1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 35 #define BTRFS_ROOT_TRANS_TAG 0 36 37 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 38 [TRANS_STATE_RUNNING] = 0U, 39 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | 40 __TRANS_START), 41 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | 42 __TRANS_START | 43 __TRANS_ATTACH), 44 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | 45 __TRANS_START | 46 __TRANS_ATTACH | 47 __TRANS_JOIN), 48 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | 49 __TRANS_START | 50 __TRANS_ATTACH | 51 __TRANS_JOIN | 52 __TRANS_JOIN_NOLOCK), 53 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | 54 __TRANS_START | 55 __TRANS_ATTACH | 56 __TRANS_JOIN | 57 __TRANS_JOIN_NOLOCK), 58 }; 59 60 static void put_transaction(struct btrfs_transaction *transaction) 61 { 62 WARN_ON(atomic_read(&transaction->use_count) == 0); 63 if (atomic_dec_and_test(&transaction->use_count)) { 64 BUG_ON(!list_empty(&transaction->list)); 65 WARN_ON(transaction->delayed_refs.root.rb_node); 66 while (!list_empty(&transaction->pending_chunks)) { 67 struct extent_map *em; 68 69 em = list_first_entry(&transaction->pending_chunks, 70 struct extent_map, list); 71 list_del_init(&em->list); 72 free_extent_map(em); 73 } 74 kmem_cache_free(btrfs_transaction_cachep, transaction); 75 } 76 } 77 78 static noinline void switch_commit_root(struct btrfs_root *root) 79 { 80 free_extent_buffer(root->commit_root); 81 root->commit_root = btrfs_root_node(root); 82 } 83 84 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 85 unsigned int type) 86 { 87 if (type & TRANS_EXTWRITERS) 88 atomic_inc(&trans->num_extwriters); 89 } 90 91 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 92 unsigned int type) 93 { 94 if (type & TRANS_EXTWRITERS) 95 atomic_dec(&trans->num_extwriters); 96 } 97 98 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 99 unsigned int type) 100 { 101 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 102 } 103 104 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 105 { 106 return atomic_read(&trans->num_extwriters); 107 } 108 109 /* 110 * either allocate a new transaction or hop into the existing one 111 */ 112 static noinline int join_transaction(struct btrfs_root *root, unsigned int type) 113 { 114 struct btrfs_transaction *cur_trans; 115 struct btrfs_fs_info *fs_info = root->fs_info; 116 117 spin_lock(&fs_info->trans_lock); 118 loop: 119 /* The file system has been taken offline. No new transactions. */ 120 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 121 spin_unlock(&fs_info->trans_lock); 122 return -EROFS; 123 } 124 125 cur_trans = fs_info->running_transaction; 126 if (cur_trans) { 127 if (cur_trans->aborted) { 128 spin_unlock(&fs_info->trans_lock); 129 return cur_trans->aborted; 130 } 131 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 132 spin_unlock(&fs_info->trans_lock); 133 return -EBUSY; 134 } 135 atomic_inc(&cur_trans->use_count); 136 atomic_inc(&cur_trans->num_writers); 137 extwriter_counter_inc(cur_trans, type); 138 spin_unlock(&fs_info->trans_lock); 139 return 0; 140 } 141 spin_unlock(&fs_info->trans_lock); 142 143 /* 144 * If we are ATTACH, we just want to catch the current transaction, 145 * and commit it. If there is no transaction, just return ENOENT. 146 */ 147 if (type == TRANS_ATTACH) 148 return -ENOENT; 149 150 /* 151 * JOIN_NOLOCK only happens during the transaction commit, so 152 * it is impossible that ->running_transaction is NULL 153 */ 154 BUG_ON(type == TRANS_JOIN_NOLOCK); 155 156 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 157 if (!cur_trans) 158 return -ENOMEM; 159 160 spin_lock(&fs_info->trans_lock); 161 if (fs_info->running_transaction) { 162 /* 163 * someone started a transaction after we unlocked. Make sure 164 * to redo the checks above 165 */ 166 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 167 goto loop; 168 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 169 spin_unlock(&fs_info->trans_lock); 170 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 171 return -EROFS; 172 } 173 174 atomic_set(&cur_trans->num_writers, 1); 175 extwriter_counter_init(cur_trans, type); 176 init_waitqueue_head(&cur_trans->writer_wait); 177 init_waitqueue_head(&cur_trans->commit_wait); 178 cur_trans->state = TRANS_STATE_RUNNING; 179 /* 180 * One for this trans handle, one so it will live on until we 181 * commit the transaction. 182 */ 183 atomic_set(&cur_trans->use_count, 2); 184 cur_trans->start_time = get_seconds(); 185 186 cur_trans->delayed_refs.root = RB_ROOT; 187 cur_trans->delayed_refs.num_entries = 0; 188 cur_trans->delayed_refs.num_heads_ready = 0; 189 cur_trans->delayed_refs.num_heads = 0; 190 cur_trans->delayed_refs.flushing = 0; 191 cur_trans->delayed_refs.run_delayed_start = 0; 192 193 /* 194 * although the tree mod log is per file system and not per transaction, 195 * the log must never go across transaction boundaries. 196 */ 197 smp_mb(); 198 if (!list_empty(&fs_info->tree_mod_seq_list)) 199 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when " 200 "creating a fresh transaction\n"); 201 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 202 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when " 203 "creating a fresh transaction\n"); 204 atomic64_set(&fs_info->tree_mod_seq, 0); 205 206 spin_lock_init(&cur_trans->delayed_refs.lock); 207 atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0); 208 atomic_set(&cur_trans->delayed_refs.ref_seq, 0); 209 init_waitqueue_head(&cur_trans->delayed_refs.wait); 210 211 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 212 INIT_LIST_HEAD(&cur_trans->ordered_operations); 213 INIT_LIST_HEAD(&cur_trans->pending_chunks); 214 list_add_tail(&cur_trans->list, &fs_info->trans_list); 215 extent_io_tree_init(&cur_trans->dirty_pages, 216 fs_info->btree_inode->i_mapping); 217 fs_info->generation++; 218 cur_trans->transid = fs_info->generation; 219 fs_info->running_transaction = cur_trans; 220 cur_trans->aborted = 0; 221 spin_unlock(&fs_info->trans_lock); 222 223 return 0; 224 } 225 226 /* 227 * this does all the record keeping required to make sure that a reference 228 * counted root is properly recorded in a given transaction. This is required 229 * to make sure