1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "locking.h" 17 #include "tree-log.h" 18 #include "inode-map.h" 19 #include "volumes.h" 20 #include "dev-replace.h" 21 #include "qgroup.h" 22 23 #define BTRFS_ROOT_TRANS_TAG 0 24 25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 26 [TRANS_STATE_RUNNING] = 0U, 27 [TRANS_STATE_BLOCKED] = __TRANS_START, 28 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 29 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 30 __TRANS_ATTACH | 31 __TRANS_JOIN), 32 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 33 __TRANS_ATTACH | 34 __TRANS_JOIN | 35 __TRANS_JOIN_NOLOCK), 36 [TRANS_STATE_COMPLETED] = (__TRANS_START | 37 __TRANS_ATTACH | 38 __TRANS_JOIN | 39 __TRANS_JOIN_NOLOCK), 40 }; 41 42 void btrfs_put_transaction(struct btrfs_transaction *transaction) 43 { 44 WARN_ON(refcount_read(&transaction->use_count) == 0); 45 if (refcount_dec_and_test(&transaction->use_count)) { 46 BUG_ON(!list_empty(&transaction->list)); 47 WARN_ON(!RB_EMPTY_ROOT( 48 &transaction->delayed_refs.href_root.rb_root)); 49 if (transaction->delayed_refs.pending_csums) 50 btrfs_err(transaction->fs_info, 51 "pending csums is %llu", 52 transaction->delayed_refs.pending_csums); 53 while (!list_empty(&transaction->pending_chunks)) { 54 struct extent_map *em; 55 56 em = list_first_entry(&transaction->pending_chunks, 57 struct extent_map, list); 58 list_del_init(&em->list); 59 free_extent_map(em); 60 } 61 /* 62 * If any block groups are found in ->deleted_bgs then it's 63 * because the transaction was aborted and a commit did not 64 * happen (things failed before writing the new superblock 65 * and calling btrfs_finish_extent_commit()), so we can not 66 * discard the physical locations of the block groups. 67 */ 68 while (!list_empty(&transaction->deleted_bgs)) { 69 struct btrfs_block_group_cache *cache; 70 71 cache = list_first_entry(&transaction->deleted_bgs, 72 struct btrfs_block_group_cache, 73 bg_list); 74 list_del_init(&cache->bg_list); 75 btrfs_put_block_group_trimming(cache); 76 btrfs_put_block_group(cache); 77 } 78 kfree(transaction); 79 } 80 } 81 82 static void clear_btree_io_tree(struct extent_io_tree *tree) 83 { 84 spin_lock(&tree->lock); 85 /* 86 * Do a single barrier for the waitqueue_active check here, the state 87 * of the waitqueue should not change once clear_btree_io_tree is 88 * called. 89 */ 90 smp_mb(); 91 while (!RB_EMPTY_ROOT(&tree->state)) { 92 struct rb_node *node; 93 struct extent_state *state; 94 95 node = rb_first(&tree->state); 96 state = rb_entry(node, struct extent_state, rb_node); 97 rb_erase(&state->rb_node, &tree->state); 98 RB_CLEAR_NODE(&state->rb_node); 99 /* 100 * btree io trees aren't supposed to have tasks waiting for 101 * changes in the flags of extent states ever. 102 */ 103 ASSERT(!waitqueue_active(&state->wq)); 104 free_extent_state(state); 105 106 cond_resched_lock(&tree->lock); 107 } 108 spin_unlock(&tree->lock); 109 } 110 111 static noinline void switch_commit_roots(struct btrfs_transaction *trans) 112 { 113 struct btrfs_fs_info *fs_info = trans->fs_info; 114 struct btrfs_root *root, *tmp; 115 116 down_write(&fs_info->commit_root_sem); 117 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 118 dirty_list) { 119 list_del_init(&root->dirty_list); 120 free_extent_buffer(root->commit_root); 121 root->commit_root = btrfs_root_node(root); 122 if (is_fstree(root->root_key.objectid)) 123 btrfs_unpin_free_ino(root); 124 clear_btree_io_tree(&root->dirty_log_pages); 125 } 126 127 /* We can free old roots now. */ 128 spin_lock(&trans->dropped_roots_lock); 129 while (!list_empty(&trans->dropped_roots)) { 130 root = list_first_entry(&trans->dropped_roots, 131 struct btrfs_root, root_list); 132 list_del_init(&root->root_list); 133 spin_unlock(&trans->dropped_roots_lock); 134 btrfs_drop_and_free_fs_root(fs_info, root); 135 spin_lock(&trans->dropped_roots_lock); 136 } 137 spin_unlock(&trans->dropped_roots_lock); 138 up_write(&fs_info->commit_root_sem); 139 } 140 141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 142 unsigned int type) 143 { 144 if (type & TRANS_EXTWRITERS) 145 atomic_inc(&trans->num_extwriters); 146 } 147 148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 149 unsigned int type) 150 { 151 if (type & TRANS_EXTWRITERS) 152 atomic_dec(&trans->num_extwriters); 153 } 154 155 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 156 unsigned int type) 157 { 158 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 159 } 160 161 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 162 { 163 return atomic_read(&trans->num_extwriters); 164 } 165 166 /* 167 * either allocate a new transaction or hop into the existing one 168 */ 169 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 170 unsigned int type) 171 { 172 struct btrfs_transaction *cur_trans; 173 174 spin_lock(&fs_info->trans_lock); 175 loop: 176 /* The file system has been taken offline. No new transactions. */ 177 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 178 spin_unlock(&fs_info->trans_lock); 179 return -EROFS; 180 } 181 182 cur_trans = fs_info->running_transaction; 183 if (cur_trans) { 184 if (cur_trans->aborted) { 185 spin_unlock(&fs_info->trans_lock); 186 return cur_trans->aborted; 187 } 188 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 189 spin_unlock(&fs_info->trans_lock); 190 return -EBUSY; 191 } 192 refcount_inc(&cur_trans->use_count); 193 atomic_inc(&cur_trans->num_writers); 194 extwriter_counter_inc(cur_trans, type); 195 spin_unlock(&fs_info->trans_lock); 196 return 0; 197 } 198 spin_unlock(&fs_info->trans_lock); 199 200 /* 201 * If we are ATTACH, we just want to catch the current transaction, 202 * and commit it. If there is no transaction, just return ENOENT. 203 */ 204 if (type == TRANS_ATTACH) 205 return -ENOENT; 206 207 /* 208 * JOIN_NOLOCK only happens during the transaction commit, so 209 * it is impossible that ->running_transaction is NULL 210 */ 211 BUG_ON(type == TRANS_JOIN_NOLOCK); 212 213 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 214 if (!cur_trans) 215 return -ENOMEM; 216 217 spin_lock(&fs_info->trans_lock); 218 if (fs_info->running_transaction) { 219 /* 220 * someone started a transaction after we unlocked. Make sure 221 * to redo the checks above 222 */ 223 kfree(cur_trans); 224 goto loop; 225 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 226 spin_unlock(&fs_info->trans_lock); 227 kfree(cur_trans); 228 return -EROFS; 229 } 230 231 cur_trans->fs_info = fs_info; 232 atomic_set(&cur_trans->num_writers, 1); 233 extwriter_counter_init(cur_trans, type); 234 init_waitqueue_head(&cur_trans->writer_wait); 235 init_waitqueue_head(&cur_trans->commit_wait); 236 init_waitqueue_head(&cur_trans->pending_wait); 237 cur_trans->state = TRANS_STATE_RUNNING; 238 /* 239 * One for this trans handle, one so it will live on until we 240 * commit the transaction. 241 */ 242 refcount_set(&cur_trans->use_count, 2); 243 atomic_set(&cur_trans->pending_ordered, 0); 244 cur_trans->flags = 0; 245 cur_trans->start_time = ktime_get_seconds(); 246 247 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 248 249 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 250 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 251 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 252 253 /* 254 * although the tree mod log is per file system and not per transaction, 255 * the log must never go across transaction boundaries. 256 */ 257 smp_mb(); 258 if (!list_empty(&fs_info->tree_mod_seq_list)) 259 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 260 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 261 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 262 atomic64_set(&fs_info->tree_mod_seq, 0); 263 264 spin_lock_init(&cur_trans->delayed_refs.lock); 265 266 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 267 INIT_LIST_HEAD(&cur_trans->pending_chunks); 268 INIT_LIST_HEAD(&cur_trans->switch_commits); 269 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 270 INIT_LIST_HEAD(&cur_trans->io_bgs); 271 INIT_LIST_HEAD(&cur_trans->dropped_roots); 272 mutex_init(&cur_trans->cache_write_mutex); 273 cur_trans->num_dirty_bgs = 0; 274 spin_lock_init(&cur_trans->dirty_bgs_lock); 275 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 276 spin_lock_init(&cur_trans->dropped_roots_lock); 277 list_add_tail(&cur_trans->list, &fs_info->trans_list); 278 extent_io_tree_init(&cur_trans->dirty_pages, 279 fs_info->btree_inode); 280 fs_info->generation++; 281 cur_trans->transid = fs_info->generation; 282 fs_info->running_transaction = cur_trans; 283 cur_trans->aborted = 0; 284 spin_unlock(&fs_info->trans_lock); 285 286 return 0; 287 } 288 289 /* 290 * this does all the record keeping required to make sure that a reference 291 * counted root is properly recorded in a given transaction. This is required 292 * to make sure the old root from before we joined the transaction is deleted 293 * when the transaction commits 294 */ 295 static int record_root_in_trans(struct btrfs_trans_handle *trans, 296 struct btrfs_root *root, 297 int force) 298 { 299 struct btrfs_fs_info *fs_info = root->fs_info; 300 301 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 302 root->last_trans < trans->transid) || force) { 303 WARN_ON(root == fs_info->extent_root); 304 WARN_ON(!force && root->commit_root != root->node); 305 306 /* 307 * see below for IN_TRANS_SETUP usage rules 308 * we have the reloc mutex held now, so there 309 * is only one writer in this function 310 */ 311 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 312 313 /* make sure readers find IN_TRANS_SETUP before 314 * they find our root->last_trans update 315 */ 316 smp_wmb(); 317 318 spin_lock(&fs_info->fs_roots_radix_lock); 319 if (root->last_trans == trans->transid && !force) { 320 spin_unlock(&fs_info->fs_roots_radix_lock); 321 return 0; 322 } 323 radix_tree_tag_set(&fs_info->fs_roots_radix, 324 (unsigned long)root->root_key.objectid, 325 BTRFS_ROOT_TRANS_TAG); 326 spin_unlock(&fs_info->fs_roots_radix_lock); 327 root->last_trans = trans->transid; 328 329 /* this is pretty tricky. We don't want to 330 * take the relocation lock in btrfs_record_root_in_trans 331 * unless we're really doing the first setup for this root in 332 * this transaction. 