info; 1503 struct btrfs_key key; 1504 struct btrfs_root_item *new_root_item; 1505 struct btrfs_root *tree_root = fs_info->tree_root; 1506 struct btrfs_root *root = pending->root; 1507 struct btrfs_root *parent_root; 1508 struct btrfs_block_rsv *rsv; 1509 struct inode *parent_inode; 1510 struct btrfs_path *path; 1511 struct btrfs_dir_item *dir_item; 1512 struct dentry *dentry; 1513 struct extent_buffer *tmp; 1514 struct extent_buffer *old; 1515 struct timespec64 cur_time; 1516 int ret = 0; 1517 u64 to_reserve = 0; 1518 u64 index = 0; 1519 u64 objectid; 1520 u64 root_flags; 1521 1522 ASSERT(pending->path); 1523 path = pending->path; 1524 1525 ASSERT(pending->root_item); 1526 new_root_item = pending->root_item; 1527 1528 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1529 if (pending->error) 1530 goto no_free_objectid; 1531 1532 /* 1533 * Make qgroup to skip current new snapshot's qgroupid, as it is 1534 * accounted by later btrfs_qgroup_inherit(). 1535 */ 1536 btrfs_set_skip_qgroup(trans, objectid); 1537 1538 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1539 1540 if (to_reserve > 0) { 1541 pending->error = btrfs_block_rsv_add(root, 1542 &pending->block_rsv, 1543 to_reserve, 1544 BTRFS_RESERVE_NO_FLUSH); 1545 if (pending->error) 1546 goto clear_skip_qgroup; 1547 } 1548 1549 key.objectid = objectid; 1550 key.offset = (u64)-1; 1551 key.type = BTRFS_ROOT_ITEM_KEY; 1552 1553 rsv = trans->block_rsv; 1554 trans->block_rsv = &pending->block_rsv; 1555 trans->bytes_reserved = trans->block_rsv->reserved; 1556 trace_btrfs_space_reservation(fs_info, "transaction", 1557 trans->transid, 1558 trans->bytes_reserved, 1); 1559 dentry = pending->dentry; 1560 parent_inode = pending->dir; 1561 parent_root = BTRFS_I(parent_inode)->root; 1562 record_root_in_trans(trans, parent_root, 0); 1563 1564 cur_time = current_time(parent_inode); 1565 1566 /* 1567 * insert the directory item 1568 */ 1569 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1570 BUG_ON(ret); /* -ENOMEM */ 1571 1572 /* check if there is a file/dir which has the same name. */ 1573 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1574 btrfs_ino(BTRFS_I(parent_inode)), 1575 dentry->d_name.name, 1576 dentry->d_name.len, 0); 1577 if (dir_item != NULL && !IS_ERR(dir_item)) { 1578 pending->error = -EEXIST; 1579 goto dir_item_existed; 1580 } else if (IS_ERR(dir_item)) { 1581 ret = PTR_ERR(dir_item); 1582 btrfs_abort_transaction(trans, ret); 1583 goto fail; 1584 } 1585 btrfs_release_path(path); 1586 1587 /* 1588 * pull in the delayed directory update 1589 * and the delayed inode item 1590 * otherwise we corrupt the FS during 1591 * snapshot 1592 */ 1593 ret = btrfs_run_delayed_items(trans); 1594 if (ret) { /* Transaction aborted */ 1595 btrfs_abort_transaction(trans, ret); 1596 goto fail; 1597 } 1598 1599 record_root_in_trans(trans, root, 0); 1600 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1601 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1602 btrfs_check_and_init_root_item(new_root_item); 1603 1604 root_flags = btrfs_root_flags(new_root_item); 1605 if (pending->readonly) 1606 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1607 else 1608 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1609 btrfs_set_root_flags(new_root_item, root_flags); 1610 1611 btrfs_set_root_generation_v2(new_root_item, 1612 trans->transid); 1613 generate_random_guid(new_root_item->uuid); 1614 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1615 BTRFS_UUID_SIZE); 1616 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1617 memset(new_root_item->received_uuid, 0, 1618 sizeof(new_root_item->received_uuid)); 1619 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1620 