the old root from before we joined the transaction is deleted 230 * when the transaction commits 231 */ 232 static int record_root_in_trans(struct btrfs_trans_handle *trans, 233 struct btrfs_root *root) 234 { 235 if (root->ref_cows && root->last_trans < trans->transid) { 236 WARN_ON(root == root->fs_info->extent_root); 237 WARN_ON(root->commit_root != root->node); 238 239 /* 240 * see below for in_trans_setup usage rules 241 * we have the reloc mutex held now, so there 242 * is only one writer in this function 243 */ 244 root->in_trans_setup = 1; 245 246 /* make sure readers find in_trans_setup before 247 * they find our root->last_trans update 248 */ 249 smp_wmb(); 250 251 spin_lock(&root->fs_info->fs_roots_radix_lock); 252 if (root->last_trans == trans->transid) { 253 spin_unlock(&root->fs_info->fs_roots_radix_lock); 254 return 0; 255 } 256 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 257 (unsigned long)root->root_key.objectid, 258 BTRFS_ROOT_TRANS_TAG); 259 spin_unlock(&root->fs_info->fs_roots_radix_lock); 260 root->last_trans = trans->transid; 261 262 /* this is pretty tricky. We don't want to 263 * take the relocation lock in btrfs_record_root_in_trans 264 * unless we're really doing the first setup for this root in 265 * this transaction. 266 * 267 * Normally we'd use root->last_trans as a flag to decide 268 * if we want to take the expensive mutex. 269 * 270 * But, we have to set root->last_trans before we 271 * init the relocation root, otherwise, we trip over warnings 272 * in ctree.c. The solution used here is to flag ourselves 273 * with root->in_trans_setup. When this is 1, we're still 274 * fixing up the reloc trees and everyone must wait. 275 * 276 * When this is zero, they can trust root->last_trans and fly 277 * through btrfs_record_root_in_trans without having to take the 278 * lock. smp_wmb() makes sure that all the writes above are 279 * done before we pop in the zero below 280 */ 281 btrfs_init_reloc_root(trans, root); 282 smp_wmb(); 283 root->in_trans_setup = 0; 284 } 285 return 0; 286 } 287 288 289 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 290 struct btrfs_root *root) 291 { 292 if (!root->ref_cows) 293 return 0; 294 295 /* 296 * see record_root_in_trans for comments about in_trans_setup usage 297 * and barriers 298 */ 299 smp_rmb(); 300 if (root->last_trans == trans->transid && 301 !root->in_trans_setup) 302 return 0; 303 304 mutex_lock(&root->fs_info->reloc_mutex); 305 record_root_in_trans(trans, root); 306 mutex_unlock(&root->fs_info->reloc_mutex); 307 308 return 0; 309 } 310 311 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 312 { 313 return (trans->state >= TRANS_STATE_BLOCKED && 314 trans->state < TRANS_STATE_UNBLOCKED && 315 !trans->aborted); 316 } 317 318 /* wait for commit against the current transaction to become unblocked 319 * when this is done, it is safe to start a new transaction, but the current 320 * transaction might not be fully on disk. 321 */ 322 static void wait_current_trans(struct btrfs_root *root) 323 { 324 struct btrfs_transaction *cur_trans; 325 326 spin_lock(&root->fs_info->trans_lock); 327 cur_trans = root->fs_info->running_transaction; 328 if (cur_trans && is_transaction_blocked(cur_trans)) { 329 atomic_inc(&cur_trans->use_count); 330 spin_unlock(&root->fs_info->trans_lock); 331 332 wait_event(root->fs_info->transaction_wait, 333 cur_trans->state >= TRANS_STATE_UNBLOCKED || 334 cur_trans->aborted); 335 put_transaction(cur_trans); 336 } else { 337 spin_unlock(&root->fs_info->trans_lock); 338 } 339 } 340 341 static int may_wait_transaction(struct btrfs_root *root, int type) 342 { 343 if (root->fs_info->log_root_recovering) 344 return 0; 345 346 if (type == TRANS_USERSPACE) 347 return 1; 348 349 if (type == TRANS_START && 350 !atomic_read(&root->fs_info->open_ioctl_trans)) 351 return 1; 352 353 return 0; 354 } 355 356 static struct btrfs_trans_handle * 357 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type, 358 enum btrfs_reserve_flush_enum flush) 359 { 360 struct btrfs_trans_handle *h; 361 struct btrfs_transaction *cur_trans; 362 u64 num_bytes = 0; 363 int ret; 364 u64 qgroup_reserved = 0; 365 366 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 367 return ERR_PTR(-EROFS); 368 369 if (current->journal_info) { 370 WARN_ON(type & TRANS_EXTWRITERS); 371 h = current->journal_info; 372 h->use_count++; 373 WARN_ON(h->use_count > 2); 374 h->orig_rsv = h->block_rsv; 375 h->block_rsv = NULL; 376 goto got_it; 377 } 378 379 /* 380 * Do the reservation before we join the transaction so we can do all 381 * the appropriate flushing if need be. 382 */ 383 if (num_items > 0 && root != root->fs_info->chunk_root) { 384 if (root->fs_info->quota_enabled && 385 is_fstree(root->root_key.objectid)) { 386 qgroup_reserved = num_items * root->leafsize; 387 ret = btrfs_qgroup_reserve(root, qgroup_reserved); 388 if (ret) 389 return ERR_PTR(ret); 390 } 391 392 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 393 ret = btrfs_block_rsv_add(root, 394 &root->fs_info->trans_block_rsv, 395 num_bytes, flush); 396 if (ret) 397 goto reserve_fail; 398 } 399 again: 400 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 401 if (!h) { 402 ret = -ENOMEM; 403 goto alloc_fail; 404 } 405 406 /* 407 * If we are JOIN_NOLOCK we're already committing a transaction and 408 * waiting on this guy, so we don't need to do the sb_start_intwrite 409 * because we're already holding a ref. We need this because we could 410 * have raced in and did an fsync() on a file which can kick a commit 411 * and then we deadlock with somebody doing a freeze. 412 * 413 * If we are ATTACH, it means we just want to catch the current 414 * transaction and commit it, so we needn't do sb_start_intwrite(). 