333 * 334 * Normally we'd use root->last_trans as a flag to decide 335 * if we want to take the expensive mutex. 336 * 337 * But, we have to set root->last_trans before we 338 * init the relocation root, otherwise, we trip over warnings 339 * in ctree.c. The solution used here is to flag ourselves 340 * with root IN_TRANS_SETUP. When this is 1, we're still 341 * fixing up the reloc trees and everyone must wait. 342 * 343 * When this is zero, they can trust root->last_trans and fly 344 * through btrfs_record_root_in_trans without having to take the 345 * lock. smp_wmb() makes sure that all the writes above are 346 * done before we pop in the zero below 347 */ 348 btrfs_init_reloc_root(trans, root); 349 smp_mb__before_atomic(); 350 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 351 } 352 return 0; 353 } 354 355 356 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 357 struct btrfs_root *root) 358 { 359 struct btrfs_fs_info *fs_info = root->fs_info; 360 struct btrfs_transaction *cur_trans = trans->transaction; 361 362 /* Add ourselves to the transaction dropped list */ 363 spin_lock(&cur_trans->dropped_roots_lock); 364 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 365 spin_unlock(&cur_trans->dropped_roots_lock); 366 367 /* Make sure we don't try to update the root at commit time */ 368 spin_lock(&fs_info->fs_roots_radix_lock); 369 radix_tree_tag_clear(&fs_info->fs_roots_radix, 370 (unsigned long)root->root_key.objectid, 371 BTRFS_ROOT_TRANS_TAG); 372 spin_unlock(&fs_info->fs_roots_radix_lock); 373 } 374 375 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 376 struct btrfs_root *root) 377 { 378 struct btrfs_fs_info *fs_info = root->fs_info; 379 380 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 381 return 0; 382 383 /* 384 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 385 * and barriers 386 */ 387 smp_rmb(); 388 if (root->last_trans == trans->transid && 389 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 390 return 0; 391 392 mutex_lock(&fs_info->reloc_mutex); 393 record_root_in_trans(trans, root, 0); 394 mutex_unlock(&fs_info->reloc_mutex); 395 396 return 0; 397 } 398 399 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 400 { 401 return (trans->state >= TRANS_STATE_BLOCKED && 402 trans->state < TRANS_STATE_UNBLOCKED && 403 !trans->aborted); 404 } 405 406 /* wait for commit against the current transaction to become unblocked 407 * when this is done, it is safe to start a new transaction, but the current 408 * transaction might not be fully on disk. 409 */ 410 static void wait_current_trans(struct btrfs_fs_info *fs_info) 411 { 412 struct btrfs_transaction *cur_trans; 413 414 spin_lock(&fs_info->trans_lock); 415 cur_trans = fs_info->running_transaction; 416 if (cur_trans && is_transaction_blocked(cur_trans)) { 417 refcount_inc(&cur_trans->use_count); 418 spin_unlock(&fs_info->trans_lock); 419 420 wait_event(fs_info->transaction_wait, 421 cur_trans->state >= TRANS_STATE_UNBLOCKED || 422 cur_trans->aborted); 423 btrfs_put_transaction(cur_trans); 424 } else { 425 spin_unlock(&fs_info->trans_lock); 426 } 427 } 428 429 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 430 { 431 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 432 return 0; 433 434 if (type == TRANS_START) 435 return 1; 436 437 return 0; 438 } 439 440 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 441 { 442 struct btrfs_fs_info *fs_info = root->fs_info; 443 444 if (!fs_info->reloc_ctl || 445 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 446 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 447 root->reloc_root) 448 return false; 449 450 return true; 451 } 452 453 static struct btrfs_trans_handle * 454 start_transaction(struct btrfs_root *root, unsigned int num_items, 455 unsigned int type, enum btrfs_reserve_flush_enum flush, 456 bool enforce_qgroups) 457 { 458 struct btrfs_fs_info *fs_info = root->fs_info; 459 460 struct btrfs_trans_handle *h; 461 struct btrfs_transaction *cur_trans; 462 u64 num_bytes = 0; 463 u64 qgroup_reserved = 0; 464 bool reloc_reserved = false; 465 int ret; 466 467 /* Send isn't supposed to start transactions. */ 468 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 469 470 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 471 return ERR_PTR(-EROFS); 472 473 if (current->journal_info) { 474 WARN_ON(type & TRANS_EXTWRITERS); 475 h = current->journal_info; 476 refcount_inc(&h->use_count); 477 WARN_ON(refcount_read(&h->use_count) > 2); 478 h->orig_rsv = h->block_rsv; 479 h->block_rsv = NULL; 480 goto got_it; 481 } 482 483 /* 484 * Do the reservation before we join the transaction so we can do all 485 * the appropriate flushing if need be. 486 */ 487 if (num_items && root != fs_info->chunk_root) { 488 qgroup_reserved = num_items * fs_info->nodesize; 489 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 490 enforce_qgroups); 491 if (ret) 492 return ERR_PTR(ret); 493 494 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 495 /* 496 * Do the reservation for the relocation root creation 497 */ 498 if (need_reserve_reloc_root(root)) { 499 num_bytes += fs_info->nodesize; 500 reloc_reserved = true; 501 } 502 503 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 504 num_bytes, flush); 505 if (ret) 506 goto reserve_fail; 507 } 508 again: 509 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 510 if (!h) { 511 ret = -ENOMEM; 512 goto alloc_fail; 513 } 514 515 /* 516 * If we are JOIN_NOLOCK we're already committing a transaction and 517 * waiting on this guy, so we don't need to do the sb_start_intwrite 518 * because we're already holding a ref. We need this because we could 519 * have raced in and did an fsync() on a file which can kick a commit 520 * and then we deadlock with somebody doing a freeze. 521 * 522 * If we are ATTACH, it means we just want to catch the current 523 * transaction and commit it, so we needn't do sb_start_intwrite(). 524 */ 525 if (type & __TRANS_FREEZABLE) 526 sb_start_intwrite(fs_info->sb); 527 528 if (may_wait_transaction(fs_info, type)) 529 wait_current_trans(fs_info); 530 531 do { 532 ret = join_transaction(fs_info, type); 533 if (ret == -EBUSY) { 534 wait_current_trans(fs_info); 535 if (unlikely(type == TRANS_ATTACH)) 536 ret = -ENOENT; 537 } 538 } while (ret == -EBUSY); 539 540 if (ret < 0) 541 goto join_fail; 542 543 cur_trans = fs_info->running_transaction; 544 545 h->transid = cur_trans->transid; 546 h->transaction = cur_trans; 547 h->root = root; 548 refcount_set(&h->use_count, 1); 549 h->fs_info = root->fs_info; 550 551 h->type = type; 552 h->can_flush_pending_bgs = true; 553 INIT_LIST_HEAD(&h->new_bgs); 554 555 smp_mb(); 556 if (cur_trans->state >= TRANS_STATE_BLOCKED && 557 may_wait_transaction(fs_info, type)) { 558 current->journal_info = h; 559 btrfs_commit_transaction(h); 560 goto again; 561 } 562 563 if (num_bytes) { 564 trace_btrfs_space_reservation(fs_info, "transaction", 565 h->transid, num_bytes, 1); 566 h->block_rsv = &fs_info->trans_block_rsv; 567 h->bytes_reserved = num_bytes; 568 h->reloc_reserved = reloc_reserved; 569 } 570 571 got_it: 572 btrfs_record_root_in_trans(h, root); 573 574 if (!current->journal_info) 575 current->journal_info = h; 576 return h; 577 578 join_fail: 579 if (type & __TRANS_FREEZABLE) 580 sb_end_intwrite(fs_info->sb); 581 kmem_cache_free(btrfs_trans_handle_cachep, h); 582 alloc_fail: 583 if (num_bytes) 584 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 585 num_bytes); 586 reserve_fail: 587 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 588 return ERR_PTR(ret); 589 } 590 591 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 592 unsigned int num_items) 593 { 594 return start_transaction(root, num_items, TRANS_START, 595 BTRFS_RESERVE_FLUSH_ALL, true); 596 } 597 598 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 599 struct btrfs_root *root, 600 unsigned int num_items, 601 int min_factor) 602 { 603 struct btrfs_fs_info *fs_info = root->fs_info; 604 struct btrfs_trans_handle *trans; 605 u64 num_bytes; 606 int ret; 607 608 /* 609 * We have two callers: unlink and block group removal. The 610 * former should succeed even if we will temporarily exceed 611 * quota and the latter operates on the extent root so 612 * qgroup enforcement is ignored anyway. 