xref: /openbmc/linux/fs/btrfs/transaction.c (revision 82ced6fd)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "ref-cache.h"
29 #include "tree-log.h"
30 
31 #define BTRFS_ROOT_TRANS_TAG 0
32 
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 {
35 	WARN_ON(transaction->use_count == 0);
36 	transaction->use_count--;
37 	if (transaction->use_count == 0) {
38 		list_del_init(&transaction->list);
39 		memset(transaction, 0, sizeof(*transaction));
40 		kmem_cache_free(btrfs_transaction_cachep, transaction);
41 	}
42 }
43 
44 /*
45  * either allocate a new transaction or hop into the existing one
46  */
47 static noinline int join_transaction(struct btrfs_root *root)
48 {
49 	struct btrfs_transaction *cur_trans;
50 	cur_trans = root->fs_info->running_transaction;
51 	if (!cur_trans) {
52 		cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
53 					     GFP_NOFS);
54 		BUG_ON(!cur_trans);
55 		root->fs_info->generation++;
56 		cur_trans->num_writers = 1;
57 		cur_trans->num_joined = 0;
58 		cur_trans->transid = root->fs_info->generation;
59 		init_waitqueue_head(&cur_trans->writer_wait);
60 		init_waitqueue_head(&cur_trans->commit_wait);
61 		cur_trans->in_commit = 0;
62 		cur_trans->blocked = 0;
63 		cur_trans->use_count = 1;
64 		cur_trans->commit_done = 0;
65 		cur_trans->start_time = get_seconds();
66 
67 		cur_trans->delayed_refs.root.rb_node = NULL;
68 		cur_trans->delayed_refs.num_entries = 0;
69 		cur_trans->delayed_refs.num_heads_ready = 0;
70 		cur_trans->delayed_refs.num_heads = 0;
71 		cur_trans->delayed_refs.flushing = 0;
72 		cur_trans->delayed_refs.run_delayed_start = 0;
73 		spin_lock_init(&cur_trans->delayed_refs.lock);
74 
75 		INIT_LIST_HEAD(&cur_trans->pending_snapshots);
76 		list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
77 		extent_io_tree_init(&cur_trans->dirty_pages,
78 				     root->fs_info->btree_inode->i_mapping,
79 				     GFP_NOFS);
80 		spin_lock(&root->fs_info->new_trans_lock);
81 		root->fs_info->running_transaction = cur_trans;
82 		spin_unlock(&root->fs_info->new_trans_lock);
83 	} else {
84 		cur_trans->num_writers++;
85 		cur_trans->num_joined++;
86 	}
87 
88 	return 0;
89 }
90 
91 /*
92  * this does all the record keeping required to make sure that a reference
93  * counted root is properly recorded in a given transaction.  This is required
94  * to make sure the old root from before we joined the transaction is deleted
95  * when the transaction commits
96  */
97 noinline int btrfs_record_root_in_trans(struct btrfs_root *root)
98 {
99 	struct btrfs_dirty_root *dirty;
100 	u64 running_trans_id = root->fs_info->running_transaction->transid;
101 	if (root->ref_cows && root->last_trans < running_trans_id) {
102 		WARN_ON(root == root->fs_info->extent_root);
103 		if (root->root_item.refs != 0) {
104 			radix_tree_tag_set(&root->fs_info->fs_roots_radix,
105 				   (unsigned long)root->root_key.objectid,
106 				   BTRFS_ROOT_TRANS_TAG);
107 
108 			dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
109 			BUG_ON(!dirty);
110 			dirty->root = kmalloc(sizeof(*dirty->root), GFP_NOFS);
111 			BUG_ON(!dirty->root);
112 			dirty->latest_root = root;
113 			INIT_LIST_HEAD(&dirty->list);
114 
115 			root->commit_root = btrfs_root_node(root);
116 
117 			memcpy(dirty->root, root, sizeof(*root));
118 			spin_lock_init(&dirty->root->node_lock);
119 			spin_lock_init(&dirty->root->list_lock);
120 			mutex_init(&dirty->root->objectid_mutex);
121 			mutex_init(&dirty->root->log_mutex);
122 			INIT_LIST_HEAD(&dirty->root->dead_list);
123 			dirty->root->node = root->commit_root;
124 			dirty->root->commit_root = NULL;
125 
126 			spin_lock(&root->list_lock);
127 			list_add(&dirty->root->dead_list, &root->dead_list);
128 			spin_unlock(&root->list_lock);
129 
130 			root->dirty_root = dirty;
131 		} else {
132 			WARN_ON(1);
133 		}
134 		root->last_trans = running_trans_id;
135 	}
136 	return 0;
137 }
138 
139 /* wait for commit against the current transaction to become unblocked
140  * when this is done, it is safe to start a new transaction, but the current
141  * transaction might not be fully on disk.