415 */ 416 if (type & __TRANS_FREEZABLE) 417 sb_start_intwrite(root->fs_info->sb); 418 419 if (may_wait_transaction(root, type)) 420 wait_current_trans(root); 421 422 do { 423 ret = join_transaction(root, type); 424 if (ret == -EBUSY) { 425 wait_current_trans(root); 426 if (unlikely(type == TRANS_ATTACH)) 427 ret = -ENOENT; 428 } 429 } while (ret == -EBUSY); 430 431 if (ret < 0) { 432 /* We must get the transaction if we are JOIN_NOLOCK. */ 433 BUG_ON(type == TRANS_JOIN_NOLOCK); 434 goto join_fail; 435 } 436 437 cur_trans = root->fs_info->running_transaction; 438 439 h->transid = cur_trans->transid; 440 h->transaction = cur_trans; 441 h->blocks_used = 0; 442 h->bytes_reserved = 0; 443 h->root = root; 444 h->delayed_ref_updates = 0; 445 h->use_count = 1; 446 h->adding_csums = 0; 447 h->block_rsv = NULL; 448 h->orig_rsv = NULL; 449 h->aborted = 0; 450 h->qgroup_reserved = 0; 451 h->delayed_ref_elem.seq = 0; 452 h->type = type; 453 h->allocating_chunk = false; 454 INIT_LIST_HEAD(&h->qgroup_ref_list); 455 INIT_LIST_HEAD(&h->new_bgs); 456 457 smp_mb(); 458 if (cur_trans->state >= TRANS_STATE_BLOCKED && 459 may_wait_transaction(root, type)) { 460 btrfs_commit_transaction(h, root); 461 goto again; 462 } 463 464 if (num_bytes) { 465 trace_btrfs_space_reservation(root->fs_info, "transaction", 466 h->transid, num_bytes, 1); 467 h->block_rsv = &root->fs_info->trans_block_rsv; 468 h->bytes_reserved = num_bytes; 469 } 470 h->qgroup_reserved = qgroup_reserved; 471 472 got_it: 473 btrfs_record_root_in_trans(h, root); 474 475 if (!current->journal_info && type != TRANS_USERSPACE) 476 current->journal_info = h; 477 return h; 478 479 join_fail: 480 if (type & __TRANS_FREEZABLE) 481 sb_end_intwrite(root->fs_info->sb); 482 kmem_cache_free(btrfs_trans_handle_cachep, h); 483 alloc_fail: 484 if (num_bytes) 485 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 486 num_bytes); 487 reserve_fail: 488 if (qgroup_reserved) 489 btrfs_qgroup_free(root, qgroup_reserved); 490 return ERR_PTR(ret); 491 } 492 493 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 494 int num_items) 495 { 496 return start_transaction(root, num_items, TRANS_START, 497 BTRFS_RESERVE_FLUSH_ALL); 498 } 499 500 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 501 struct btrfs_root *root, int num_items) 502 { 503 return start_transaction(root, num_items, TRANS_START, 504 BTRFS_RESERVE_FLUSH_LIMIT); 505 } 506 507 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 508 { 509 return start_transaction(root, 0, TRANS_JOIN, 0); 510 } 511 512 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 513 { 514 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 515 } 516 517 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 518 { 519 return start_transaction(root, 0, TRANS_USERSPACE, 0); 520 } 521 522 /* 523 * btrfs_attach_transaction() - catch the running transaction 524 * 525 * It is used when we want to commit the current the transaction, but 526 * don't want to start a new one. 527 * 528 * Note: If this function return -ENOENT, it just means there is no 529 * running transaction. But it is possible that the inactive transaction 530 * is still in the memory, not fully on disk. If you hope there is no 531 * inactive transaction in the fs when -ENOENT is returned, you should 532 * invoke 533 * btrfs_attach_transaction_barrier() 534 */ 535 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 536 { 537 return start_transaction(root, 0, TRANS_ATTACH, 0); 538 } 539 540 /* 541 * btrfs_attach_transaction_barrier() - catch the running transaction 542 * 543 * It is similar to the above function, the differentia is this one 544 * will wait for all the inactive transactions until they fully 545 * complete. 546 */ 547 struct btrfs_trans_handle * 548 btrfs_attach_transaction_barrier(struct btrfs_root *root) 549 { 550 struct btrfs_trans_handle *trans; 551 552 trans = start_transaction(root, 0, TRANS_ATTACH, 0); 553 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 554 btrfs_wait_for_commit(root, 0); 555 556 return trans; 557 } 558 559 /* wait for a transaction commit to be fully complete */ 560 static noinline void wait_for_commit(struct btrfs_root *root, 561 struct btrfs_transaction *commit) 562 { 563 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 564 } 565 566 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 567 { 568 struct btrfs_transaction *cur_trans = NULL, *t; 569 int ret = 0; 570 571 if (transid) { 572 if (transid <= root->fs_info->last_trans_committed) 573 goto out; 574 575 ret = -EINVAL; 576 /* find specified transaction */ 577 spin_lock(&root->fs_info->trans_lock); 578 list_for_each_entry(t, &root->fs_info->trans_list, list) { 579 if (t->transid == transid) { 580 cur_trans = t; 581 atomic_inc(&cur_trans->use_count); 582 ret = 0; 583 break; 584 } 585 if (t->transid > transid) { 586 ret = 0; 587 break; 588 } 589 } 590 spin_unlock(&root->fs_info->trans_lock); 591 /* The specified transaction doesn't exist */ 592 if (!cur_trans) 593 goto out; 594 } else { 595 /* find newest transaction that is committing | committed */ 596 spin_lock(&root->fs_info->trans_lock); 597 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 598 list) { 599 if (t->state >= TRANS_STATE_COMMIT_START) { 600 if (t->state == TRANS_STATE_COMPLETED) 601 break; 602 cur_trans = t; 603 atomic_inc(&cur_trans->use_count); 604 break; 605 } 606 } 607 spin_unlock(&root->fs_info->trans_lock); 608 if (!cur_trans) 609 goto out; /* nothing committing|committed */ 610 } 611 612 wait_for_commit(root, cur_trans); 613 put_transaction(cur_trans); 614 out: 615 return ret; 616 } 617 618 void btrfs_throttle(struct btrfs_root *root) 619 { 620 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 621 wait_current_trans(root); 622 } 623 624 static int should_end_transaction(struct btrfs_trans_handle *trans, 625 struct btrfs_root *root) 626 { 627 if (root->fs_info->global_block_rsv.space_info->full && 628 btrfs_should_throttle_delayed_refs(trans, root)) 629 return 1; 630 631 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 632 } 633 634 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 635 struct btrfs_root *root) 636 { 637 struct btrfs_transaction *cur_trans = trans->transaction; 638 int updates; 639 int err; 640 641 smp_mb(); 642 if (cur_trans->state >= TRANS_STATE_BLOCKED || 643 cur_trans->delayed_refs.flushing) 644 return 1; 645 646 updates = trans->delayed_ref_updates; 647 trans->delayed_ref_updates = 0; 648 if (updates) { 649 err = btrfs_run_delayed_refs(trans, root, updates); 650 if (err) /* Error code will also eval true */ 651 return err; 652 } 653 654 return should_end_transaction(trans, root); 655 } 656 657 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 658 struct btrfs_root *root, int throttle) 