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1621 btrfs_set_root_stransid(new_root_item, 0); 1622 btrfs_set_root_rtransid(new_root_item, 0); 1623 } 1624 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1625 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1626 btrfs_set_root_otransid(new_root_item, trans->transid); 1627 1628 old = btrfs_lock_root_node(root); 1629 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1630 BTRFS_NESTING_COW); 1631 if (ret) { 1632 btrfs_tree_unlock(old); 1633 free_extent_buffer(old); 1634 btrfs_abort_transaction(trans, ret); 1635 goto fail; 1636 } 1637 1638 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1639 /* clean up in any case */ 1640 btrfs_tree_unlock(old); 1641 free_extent_buffer(old); 1642 if (ret) { 1643 btrfs_abort_transaction(trans, ret); 1644 goto fail; 1645 } 1646 /* see comments in should_cow_block() */ 1647 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1648 smp_wmb(); 1649 1650 btrfs_set_root_node(new_root_item, tmp); 1651 /* record when the snapshot was created in key.offset */ 1652 key.offset = trans->transid; 1653 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1654 btrfs_tree_unlock(tmp); 1655 free_extent_buffer(tmp); 1656 if (ret) { 1657 btrfs_abort_transaction(trans, ret); 1658 goto fail; 1659 } 1660 1661 /* 1662 * insert root back/forward references 1663 */ 1664 ret = btrfs_add_root_ref(trans, objectid, 1665 parent_root->root_key.objectid, 1666 btrfs_ino(BTRFS_I(parent_inode)), index, 1667 dentry->d_name.name, dentry->d_name.len); 1668 if (ret) { 1669 btrfs_abort_transaction(trans, ret); 1670 goto fail; 1671 } 1672 1673 key.offset = (u64)-1; 1674 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1675 if (IS_ERR(pending->snap)) { 1676 ret = PTR_ERR(pending->snap); 1677 pending->snap = NULL; 1678 btrfs_abort_transaction(trans, ret); 1679 goto fail; 1680 } 1681 1682 ret = btrfs_reloc_post_snapshot(trans, pending); 1683 if (ret) { 1684 btrfs_abort_transaction(trans, ret); 1685 goto fail; 1686 } 1687 1688 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1689 if (ret) { 1690 btrfs_abort_transaction(trans, ret); 1691 goto fail; 1692 } 1693 1694 /* 1695 * Do special qgroup accounting for snapshot, as we do some qgroup 1696 * snapshot hack to do fast snapshot. 1697 * To co-operate with that hack, we do hack again. 1698 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1699 */ 1700 ret = qgroup_account_snapshot(trans, root, parent_root, 1701 pending->inherit, objectid); 1702 if (ret < 0) 1703 goto fail; 1704 1705 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1706 dentry->d_name.len, BTRFS_I(parent_inode), 1707 &key, BTRFS_FT_DIR, index); 1708 /* We have check then name at the beginning, so it is impossible. */ 1709 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1710 if (ret) { 1711 btrfs_abort_transaction(trans, ret); 1712 goto fail; 1713 } 1714 1715 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1716 dentry->d_name.len * 2); 1717 parent_inode->i_mtime = parent_inode->i_ctime = 1718 current_time(parent_inode); 1719 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode)); 1720 if (ret) { 1721 btrfs_abort_transaction(trans, ret); 1722 goto fail; 1723 } 1724 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1725 BTRFS_UUID_KEY_SUBVOL, 1726 objectid); 1727 if (ret) { 1728 btrfs_abort_transaction(trans, ret); 1729 goto fail; 1730 } 1731 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1732 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1733 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1734 objectid); 1735 if (ret && ret != -EEXIST) { 1736 btrfs_abort_transaction(trans, ret); 1737 goto fail; 1738 } 1739 } 1740 1741 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1742 