613 */ 614 trans = start_transaction(root, num_items, TRANS_START, 615 BTRFS_RESERVE_FLUSH_ALL, false); 616 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 617 return trans; 618 619 trans = btrfs_start_transaction(root, 0); 620 if (IS_ERR(trans)) 621 return trans; 622 623 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 624 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv, 625 num_bytes, min_factor); 626 if (ret) { 627 btrfs_end_transaction(trans); 628 return ERR_PTR(ret); 629 } 630 631 trans->block_rsv = &fs_info->trans_block_rsv; 632 trans->bytes_reserved = num_bytes; 633 trace_btrfs_space_reservation(fs_info, "transaction", 634 trans->transid, num_bytes, 1); 635 636 return trans; 637 } 638 639 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 640 { 641 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 642 true); 643 } 644 645 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 646 { 647 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 648 BTRFS_RESERVE_NO_FLUSH, true); 649 } 650 651 /* 652 * btrfs_attach_transaction() - catch the running transaction 653 * 654 * It is used when we want to commit the current the transaction, but 655 * don't want to start a new one. 656 * 657 * Note: If this function return -ENOENT, it just means there is no 658 * running transaction. But it is possible that the inactive transaction 659 * is still in the memory, not fully on disk. If you hope there is no 660 * inactive transaction in the fs when -ENOENT is returned, you should 661 * invoke 662 * btrfs_attach_transaction_barrier() 663 */ 664 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 665 { 666 return start_transaction(root, 0, TRANS_ATTACH, 667 BTRFS_RESERVE_NO_FLUSH, true); 668 } 669 670 /* 671 * btrfs_attach_transaction_barrier() - catch the running transaction 672 * 673 * It is similar to the above function, the differentia is this one 674 * will wait for all the inactive transactions until they fully 675 * complete. 676 */ 677 struct btrfs_trans_handle * 678 btrfs_attach_transaction_barrier(struct btrfs_root *root) 679 { 680 struct btrfs_trans_handle *trans; 681 682 trans = start_transaction(root, 0, TRANS_ATTACH, 683 BTRFS_RESERVE_NO_FLUSH, true); 684 if (trans == ERR_PTR(-ENOENT)) 685 btrfs_wait_for_commit(root->fs_info, 0); 686 687 return trans; 688 } 689 690 /* wait for a transaction commit to be fully complete */ 691 static noinline void wait_for_commit(struct btrfs_transaction *commit) 692 { 693 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 694 } 695 696 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 697 { 698 struct btrfs_transaction *cur_trans = NULL, *t; 699 int ret = 0; 700 701 if (transid) { 702 if (transid <= fs_info->last_trans_committed) 703 goto out; 704 705 /* find specified transaction */ 706 spin_lock(&fs_info->trans_lock); 707 list_for_each_entry(t, &fs_info->trans_list, list) { 708 if (t->transid == transid) { 709 cur_trans = t; 710 refcount_inc(&cur_trans->use_count); 711 ret = 0; 712 break; 713 } 714 if (t->transid > transid) { 715 ret = 0; 716 break; 717 } 718 } 719 spin_unlock(&fs_info->trans_lock); 720 721 /* 722 * The specified transaction doesn't exist, or we 723 * raced with btrfs_commit_transaction 724 */ 725 if (!cur_trans) { 726 if (transid > fs_info->last_trans_committed) 727 ret = -EINVAL; 728 goto out; 729 } 730 } else { 731 /* find newest transaction that is committing | committed */ 732 spin_lock(&fs_info->trans_lock); 733 list_for_each_entry_reverse(t, &fs_info->trans_list, 734 list) { 735 if (t->state >= TRANS_STATE_COMMIT_START) { 736 if (t->state == TRANS_STATE_COMPLETED) 737 break; 738 cur_trans = t; 739 refcount_inc(&cur_trans->use_count); 740 break; 741 } 742 } 743 spin_unlock(&fs_info->trans_lock); 744 if (!cur_trans) 745 goto out; /* nothing committing|committed */ 746 } 747 748 wait_for_commit(cur_trans); 749 btrfs_put_transaction(cur_trans); 750 out: 751 return ret; 752 } 753 754 void btrfs_throttle(struct btrfs_fs_info *fs_info) 755 { 756 wait_current_trans(fs_info); 757 } 758 759 static int should_end_transaction(struct btrfs_trans_handle *trans) 760 { 761 struct btrfs_fs_info *fs_info = trans->fs_info; 762 763 if (btrfs_check_space_for_delayed_refs(trans)) 764 return 1; 765 766 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 767 } 768 769 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 770 { 771 struct btrfs_transaction *cur_trans = trans->transaction; 772 int updates; 773 int err; 774 775 smp_mb(); 776 if (cur_trans->state >= TRANS_STATE_BLOCKED || 777 cur_trans->delayed_refs.flushing) 778 return 1; 779 780 updates = trans->delayed_ref_updates; 781 trans->delayed_ref_updates = 0; 782 if (updates) { 783 err = btrfs_run_delayed_refs(trans, updates * 2); 784 if (err) /* Error code will also eval true */ 785 return err; 786 } 787 788 return should_end_transaction(trans); 789 } 790 791 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 792 793 { 794 struct btrfs_fs_info *fs_info = trans->fs_info; 795 796 if (!trans->block_rsv) { 797 ASSERT(!trans->bytes_reserved); 798 return; 799 } 800 801 if (!trans->bytes_reserved) 802 return; 803 804 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 805 trace_btrfs_space_reservation(fs_info, "transaction", 806 trans->transid, trans->bytes_reserved, 0); 807 btrfs_block_rsv_release(fs_info, trans->block_rsv, 808 trans->bytes_reserved); 809 trans->bytes_reserved = 0; 810 } 811 812 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 813 int throttle) 814 { 815 struct btrfs_fs_info *info = trans->fs_info; 816 struct btrfs_transaction *cur_trans = trans->transaction; 817 u64 transid = trans->transid; 818 unsigned long cur = trans->delayed_ref_updates; 819 int lock = (trans->type != TRANS_JOIN_NOLOCK); 820 int err = 0; 821 int must_run_delayed_refs = 0; 822 823 if (refcount_read(&trans->use_count) > 1) { 824 refcount_dec(&trans->use_count); 825 trans->block_rsv = trans->orig_rsv; 826 return 0; 827 } 828 829 btrfs_trans_release_metadata(trans); 830 trans->block_rsv = NULL; 831 832 if (!list_empty(&trans->new_bgs)) 833 btrfs_create_pending_block_groups(trans); 834 835 trans->delayed_ref_updates = 0; 836 if (!trans->sync) { 837 must_run_delayed_refs = 838 btrfs_should_throttle_delayed_refs(trans); 839 cur = max_t(unsigned long, cur, 32); 840 841 /* 842 * don't make the caller wait if they are from a NOLOCK 843 * or ATTACH transaction, it will deadlock with commit 844 */ 845 if (must_run_delayed_refs == 1 && 846 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 847 must_run_delayed_refs = 2; 848 } 849 850 btrfs_trans_release_metadata(trans); 851 trans->block_rsv = NULL; 852 853 if (!list_empty(&trans->new_bgs)) 854 btrfs_create_pending_block_groups(trans); 855 856 btrfs_trans_release_chunk_metadata(trans); 857 858 if (lock && should_end_transaction(trans) && 859 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 860 spin_lock(&info->trans_lock); 861 if (cur_trans->state == TRANS_STATE_RUNNING) 862 cur_trans->state = TRANS_STATE_BLOCKED; 863 spin_unlock(&info->trans_lock); 864 } 865 866 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 867 if (throttle) 868 return btrfs_commit_transaction(trans); 869 else 870 wake_up_process(info->transaction_kthread); 871 } 872 873 if (trans->type & __TRANS_FREEZABLE) 874 sb_end_intwrite(info->sb); 875 876 WARN_ON(cur_trans != info->running_transaction); 877 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 878 atomic_dec(&cur_trans->num_writers); 879 extwriter_counter_dec(cur_trans, trans->type); 880 881 cond_wake_up(&cur_trans->writer_wait); 882 btrfs_put_transaction(cur_trans); 883 884 if (current->journal_info == trans) 885 current->journal_info = NULL; 886 887 if (throttle) 888 btrfs_run_delayed_iputs(info); 889 890 if (trans->aborted || 891 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 892 wake_up_process(info->transaction_kthread); 893 err = -EIO; 894 } 895 896 kmem_cache_free(btrfs_trans_handle_cachep, trans); 897 if (must_run_delayed_refs) { 898 btrfs_async_run_delayed_refs(info, cur, transid, 899 must_run_delayed_refs == 1); 900 } 901 return err; 902 } 903 904 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 905 { 906 return __btrfs_end_transaction(trans, 0); 907 } 908 909 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 910 { 911 return __btrfs_end_transaction(trans, 