659 { 660 struct btrfs_transaction *cur_trans = trans->transaction; 661 struct btrfs_fs_info *info = root->fs_info; 662 unsigned long cur = trans->delayed_ref_updates; 663 int lock = (trans->type != TRANS_JOIN_NOLOCK); 664 int err = 0; 665 666 if (--trans->use_count) { 667 trans->block_rsv = trans->orig_rsv; 668 return 0; 669 } 670 671 /* 672 * do the qgroup accounting as early as possible 673 */ 674 err = btrfs_delayed_refs_qgroup_accounting(trans, info); 675 676 btrfs_trans_release_metadata(trans, root); 677 trans->block_rsv = NULL; 678 679 if (trans->qgroup_reserved) { 680 /* 681 * the same root has to be passed here between start_transaction 682 * and end_transaction. Subvolume quota depends on this. 683 */ 684 btrfs_qgroup_free(trans->root, trans->qgroup_reserved); 685 trans->qgroup_reserved = 0; 686 } 687 688 if (!list_empty(&trans->new_bgs)) 689 btrfs_create_pending_block_groups(trans, root); 690 691 trans->delayed_ref_updates = 0; 692 if (btrfs_should_throttle_delayed_refs(trans, root)) { 693 cur = max_t(unsigned long, cur, 1); 694 trans->delayed_ref_updates = 0; 695 btrfs_run_delayed_refs(trans, root, cur); 696 } 697 698 btrfs_trans_release_metadata(trans, root); 699 trans->block_rsv = NULL; 700 701 if (!list_empty(&trans->new_bgs)) 702 btrfs_create_pending_block_groups(trans, root); 703 704 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 705 should_end_transaction(trans, root) && 706 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 707 spin_lock(&info->trans_lock); 708 if (cur_trans->state == TRANS_STATE_RUNNING) 709 cur_trans->state = TRANS_STATE_BLOCKED; 710 spin_unlock(&info->trans_lock); 711 } 712 713 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 714 if (throttle) { 715 /* 716 * We may race with somebody else here so end up having 717 * to call end_transaction on ourselves again, so inc 718 * our use_count. 719 */ 720 trans->use_count++; 721 return btrfs_commit_transaction(trans, root); 722 } else { 723 wake_up_process(info->transaction_kthread); 724 } 725 } 726 727 if (trans->type & __TRANS_FREEZABLE) 728 sb_end_intwrite(root->fs_info->sb); 729 730 WARN_ON(cur_trans != info->running_transaction); 731 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 732 atomic_dec(&cur_trans->num_writers); 733 extwriter_counter_dec(cur_trans, trans->type); 734 735 smp_mb(); 736 if (waitqueue_active(&cur_trans->writer_wait)) 737 wake_up(&cur_trans->writer_wait); 738 put_transaction(cur_trans); 739 740 if (current->journal_info == trans) 741 current->journal_info = NULL; 742 743 if (throttle) 744 btrfs_run_delayed_iputs(root); 745 746 if (trans->aborted || 747 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 748 err = -EIO; 749 assert_qgroups_uptodate(trans); 750 751 kmem_cache_free(btrfs_trans_handle_cachep, trans); 752 return err; 753 } 754 755 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 756 struct btrfs_root *root) 757 { 758 return __btrfs_end_transaction(trans, root, 0); 759 } 760 761 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 762 struct btrfs_root *root) 763 { 764 return __btrfs_end_transaction(trans, root, 1); 765 } 766 767 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans, 768 struct btrfs_root *root) 769 { 770 return __btrfs_end_transaction(trans, root, 1); 771 } 772 773 /* 774 * when btree blocks are allocated, they have some corresponding bits set for 775 * them in one of two extent_io trees. This is used to make sure all of 776 * those extents are sent to disk but does not wait on them 777 */ 778 int btrfs_write_marked_extents(struct btrfs_root *root, 779 struct extent_io_tree *dirty_pages, int mark) 780 { 781 int err = 0; 782 int werr = 0; 783 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 784 struct extent_state *cached_state = NULL; 785 u64 start = 0; 786 u64 end; 787 788 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 789 mark, &cached_state)) { 790 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 791 mark, &cached_state, GFP_NOFS); 792 cached_state = NULL; 793 err = filemap_fdatawrite_range(mapping, start, end); 794 if (err) 795 werr = err; 796 cond_resched(); 797 start = end + 1; 798 } 799 if (err) 800 werr = err; 801 return werr; 802 } 803 804 /* 805 * when btree blocks are allocated, they have some corresponding bits set for 806 * them in one of two extent_io trees. This is used to make sure all of 807 * those extents are on disk for transaction or log commit. We wait 808 * on all the pages and clear them from the dirty pages state tree 809 */ 810 int btrfs_wait_marked_extents(struct btrfs_root *root, 811 struct extent_io_tree *dirty_pages, int mark) 812 { 813 int err = 0; 814 int werr = 0; 815 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 816 struct extent_state *cached_state = NULL; 817 u64 start = 0; 818 u64 end; 819 820 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 821 EXTENT_NEED_WAIT, &cached_state)) { 822 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 823 0, 0, &cached_state, GFP_NOFS); 824 err = filemap_fdatawait_range(mapping, start, end); 825 if (err) 826 werr = err; 827 cond_resched(); 828 start = end + 1; 829 } 830 if (err) 831 werr = err; 832 return werr; 833 } 834 835 /* 836 * when btree blocks are allocated, they have some corresponding bits set for 837 * them in one of two extent_io trees. This is used to make sure all of 838 * those extents are on disk for transaction or log commit 839 */ 840 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 841 struct extent_io_tree *dirty_pages, int mark) 842 { 843 int ret; 844 int ret2; 845 struct blk_plug plug; 846 847 blk_start_plug(&plug); 848 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 849 blk_finish_plug(&plug); 850 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 851 852 if (ret) 853 return ret; 854 if (ret2) 855 return ret2; 856 return 0; 857 } 858 859 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 860 struct btrfs_root *root) 861 { 862 if (!trans || !trans->transaction) { 863 struct inode *btree_inode; 864 btree_inode = root->fs_info->btree_inode; 865 return filemap_write_and_wait(btree_inode->i_mapping); 866 } 867 return btrfs_write_and_wait_marked_extents(root, 868 &trans->transaction->dirty_pages, 869 EXTENT_DIRTY); 870 } 871 872 /* 873 * this is used to update the root pointer in the tree of tree roots. 