if (ret) { 1743 btrfs_abort_transaction(trans, ret); 1744 goto fail; 1745 } 1746 1747 fail: 1748 pending->error = ret; 1749 dir_item_existed: 1750 trans->block_rsv = rsv; 1751 trans->bytes_reserved = 0; 1752 clear_skip_qgroup: 1753 btrfs_clear_skip_qgroup(trans); 1754 no_free_objectid: 1755 kfree(new_root_item); 1756 pending->root_item = NULL; 1757 btrfs_free_path(path); 1758 pending->path = NULL; 1759 1760 return ret; 1761 } 1762 1763 /* 1764 * create all the snapshots we've scheduled for creation 1765 */ 1766 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1767 { 1768 struct btrfs_pending_snapshot *pending, *next; 1769 struct list_head *head = &trans->transaction->pending_snapshots; 1770 int ret = 0; 1771 1772 list_for_each_entry_safe(pending, next, head, list) { 1773 list_del(&pending->list); 1774 ret = create_pending_snapshot(trans, pending); 1775 if (ret) 1776 break; 1777 } 1778 return ret; 1779 } 1780 1781 static void update_super_roots(struct btrfs_fs_info *fs_info) 1782 { 1783 struct btrfs_root_item *root_item; 1784 struct btrfs_super_block *super; 1785 1786 super = fs_info->super_copy; 1787 1788 root_item = &fs_info->chunk_root->root_item; 1789 super->chunk_root = root_item->bytenr; 1790 super->chunk_root_generation = root_item->generation; 1791 super->chunk_root_level = root_item->level; 1792 1793 root_item = &fs_info->tree_root->root_item; 1794 super->root = root_item->bytenr; 1795 super->generation = root_item->generation; 1796 super->root_level = root_item->level; 1797 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1798 super->cache_generation = root_item->generation; 1799 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1800 super->cache_generation = 0; 1801 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1802 super->uuid_tree_generation = root_item->generation; 1803 } 1804 1805 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1806 { 1807 struct btrfs_transaction *trans; 1808 int ret = 0; 1809 1810 spin_lock(&info->trans_lock); 1811 trans = info->running_transaction; 1812 if (trans) 1813 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1814 spin_unlock(&info->trans_lock); 1815 return ret; 1816 } 1817 1818 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1819 { 1820 struct btrfs_transaction *trans; 1821 int ret = 0; 1822 1823 spin_lock(&info->trans_lock); 1824 trans = info->running_transaction; 1825 if (trans) 1826 ret = is_transaction_blocked(trans); 1827 spin_unlock(&info->trans_lock); 1828 return ret; 1829 } 1830 1831 /* 1832 * wait for the current transaction commit to start and block subsequent 1833 * transaction joins 1834 */ 1835 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1836 struct btrfs_transaction *trans) 1837 { 1838 wait_event(fs_info->transaction_blocked_wait, 1839 trans->state >= TRANS_STATE_COMMIT_START || 1840 TRANS_ABORTED(trans)); 1841 } 1842 1843 /* 1844 * wait for the current transaction to start and then become unblocked. 1845 * caller holds ref. 1846 */ 1847 static void wait_current_trans_commit_start_and_unblock( 1848 struct btrfs_fs_info *fs_info, 1849 struct btrfs_transaction *trans) 1850 { 1851 wait_event(fs_info->transaction_wait, 1852 trans->state >= TRANS_STATE_UNBLOCKED || 1853 TRANS_ABORTED(trans)); 1854 } 1855 1856 /* 1857 * commit transactions asynchronously. once btrfs_commit_transaction_async 1858 * returns, any subsequent transaction will not be allowed to join. 1859 */ 1860 struct btrfs_async_commit { 1861 struct btrfs_trans_handle *newtrans; 1862 struct work_struct work; 1863 }; 1864 1865 static void do_async_commit(struct work_struct *work) 1866 { 1867 struct btrfs_async_commit *ac = 1868 container_of(work, struct btrfs_async_commit, work); 1869 1870 /* 1871 * We've got freeze protection passed with the transaction. 