1); 912 } 913 914 /* 915 * when btree blocks are allocated, they have some corresponding bits set for 916 * them in one of two extent_io trees. This is used to make sure all of 917 * those extents are sent to disk but does not wait on them 918 */ 919 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 920 struct extent_io_tree *dirty_pages, int mark) 921 { 922 int err = 0; 923 int werr = 0; 924 struct address_space *mapping = fs_info->btree_inode->i_mapping; 925 struct extent_state *cached_state = NULL; 926 u64 start = 0; 927 u64 end; 928 929 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 930 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 931 mark, &cached_state)) { 932 bool wait_writeback = false; 933 934 err = convert_extent_bit(dirty_pages, start, end, 935 EXTENT_NEED_WAIT, 936 mark, &cached_state); 937 /* 938 * convert_extent_bit can return -ENOMEM, which is most of the 939 * time a temporary error. So when it happens, ignore the error 940 * and wait for writeback of this range to finish - because we 941 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 942 * to __btrfs_wait_marked_extents() would not know that 943 * writeback for this range started and therefore wouldn't 944 * wait for it to finish - we don't want to commit a 945 * superblock that points to btree nodes/leafs for which 946 * writeback hasn't finished yet (and without errors). 947 * We cleanup any entries left in the io tree when committing 948 * the transaction (through clear_btree_io_tree()). 949 */ 950 if (err == -ENOMEM) { 951 err = 0; 952 wait_writeback = true; 953 } 954 if (!err) 955 err = filemap_fdatawrite_range(mapping, start, end); 956 if (err) 957 werr = err; 958 else if (wait_writeback) 959 werr = filemap_fdatawait_range(mapping, start, end); 960 free_extent_state(cached_state); 961 cached_state = NULL; 962 cond_resched(); 963 start = end + 1; 964 } 965 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 966 return werr; 967 } 968 969 /* 970 * when btree blocks are allocated, they have some corresponding bits set for 971 * them in one of two extent_io trees. This is used to make sure all of 972 * those extents are on disk for transaction or log commit. We wait 973 * on all the pages and clear them from the dirty pages state tree 974 */ 975 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 976 struct extent_io_tree *dirty_pages) 977 { 978 int err = 0; 979 int werr = 0; 980 struct address_space *mapping = fs_info->btree_inode->i_mapping; 981 struct extent_state *cached_state = NULL; 982 u64 start = 0; 983 u64 end; 984 985 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 986 EXTENT_NEED_WAIT, &cached_state)) { 987 /* 988 * Ignore -ENOMEM errors returned by clear_extent_bit(). 989 * When committing the transaction, we'll remove any entries 990 * left in the io tree. For a log commit, we don't remove them 991 * after committing the log because the tree can be accessed 992 * concurrently - we do it only at transaction commit time when 993 * it's safe to do it (through clear_btree_io_tree()). 994 */ 995 err = clear_extent_bit(dirty_pages, start, end, 996 EXTENT_NEED_WAIT, 0, 0, &cached_state); 997 if (err == -ENOMEM) 998 err = 0; 999 if (!err) 1000 err = filemap_fdatawait_range(mapping, start, end); 1001 if (err) 1002 werr = err; 1003 free_extent_state(cached_state); 1004 cached_state = NULL; 1005 cond_resched(); 1006 start = end + 1; 1007 } 1008 if (err) 1009 werr = err; 1010 return werr; 1011 } 1012 1013 int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1014 struct extent_io_tree *dirty_pages) 1015 { 1016 bool errors = false; 1017 int err; 1018 1019 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1020 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1021 errors = true; 1022 1023 if (errors && !err) 1024 err = -EIO; 1025 return err; 1026 } 1027 1028 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1029 { 1030 struct btrfs_fs_info *fs_info = log_root->fs_info; 1031 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1032 bool errors = false; 1033 int err; 1034 1035 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1036 1037 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1038 if ((mark & EXTENT_DIRTY) && 1039 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1040 errors = true; 1041 1042 if ((mark & EXTENT_NEW) && 1043 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1044 errors = true; 1045 1046 if (errors && !err) 1047 err = -EIO; 1048 return err; 1049 } 1050 1051 /* 1052 * When btree blocks are allocated the corresponding extents are marked dirty. 1053 * This function ensures such extents are persisted on disk for transaction or 1054 * log commit. 1055 * 1056 * @trans: transaction whose dirty pages we'd like to write 1057 */ 1058 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1059 { 1060 int ret; 1061 int ret2; 1062 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1063 struct btrfs_fs_info *fs_info = trans->fs_info; 1064 struct blk_plug plug; 1065 1066 blk_start_plug(&plug); 1067 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1068 blk_finish_plug(&plug); 1069 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1070 1071 clear_btree_io_tree(&trans->transaction->dirty_pages); 1072 1073 if (ret) 1074 return ret; 1075 else if (ret2) 1076 return ret2; 1077 else 1078 return 0; 1079 } 1080 1081 /* 1082 * this is used to update the root pointer in the tree of tree roots. 1083 * 1084 * But, in the case of the extent allocation tree, updating the root 1085 * pointer may allocate blocks which may change the root of the extent 1086 * allocation tree. 1087 * 1088 * So, this loops and repeats and makes sure the cowonly root didn't 1089 * change while the root pointer was being updated in the metadata. 1090 */ 1091 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1092 struct btrfs_root *root) 1093 { 1094 int ret; 1095 u64 old_root_bytenr; 1096 u64 old_root_used; 1097 struct btrfs_fs_info *fs_info = root->fs_info; 1098 struct btrfs_root *tree_root = fs_info->tree_root; 1099 1100 old_root_used = btrfs_root_used(&root->root_item); 1101 1102 while (1) { 1103 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1104 if (old_root_bytenr == root->node->start && 1105 old_root_used == btrfs_root_used(&root->root_item)) 1106 break; 1107 1108 btrfs_set_root_node(&root->root_item, root->node); 1109 ret = btrfs_update_root(trans, tree_root, 1110 &root->root_key, 1111 &root->root_item); 1112 if (ret) 1113 return ret; 1114 1115 old_root_used = btrfs_root_used(&root->root_item); 1116 } 1117 1118 return 0; 1119 } 1120 1121 /* 1122 * update all the cowonly tree roots on disk 1123 * 1124 * The error handling in this function may not be obvious. Any of the 1125 * failures will cause the file system to go offline. We still need 1126 * to clean up the delayed refs. 1127 */ 1128 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1129 { 1130 struct btrfs_fs_info *fs_info = trans->fs_info; 1131 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1132 struct list_head *io_bgs = &trans->transaction->io_bgs; 1133 struct list_head *next; 1134 struct extent_buffer *eb; 1135 int ret; 1136 1137 eb = btrfs_lock_root_node(fs_info->tree_root); 1138 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1139 0, &eb); 1140 btrfs_tree_unlock(eb); 1141 free_extent_buffer(eb); 1142 1143 if (ret) 1144 return ret; 1145 1146 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1147 if (ret) 1148 return ret; 1149 1150 ret = btrfs_run_dev_stats(trans, fs_info); 1151 if (ret) 1152 return ret; 1153 ret = btrfs_run_dev_replace(trans, fs_info); 1154 if (ret) 1155 return ret; 1156 ret = btrfs_run_qgroups(trans); 1157 if (ret) 1158 return ret; 1159 1160 ret = btrfs_setup_space_cache(trans, fs_info); 1161 if (ret) 1162 return ret; 1163 1164 /* run_qgroups might have added some more refs */ 1165 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1166 if (ret) 1167 return ret; 1168 again: 1169 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1170 struct btrfs_root *root; 1171 next = fs_info->dirty_cowonly_roots.next; 1172 list_del_init(next); 1173 root = list_entry(next, struct btrfs_root, dirty_list); 1174 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1175 1176 if (root != fs_info->extent_root) 1177 list_add_tail(&root->dirty_list, 1178 &trans->transaction->switch_commits); 1179 ret = update_cowonly_root(trans, root); 1180 if (ret) 1181 return ret; 1182 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1183 if (ret) 1184 return ret; 1185 } 1186 1187 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1188 ret = btrfs_write_dirty_block_groups(trans, fs_info); 1189 if (ret) 1190 return ret; 1191 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1192 if (ret) 1193 return ret; 1194 } 1195 1196 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1197 goto again; 1198 1199 list_add_tail(&fs_info->extent_root->dirty_list, 1200 &trans->transaction->switch_commits); 