874 * 875 * But, in the case of the extent allocation tree, updating the root 876 * pointer may allocate blocks which may change the root of the extent 877 * allocation tree. 878 * 879 * So, this loops and repeats and makes sure the cowonly root didn't 880 * change while the root pointer was being updated in the metadata. 881 */ 882 static int update_cowonly_root(struct btrfs_trans_handle *trans, 883 struct btrfs_root *root) 884 { 885 int ret; 886 u64 old_root_bytenr; 887 u64 old_root_used; 888 struct btrfs_root *tree_root = root->fs_info->tree_root; 889 890 old_root_used = btrfs_root_used(&root->root_item); 891 btrfs_write_dirty_block_groups(trans, root); 892 893 while (1) { 894 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 895 if (old_root_bytenr == root->node->start && 896 old_root_used == btrfs_root_used(&root->root_item)) 897 break; 898 899 btrfs_set_root_node(&root->root_item, root->node); 900 ret = btrfs_update_root(trans, tree_root, 901 &root->root_key, 902 &root->root_item); 903 if (ret) 904 return ret; 905 906 old_root_used = btrfs_root_used(&root->root_item); 907 ret = btrfs_write_dirty_block_groups(trans, root); 908 if (ret) 909 return ret; 910 } 911 912 if (root != root->fs_info->extent_root) 913 switch_commit_root(root); 914 915 return 0; 916 } 917 918 /* 919 * update all the cowonly tree roots on disk 920 * 921 * The error handling in this function may not be obvious. Any of the 922 * failures will cause the file system to go offline. We still need 923 * to clean up the delayed refs. 924 */ 925 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 926 struct btrfs_root *root) 927 { 928 struct btrfs_fs_info *fs_info = root->fs_info; 929 struct list_head *next; 930 struct extent_buffer *eb; 931 int ret; 932 933 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 934 if (ret) 935 return ret; 936 937 eb = btrfs_lock_root_node(fs_info->tree_root); 938 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 939 0, &eb); 940 btrfs_tree_unlock(eb); 941 free_extent_buffer(eb); 942 943 if (ret) 944 return ret; 945 946 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 947 if (ret) 948 return ret; 949 950 ret = btrfs_run_dev_stats(trans, root->fs_info); 951 WARN_ON(ret); 952 ret = btrfs_run_dev_replace(trans, root->fs_info); 953 WARN_ON(ret); 954 955 ret = btrfs_run_qgroups(trans, root->fs_info); 956 BUG_ON(ret); 957 958 /* run_qgroups might have added some more refs */ 959 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 960 BUG_ON(ret); 961 962 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 963 next = fs_info->dirty_cowonly_roots.next; 964 list_del_init(next); 965 root = list_entry(next, struct btrfs_root, dirty_list); 966 967 ret = update_cowonly_root(trans, root); 968 if (ret) 969 return ret; 970 } 971 972 down_write(&fs_info->extent_commit_sem); 973 switch_commit_root(fs_info->extent_root); 974 up_write(&fs_info->extent_commit_sem); 975 976 btrfs_after_dev_replace_commit(fs_info); 977 978 return 0; 979 } 980 981 /* 982 * dead roots are old snapshots that need to be deleted. This allocates 983 * a dirty root struct and adds it into the list of dead roots that need to 984 * be deleted 985 */ 986 void btrfs_add_dead_root(struct btrfs_root *root) 987 { 988 spin_lock(&root->fs_info->trans_lock); 989 if (list_empty(&root->root_list)) 990 list_add_tail(&root->root_list, &root->fs_info->dead_roots); 991 spin_unlock(&root->fs_info->trans_lock); 992 } 993 994 /* 995 * update all the cowonly tree roots on disk 996 */ 997 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 998 struct btrfs_root *root) 999 { 1000 struct btrfs_root *gang[8]; 1001 struct btrfs_fs_info *fs_info = root->fs_info; 1002 int i; 1003 int ret; 1004 int err = 0; 1005 1006 spin_lock(&fs_info->fs_roots_radix_lock); 1007 while (1) { 1008 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1009 (void **)gang, 0, 1010 ARRAY_SIZE(gang), 1011 BTRFS_ROOT_TRANS_TAG); 1012 if (ret == 0) 1013 break; 1014 for (i = 0; i < ret; i++) { 1015 root = gang[i]; 1016 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1017 (unsigned long)root->root_key.objectid, 1018 BTRFS_ROOT_TRANS_TAG); 1019 spin_unlock(&fs_info->fs_roots_radix_lock); 1020 1021 btrfs_free_log(trans, root); 1022 btrfs_update_reloc_root(trans, root); 1023 btrfs_orphan_commit_root(trans, root); 1024 1025 btrfs_save_ino_cache(root, trans); 1026 1027 /* see comments in should_cow_block() */ 1028 root->force_cow = 0; 1029 smp_wmb(); 1030 1031 if (root->commit_root != root->node) { 1032 mutex_lock(&root->fs_commit_mutex); 1033 switch_commit_root(root); 1034 btrfs_unpin_free_ino(root); 1035 mutex_unlock(&root->fs_commit_mutex); 1036 1037 btrfs_set_root_node(&root->root_item, 1038 root->node); 1039 } 1040 1041 err = btrfs_update_root(trans, fs_info->tree_root, 1042 &root->root_key, 1043 &root->root_item); 1044 spin_lock(&fs_info->fs_roots_radix_lock); 1045 if (err) 1046 break; 1047 } 1048 } 1049 spin_unlock(&fs_info->fs_roots_radix_lock); 1050 return err; 1051 } 1052 1053 /* 1054 * defrag a given btree. 1055 * Every leaf in the btree is read and defragged. 1056 */ 1057 int btrfs_defrag_root(struct btrfs_root *root) 1058 { 1059 struct btrfs_fs_info *info = root->fs_info; 1060 struct btrfs_trans_handle *trans; 1061 int ret; 1062 1063 if (xchg(&root->defrag_running, 1)) 1064 return 0; 1065 1066 while (1) { 1067 trans = btrfs_start_transaction(root, 0); 1068 if (IS_ERR(trans)) 1069 return PTR_ERR(trans); 1070 1071 ret = btrfs_defrag_leaves(trans, root); 1072 1073 btrfs_end_transaction(trans, root); 1074 btrfs_btree_balance_dirty(info->tree_root); 1075 cond_resched(); 1076 1077 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 1078 break; 1079 1080 if (btrfs_defrag_cancelled(root->fs_info)) { 1081 printk(KERN_DEBUG "btrfs: defrag_root cancelled\n"); 1082 ret = -EAGAIN; 1083 break; 1084 } 1085 } 1086 root->defrag_running = 0; 1087 return ret; 1088 } 1089 1090 /* 1091 * new snapshots need to be created at a very specific time in the 1092 * transaction commit. This does the actual creation. 1093 * 1094 * Note: 1095 * If the error which may affect the commitment of the current transaction 1096 * happens, we should return the error number. If the error which just affect 1097 * the creation of the pending snapshots, just return 0. 