1872 * Tell lockdep about it. 1873 */ 1874 if (ac->newtrans->type & __TRANS_FREEZABLE) 1875 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1876 1877 current->journal_info = ac->newtrans; 1878 1879 btrfs_commit_transaction(ac->newtrans); 1880 kfree(ac); 1881 } 1882 1883 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1884 int wait_for_unblock) 1885 { 1886 struct btrfs_fs_info *fs_info = trans->fs_info; 1887 struct btrfs_async_commit *ac; 1888 struct btrfs_transaction *cur_trans; 1889 1890 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1891 if (!ac) 1892 return -ENOMEM; 1893 1894 INIT_WORK(&ac->work, do_async_commit); 1895 ac->newtrans = btrfs_join_transaction(trans->root); 1896 if (IS_ERR(ac->newtrans)) { 1897 int err = PTR_ERR(ac->newtrans); 1898 kfree(ac); 1899 return err; 1900 } 1901 1902 /* take transaction reference */ 1903 cur_trans = trans->transaction; 1904 refcount_inc(&cur_trans->use_count); 1905 1906 btrfs_end_transaction(trans); 1907 1908 /* 1909 * Tell lockdep we've released the freeze rwsem, since the 1910 * async commit thread will be the one to unlock it. 1911 */ 1912 if (ac->newtrans->type & __TRANS_FREEZABLE) 1913 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1914 1915 schedule_work(&ac->work); 1916 1917 /* wait for transaction to start and unblock */ 1918 if (wait_for_unblock) 1919 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1920 else 1921 wait_current_trans_commit_start(fs_info, cur_trans); 1922 1923 if (current->journal_info == trans) 1924 current->journal_info = NULL; 1925 1926 btrfs_put_transaction(cur_trans); 1927 return 0; 1928 } 1929 1930 1931 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1932 { 1933 struct btrfs_fs_info *fs_info = trans->fs_info; 1934 struct btrfs_transaction *cur_trans = trans->transaction; 1935 1936 WARN_ON(refcount_read(&trans->use_count) > 1); 1937 1938 btrfs_abort_transaction(trans, err); 1939 1940 spin_lock(&fs_info->trans_lock); 1941 1942 /* 1943 * If the transaction is removed from the list, it means this 1944 * transaction has been committed successfully, so it is impossible 1945 * to call the cleanup function. 1946 */ 1947 BUG_ON(list_empty(&cur_trans->list)); 1948 1949 list_del_init(&cur_trans->list); 1950 if (cur_trans == fs_info->running_transaction) { 1951 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1952 spin_unlock(&fs_info->trans_lock); 1953 wait_event(cur_trans->writer_wait, 1954 atomic_read(&cur_trans->num_writers) == 1); 1955 1956 spin_lock(&fs_info->trans_lock); 1957 } 1958 spin_unlock(&fs_info->trans_lock); 1959 1960 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1961 1962 spin_lock(&fs_info->trans_lock); 1963 if (cur_trans == fs_info->running_transaction) 1964 fs_info->running_transaction = NULL; 1965 spin_unlock(&fs_info->trans_lock); 1966 1967 if (trans->type & __TRANS_FREEZABLE) 1968 sb_end_intwrite(fs_info->sb); 1969 btrfs_put_transaction(cur_trans); 1970 btrfs_put_transaction(cur_trans); 1971 1972 trace_btrfs_transaction_commit(trans->root); 1973 1974 if (current->journal_info == trans) 1975 current->journal_info = NULL; 1976 btrfs_scrub_cancel(fs_info); 1977 1978 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1979 } 1980 1981 /* 1982 * Release reserved delayed ref space of all pending block groups of the 1983 * transaction and remove them from the list 1984 */ 1985 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 1986 { 1987 struct btrfs_fs_info *fs_info = trans->fs_info; 1988 struct btrfs_block_group *block_group, *tmp; 1989 1990 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 1991 btrfs_delayed_refs_rsv_release(fs_info, 1); 1992 