142  */
143 static void wait_current_trans(struct btrfs_root *root)
144 {
145 	struct btrfs_transaction *cur_trans;
146 
147 	cur_trans = root->fs_info->running_transaction;
148 	if (cur_trans && cur_trans->blocked) {
149 		DEFINE_WAIT(wait);
150 		cur_trans->use_count++;
151 		while (1) {
152 			prepare_to_wait(&root->fs_info->transaction_wait, &wait,
153 					TASK_UNINTERRUPTIBLE);
154 			if (cur_trans->blocked) {
155 				mutex_unlock(&root->fs_info->trans_mutex);
156 				schedule();
157 				mutex_lock(&root->fs_info->trans_mutex);
158 				finish_wait(&root->fs_info->transaction_wait,
159 					    &wait);
160 			} else {
161 				finish_wait(&root->fs_info->transaction_wait,
162 					    &wait);
163 				break;
164 			}
165 		}
166 		put_transaction(cur_trans);
167 	}
168 }
169 
170 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
171 					     int num_blocks, int wait)
172 {
173 	struct btrfs_trans_handle *h =
174 		kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
175 	int ret;
176 
177 	mutex_lock(&root->fs_info->trans_mutex);
178 	if (!root->fs_info->log_root_recovering &&
179 	    ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
180 		wait_current_trans(root);
181 	ret = join_transaction(root);
182 	BUG_ON(ret);
183 
184 	btrfs_record_root_in_trans(root);
185 	h->transid = root->fs_info->running_transaction->transid;
186 	h->transaction = root->fs_info->running_transaction;
187 	h->blocks_reserved = num_blocks;
188 	h->blocks_used = 0;
189 	h->block_group = 0;
190 	h->alloc_exclude_nr = 0;
191 	h->alloc_exclude_start = 0;
192 	h->delayed_ref_updates = 0;
193 
194 	root->fs_info->running_transaction->use_count++;
195 	mutex_unlock(&root->fs_info->trans_mutex);
196 	return h;
197 }
198 
199 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
200 						   int num_blocks)
201 {
202 	return start_transaction(root, num_blocks, 1);
203 }
204 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
205 						   int num_blocks)
206 {
207 	return start_transaction(root, num_blocks, 0);
208 }
209 
210 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
211 							 int num_blocks)
212 {
213 	return start_transaction(r, num_blocks, 2);
214 }
215 
216 /* wait for a transaction commit to be fully complete */
217 static noinline int wait_for_commit(struct btrfs_root *root,
218 				    struct btrfs_transaction *commit)
219 {
220 	DEFINE_WAIT(wait);
221 	mutex_lock(&root->fs_info->trans_mutex);
222 	while (!commit->commit_done) {
223 		prepare_to_wait(&commit->commit_wait, &wait,
224 				TASK_UNINTERRUPTIBLE);
225 		if (commit->commit_done)
226 			break;
227 		mutex_unlock(&root->fs_info->trans_mutex);
228 		schedule();
229 		mutex_lock(&root->fs_info->trans_mutex);
230 	}
231 	mutex_unlock(&root->fs_info->trans_mutex);
232 	finish_wait(&commit->commit_wait, &wait);
233 	return 0;
234 }
235 
236 /*
237  * rate limit against the drop_snapshot code.  This helps to slow down new
238  * operations if the drop_snapshot code isn't able to keep up.
239  */
240 static void throttle_on_drops(struct btrfs_root *root)
241 {
242 	struct btrfs_fs_info *info = root->fs_info;
243 	int harder_count = 0;
244 
245 harder:
246 	if (atomic_read(&info->throttles)) {
247 		DEFINE_WAIT(wait);
248 		int thr;
249 		thr = atomic_read(&info->throttle_gen);
250 
251 		do {
252 			prepare_to_wait(&info->transaction_throttle,
253 					&wait, TASK_UNINTERRUPTIBLE);
254 			if (!atomic_read(&info->throttles)) {
255 				finish_wait(&info->transaction_throttle, &wait);
256 				break;
257 			}
258 			schedule();
259 			finish_wait(&info->transaction_throttle, &wait);
260 		} while (thr == atomic_read(&info->throttle_gen));
261 		harder_count++;
262 
263 		if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
264 		    harder_count < 2)
265 			goto harder;
266 
267 		if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
268 		    harder_count < 10)
269 			goto harder;
270 
271 		if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
272 		    harder_count < 20)
273 			goto harder;
274 	}
275 }
276 
277 void btrfs_throttle(struct btrfs_root *root)
278 {
279 	mutex_lock(&root->fs_info->trans_mutex);
280 	if (!root->fs_info->open_ioctl_trans)
281 		wait_current_trans(root);
282 	mutex_unlock(&root->fs_info->trans_mutex);
283 	throttle_on_drops(root);
284 }
285 
286 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
287 			  struct btrfs_root *root, int throttle)
288 {
289 	struct btrfs_transaction *cur_trans;