1201 1202 /* Update dev-replace pointer once everything is committed */ 1203 fs_info->dev_replace.committed_cursor_left = 1204 fs_info->dev_replace.cursor_left_last_write_of_item; 1205 1206 return 0; 1207 } 1208 1209 /* 1210 * dead roots are old snapshots that need to be deleted. This allocates 1211 * a dirty root struct and adds it into the list of dead roots that need to 1212 * be deleted 1213 */ 1214 void btrfs_add_dead_root(struct btrfs_root *root) 1215 { 1216 struct btrfs_fs_info *fs_info = root->fs_info; 1217 1218 spin_lock(&fs_info->trans_lock); 1219 if (list_empty(&root->root_list)) 1220 list_add_tail(&root->root_list, &fs_info->dead_roots); 1221 spin_unlock(&fs_info->trans_lock); 1222 } 1223 1224 /* 1225 * update all the cowonly tree roots on disk 1226 */ 1227 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1228 { 1229 struct btrfs_fs_info *fs_info = trans->fs_info; 1230 struct btrfs_root *gang[8]; 1231 int i; 1232 int ret; 1233 int err = 0; 1234 1235 spin_lock(&fs_info->fs_roots_radix_lock); 1236 while (1) { 1237 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1238 (void **)gang, 0, 1239 ARRAY_SIZE(gang), 1240 BTRFS_ROOT_TRANS_TAG); 1241 if (ret == 0) 1242 break; 1243 for (i = 0; i < ret; i++) { 1244 struct btrfs_root *root = gang[i]; 1245 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1246 (unsigned long)root->root_key.objectid, 1247 BTRFS_ROOT_TRANS_TAG); 1248 spin_unlock(&fs_info->fs_roots_radix_lock); 1249 1250 btrfs_free_log(trans, root); 1251 btrfs_update_reloc_root(trans, root); 1252 1253 btrfs_save_ino_cache(root, trans); 1254 1255 /* see comments in should_cow_block() */ 1256 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1257 smp_mb__after_atomic(); 1258 1259 if (root->commit_root != root->node) { 1260 list_add_tail(&root->dirty_list, 1261 &trans->transaction->switch_commits); 1262 btrfs_set_root_node(&root->root_item, 1263 root->node); 1264 } 1265 1266 err = btrfs_update_root(trans, fs_info->tree_root, 1267 &root->root_key, 1268 &root->root_item); 1269 spin_lock(&fs_info->fs_roots_radix_lock); 1270 if (err) 1271 break; 1272 btrfs_qgroup_free_meta_all_pertrans(root); 1273 } 1274 } 1275 spin_unlock(&fs_info->fs_roots_radix_lock); 1276 return err; 1277 } 1278 1279 /* 1280 * defrag a given btree. 1281 * Every leaf in the btree is read and defragged. 1282 */ 1283 int btrfs_defrag_root(struct btrfs_root *root) 1284 { 1285 struct btrfs_fs_info *info = root->fs_info; 1286 struct btrfs_trans_handle *trans; 1287 int ret; 1288 1289 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1290 return 0; 1291 1292 while (1) { 1293 trans = btrfs_start_transaction(root, 0); 1294 if (IS_ERR(trans)) 1295 return PTR_ERR(trans); 1296 1297 ret = btrfs_defrag_leaves(trans, root); 1298 1299 btrfs_end_transaction(trans); 1300 btrfs_btree_balance_dirty(info); 1301 cond_resched(); 1302 1303 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1304 break; 1305 1306 if (btrfs_defrag_cancelled(info)) { 1307 btrfs_debug(info, "defrag_root cancelled"); 1308 ret = -EAGAIN; 1309 break; 1310 } 1311 } 1312 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1313 return ret; 1314 } 1315 1316 /* 1317 * Do all special snapshot related qgroup dirty hack. 1318 * 1319 * Will do all needed qgroup inherit and dirty hack like switch commit 1320 * roots inside one transaction and write all btree into disk, to make 1321 * qgroup works. 1322 */ 1323 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1324 struct btrfs_root *src, 1325 struct btrfs_root *parent, 1326 struct btrfs_qgroup_inherit *inherit, 1327 u64 dst_objectid) 1328 { 1329 struct btrfs_fs_info *fs_info = src->fs_info; 1330 int ret; 1331 1332 /* 1333 * Save some performance in the case that qgroups are not 1334 * enabled. If this check races with the ioctl, rescan will 1335 * kick in anyway. 1336 */ 1337 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1338 return 0; 1339 1340 /* 1341 * Ensure dirty @src will be commited. Or, after comming 1342 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1343 * recorded root will never be updated again, causing an outdated root 1344 * item. 1345 */ 1346 record_root_in_trans(trans, src, 1); 1347 1348 /* 1349 * We are going to commit transaction, see btrfs_commit_transaction() 1350 * comment for reason locking tree_log_mutex 1351 */ 1352 mutex_lock(&fs_info->tree_log_mutex); 1353 1354 ret = commit_fs_roots(trans); 1355 if (ret) 1356 goto out; 1357 ret = btrfs_qgroup_account_extents(trans); 1358 if (ret < 0) 1359 goto out; 1360 1361 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1362 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1363 inherit); 1364 if (ret < 0) 1365 goto out; 1366 1367 /* 1368 * Now we do a simplified commit transaction, which will: 1369 * 1) commit all subvolume and extent tree 1370 * To ensure all subvolume and extent tree have a valid 1371 * commit_root to accounting later insert_dir_item() 1372 * 2) write all btree blocks onto disk 1373 * This is to make sure later btree modification will be cowed 1374 * Or commit_root can be populated and cause wrong qgroup numbers 1375 * In this simplified commit, we don't really care about other trees 1376 * like chunk and root tree, as they won't affect qgroup. 1377 * And we don't write super to avoid half committed status. 1378 */ 1379 ret = commit_cowonly_roots(trans); 1380 if (ret) 1381 goto out; 1382 switch_commit_roots(trans->transaction); 1383 ret = btrfs_write_and_wait_transaction(trans); 1384 if (ret) 1385 btrfs_handle_fs_error(fs_info, ret, 1386 "Error while writing out transaction for qgroup"); 1387 1388 out: 1389 mutex_unlock(&fs_info->tree_log_mutex); 1390 1391 /* 1392 * Force parent root to be updated, as we recorded it before so its 1393 * last_trans == cur_transid. 1394 * Or it won't be committed again onto disk after later 1395 * insert_dir_item() 1396 */ 1397 if (!ret) 1398 record_root_in_trans(trans, parent, 1); 1399 return ret; 1400 } 1401 1402 /* 1403 * new snapshots need to be created at a very specific time in the 1404 * transaction commit. This does the actual creation. 1405 * 1406 * Note: 1407 * If the error which may affect the commitment of the current transaction 1408 * happens, we should return the error number. If the error which just affect 1409 * the creation of the pending snapshots, just return 0. 1410 */ 1411 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1412 struct btrfs_pending_snapshot *pending) 1413 { 1414 1415 struct btrfs_fs_info *fs_info = trans->fs_info; 1416 struct btrfs_key key; 1417 struct btrfs_root_item *new_root_item; 1418 struct btrfs_root *tree_root = fs_info->tree_root; 1419 struct btrfs_root *root = pending->root; 1420 struct btrfs_root *parent_root; 1421 struct btrfs_block_rsv *rsv; 1422 struct inode *parent_inode; 1423 struct btrfs_path *path; 1424 struct btrfs_dir_item *dir_item; 1425 struct dentry *dentry; 1426 struct extent_buffer *tmp; 1427 struct extent_buffer *old; 1428 struct timespec64 cur_time; 1429 int ret = 0; 1430 u64 to_reserve = 0; 1431 u64 index = 0; 1432 u64 objectid; 1433 u64 root_flags; 1434 uuid_le new_uuid; 1435 1436 ASSERT(pending->path); 1437 path = pending->path; 1438 1439 ASSERT(pending->root_item); 1440 new_root_item = pending->root_item; 1441 1442 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1443 if (pending->error) 1444 goto no_free_objectid; 1445 1446 /* 1447 * Make qgroup to skip current new snapshot's qgroupid, as it is 1448 * accounted by later btrfs_qgroup_inherit(). 1449 */ 1450 btrfs_set_skip_qgroup(trans, objectid); 1451 1452 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1453 1454 if (to_reserve > 0) { 1455 pending->error = btrfs_block_rsv_add(root, 1456 &pending->block_rsv, 1457 to_reserve, 1458 BTRFS_RESERVE_NO_FLUSH); 1459 if (pending->error) 1460 goto clear_skip_qgroup; 1461 } 1462 1463 key.objectid = objectid; 1464 key.offset = (u64)-1; 1465 key.type = BTRFS_ROOT_ITEM_KEY; 1466 1467 rsv = trans->block_rsv; 1468 trans->block_rsv = &pending->block_rsv; 1469 trans->bytes_reserved = trans->block_rsv->reserved; 1470 trace_btrfs_space_reservation(fs_info, "transaction", 1471 trans->transid, 1472 trans->bytes_reserved, 1); 1473 dentry = pending->dentry; 1474 parent_inode = pending->dir; 1475 parent_root = BTRFS_I(parent_inode)->root; 1476 record_root_in_trans(trans, parent_root, 0); 1477 1478 cur_time = current_time(parent_inode); 1479 1480 /* 1481 * insert the directory item 1482 */ 1483 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1484 BUG_ON(ret); /* -ENOMEM */ 1485 1486 /* check if there is a file/dir which has the same name. */ 1487 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1488 btrfs_ino(BTRFS_I(parent_inode)), 1489 dentry->d_name.name, 1490 dentry->d_name.len, 0); 1491 if (dir_item != NULL && !IS_ERR(dir_item)) { 1492 pending->error = -EEXIST; 1493 goto dir_item_existed; 1494 } else if (IS_ERR(dir_item)) { 1495 ret = PTR_ERR(dir_item); 1496 btrfs_abort_transaction(trans, ret); 