list_del_init(&block_group->bg_list); 1993 } 1994 } 1995 1996 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1997 { 1998 /* 1999 * We use writeback_inodes_sb here because if we used 2000 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2001 * Currently are holding the fs freeze lock, if we do an async flush 2002 * we'll do btrfs_join_transaction() and deadlock because we need to 2003 * wait for the fs freeze lock. Using the direct flushing we benefit 2004 * from already being in a transaction and our join_transaction doesn't 2005 * have to re-take the fs freeze lock. 2006 */ 2007 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2008 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2009 return 0; 2010 } 2011 2012 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2013 { 2014 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2015 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2016 } 2017 2018 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2019 { 2020 struct btrfs_fs_info *fs_info = trans->fs_info; 2021 struct btrfs_transaction *cur_trans = trans->transaction; 2022 struct btrfs_transaction *prev_trans = NULL; 2023 int ret; 2024 2025 ASSERT(refcount_read(&trans->use_count) == 1); 2026 2027 /* 2028 * Some places just start a transaction to commit it. We need to make 2029 * sure that if this commit fails that the abort code actually marks the 2030 * transaction as failed, so set trans->dirty to make the abort code do 2031 * the right thing. 2032 */ 2033 trans->dirty = true; 2034 2035 /* Stop the commit early if ->aborted is set */ 2036 if (TRANS_ABORTED(cur_trans)) { 2037 ret = cur_trans->aborted; 2038 btrfs_end_transaction(trans); 2039 return ret; 2040 } 2041 2042 btrfs_trans_release_metadata(trans); 2043 trans->block_rsv = NULL; 2044 2045 /* make a pass through all the delayed refs we have so far 2046 * any runnings procs may add more while we are here 2047 */ 2048 ret = btrfs_run_delayed_refs(trans, 0); 2049 if (ret) { 2050 btrfs_end_transaction(trans); 2051 return ret; 2052 } 2053 2054 cur_trans = trans->transaction; 2055 2056 /* 2057 * set the flushing flag so procs in this transaction have to 2058 * start sending their work down. 2059 */ 2060 cur_trans->delayed_refs.flushing = 1; 2061 smp_wmb(); 2062 2063 btrfs_create_pending_block_groups(trans); 2064 2065 ret = btrfs_run_delayed_refs(trans, 0); 2066 if (ret) { 2067 btrfs_end_transaction(trans); 2068 return ret; 2069 } 2070 2071 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2072 int run_it = 0; 2073 2074 /* this mutex is also taken before trying to set 2075 * block groups readonly. We need to make sure 2076 * that nobody has set a block group readonly 2077 * after a extents from that block group have been 2078 * allocated for cache files. btrfs_set_block_group_ro 2079 * will wait for the transaction to commit if it 2080 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2081 * 2082 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2083 * only one process starts all the block group IO. It wouldn't 2084 * hurt to have more than one go through, but there's no 2085 * real advantage to it either. 2086 */ 2087 mutex_lock(&fs_info->ro_block_group_mutex); 2088 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2089 &cur_trans->flags)) 2090 run_it = 1; 2091 mutex_unlock(&fs_info->ro_block_group_mutex); 2092 2093 if (run_it) { 2094 ret = btrfs_start_dirty_block_groups(trans); 2095 if (ret) { 2096 btrfs_end_transaction(trans); 2097 return ret; 2098 } 2099 } 2100 } 2101 2102 spin_lock(&fs_info->trans_lock); 2103 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2104 spin_unlock(&fs_info->trans_lock); 2105 refcount_inc(&cur_trans->use_count); 2106 ret = btrfs_end_transaction(trans); 2107 2108 wait_for_commit(cur_trans); 2109 2110 if (TRANS_ABORTED(cur_trans)) 2111 ret = cur_trans->aborted; 2112 2113 btrfs_put_transaction(cur_trans); 2114 2115 return ret; 2116 } 2117 2118 cur_trans->state = TRANS_STATE_COMMIT_START; 2119 wake_up(&fs_info->transaction_blocked_wait); 2120 2121 if (cur_trans->list.prev != &fs_info->trans_list) { 2122 prev_trans = list_entry(cur_trans->list.prev, 2123 struct btrfs_transaction, list); 2124 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2125 refcount_inc(&prev_trans->use_count); 2126 spin_unlock(&fs_info->trans_lock); 2127 2128 wait_for_commit(prev_trans); 2129 ret = READ_ONCE(prev_trans->aborted); 2130 2131 btrfs_put_transaction(prev_trans); 2132 if (ret) 2133 goto cleanup_transaction; 2134 } else { 2135 spin_unlock(&fs_info->trans_lock); 2136 } 2137 } else { 2138 spin_unlock(&fs_info->trans_lock); 2139 /* 2140 * The previous transaction was aborted and was already removed 2141 * from the list of transactions at fs_info->trans_list. So we 2142 * abort to prevent writing a new superblock that reflects a 2143 * corrupt state (pointing to trees with unwritten nodes/leafs). 2144 */ 2145 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) { 2146 ret = -EROFS; 2147 goto cleanup_transaction; 2148 } 2149 } 2150 2151 extwriter_counter_dec(cur_trans, trans->type); 2152 2153 ret = btrfs_start_delalloc_flush(fs_info); 2154 if (ret) 2155 goto cleanup_transaction; 2156 2157 ret = btrfs_run_delayed_items(trans); 2158 if (ret) 2159 goto cleanup_transaction; 2160 2161 wait_event(cur_trans->writer_wait, 2162 extwriter_counter_read(cur_trans) == 0); 2163 2164 /* some pending stuffs might be added after the previous flush. */ 2165 ret = btrfs_run_delayed_items(trans); 2166 if (ret) 2167 goto cleanup_transaction; 2168 2169 btrfs_wait_delalloc_flush(fs_info); 2170 2171 /* 2172 * Wait for all ordered extents started by a fast fsync that joined this 2173 * transaction. Otherwise if this transaction commits before the ordered 2174 * extents complete we lose logged data after a power failure. 2175 */ 2176 wait_event(cur_trans->pending_wait, 2177 atomic_read(&cur_trans->pending_ordered) == 0); 2178 2179 btrfs_scrub_pause(fs_info); 2180 /* 2181 * Ok now we need to make sure to block out any other joins while we 2182 * commit the transaction. We could have started a join before setting 2183 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2184 */ 2185 spin_lock(&fs_info->trans_lock); 2186 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2187 spin_unlock(&fs_info->trans_lock); 2188 wait_event(cur_trans->writer_wait, 2189 atomic_read(&cur_trans->num_writers) == 1); 2190 2191 if (TRANS_ABORTED(cur_trans)) { 2192 ret = cur_trans->aborted; 2193 goto scrub_continue; 2194 } 2195 /* 2196 * the reloc mutex makes sure that we stop 2197 * the balancing code from coming in and moving 2198 * extents around in the middle of the commit 2199 */ 2200 mutex_lock(&fs_info->reloc_mutex); 2201 2202 /* 2203 * We needn't worry about the delayed items because we will 2204 * deal with them in create_pending_snapshot(), which is the 2205 * core function of the snapshot creation. 2206 */ 2207 ret = create_pending_snapshots(trans); 2208 if (ret) 2209 goto unlock_reloc; 2210 2211 /* 2212 * We insert the dir indexes of the snapshots and update the inode 2213 * of the snapshots' parents after the snapshot creation, so there 2214 * are some delayed items which are not dealt with. Now deal with 2215 * them. 2216 * 2217 * We needn't worry that this operation will corrupt the snapshots, 2218 * because all the tree which are snapshoted will be forced to COW 2219 * the nodes and leaves. 