290 	struct btrfs_fs_info *info = root->fs_info;
291 	int count = 0;
292 
293 	while (count < 4) {
294 		unsigned long cur = trans->delayed_ref_updates;
295 		trans->delayed_ref_updates = 0;
296 		if (cur &&
297 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
298 			trans->delayed_ref_updates = 0;
299 
300 			/*
301 			 * do a full flush if the transaction is trying
302 			 * to close
303 			 */
304 			if (trans->transaction->delayed_refs.flushing)
305 				cur = 0;
306 			btrfs_run_delayed_refs(trans, root, cur);
307 		} else {
308 			break;
309 		}
310 		count++;
311 	}
312 
313 	mutex_lock(&info->trans_mutex);
314 	cur_trans = info->running_transaction;
315 	WARN_ON(cur_trans != trans->transaction);
316 	WARN_ON(cur_trans->num_writers < 1);
317 	cur_trans->num_writers--;
318 
319 	if (waitqueue_active(&cur_trans->writer_wait))
320 		wake_up(&cur_trans->writer_wait);
321 	put_transaction(cur_trans);
322 	mutex_unlock(&info->trans_mutex);
323 	memset(trans, 0, sizeof(*trans));
324 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
325 
326 	if (throttle)
327 		throttle_on_drops(root);
328 
329 	return 0;
330 }
331 
332 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
333 			  struct btrfs_root *root)
334 {
335 	return __btrfs_end_transaction(trans, root, 0);
336 }
337 
338 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
339 				   struct btrfs_root *root)
340 {
341 	return __btrfs_end_transaction(trans, root, 1);
342 }
343 
344 /*
345  * when btree blocks are allocated, they have some corresponding bits set for
346  * them in one of two extent_io trees.  This is used to make sure all of
347  * those extents are on disk for transaction or log commit
348  */
349 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
350 					struct extent_io_tree *dirty_pages)
351 {
352 	int ret;
353 	int err = 0;
354 	int werr = 0;
355 	struct page *page;
356 	struct inode *btree_inode = root->fs_info->btree_inode;
357 	u64 start = 0;
358 	u64 end;
359 	unsigned long index;
360 
361 	while (1) {
362 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
363 					    EXTENT_DIRTY);
364 		if (ret)
365 			break;
366 		while (start <= end) {
367 			cond_resched();
368 
369 			index = start >> PAGE_CACHE_SHIFT;
370 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
371 			page = find_get_page(btree_inode->i_mapping, index);
372 			if (!page)
373 				continue;
374 
375 			btree_lock_page_hook(page);
376 			if (!page->mapping) {
377 				unlock_page(page);
378 				page_cache_release(page);
379 				continue;
380 			}
381 
382 			if (PageWriteback(page)) {
383 				if (PageDirty(page))
384 					wait_on_page_writeback(page);
385 				else {
386 					unlock_page(page);
387 					page_cache_release(page);
388 					continue;
389 				}
390 			}
391 			err = write_one_page(page, 0);
392 			if (err)
393 				werr = err;
394 			page_cache_release(page);
395 		}
396 	}
397 	while (1) {
398 		ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
399 					    EXTENT_DIRTY);
400 		if (ret)
401 			break;
402 
403 		clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
404 		while (start <= end) {
405 			index = start >> PAGE_CACHE_SHIFT;
406 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
407 			page = find_get_page(btree_inode->i_mapping, index);
408 			if (!page)
409 				continue;
410 			if (PageDirty(page)) {
411 				btree_lock_page_hook(page);
412 				wait_on_page_writeback(page);
413 				err = write_one_page(page, 0);
414 				if (err)
415 					werr = err;
416 			}
417 			wait_on_page_writeback(page);
418 			page_cache_release(page);
419 			cond_resched();
420 		}
421 	}
422 	if (err)
423 		werr = err;
424 	return werr;
425 }
426 
427 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
428 				     struct btrfs_root *root)
429 {
430 	if (!trans || !trans->transaction) {
431 		struct inode *btree_inode;
432 		btree_inode = root->fs_info->btree_inode;
433 		return filemap_write_and_wait(btree_inode->i_mapping);
434 	}
435 	return btrfs_write_and_wait_marked_extents(root,
436 					   &trans->transaction->dirty_pages);
437 }
438 
439 /*
440  * this is used to update the root pointer in the tree of tree roots.
441  *
442  * But, in the case of the extent allocation tree, updating the root
443  * pointer may allocate blocks which may change the root of the extent
444  * allocation tree.
445  *
446  * So, this loops and repeats and makes sure the cowonly root didn't
447  * change while the root pointer was being updated in the metadata.