1497 goto fail; 1498 } 1499 btrfs_release_path(path); 1500 1501 /* 1502 * pull in the delayed directory update 1503 * and the delayed inode item 1504 * otherwise we corrupt the FS during 1505 * snapshot 1506 */ 1507 ret = btrfs_run_delayed_items(trans); 1508 if (ret) { /* Transaction aborted */ 1509 btrfs_abort_transaction(trans, ret); 1510 goto fail; 1511 } 1512 1513 record_root_in_trans(trans, root, 0); 1514 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1515 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1516 btrfs_check_and_init_root_item(new_root_item); 1517 1518 root_flags = btrfs_root_flags(new_root_item); 1519 if (pending->readonly) 1520 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1521 else 1522 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1523 btrfs_set_root_flags(new_root_item, root_flags); 1524 1525 btrfs_set_root_generation_v2(new_root_item, 1526 trans->transid); 1527 uuid_le_gen(&new_uuid); 1528 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1529 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1530 BTRFS_UUID_SIZE); 1531 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1532 memset(new_root_item->received_uuid, 0, 1533 sizeof(new_root_item->received_uuid)); 1534 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1535 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1536 btrfs_set_root_stransid(new_root_item, 0); 1537 btrfs_set_root_rtransid(new_root_item, 0); 1538 } 1539 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1540 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1541 btrfs_set_root_otransid(new_root_item, trans->transid); 1542 1543 old = btrfs_lock_root_node(root); 1544 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1545 if (ret) { 1546 btrfs_tree_unlock(old); 1547 free_extent_buffer(old); 1548 btrfs_abort_transaction(trans, ret); 1549 goto fail; 1550 } 1551 1552 btrfs_set_lock_blocking(old); 1553 1554 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1555 /* clean up in any case */ 1556 btrfs_tree_unlock(old); 1557 free_extent_buffer(old); 1558 if (ret) { 1559 btrfs_abort_transaction(trans, ret); 1560 goto fail; 1561 } 1562 /* see comments in should_cow_block() */ 1563 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1564 smp_wmb(); 1565 1566 btrfs_set_root_node(new_root_item, tmp); 1567 /* record when the snapshot was created in key.offset */ 1568 key.offset = trans->transid; 1569 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1570 btrfs_tree_unlock(tmp); 1571 free_extent_buffer(tmp); 1572 if (ret) { 1573 btrfs_abort_transaction(trans, ret); 1574 goto fail; 1575 } 1576 1577 /* 1578 * insert root back/forward references 1579 */ 1580 ret = btrfs_add_root_ref(trans, objectid, 1581 parent_root->root_key.objectid, 1582 btrfs_ino(BTRFS_I(parent_inode)), index, 1583 dentry->d_name.name, dentry->d_name.len); 1584 if (ret) { 1585 btrfs_abort_transaction(trans, ret); 1586 goto fail; 1587 } 1588 1589 key.offset = (u64)-1; 1590 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key); 1591 if (IS_ERR(pending->snap)) { 1592 ret = PTR_ERR(pending->snap); 1593 btrfs_abort_transaction(trans, ret); 1594 goto fail; 1595 } 1596 1597 ret = btrfs_reloc_post_snapshot(trans, pending); 1598 if (ret) { 1599 btrfs_abort_transaction(trans, ret); 1600 goto fail; 1601 } 1602 1603 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1604 if (ret) { 1605 btrfs_abort_transaction(trans, ret); 1606 goto fail; 1607 } 1608 1609 /* 1610 * Do special qgroup accounting for snapshot, as we do some qgroup 1611 * snapshot hack to do fast snapshot. 1612 * To co-operate with that hack, we do hack again. 1613 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1614 */ 1615 ret = qgroup_account_snapshot(trans, root, parent_root, 1616 pending->inherit, objectid); 1617 if (ret < 0) 1618 goto fail; 1619 1620 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1621 dentry->d_name.len, BTRFS_I(parent_inode), 1622 &key, BTRFS_FT_DIR, index); 1623 /* We have check then name at the beginning, so it is impossible. */ 1624 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1625 if (ret) { 1626 btrfs_abort_transaction(trans, ret); 1627 goto fail; 1628 } 1629 1630 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1631 dentry->d_name.len * 2); 1632 parent_inode->i_mtime = parent_inode->i_ctime = 1633 current_time(parent_inode); 1634 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1635 if (ret) { 1636 btrfs_abort_transaction(trans, ret); 1637 goto fail; 1638 } 1639 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL, 1640 objectid); 1641 if (ret) { 1642 btrfs_abort_transaction(trans, ret); 1643 goto fail; 1644 } 1645 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1646 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1647 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1648 objectid); 1649 if (ret && ret != -EEXIST) { 1650 btrfs_abort_transaction(trans, ret); 1651 goto fail; 1652 } 1653 } 1654 1655 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1656 if (ret) { 1657 btrfs_abort_transaction(trans, ret); 1658 goto fail; 1659 } 1660 1661 fail: 1662 pending->error = ret; 1663 dir_item_existed: 1664 trans->block_rsv = rsv; 1665 trans->bytes_reserved = 0; 1666 clear_skip_qgroup: 1667 btrfs_clear_skip_qgroup(trans); 1668 no_free_objectid: 1669 kfree(new_root_item); 1670 pending->root_item = NULL; 1671 btrfs_free_path(path); 1672 pending->path = NULL; 1673 1674 return ret; 1675 } 1676 1677 /* 1678 * create all the snapshots we've scheduled for creation 1679 */ 1680 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1681 { 1682 struct btrfs_pending_snapshot *pending, *next; 1683 struct list_head *head = &trans->transaction->pending_snapshots; 1684 int ret = 0; 1685 1686 list_for_each_entry_safe(pending, next, head, list) { 1687 list_del(&pending->list); 1688 ret = create_pending_snapshot(trans, pending); 1689 if (ret) 1690 break; 1691 } 1692 return ret; 1693 } 1694 1695 static void update_super_roots(struct btrfs_fs_info *fs_info) 1696 { 1697 struct btrfs_root_item *root_item; 1698 struct btrfs_super_block *super; 1699 1700 super = fs_info->super_copy; 1701 1702 root_item = &fs_info->chunk_root->root_item; 1703 super->chunk_root = root_item->bytenr; 1704 super->chunk_root_generation = root_item->generation; 1705 super->chunk_root_level = root_item->level; 1706 1707 root_item = &fs_info->tree_root->root_item; 1708 super->root = root_item->bytenr; 1709 super->generation = root_item->generation; 1710 super->root_level = root_item->level; 1711 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1712 super->cache_generation = root_item->generation; 1713 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1714 super->uuid_tree_generation = root_item->generation; 1715 } 1716 1717 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1718 { 1719 struct btrfs_transaction *trans; 1720 int ret = 0; 1721 1722 spin_lock(&info->trans_lock); 1723 trans = info->running_transaction; 1724 if (trans) 1725 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1726 spin_unlock(&info->trans_lock); 1727 return ret; 1728 } 1729 1730 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1731 { 1732 struct btrfs_transaction *trans; 1733 int ret = 0; 1734 1735 spin_lock(&info->trans_lock); 1736 trans = info->running_transaction; 1737 if (trans) 1738 ret = is_transaction_blocked(trans); 1739 spin_unlock(&info->trans_lock); 1740 return ret; 1741 } 1742 1743 /* 1744 * wait for the current transaction commit to start and block subsequent 1745 * transaction joins 1746 */ 1747 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1748 struct btrfs_transaction *trans) 1749 { 1750 wait_event(fs_info->transaction_blocked_wait, 1751 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted); 1752 } 1753 1754 /* 1755 * wait for the current transaction to start and then become unblocked. 1756 * caller holds ref. 1757 */ 1758 static void wait_current_trans_commit_start_and_unblock( 1759 struct btrfs_fs_info *fs_info, 1760 struct btrfs_transaction *trans) 1761 { 1762 wait_event(fs_info->transaction_wait, 1763 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted); 1764 } 1765 1766 /* 1767 * commit transactions asynchronously. once btrfs_commit_transaction_async 1768 * returns, any subsequent transaction will not be allowed to join. 1769 */ 1770 struct btrfs_async_commit { 1771 struct btrfs_trans_handle *newtrans; 1772 struct work_struct work; 1773 }; 1774 1775 static void do_async_commit(struct work_struct *work) 1776 { 1777 struct btrfs_async_commit *ac = 1778 container_of(work, struct btrfs_async_commit, work); 1779 1780 /* 1781 * We've got freeze protection passed with the transaction. 