2220 */ 2221 ret = btrfs_run_delayed_items(trans); 2222 if (ret) 2223 goto unlock_reloc; 2224 2225 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2226 if (ret) 2227 goto unlock_reloc; 2228 2229 /* 2230 * make sure none of the code above managed to slip in a 2231 * delayed item 2232 */ 2233 btrfs_assert_delayed_root_empty(fs_info); 2234 2235 WARN_ON(cur_trans != trans->transaction); 2236 2237 /* btrfs_commit_tree_roots is responsible for getting the 2238 * various roots consistent with each other. Every pointer 2239 * in the tree of tree roots has to point to the most up to date 2240 * root for every subvolume and other tree. So, we have to keep 2241 * the tree logging code from jumping in and changing any 2242 * of the trees. 2243 * 2244 * At this point in the commit, there can't be any tree-log 2245 * writers, but a little lower down we drop the trans mutex 2246 * and let new people in. By holding the tree_log_mutex 2247 * from now until after the super is written, we avoid races 2248 * with the tree-log code. 2249 */ 2250 mutex_lock(&fs_info->tree_log_mutex); 2251 2252 ret = commit_fs_roots(trans); 2253 if (ret) 2254 goto unlock_tree_log; 2255 2256 /* 2257 * Since the transaction is done, we can apply the pending changes 2258 * before the next transaction. 2259 */ 2260 btrfs_apply_pending_changes(fs_info); 2261 2262 /* commit_fs_roots gets rid of all the tree log roots, it is now 2263 * safe to free the root of tree log roots 2264 */ 2265 btrfs_free_log_root_tree(trans, fs_info); 2266 2267 /* 2268 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2269 * new delayed refs. Must handle them or qgroup can be wrong. 2270 */ 2271 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2272 if (ret) 2273 goto unlock_tree_log; 2274 2275 /* 2276 * Since fs roots are all committed, we can get a quite accurate 2277 * new_roots. So let's do quota accounting. 2278 */ 2279 ret = btrfs_qgroup_account_extents(trans); 2280 if (ret < 0) 2281 goto unlock_tree_log; 2282 2283 ret = commit_cowonly_roots(trans); 2284 if (ret) 2285 goto unlock_tree_log; 2286 2287 /* 2288 * The tasks which save the space cache and inode cache may also 2289 * update ->aborted, check it. 2290 */ 2291 if (TRANS_ABORTED(cur_trans)) { 2292 ret = cur_trans->aborted; 2293 goto unlock_tree_log; 2294 } 2295 2296 cur_trans = fs_info->running_transaction; 2297 2298 btrfs_set_root_node(&fs_info->tree_root->root_item, 2299 fs_info->tree_root->node); 2300 list_add_tail(&fs_info->tree_root->dirty_list, 2301 &cur_trans->switch_commits); 2302 2303 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2304 fs_info->chunk_root->node); 2305 list_add_tail(&fs_info->chunk_root->dirty_list, 2306 &cur_trans->switch_commits); 2307 2308 switch_commit_roots(trans); 2309 2310 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2311 ASSERT(list_empty(&cur_trans->io_bgs)); 2312 update_super_roots(fs_info); 2313 2314 btrfs_set_super_log_root(fs_info->super_copy, 0); 2315 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2316 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2317 sizeof(*fs_info->super_copy)); 2318 2319 btrfs_commit_device_sizes(cur_trans); 2320 2321 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2322 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2323 2324 btrfs_trans_release_chunk_metadata(trans); 2325 2326 spin_lock(&fs_info->trans_lock); 2327 cur_trans->state = TRANS_STATE_UNBLOCKED; 2328 fs_info->running_transaction = NULL; 2329 spin_unlock(&fs_info->trans_lock); 2330 mutex_unlock(&fs_info->reloc_mutex); 2331 2332 wake_up(&fs_info->transaction_wait); 2333 2334 ret = btrfs_write_and_wait_transaction(trans); 2335 if (ret) { 2336 btrfs_handle_fs_error(fs_info, ret, 2337 "Error while writing out transaction"); 2338 /* 