448  */
449 static int update_cowonly_root(struct btrfs_trans_handle *trans,
450 			       struct btrfs_root *root)
451 {
452 	int ret;
453 	u64 old_root_bytenr;
454 	struct btrfs_root *tree_root = root->fs_info->tree_root;
455 
456 	btrfs_write_dirty_block_groups(trans, root);
457 
458 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
459 	BUG_ON(ret);
460 
461 	while (1) {
462 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
463 		if (old_root_bytenr == root->node->start)
464 			break;
465 		btrfs_set_root_bytenr(&root->root_item,
466 				       root->node->start);
467 		btrfs_set_root_level(&root->root_item,
468 				     btrfs_header_level(root->node));
469 		btrfs_set_root_generation(&root->root_item, trans->transid);
470 
471 		ret = btrfs_update_root(trans, tree_root,
472 					&root->root_key,
473 					&root->root_item);
474 		BUG_ON(ret);
475 		btrfs_write_dirty_block_groups(trans, root);
476 
477 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
478 		BUG_ON(ret);
479 	}
480 	return 0;
481 }
482 
483 /*
484  * update all the cowonly tree roots on disk
485  */
486 int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans,
487 			    struct btrfs_root *root)
488 {
489 	struct btrfs_fs_info *fs_info = root->fs_info;
490 	struct list_head *next;
491 	struct extent_buffer *eb;
492 	int ret;
493 
494 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
495 	BUG_ON(ret);
496 
497 	eb = btrfs_lock_root_node(fs_info->tree_root);
498 	btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
499 	btrfs_tree_unlock(eb);
500 	free_extent_buffer(eb);
501 
502 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
503 	BUG_ON(ret);
504 
505 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
506 		next = fs_info->dirty_cowonly_roots.next;
507 		list_del_init(next);
508 		root = list_entry(next, struct btrfs_root, dirty_list);
509 
510 		update_cowonly_root(trans, root);
511 
512 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
513 		BUG_ON(ret);
514 	}
515 	return 0;
516 }
517 
518 /*
519  * dead roots are old snapshots that need to be deleted.  This allocates
520  * a dirty root struct and adds it into the list of dead roots that need to
521  * be deleted
522  */
523 int btrfs_add_dead_root(struct btrfs_root *root, struct btrfs_root *latest)
524 {
525 	struct btrfs_dirty_root *dirty;
526 
527 	dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
528 	if (!dirty)
529 		return -ENOMEM;
530 	dirty->root = root;
531 	dirty->latest_root = latest;
532 
533 	mutex_lock(&root->fs_info->trans_mutex);
534 	list_add(&dirty->list, &latest->fs_info->dead_roots);
535 	mutex_unlock(&root->fs_info->trans_mutex);
536 	return 0;
537 }
538 
539 /*
540  * at transaction commit time we need to schedule the old roots for
541  * deletion via btrfs_drop_snapshot.  This runs through all the
542  * reference counted roots that were modified in the current
543  * transaction and puts them into the drop list
544  */
545 static noinline int add_dirty_roots(struct btrfs_trans_handle *trans,
546 				    struct radix_tree_root *radix,
547 				    struct list_head *list)
548 {
549 	struct btrfs_dirty_root *dirty;
550 	struct btrfs_root *gang[8];
551 	struct btrfs_root *root;
552 	int i;
553 	int ret;
554 	int err = 0;
555 	u32 refs;
556 
557 	while (1) {
558 		ret = radix_tree_gang_lookup_tag(radix, (void **)gang, 0,
559 						 ARRAY_SIZE(gang),
560 						 BTRFS_ROOT_TRANS_TAG);
561 		if (ret == 0)
562 			break;
563 		for (i = 0; i < ret; i++) {
564 			root = gang[i];
565 			radix_tree_tag_clear(radix,
566 				     (unsigned long)root->root_key.objectid,
567 				     BTRFS_ROOT_TRANS_TAG);
568 
569 			BUG_ON(!root->ref_tree);
570 			dirty = root->dirty_root;
571 
572 			btrfs_free_log(trans, root);
573 			btrfs_free_reloc_root(trans, root);
574 
575 			if (root->commit_root == root->node) {
576 				WARN_ON(root->node->start !=
577 					btrfs_root_bytenr(&root->root_item));
578 
579 				free_extent_buffer(root->commit_root);
580 				root->commit_root = NULL;
581 				root->dirty_root = NULL;
582 
583 				spin_lock(&root->list_lock);
584 				list_del_init(&dirty->root->dead_list);
585 				spin_unlock(&root->list_lock);
586 
587 				kfree(dirty->root);
588 				kfree(dirty);
589 
590 				/* make sure to update the root on disk
591 				 * so we get any updates to the block used
592 				 * counts
593 				 */
594 				err = btrfs_update_root(trans,
595 						root->fs_info->tree_root,
596 						&root->root_key,
597 						&root->root_item);
598 				continue;
599 			}
600 
601 			memset(&root->root_item.drop_progress, 0,
602 			       sizeof(struct btrfs_disk_key));
603 			root->root_item.drop_level = 0;
604 			root->commit_root = NULL;
605 			root->dirty_root = NULL;
606 			root->root_key.offset = root->fs_info->generation;
607 			btrfs_set_root_bytenr(&root->root_item,
608 					      root->node->start);
609 			btrfs_set_root_level(&root->root_item,
610 					     btrfs_header_level(root->node));
611 			btrfs_set_root_generation(&root->root_item,
612 						  root->root_key.offset);
613 
614 			err = btrfs_insert_root(trans, root->fs_info->tree_root,
615 						&root->root_key,
616 						&root->root_item);
617 			if (err)
618 				break;
619 
620 			refs = btrfs_root_refs(&dirty->root->root_item);
621 			btrfs_set_root_refs(&dirty->root->root_item, refs - 1);
622 			err = btrfs_update_root(trans, root->fs_info->tree_root,
623 						&dirty->root->root_key,
624 						&dirty->root->root_item);
625 
626 			BUG_ON(err);
627 			if (refs == 1) {
628 				list_add(&dirty->list, list);
629 			} else {
630 				WARN_ON(1);
631 				free_extent_buffer(dirty->root->node);
632 				kfree(dirty->root);
633 				kfree(dirty);
634 			}
635 		}
636 	}
637 	return err;
638 }
639 
640 /*
641  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
642  * otherwise every leaf in the btree is read and defragged.