1098 */ 1099 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1100 struct btrfs_fs_info *fs_info, 1101 struct btrfs_pending_snapshot *pending) 1102 { 1103 struct btrfs_key key; 1104 struct btrfs_root_item *new_root_item; 1105 struct btrfs_root *tree_root = fs_info->tree_root; 1106 struct btrfs_root *root = pending->root; 1107 struct btrfs_root *parent_root; 1108 struct btrfs_block_rsv *rsv; 1109 struct inode *parent_inode; 1110 struct btrfs_path *path; 1111 struct btrfs_dir_item *dir_item; 1112 struct dentry *dentry; 1113 struct extent_buffer *tmp; 1114 struct extent_buffer *old; 1115 struct timespec cur_time = CURRENT_TIME; 1116 int ret = 0; 1117 u64 to_reserve = 0; 1118 u64 index = 0; 1119 u64 objectid; 1120 u64 root_flags; 1121 uuid_le new_uuid; 1122 1123 path = btrfs_alloc_path(); 1124 if (!path) { 1125 pending->error = -ENOMEM; 1126 return 0; 1127 } 1128 1129 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1130 if (!new_root_item) { 1131 pending->error = -ENOMEM; 1132 goto root_item_alloc_fail; 1133 } 1134 1135 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1136 if (pending->error) 1137 goto no_free_objectid; 1138 1139 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); 1140 1141 if (to_reserve > 0) { 1142 pending->error = btrfs_block_rsv_add(root, 1143 &pending->block_rsv, 1144 to_reserve, 1145 BTRFS_RESERVE_NO_FLUSH); 1146 if (pending->error) 1147 goto no_free_objectid; 1148 } 1149 1150 pending->error = btrfs_qgroup_inherit(trans, fs_info, 1151 root->root_key.objectid, 1152 objectid, pending->inherit); 1153 if (pending->error) 1154 goto no_free_objectid; 1155 1156 key.objectid = objectid; 1157 key.offset = (u64)-1; 1158 key.type = BTRFS_ROOT_ITEM_KEY; 1159 1160 rsv = trans->block_rsv; 1161 trans->block_rsv = &pending->block_rsv; 1162 trans->bytes_reserved = trans->block_rsv->reserved; 1163 1164 dentry = pending->dentry; 1165 parent_inode = pending->dir; 1166 parent_root = BTRFS_I(parent_inode)->root; 1167 record_root_in_trans(trans, parent_root); 1168 1169 /* 1170 * insert the directory item 1171 */ 1172 ret = btrfs_set_inode_index(parent_inode, &index); 1173 BUG_ON(ret); /* -ENOMEM */ 1174 1175 /* check if there is a file/dir which has the same name. */ 1176 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1177 btrfs_ino(parent_inode), 1178 dentry->d_name.name, 1179 dentry->d_name.len, 0); 1180 if (dir_item != NULL && !IS_ERR(dir_item)) { 1181 pending->error = -EEXIST; 1182 goto dir_item_existed; 1183 } else if (IS_ERR(dir_item)) { 1184 ret = PTR_ERR(dir_item); 1185 btrfs_abort_transaction(trans, root, ret); 1186 goto fail; 1187 } 1188 btrfs_release_path(path); 1189 1190 /* 1191 * pull in the delayed directory update 1192 * and the delayed inode item 1193 * otherwise we corrupt the FS during 1194 * snapshot 1195 */ 1196 ret = btrfs_run_delayed_items(trans, root); 1197 if (ret) { /* Transaction aborted */ 1198 btrfs_abort_transaction(trans, root, ret); 1199 goto fail; 1200 } 1201 1202 record_root_in_trans(trans, root); 1203 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1204 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1205 btrfs_check_and_init_root_item(new_root_item); 1206 1207 root_flags = btrfs_root_flags(new_root_item); 1208 if (pending->readonly) 1209 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1210 else 1211 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1212 btrfs_set_root_flags(new_root_item, root_flags); 1213 1214 btrfs_set_root_generation_v2(new_root_item, 1215 trans->transid); 1216 uuid_le_gen(&new_uuid); 1217 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1218 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1219 BTRFS_UUID_SIZE); 1220 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1221 memset(new_root_item->received_uuid, 0, 1222 sizeof(new_root_item->received_uuid)); 1223 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1224 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1225 btrfs_set_root_stransid(new_root_item, 0); 1226 btrfs_set_root_rtransid(new_root_item, 0); 1227 } 1228 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec); 1229 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec); 1230 btrfs_set_root_otransid(new_root_item, trans->transid); 1231 1232 old = btrfs_lock_root_node(root); 1233 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1234 if (ret) { 1235 btrfs_tree_unlock(old); 1236 free_extent_buffer(old); 1237 btrfs_abort_transaction(trans, root, ret); 1238 goto fail; 1239 } 1240 1241 btrfs_set_lock_blocking(old); 1242 1243 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1244 /* clean up in any case */ 1245 btrfs_tree_unlock(old); 1246 free_extent_buffer(old); 1247 if (ret) { 1248 btrfs_abort_transaction(trans, root, ret); 1249 goto fail; 1250 } 1251 1252 /* see comments in should_cow_block() */ 1253 root->force_cow = 1; 1254 smp_wmb(); 1255 1256 btrfs_set_root_node(new_root_item, tmp); 1257 /* record when the snapshot was created in key.offset */ 1258 key.offset = trans->transid; 1259 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1260 btrfs_tree_unlock(tmp); 1261 free_extent_buffer(tmp); 1262 if (ret) { 1263 btrfs_abort_transaction(trans, root, ret); 1264 goto fail; 1265 } 1266 1267 /* 1268 * insert root back/forward references 1269 */ 1270 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1271 parent_root->root_key.objectid, 1272 btrfs_ino(parent_inode), index, 1273 dentry->d_name.name, dentry->d_name.len); 1274 if (ret) { 1275 btrfs_abort_transaction(trans, root, ret); 1276 goto fail; 1277 } 1278 1279 key.offset = (u64)-1; 1280 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1281 if (IS_ERR(pending->snap)) { 1282 ret = PTR_ERR(pending->snap); 1283 btrfs_abort_transaction(trans, root, ret); 1284 goto fail; 1285 } 1286 1287 ret = btrfs_reloc_post_snapshot(trans, pending); 1288 if (ret) { 1289 btrfs_abort_transaction(trans, root, ret); 1290 goto fail; 1291 } 1292 1293 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1294 if (ret) { 1295 btrfs_abort_transaction(trans, root, ret); 1296 goto fail; 1297 } 1298 1299 ret = btrfs_insert_dir_item(trans, parent_root, 1300 