2339 * reloc_mutex has been unlocked, tree_log_mutex is still held 2340 * but we can't jump to unlock_tree_log causing double unlock 2341 */ 2342 mutex_unlock(&fs_info->tree_log_mutex); 2343 goto scrub_continue; 2344 } 2345 2346 ret = write_all_supers(fs_info, 0); 2347 /* 2348 * the super is written, we can safely allow the tree-loggers 2349 * to go about their business 2350 */ 2351 mutex_unlock(&fs_info->tree_log_mutex); 2352 if (ret) 2353 goto scrub_continue; 2354 2355 btrfs_finish_extent_commit(trans); 2356 2357 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2358 btrfs_clear_space_info_full(fs_info); 2359 2360 fs_info->last_trans_committed = cur_trans->transid; 2361 /* 2362 * We needn't acquire the lock here because there is no other task 2363 * which can change it. 2364 */ 2365 cur_trans->state = TRANS_STATE_COMPLETED; 2366 wake_up(&cur_trans->commit_wait); 2367 2368 spin_lock(&fs_info->trans_lock); 2369 list_del_init(&cur_trans->list); 2370 spin_unlock(&fs_info->trans_lock); 2371 2372 btrfs_put_transaction(cur_trans); 2373 btrfs_put_transaction(cur_trans); 2374 2375 if (trans->type & __TRANS_FREEZABLE) 2376 sb_end_intwrite(fs_info->sb); 2377 2378 trace_btrfs_transaction_commit(trans->root); 2379 2380 btrfs_scrub_continue(fs_info); 2381 2382 if (current->journal_info == trans) 2383 current->journal_info = NULL; 2384 2385 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2386 2387 return ret; 2388 2389 unlock_tree_log: 2390 mutex_unlock(&fs_info->tree_log_mutex); 2391 unlock_reloc: 2392 mutex_unlock(&fs_info->reloc_mutex); 2393 scrub_continue: 2394 btrfs_scrub_continue(fs_info); 2395 cleanup_transaction: 2396 btrfs_trans_release_metadata(trans); 2397 btrfs_cleanup_pending_block_groups(trans); 2398 btrfs_trans_release_chunk_metadata(trans); 2399 trans->block_rsv = NULL; 2400 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2401 if (current->journal_info == trans) 2402 current->journal_info = NULL; 2403 cleanup_transaction(trans, ret); 2404 2405 return ret; 2406 } 2407 2408 /* 2409 * return < 0 if error 2410 * 0 if there are no more dead_roots at the time of call 2411 * 1 there are more to be processed, call me again 2412 * 2413 * The return value indicates there are certainly more snapshots to delete, but 2414 * if there comes a new one during processing, it may return 0. We don't mind, 2415 * because btrfs_commit_super will poke cleaner thread and it will process it a 2416 * few seconds later. 2417 */ 2418 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2419 { 2420 int ret; 2421 struct btrfs_fs_info *fs_info = root->fs_info; 2422 2423 spin_lock(&fs_info->trans_lock); 2424 if (list_empty(&fs_info->dead_roots)) { 2425 spin_unlock(&fs_info->trans_lock); 2426 return 0; 2427 } 2428 root = list_first_entry(&fs_info->dead_roots, 2429 struct btrfs_root, root_list); 2430 list_del_init(&root->root_list); 2431 spin_unlock(&fs_info->trans_lock); 2432 2433 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2434 2435 btrfs_kill_all_delayed_nodes(root); 2436 2437 if (btrfs_header_backref_rev(root->node) < 2438 BTRFS_MIXED_BACKREF_REV) 2439 ret = btrfs_drop_snapshot(root, 0, 0); 2440 else 2441 ret = btrfs_drop_snapshot(root, 1, 0); 2442 2443 btrfs_put_root(root); 2444 return (ret < 0) ? 0 : 1; 2445 } 2446 2447 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2448 { 2449 unsigned long prev; 2450 unsigned long bit; 2451 2452 prev = xchg(&fs_info->pending_changes, 0); 2453 if (!prev) 2454 return; 2455 2456 bit = 1 << BTRFS_PENDING_COMMIT; 2457 if (prev & bit) 2458 btrfs_debug(fs_info, "pending commit done"); 2459 prev &= ~bit; 2460 2461 if (prev) 2462 btrfs_warn(fs_info, 2463 "unknown pending changes left 0x%lx, ignoring", prev); 2464 } 2465