643  */
644 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
645 {
646 	struct btrfs_fs_info *info = root->fs_info;
647 	int ret;
648 	struct btrfs_trans_handle *trans;
649 	unsigned long nr;
650 
651 	smp_mb();
652 	if (root->defrag_running)
653 		return 0;
654 	trans = btrfs_start_transaction(root, 1);
655 	while (1) {
656 		root->defrag_running = 1;
657 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
658 		nr = trans->blocks_used;
659 		btrfs_end_transaction(trans, root);
660 		btrfs_btree_balance_dirty(info->tree_root, nr);
661 		cond_resched();
662 
663 		trans = btrfs_start_transaction(root, 1);
664 		if (root->fs_info->closing || ret != -EAGAIN)
665 			break;
666 	}
667 	root->defrag_running = 0;
668 	smp_mb();
669 	btrfs_end_transaction(trans, root);
670 	return 0;
671 }
672 
673 /*
674  * when dropping snapshots, we generate a ton of delayed refs, and it makes
675  * sense not to join the transaction while it is trying to flush the current
676  * queue of delayed refs out.
677  *
678  * This is used by the drop snapshot code only
679  */
680 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
681 {
682 	DEFINE_WAIT(wait);
683 
684 	mutex_lock(&info->trans_mutex);
685 	while (info->running_transaction &&
686 	       info->running_transaction->delayed_refs.flushing) {
687 		prepare_to_wait(&info->transaction_wait, &wait,
688 				TASK_UNINTERRUPTIBLE);
689 		mutex_unlock(&info->trans_mutex);
690 
691 		atomic_dec(&info->throttles);
692 		wake_up(&info->transaction_throttle);
693 
694 		schedule();
695 
696 		atomic_inc(&info->throttles);
697 		mutex_lock(&info->trans_mutex);
698 		finish_wait(&info->transaction_wait, &wait);
699 	}
700 	mutex_unlock(&info->trans_mutex);
701 	return 0;
702 }
703 
704 /*
705  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
706  * all of them
707  */
708 static noinline int drop_dirty_roots(struct btrfs_root *tree_root,
709 				     struct list_head *list)
710 {
711 	struct btrfs_dirty_root *dirty;
712 	struct btrfs_trans_handle *trans;
713 	unsigned long nr;
714 	u64 num_bytes;
715 	u64 bytes_used;
716 	u64 max_useless;
717 	int ret = 0;
718 	int err;
719 
720 	while (!list_empty(list)) {
721 		struct btrfs_root *root;
722 
723 		dirty = list_entry(list->prev, struct btrfs_dirty_root, list);
724 		list_del_init(&dirty->list);
725 
726 		num_bytes = btrfs_root_used(&dirty->root->root_item);
727 		root = dirty->latest_root;
728 		atomic_inc(&root->fs_info->throttles);
729 
730 		while (1) {
731 			/*
732 			 * we don't want to jump in and create a bunch of
733 			 * delayed refs if the transaction is starting to close
734 			 */
735 			wait_transaction_pre_flush(tree_root->fs_info);
736 			trans = btrfs_start_transaction(tree_root, 1);
737 
738 			/*
739 			 * we've joined a transaction, make sure it isn't
740 			 * closing right now
741 			 */
742 			if (trans->transaction->delayed_refs.flushing) {
743 				btrfs_end_transaction(trans, tree_root);
744 				continue;
745 			}
746 
747 			mutex_lock(&root->fs_info->drop_mutex);
748 			ret = btrfs_drop_snapshot(trans, dirty->root);
749 			if (ret != -EAGAIN)
750 				break;
751 			mutex_unlock(&root->fs_info->drop_mutex);
752 
753 			err = btrfs_update_root(trans,
754 					tree_root,
755 					&dirty->root->root_key,
756 					&dirty->root->root_item);
757 			if (err)
758 				ret = err;
759 			nr = trans->blocks_used;
760 			ret = btrfs_end_transaction(trans, tree_root);
761 			BUG_ON(ret);
762 
763 			btrfs_btree_balance_dirty(tree_root, nr);
764 			cond_resched();
765 		}
766 		BUG_ON(ret);
767 		atomic_dec(&root->fs_info->throttles);
768 		wake_up(&root->fs_info->transaction_throttle);
769 
770 		num_bytes -= btrfs_root_used(&dirty->root->root_item);
771 		bytes_used = btrfs_root_used(&root->root_item);
772 		if (num_bytes) {
773 			mutex_lock(&root->fs_info->trans_mutex);
774 			btrfs_record_root_in_trans(root);
775 			mutex_unlock(&root->fs_info->trans_mutex);
776 			btrfs_set_root_used(&root->root_item,
777 					    bytes_used - num_bytes);
778 		}
779 
780 		ret = btrfs_del_root(trans, tree_root, &dirty->root->root_key);
781 		if (ret) {
782 			BUG();
783 			break;
784 		}
785 		mutex_unlock(&root->fs_info->drop_mutex);
786 
787 		spin_lock(&root->list_lock);
788 		list_del_init(&dirty->root->dead_list);
789 		if (!list_empty(&root->dead_list)) {
790 			struct btrfs_root *oldest;
791 			oldest = list_entry(root->dead_list.prev,
792 					    struct btrfs_root, dead_list);
793 			max_useless = oldest->root_key.offset - 1;
794 		} else {
795 			max_useless = root->root_key.offset - 1;
796 		}
797 		spin_unlock(&root->list_lock);
798 
799 		nr = trans->blocks_used;
800 		ret = btrfs_end_transaction(trans, tree_root);
801 		BUG_ON(ret);
802 
803 		ret = btrfs_remove_leaf_refs(root, max_useless, 0);
804 		BUG_ON(ret);
805 
806 		free_extent_buffer(dirty->root->node);
807 		kfree(dirty->root);
808 		kfree(dirty);
809 
810 		btrfs_btree_balance_dirty(tree_root, nr);
811 		cond_resched();
812 	}
813 	return ret;
814 }
815 
816 /*
817  * new snapshots need to be created at a very specific time in the
818  * transaction commit.  This does the actual creation
819  */
820 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
821 				   struct btrfs_fs_info *fs_info,
822 				   struct btrfs_pending_snapshot *pending)