dentry->d_name.name, dentry->d_name.len, 1301 parent_inode, &key, 1302 BTRFS_FT_DIR, index); 1303 /* We have check then name at the beginning, so it is impossible. */ 1304 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1305 if (ret) { 1306 btrfs_abort_transaction(trans, root, ret); 1307 goto fail; 1308 } 1309 1310 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1311 dentry->d_name.len * 2); 1312 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1313 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1314 if (ret) 1315 btrfs_abort_transaction(trans, root, ret); 1316 fail: 1317 pending->error = ret; 1318 dir_item_existed: 1319 trans->block_rsv = rsv; 1320 trans->bytes_reserved = 0; 1321 no_free_objectid: 1322 kfree(new_root_item); 1323 root_item_alloc_fail: 1324 btrfs_free_path(path); 1325 return ret; 1326 } 1327 1328 /* 1329 * create all the snapshots we've scheduled for creation 1330 */ 1331 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1332 struct btrfs_fs_info *fs_info) 1333 { 1334 struct btrfs_pending_snapshot *pending, *next; 1335 struct list_head *head = &trans->transaction->pending_snapshots; 1336 int ret = 0; 1337 1338 list_for_each_entry_safe(pending, next, head, list) { 1339 list_del(&pending->list); 1340 ret = create_pending_snapshot(trans, fs_info, pending); 1341 if (ret) 1342 break; 1343 } 1344 return ret; 1345 } 1346 1347 static void update_super_roots(struct btrfs_root *root) 1348 { 1349 struct btrfs_root_item *root_item; 1350 struct btrfs_super_block *super; 1351 1352 super = root->fs_info->super_copy; 1353 1354 root_item = &root->fs_info->chunk_root->root_item; 1355 super->chunk_root = root_item->bytenr; 1356 super->chunk_root_generation = root_item->generation; 1357 super->chunk_root_level = root_item->level; 1358 1359 root_item = &root->fs_info->tree_root->root_item; 1360 super->root = root_item->bytenr; 1361 super->generation = root_item->generation; 1362 super->root_level = root_item->level; 1363 if (btrfs_test_opt(root, SPACE_CACHE)) 1364 super->cache_generation = root_item->generation; 1365 } 1366 1367 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1368 { 1369 struct btrfs_transaction *trans; 1370 int ret = 0; 1371 1372 spin_lock(&info->trans_lock); 1373 trans = info->running_transaction; 1374 if (trans) 1375 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1376 spin_unlock(&info->trans_lock); 1377 return ret; 1378 } 1379 1380 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1381 { 1382 struct btrfs_transaction *trans; 1383 int ret = 0; 1384 1385 spin_lock(&info->trans_lock); 1386 trans = info->running_transaction; 1387 if (trans) 1388 ret = is_transaction_blocked(trans); 1389 spin_unlock(&info->trans_lock); 1390 return ret; 1391 } 1392 1393 /* 1394 * wait for the current transaction commit to start and block subsequent 1395 * transaction joins 1396 */ 1397 static void wait_current_trans_commit_start(struct btrfs_root *root, 1398 struct btrfs_transaction *trans) 1399 { 1400 wait_event(root->fs_info->transaction_blocked_wait, 1401 trans->state >= TRANS_STATE_COMMIT_START || 1402 trans->aborted); 1403 } 1404 1405 /* 1406 * wait for the current transaction to start and then become unblocked. 1407 * caller holds ref. 1408 */ 1409 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1410 struct btrfs_transaction *trans) 1411 { 1412 wait_event(root->fs_info->transaction_wait, 1413 trans->state >= TRANS_STATE_UNBLOCKED || 1414 trans->aborted); 1415 } 1416 1417 /* 1418 * commit transactions asynchronously. once btrfs_commit_transaction_async 1419 * returns, any subsequent transaction will not be allowed to join. 1420 */ 1421 struct btrfs_async_commit { 1422 struct btrfs_trans_handle *newtrans; 1423 struct btrfs_root *root; 1424 struct work_struct work; 1425 }; 1426 1427 static void do_async_commit(struct work_struct *work) 1428 { 1429 struct btrfs_async_commit *ac = 1430 container_of(work, struct btrfs_async_commit, work); 1431 1432 /* 1433 * We've got freeze protection passed with the transaction. 1434 * Tell lockdep about it. 1435 */ 1436 if (ac->newtrans->type < TRANS_JOIN_NOLOCK) 1437 rwsem_acquire_read( 1438 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1439 0, 1, _THIS_IP_); 1440 1441 current->journal_info = ac->newtrans; 1442 1443 btrfs_commit_transaction(ac->newtrans, ac->root); 1444 kfree(ac); 1445 } 1446 1447 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1448 struct btrfs_root *root, 1449 int wait_for_unblock) 1450 { 1451 struct btrfs_async_commit *ac; 1452 struct btrfs_transaction *cur_trans; 1453 1454 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1455 if (!ac) 1456 return -ENOMEM; 1457 1458 INIT_WORK(&ac->work, do_async_commit); 1459 ac->root = root; 1460 ac->newtrans = btrfs_join_transaction(root); 1461 if (IS_ERR(ac->newtrans)) { 1462 int err = PTR_ERR(ac->newtrans); 1463 kfree(ac); 1464 return err; 1465 } 1466 1467 /* take transaction reference */ 1468 cur_trans = trans->transaction; 1469 atomic_inc(&cur_trans->use_count); 1470 1471 btrfs_end_transaction(trans, root); 1472 1473 /* 1474 * Tell lockdep we've released the freeze rwsem, since the 1475 * async commit thread will be the one to unlock it. 1476 */ 1477 if (trans->type < TRANS_JOIN_NOLOCK) 1478 rwsem_release( 1479 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1480 1, _THIS_IP_); 1481 1482 schedule_work(&ac->work); 1483 1484 /* wait for transaction to start and unblock */ 1485 if (wait_for_unblock) 1486 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1487 else 1488 wait_current_trans_commit_start(root, cur_trans); 1489 1490 if (current->journal_info == trans) 1491 current->journal_info = NULL; 1492 1493 put_transaction(cur_trans); 1494 return 0; 1495 } 1496 1497 1498 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1499 struct btrfs_root *root, int err) 1500 { 1501 struct btrfs_transaction *cur_trans = trans->transaction; 1502 DEFINE_WAIT(wait); 1503 1504 WARN_ON(trans->use_count > 1); 1505 1506 btrfs_abort_transaction(trans, root, err); 1507 1508 spin_lock(&root->fs_info->trans_lock); 1509 1510 /* 1511 * If the transaction is removed from the list, it means this 1512 * transaction has been committed successfully, so it is impossible 1513 * to call the cleanup function. 