1782 * Tell lockdep about it. 1783 */ 1784 if (ac->newtrans->type & __TRANS_FREEZABLE) 1785 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1786 1787 current->journal_info = ac->newtrans; 1788 1789 btrfs_commit_transaction(ac->newtrans); 1790 kfree(ac); 1791 } 1792 1793 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1794 int wait_for_unblock) 1795 { 1796 struct btrfs_fs_info *fs_info = trans->fs_info; 1797 struct btrfs_async_commit *ac; 1798 struct btrfs_transaction *cur_trans; 1799 1800 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1801 if (!ac) 1802 return -ENOMEM; 1803 1804 INIT_WORK(&ac->work, do_async_commit); 1805 ac->newtrans = btrfs_join_transaction(trans->root); 1806 if (IS_ERR(ac->newtrans)) { 1807 int err = PTR_ERR(ac->newtrans); 1808 kfree(ac); 1809 return err; 1810 } 1811 1812 /* take transaction reference */ 1813 cur_trans = trans->transaction; 1814 refcount_inc(&cur_trans->use_count); 1815 1816 btrfs_end_transaction(trans); 1817 1818 /* 1819 * Tell lockdep we've released the freeze rwsem, since the 1820 * async commit thread will be the one to unlock it. 1821 */ 1822 if (ac->newtrans->type & __TRANS_FREEZABLE) 1823 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1824 1825 schedule_work(&ac->work); 1826 1827 /* wait for transaction to start and unblock */ 1828 if (wait_for_unblock) 1829 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1830 else 1831 wait_current_trans_commit_start(fs_info, cur_trans); 1832 1833 if (current->journal_info == trans) 1834 current->journal_info = NULL; 1835 1836 btrfs_put_transaction(cur_trans); 1837 return 0; 1838 } 1839 1840 1841 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1842 { 1843 struct btrfs_fs_info *fs_info = trans->fs_info; 1844 struct btrfs_transaction *cur_trans = trans->transaction; 1845 DEFINE_WAIT(wait); 1846 1847 WARN_ON(refcount_read(&trans->use_count) > 1); 1848 1849 btrfs_abort_transaction(trans, err); 1850 1851 spin_lock(&fs_info->trans_lock); 1852 1853 /* 1854 * If the transaction is removed from the list, it means this 1855 * transaction has been committed successfully, so it is impossible 1856 * to call the cleanup function. 1857 */ 1858 BUG_ON(list_empty(&cur_trans->list)); 1859 1860 list_del_init(&cur_trans->list); 1861 if (cur_trans == fs_info->running_transaction) { 1862 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1863 spin_unlock(&fs_info->trans_lock); 1864 wait_event(cur_trans->writer_wait, 1865 atomic_read(&cur_trans->num_writers) == 1); 1866 1867 spin_lock(&fs_info->trans_lock); 1868 } 1869 spin_unlock(&fs_info->trans_lock); 1870 1871 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1872 1873 spin_lock(&fs_info->trans_lock); 1874 if (cur_trans == fs_info->running_transaction) 1875 fs_info->running_transaction = NULL; 1876 spin_unlock(&fs_info->trans_lock); 1877 1878 if (trans->type & __TRANS_FREEZABLE) 1879 sb_end_intwrite(fs_info->sb); 1880 btrfs_put_transaction(cur_trans); 1881 btrfs_put_transaction(cur_trans); 1882 1883 trace_btrfs_transaction_commit(trans->root); 1884 1885 if (current->journal_info == trans) 1886 current->journal_info = NULL; 1887 btrfs_scrub_cancel(fs_info); 1888 1889 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1890 } 1891 1892 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1893 { 1894 /* 1895 * We use writeback_inodes_sb here because if we used 1896 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 1897 * Currently are holding the fs freeze lock, if we do an async flush 1898 * we'll do btrfs_join_transaction() and deadlock because we need to 1899 * wait for the fs freeze lock. Using the direct flushing we benefit 1900 * from already being in a transaction and our join_transaction doesn't 1901 * have to re-take the fs freeze lock. 1902 */ 1903 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1904 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 1905 return 0; 1906 } 1907 1908 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1909 { 1910 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1911 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1912 } 1913 1914 static inline void 1915 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans) 1916 { 1917 wait_event(cur_trans->pending_wait, 1918 atomic_read(&cur_trans->pending_ordered) == 0); 1919 } 1920 1921 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 1922 { 1923 struct btrfs_fs_info *fs_info = trans->fs_info; 1924 struct btrfs_transaction *cur_trans = trans->transaction; 1925 struct btrfs_transaction *prev_trans = NULL; 1926 int ret; 1927 1928 /* Stop the commit early if ->aborted is set */ 1929 if (unlikely(READ_ONCE(cur_trans->aborted))) { 1930 ret = cur_trans->aborted; 1931 btrfs_end_transaction(trans); 1932 return ret; 1933 } 1934 1935 btrfs_trans_release_metadata(trans); 1936 trans->block_rsv = NULL; 1937 1938 /* make a pass through all the delayed refs we have so far 1939 * any runnings procs may add more while we are here 1940 */ 1941 ret = btrfs_run_delayed_refs(trans, 0); 1942 if (ret) { 1943 btrfs_end_transaction(trans); 1944 return ret; 1945 } 1946 1947 cur_trans = trans->transaction; 1948 1949 /* 1950 * set the flushing flag so procs in this transaction have to 1951 * start sending their work down. 1952 */ 1953 cur_trans->delayed_refs.flushing = 1; 1954 smp_wmb(); 1955 1956 if (!list_empty(&trans->new_bgs)) 1957 btrfs_create_pending_block_groups(trans); 1958 1959 ret = btrfs_run_delayed_refs(trans, 0); 1960 if (ret) { 1961 btrfs_end_transaction(trans); 1962 return ret; 1963 } 1964 1965 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 1966 int run_it = 0; 1967 1968 /* this mutex is also taken before trying to set 1969 * block groups readonly. We need to make sure 1970 * that nobody has set a block group readonly 1971 * after a extents from that block group have been 1972 * allocated for cache files. btrfs_set_block_group_ro 1973 * will wait for the transaction to commit if it 1974 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 1975 * 1976 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 1977 * only one process starts all the block group IO. It wouldn't 1978 * hurt to have more than one go through, but there's no 1979 * real advantage to it either. 1980 */ 1981 mutex_lock(&fs_info->ro_block_group_mutex); 1982 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 1983 &cur_trans->flags)) 1984 run_it = 1; 1985 mutex_unlock(&fs_info->ro_block_group_mutex); 1986 1987 if (run_it) { 1988 ret = btrfs_start_dirty_block_groups(trans); 1989 if (ret) { 1990 btrfs_end_transaction(trans); 1991 return ret; 1992 } 1993 } 1994 } 1995 1996 spin_lock(&fs_info->trans_lock); 1997 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1998 spin_unlock(&fs_info->trans_lock); 1999 refcount_inc(&cur_trans->use_count); 2000 ret = btrfs_end_transaction(trans); 2001 2002 wait_for_commit(cur_trans); 2003 2004 if (unlikely(cur_trans->aborted)) 2005 ret = cur_trans->aborted; 2006 2007 btrfs_put_transaction(cur_trans); 2008 2009 return ret; 2010 } 2011 2012 cur_trans->state = TRANS_STATE_COMMIT_START; 2013 wake_up(&fs_info->transaction_blocked_wait); 2014 2015 if (cur_trans->list.prev != &fs_info->trans_list) { 2016 prev_trans = list_entry(cur_trans->list.prev, 2017 struct btrfs_transaction, list); 2018 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2019 refcount_inc(&prev_trans->use_count); 2020 spin_unlock(&fs_info->trans_lock); 2021 2022 wait_for_commit(prev_trans); 2023 ret = prev_trans->aborted; 2024 2025 btrfs_put_transaction(prev_trans); 2026 if (ret) 2027 goto cleanup_transaction; 2028 } else { 2029 spin_unlock(&fs_info->trans_lock); 2030 } 2031 } else { 2032 spin_unlock(&fs_info->trans_lock); 2033 } 2034 2035 extwriter_counter_dec(cur_trans, trans->type); 2036 2037 ret = btrfs_start_delalloc_flush(fs_info); 2038 if (ret) 2039 goto cleanup_transaction; 2040 2041 ret = btrfs_run_delayed_items(trans); 2042 if (ret) 2043 goto cleanup_transaction; 2044 2045 wait_event(cur_trans->writer_wait, 2046 extwriter_counter_read(cur_trans) == 0); 2047 2048 /* some pending stuffs might be added after the previous flush. */ 2049 ret = btrfs_run_delayed_items(trans); 2050 if (ret) 2051 goto cleanup_transaction; 2052 2053 btrfs_wait_delalloc_flush(fs_info); 2054 2055 btrfs_wait_pending_ordered(cur_trans); 2056 2057 btrfs_scrub_pause(fs_info); 2058 /* 2059 * Ok now we need to make sure to block out any other joins while we 2060 * commit the transaction. We could have started a join before setting 2061 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2062 */ 2063 spin_lock(&fs_info->trans_lock); 2064 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2065 spin_unlock(&fs_info->trans_lock); 2066 wait_event(cur_trans->writer_wait, 2067 atomic_read(&cur_trans->num_writers) == 1); 2068 2069 /* ->aborted might be set after the previous check, so check it */ 2070 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2071 ret = cur_trans->aborted; 2072 goto scrub_continue; 2073 } 2074 /* 2075 * the reloc mutex makes sure that we stop 2076 * the balancing code from coming in and moving 2077 * extents around in the middle of the commit 2078 */ 2079 mutex_lock(&fs_info->reloc_mutex); 2080 2081 /* 2082 * We needn't worry about the delayed items because we will 2083 * deal with them in create_pending_snapshot(), which is the 2084 * core function of the snapshot creation. 