823 {
824 	struct btrfs_key key;
825 	struct btrfs_root_item *new_root_item;
826 	struct btrfs_root *tree_root = fs_info->tree_root;
827 	struct btrfs_root *root = pending->root;
828 	struct extent_buffer *tmp;
829 	struct extent_buffer *old;
830 	int ret;
831 	u64 objectid;
832 
833 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
834 	if (!new_root_item) {
835 		ret = -ENOMEM;
836 		goto fail;
837 	}
838 	ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
839 	if (ret)
840 		goto fail;
841 
842 	btrfs_record_root_in_trans(root);
843 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
844 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
845 
846 	key.objectid = objectid;
847 	key.offset = trans->transid;
848 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
849 
850 	old = btrfs_lock_root_node(root);
851 	btrfs_cow_block(trans, root, old, NULL, 0, &old);
852 
853 	btrfs_copy_root(trans, root, old, &tmp, objectid);
854 	btrfs_tree_unlock(old);
855 	free_extent_buffer(old);
856 
857 	btrfs_set_root_bytenr(new_root_item, tmp->start);
858 	btrfs_set_root_level(new_root_item, btrfs_header_level(tmp));
859 	btrfs_set_root_generation(new_root_item, trans->transid);
860 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
861 				new_root_item);
862 	btrfs_tree_unlock(tmp);
863 	free_extent_buffer(tmp);
864 	if (ret)
865 		goto fail;
866 
867 	key.offset = (u64)-1;
868 	memcpy(&pending->root_key, &key, sizeof(key));
869 fail:
870 	kfree(new_root_item);
871 	return ret;
872 }
873 
874 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
875 				   struct btrfs_pending_snapshot *pending)
876 {
877 	int ret;
878 	int namelen;
879 	u64 index = 0;
880 	struct btrfs_trans_handle *trans;
881 	struct inode *parent_inode;
882 	struct inode *inode;
883 	struct btrfs_root *parent_root;
884 
885 	parent_inode = pending->dentry->d_parent->d_inode;
886 	parent_root = BTRFS_I(parent_inode)->root;
887 	trans = btrfs_join_transaction(parent_root, 1);
888 
889 	/*
890 	 * insert the directory item
891 	 */
892 	namelen = strlen(pending->name);
893 	ret = btrfs_set_inode_index(parent_inode, &index);
894 	ret = btrfs_insert_dir_item(trans, parent_root,
895 			    pending->name, namelen,
896 			    parent_inode->i_ino,
897 			    &pending->root_key, BTRFS_FT_DIR, index);
898 
899 	if (ret)
900 		goto fail;
901 
902 	btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
903 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
904 	BUG_ON(ret);
905 
906 	/* add the backref first */
907 	ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
908 				 pending->root_key.objectid,
909 				 BTRFS_ROOT_BACKREF_KEY,
910 				 parent_root->root_key.objectid,
911 				 parent_inode->i_ino, index, pending->name,
912 				 namelen);
913 
914 	BUG_ON(ret);
915 
916 	/* now add the forward ref */
917 	ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
918 				 parent_root->root_key.objectid,
919 				 BTRFS_ROOT_REF_KEY,
920 				 pending->root_key.objectid,
921 				 parent_inode->i_ino, index, pending->name,
922 				 namelen);
923 
924 	inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
925 	d_instantiate(pending->dentry, inode);
926 fail:
927 	btrfs_end_transaction(trans, fs_info->fs_root);
928 	return ret;
929 }
930 
931 /*
932  * create all the snapshots we've scheduled for creation
933  */
934 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
935 					     struct btrfs_fs_info *fs_info)
936 {
937 	struct btrfs_pending_snapshot *pending;
938 	struct list_head *head = &trans->transaction->pending_snapshots;
939 	int ret;
940 
941 	list_for_each_entry(pending, head, list) {
942 		ret = create_pending_snapshot(trans, fs_info, pending);
943 		BUG_ON(ret);
944 	}
945 	return 0;
946 }
947 
948 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
949 					     struct btrfs_fs_info *fs_info)
950 {
951 	struct btrfs_pending_snapshot *pending;
952 	struct list_head *head = &trans->transaction->pending_snapshots;
953 	int ret;
954 
955 	while (!list_empty(head)) {
956 		pending = list_entry(head->next,
957 				     struct btrfs_pending_snapshot, list);
958 		ret = finish_pending_snapshot(fs_info, pending);
959 		BUG_ON(ret);
960 		list_del(&pending->list);
961 		kfree(pending->name);
962 		kfree(pending);
963 	}
964 	return 0;
965 }
966 
967 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
968 			     struct btrfs_root *root)
969 {
970 	unsigned long joined = 0;
971 	unsigned long timeout = 1;
972 	struct btrfs_transaction *cur_trans;
973 	struct btrfs_transaction *prev_trans = NULL;
974 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
975 	struct list_head dirty_fs_roots;
976 	struct extent_io_tree *pinned_copy;
977 	DEFINE_WAIT(wait);
978 	int ret;
979 	int should_grow = 0;
980 	unsigned long now = get_seconds();
981 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
982 
983 	btrfs_run_ordered_operations(root, 0);
984 
985 	/* make a pass through all the delayed refs we have so far
986 	 * any runnings procs may add more while we are here
987 	 */
988 	ret = btrfs_run_delayed_refs(trans, root, 0);
989 	BUG_ON(ret);
990 
991 	cur_trans = trans->transaction;
992 	/*
993 	 * set the flushing flag so procs in this transaction have to
994 	 * start sending their work down.
995 	 */
996 	cur_trans->delayed_refs.flushing = 1;
997 
998 	ret = btrfs_run_delayed_refs(trans, root, 0);
999 	BUG_ON(ret);
1000 
1001 	mutex_lock(&root->fs_info->trans_mutex);
1002 	INIT_LIST_HEAD(&dirty_fs_roots);
1003 	if (cur_trans->in_commit) {
1004 		cur_trans->use_count++;
1005 		mutex_unlock(&root->fs_info->trans_mutex);
1006 		btrfs_end_transaction(trans, root);
1007 
1008 		ret = wait_for_commit(root, cur_trans);
1009 		BUG_ON(ret);
1010 
1011 		mutex_lock(&root->fs_info->trans_mutex);
1012 		put_transaction(cur_trans);
1013 		mutex_unlock(&root->fs_info->trans_mutex);
1014 
1015 		return 0;
1016 	}
1017 
1018 	pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
1019 	if (!pinned_copy)
1020 		return -ENOMEM;
1021 
1022 	extent_io_tree_init(pinned_copy,
1023 			     root->fs_info->btree_inode->i_mapping, GFP_NOFS);
1024 
1025 	trans->transaction->in_commit = 1;
1026 	trans->transaction->blocked = 1;
1027 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1028 		prev_trans = list_entry(cur_trans->list.prev,
1029 					struct btrfs_transaction, list);
1030 		if (!prev_trans->commit_done) {
1031 			prev_trans->use_count++;
1032 			mutex_unlock(&root->fs_info->trans_mutex);
1033 
1034 			wait_for_commit(root, prev_trans);
1035 
1036 			mutex_lock(&root->fs_info->trans_mutex);
1037 			put_transaction(prev_trans);
1038 		}
1039 	}
1040 
1041 	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1042 		should_grow = 1;
1043 
1044 	do {
1045 		int snap_pending = 0;
1046 		joined = cur_trans->num_joined;
1047 		if (!list_empty(&trans->transaction->pending_snapshots))
1048 			snap_pending = 1;
1049 
1050 		WARN_ON(cur_trans != trans->transaction);
1051 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1052 				TASK_UNINTERRUPTIBLE);
1053 
1054 		if (cur_trans->num_writers > 1)
1055 			timeout = MAX_SCHEDULE_TIMEOUT;
1056 		else if (should_grow)
1057 			timeout = 1;
1058 
1059 		mutex_unlock(&root->fs_info->trans_mutex);
1060 
1061 		if (flush_on_commit || snap_pending) {
1062 			if (flush_on_commit)
1063 				btrfs_start_delalloc_inodes(root);
1064 			ret = btrfs_wait_ordered_extents(root, 1);
1065 			BUG_ON(ret);
1066 		}
1067 
1068 		/*
1069 		 * rename don't use btrfs_join_transaction, so, once we
1070 		 * set the transaction to blocked above, we aren't going
1071 		 * to get any new ordered operations.  We can safely run
1072 		 * it here and no for sure that nothing new will be added
1073 		 * to the list
1074 		 */
1075 		btrfs_run_ordered_operations(root, 1);
1076 
1077 		smp_mb();
1078 		if (cur_trans->num_writers > 1 || should_grow)
1079 			schedule_timeout(timeout);
1080 
1081 		mutex_lock(&root->fs_info->trans_mutex);
1082 		finish_wait(&cur_trans->writer_wait, &wait);
1083 	} while (cur_trans->num_writers > 1 ||
1084 		 (should_grow && cur_trans->num_joined != joined));
1085 
1086 	ret = create_pending_snapshots(trans, root->fs_info);
1087 	BUG_ON(ret);
1088 
1089 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1090 	BUG_ON(ret);
1091 
1092 	WARN_ON(cur_trans != trans->transaction);
1093 
1094 	/* btrfs_commit_tree_roots is responsible for getting the
1095 	 * various roots consistent with each other.  Every pointer
1096 	 * in the tree of tree roots has to point to the most up to date
1097 	 * root for every subvolume and other tree.  So, we have to keep
1098 	 * the tree logging code from jumping in and changing any
1099 	 * of the trees.