2085 */ 2086 ret = create_pending_snapshots(trans); 2087 if (ret) { 2088 mutex_unlock(&fs_info->reloc_mutex); 2089 goto scrub_continue; 2090 } 2091 2092 /* 2093 * We insert the dir indexes of the snapshots and update the inode 2094 * of the snapshots' parents after the snapshot creation, so there 2095 * are some delayed items which are not dealt with. Now deal with 2096 * them. 2097 * 2098 * We needn't worry that this operation will corrupt the snapshots, 2099 * because all the tree which are snapshoted will be forced to COW 2100 * the nodes and leaves. 2101 */ 2102 ret = btrfs_run_delayed_items(trans); 2103 if (ret) { 2104 mutex_unlock(&fs_info->reloc_mutex); 2105 goto scrub_continue; 2106 } 2107 2108 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2109 if (ret) { 2110 mutex_unlock(&fs_info->reloc_mutex); 2111 goto scrub_continue; 2112 } 2113 2114 /* 2115 * make sure none of the code above managed to slip in a 2116 * delayed item 2117 */ 2118 btrfs_assert_delayed_root_empty(fs_info); 2119 2120 WARN_ON(cur_trans != trans->transaction); 2121 2122 /* btrfs_commit_tree_roots is responsible for getting the 2123 * various roots consistent with each other. Every pointer 2124 * in the tree of tree roots has to point to the most up to date 2125 * root for every subvolume and other tree. So, we have to keep 2126 * the tree logging code from jumping in and changing any 2127 * of the trees. 2128 * 2129 * At this point in the commit, there can't be any tree-log 2130 * writers, but a little lower down we drop the trans mutex 2131 * and let new people in. By holding the tree_log_mutex 2132 * from now until after the super is written, we avoid races 2133 * with the tree-log code. 2134 */ 2135 mutex_lock(&fs_info->tree_log_mutex); 2136 2137 ret = commit_fs_roots(trans); 2138 if (ret) { 2139 mutex_unlock(&fs_info->tree_log_mutex); 2140 mutex_unlock(&fs_info->reloc_mutex); 2141 goto scrub_continue; 2142 } 2143 2144 /* 2145 * Since the transaction is done, we can apply the pending changes 2146 * before the next transaction. 2147 */ 2148 btrfs_apply_pending_changes(fs_info); 2149 2150 /* commit_fs_roots gets rid of all the tree log roots, it is now 2151 * safe to free the root of tree log roots 2152 */ 2153 btrfs_free_log_root_tree(trans, fs_info); 2154 2155 /* 2156 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2157 * new delayed refs. Must handle them or qgroup can be wrong. 2158 */ 2159 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2160 if (ret) { 2161 mutex_unlock(&fs_info->tree_log_mutex); 2162 mutex_unlock(&fs_info->reloc_mutex); 2163 goto scrub_continue; 2164 } 2165 2166 /* 2167 * Since fs roots are all committed, we can get a quite accurate 2168 * new_roots. So let's do quota accounting. 2169 */ 2170 ret = btrfs_qgroup_account_extents(trans); 2171 if (ret < 0) { 2172 mutex_unlock(&fs_info->tree_log_mutex); 2173 mutex_unlock(&fs_info->reloc_mutex); 2174 goto scrub_continue; 2175 } 2176 2177 ret = commit_cowonly_roots(trans); 2178 if (ret) { 2179 mutex_unlock(&fs_info->tree_log_mutex); 2180 mutex_unlock(&fs_info->reloc_mutex); 2181 goto scrub_continue; 2182 } 2183 2184 /* 2185 * The tasks which save the space cache and inode cache may also 2186 * update ->aborted, check it. 2187 */ 2188 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2189 ret = cur_trans->aborted; 2190 mutex_unlock(&fs_info->tree_log_mutex); 2191 mutex_unlock(&fs_info->reloc_mutex); 2192 goto scrub_continue; 2193 } 2194 2195 btrfs_prepare_extent_commit(fs_info); 2196 2197 cur_trans = fs_info->running_transaction; 2198 2199 btrfs_set_root_node(&fs_info->tree_root->root_item, 2200 fs_info->tree_root->node); 2201 list_add_tail(&fs_info->tree_root->dirty_list, 2202 &cur_trans->switch_commits); 2203 2204 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2205 fs_info->chunk_root->node); 2206 list_add_tail(&fs_info->chunk_root->dirty_list, 2207 &cur_trans->switch_commits); 2208 2209 switch_commit_roots(cur_trans); 2210 2211 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2212 ASSERT(list_empty(&cur_trans->io_bgs)); 2213 update_super_roots(fs_info); 2214 2215 btrfs_set_super_log_root(fs_info->super_copy, 0); 2216 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2217 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2218 sizeof(*fs_info->super_copy)); 2219 2220 btrfs_update_commit_device_size(fs_info); 2221 btrfs_update_commit_device_bytes_used(cur_trans); 2222 2223 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2224 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2225 2226 btrfs_trans_release_chunk_metadata(trans); 2227 2228 spin_lock(&fs_info->trans_lock); 2229 cur_trans->state = TRANS_STATE_UNBLOCKED; 2230 fs_info->running_transaction = NULL; 2231 spin_unlock(&fs_info->trans_lock); 2232 mutex_unlock(&fs_info->reloc_mutex); 2233 2234 wake_up(&fs_info->transaction_wait); 2235 2236 ret = btrfs_write_and_wait_transaction(trans); 2237 if (ret) { 2238 btrfs_handle_fs_error(fs_info, ret, 2239 "Error while writing out transaction"); 2240 mutex_unlock(&fs_info->tree_log_mutex); 2241 goto scrub_continue; 2242 } 2243 2244 ret = write_all_supers(fs_info, 0); 2245 /* 2246 * the super is written, we can safely allow the tree-loggers 2247 * to go about their business 2248 */ 2249 mutex_unlock(&fs_info->tree_log_mutex); 2250 if (ret) 2251 goto scrub_continue; 2252 2253 btrfs_finish_extent_commit(trans); 2254 2255 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2256 btrfs_clear_space_info_full(fs_info); 2257 2258 fs_info->last_trans_committed = cur_trans->transid; 2259 /* 2260 * We needn't acquire the lock here because there is no other task 2261 * which can change it. 2262 */ 2263 cur_trans->state = TRANS_STATE_COMPLETED; 2264 wake_up(&cur_trans->commit_wait); 2265 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags); 2266 2267 spin_lock(&fs_info->trans_lock); 2268 list_del_init(&cur_trans->list); 2269 spin_unlock(&fs_info->trans_lock); 2270 2271 btrfs_put_transaction(cur_trans); 2272 btrfs_put_transaction(cur_trans); 2273 2274 if (trans->type & __TRANS_FREEZABLE) 2275 sb_end_intwrite(fs_info->sb); 2276 2277 trace_btrfs_transaction_commit(trans->root); 2278 2279 btrfs_scrub_continue(fs_info); 2280 2281 if (current->journal_info == trans) 2282 current->journal_info = NULL; 2283 2284 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2285 2286 return ret; 2287 2288 scrub_continue: 2289 btrfs_scrub_continue(fs_info); 2290 cleanup_transaction: 2291 btrfs_trans_release_metadata(trans); 2292 btrfs_trans_release_chunk_metadata(trans); 2293 trans->block_rsv = NULL; 2294 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2295 if (current->journal_info == trans) 2296 current->journal_info = NULL; 2297 cleanup_transaction(trans, ret); 2298 2299 return ret; 2300 } 2301 2302 /* 2303 * return < 0 if error 2304 * 0 if there are no more dead_roots at the time of call 2305 * 1 there are more to be processed, call me again 2306 * 2307 * The return value indicates there are certainly more snapshots to delete, but 2308 * if there comes a new one during processing, it may return 0. We don't mind, 2309 * because btrfs_commit_super will poke cleaner thread and it will process it a 2310 * few seconds later. 2311 */ 2312 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2313 { 2314 int ret; 2315 struct btrfs_fs_info *fs_info = root->fs_info; 2316 2317 spin_lock(&fs_info->trans_lock); 2318 if (list_empty(&fs_info->dead_roots)) { 2319 spin_unlock(&fs_info->trans_lock); 2320 return 0; 2321 } 2322 root = list_first_entry(&fs_info->dead_roots, 2323 struct btrfs_root, root_list); 2324 list_del_init(&root->root_list); 2325 spin_unlock(&fs_info->trans_lock); 2326 2327 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2328 2329 btrfs_kill_all_delayed_nodes(root); 2330 2331 if (btrfs_header_backref_rev(root->node) < 2332 BTRFS_MIXED_BACKREF_REV) 2333 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2334 else 2335 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2336 2337 return (ret < 0) ? 0 : 1; 2338 } 2339 2340 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2341 { 2342 unsigned long prev; 2343 unsigned long bit; 2344 2345 prev = xchg(&fs_info->pending_changes, 0); 2346 if (!prev) 2347 return; 2348 2349 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2350 if (prev & bit) 2351 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2352 prev &= ~bit; 2353 2354 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2355 if (prev & bit) 2356 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2357 prev &= ~bit; 2358 2359 bit = 1 << BTRFS_PENDING_COMMIT; 2360 if (prev & bit) 2361 btrfs_debug(fs_info, "pending commit done"); 2362 prev &= ~bit; 2363 2364 if (prev) 2365 btrfs_warn(fs_info, 2366 "unknown pending changes left 0x%lx, ignoring", prev); 2367 } 2368