1100 	 *
1101 	 * At this point in the commit, there can't be any tree-log
1102 	 * writers, but a little lower down we drop the trans mutex
1103 	 * and let new people in.  By holding the tree_log_mutex
1104 	 * from now until after the super is written, we avoid races
1105 	 * with the tree-log code.
1106 	 */
1107 	mutex_lock(&root->fs_info->tree_log_mutex);
1108 	/*
1109 	 * keep tree reloc code from adding new reloc trees
1110 	 */
1111 	mutex_lock(&root->fs_info->tree_reloc_mutex);
1112 
1113 
1114 	ret = add_dirty_roots(trans, &root->fs_info->fs_roots_radix,
1115 			      &dirty_fs_roots);
1116 	BUG_ON(ret);
1117 
1118 	/* add_dirty_roots gets rid of all the tree log roots, it is now
1119 	 * safe to free the root of tree log roots
1120 	 */
1121 	btrfs_free_log_root_tree(trans, root->fs_info);
1122 
1123 	ret = btrfs_commit_tree_roots(trans, root);
1124 	BUG_ON(ret);
1125 
1126 	cur_trans = root->fs_info->running_transaction;
1127 	spin_lock(&root->fs_info->new_trans_lock);
1128 	root->fs_info->running_transaction = NULL;
1129 	spin_unlock(&root->fs_info->new_trans_lock);
1130 	btrfs_set_super_generation(&root->fs_info->super_copy,
1131 				   cur_trans->transid);
1132 	btrfs_set_super_root(&root->fs_info->super_copy,
1133 			     root->fs_info->tree_root->node->start);
1134 	btrfs_set_super_root_level(&root->fs_info->super_copy,
1135 			   btrfs_header_level(root->fs_info->tree_root->node));
1136 
1137 	btrfs_set_super_chunk_root(&root->fs_info->super_copy,
1138 				   chunk_root->node->start);
1139 	btrfs_set_super_chunk_root_level(&root->fs_info->super_copy,
1140 					 btrfs_header_level(chunk_root->node));
1141 	btrfs_set_super_chunk_root_generation(&root->fs_info->super_copy,
1142 				btrfs_header_generation(chunk_root->node));
1143 
1144 	if (!root->fs_info->log_root_recovering) {
1145 		btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1146 		btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1147 	}
1148 
1149 	memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1150 	       sizeof(root->fs_info->super_copy));
1151 
1152 	btrfs_copy_pinned(root, pinned_copy);
1153 
1154 	trans->transaction->blocked = 0;
1155 
1156 	wake_up(&root->fs_info->transaction_throttle);
1157 	wake_up(&root->fs_info->transaction_wait);
1158 
1159 	mutex_unlock(&root->fs_info->trans_mutex);
1160 	ret = btrfs_write_and_wait_transaction(trans, root);
1161 	BUG_ON(ret);
1162 	write_ctree_super(trans, root, 0);
1163 
1164 	/*
1165 	 * the super is written, we can safely allow the tree-loggers
1166 	 * to go about their business
1167 	 */
1168 	mutex_unlock(&root->fs_info->tree_log_mutex);
1169 
1170 	btrfs_finish_extent_commit(trans, root, pinned_copy);
1171 	kfree(pinned_copy);
1172 
1173 	btrfs_drop_dead_reloc_roots(root);
1174 	mutex_unlock(&root->fs_info->tree_reloc_mutex);
1175 
1176 	/* do the directory inserts of any pending snapshot creations */
1177 	finish_pending_snapshots(trans, root->fs_info);
1178 
1179 	mutex_lock(&root->fs_info->trans_mutex);
1180 
1181 	cur_trans->commit_done = 1;
1182 
1183 	root->fs_info->last_trans_committed = cur_trans->transid;
1184 	wake_up(&cur_trans->commit_wait);
1185 
1186 	put_transaction(cur_trans);
1187 	put_transaction(cur_trans);
1188 
1189 	list_splice_init(&dirty_fs_roots, &root->fs_info->dead_roots);
1190 	if (root->fs_info->closing)
1191 		list_splice_init(&root->fs_info->dead_roots, &dirty_fs_roots);
1192 
1193 	mutex_unlock(&root->fs_info->trans_mutex);
1194 
1195 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1196 
1197 	if (root->fs_info->closing)
1198 		drop_dirty_roots(root->fs_info->tree_root, &dirty_fs_roots);
1199 	return ret;
1200 }
1201 
1202 /*
1203  * interface function to delete all the snapshots we have scheduled for deletion
1204  */
1205 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1206 {
1207 	struct list_head dirty_roots;
1208 	INIT_LIST_HEAD(&dirty_roots);
1209 again:
1210 	mutex_lock(&root->fs_info->trans_mutex);
1211 	list_splice_init(&root->fs_info->dead_roots, &dirty_roots);
1212 	mutex_unlock(&root->fs_info->trans_mutex);
1213 
1214 	if (!list_empty(&dirty_roots)) {
1215 		drop_dirty_roots(root, &dirty_roots);
1216 		goto again;
1217 	}
1218 	return 0;
1219 }
1220