1514 */ 1515 BUG_ON(list_empty(&cur_trans->list)); 1516 1517 list_del_init(&cur_trans->list); 1518 if (cur_trans == root->fs_info->running_transaction) { 1519 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1520 spin_unlock(&root->fs_info->trans_lock); 1521 wait_event(cur_trans->writer_wait, 1522 atomic_read(&cur_trans->num_writers) == 1); 1523 1524 spin_lock(&root->fs_info->trans_lock); 1525 } 1526 spin_unlock(&root->fs_info->trans_lock); 1527 1528 btrfs_cleanup_one_transaction(trans->transaction, root); 1529 1530 spin_lock(&root->fs_info->trans_lock); 1531 if (cur_trans == root->fs_info->running_transaction) 1532 root->fs_info->running_transaction = NULL; 1533 spin_unlock(&root->fs_info->trans_lock); 1534 1535 put_transaction(cur_trans); 1536 put_transaction(cur_trans); 1537 1538 trace_btrfs_transaction_commit(root); 1539 1540 btrfs_scrub_continue(root); 1541 1542 if (current->journal_info == trans) 1543 current->journal_info = NULL; 1544 1545 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1546 } 1547 1548 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans, 1549 struct btrfs_root *root) 1550 { 1551 int ret; 1552 1553 ret = btrfs_run_delayed_items(trans, root); 1554 if (ret) 1555 return ret; 1556 1557 /* 1558 * running the delayed items may have added new refs. account 1559 * them now so that they hinder processing of more delayed refs 1560 * as little as possible. 1561 */ 1562 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 1563 1564 /* 1565 * rename don't use btrfs_join_transaction, so, once we 1566 * set the transaction to blocked above, we aren't going 1567 * to get any new ordered operations. We can safely run 1568 * it here and no for sure that nothing new will be added 1569 * to the list 1570 */ 1571 ret = btrfs_run_ordered_operations(trans, root, 1); 1572 1573 return ret; 1574 } 1575 1576 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1577 { 1578 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1579 return btrfs_start_all_delalloc_inodes(fs_info, 1); 1580 return 0; 1581 } 1582 1583 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1584 { 1585 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1586 btrfs_wait_all_ordered_extents(fs_info, 1); 1587 } 1588 1589 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1590 struct btrfs_root *root) 1591 { 1592 struct btrfs_transaction *cur_trans = trans->transaction; 1593 struct btrfs_transaction *prev_trans = NULL; 1594 int ret; 1595 1596 ret = btrfs_run_ordered_operations(trans, root, 0); 1597 if (ret) { 1598 btrfs_abort_transaction(trans, root, ret); 1599 btrfs_end_transaction(trans, root); 1600 return ret; 1601 } 1602 1603 /* Stop the commit early if ->aborted is set */ 1604 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1605 ret = cur_trans->aborted; 1606 btrfs_end_transaction(trans, root); 1607 return ret; 1608 } 1609 1610 /* make a pass through all the delayed refs we have so far 1611 * any runnings procs may add more while we are here 1612 */ 1613 ret = btrfs_run_delayed_refs(trans, root, 0); 1614 if (ret) { 1615 btrfs_end_transaction(trans, root); 1616 return ret; 1617 } 1618 1619 btrfs_trans_release_metadata(trans, root); 1620 trans->block_rsv = NULL; 1621 if (trans->qgroup_reserved) { 1622 btrfs_qgroup_free(root, trans->qgroup_reserved); 1623 trans->qgroup_reserved = 0; 1624 } 1625 1626 cur_trans = trans->transaction; 1627 1628 /* 1629 * set the flushing flag so procs in this transaction have to 1630 * start sending their work down. 1631 */ 1632 cur_trans->delayed_refs.flushing = 1; 1633 smp_wmb(); 1634 1635 if (!list_empty(&trans->new_bgs)) 1636 btrfs_create_pending_block_groups(trans, root); 1637 1638 ret = btrfs_run_delayed_refs(trans, root, 0); 1639 if (ret) { 1640 btrfs_end_transaction(trans, root); 1641 return ret; 1642 } 1643 1644 spin_lock(&root->fs_info->trans_lock); 1645 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1646 spin_unlock(&root->fs_info->trans_lock); 1647 atomic_inc(&cur_trans->use_count); 1648 ret = btrfs_end_transaction(trans, root); 1649 1650 wait_for_commit(root, cur_trans); 1651 1652 put_transaction(cur_trans); 1653 1654 return ret; 1655 } 1656 1657 cur_trans->state = TRANS_STATE_COMMIT_START; 1658 wake_up(&root->fs_info->transaction_blocked_wait); 1659 1660 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1661 prev_trans = list_entry(cur_trans->list.prev, 1662 struct btrfs_transaction, list); 1663 if (prev_trans->state != TRANS_STATE_COMPLETED) { 1664 atomic_inc(&prev_trans->use_count); 1665 spin_unlock(&root->fs_info->trans_lock); 1666 1667 wait_for_commit(root, prev_trans); 1668 1669 put_transaction(prev_trans); 1670 } else { 1671 spin_unlock(&root->fs_info->trans_lock); 1672 } 1673 } else { 1674 spin_unlock(&root->fs_info->trans_lock); 1675 } 1676 1677 extwriter_counter_dec(cur_trans, trans->type); 1678 1679 ret = btrfs_start_delalloc_flush(root->fs_info); 1680 if (ret) 1681 goto cleanup_transaction; 1682 1683 ret = btrfs_flush_all_pending_stuffs(trans, root); 1684 if (ret) 1685 goto cleanup_transaction; 1686 1687 wait_event(cur_trans->writer_wait, 1688 extwriter_counter_read(cur_trans) == 0); 1689 1690 /* some pending stuffs might be added after the previous flush. */ 1691 ret = btrfs_flush_all_pending_stuffs(trans, root); 1692 if (ret) 1693 goto cleanup_transaction; 1694 1695 btrfs_wait_delalloc_flush(root->fs_info); 1696 /* 1697 * Ok now we need to make sure to block out any other joins while we 1698 * commit the transaction. We could have started a join before setting 1699 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 1700 */ 1701 spin_lock(&root->fs_info->trans_lock); 1702 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1703 spin_unlock(&root->fs_info->trans_lock); 1704 wait_event(cur_trans->writer_wait, 1705 atomic_read(&cur_trans->num_writers) == 1); 1706 1707 /* ->aborted might be set after the previous check, so check it */ 1708 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1709 ret = cur_trans->aborted; 1710 goto cleanup_transaction; 1711 } 1712 /* 1713 * the reloc mutex makes sure that we stop 1714 * the balancing code from coming in and moving 1715 * extents around in the middle of the commit 1716 */ 1717 mutex_lock(&root->fs_info->reloc_mutex); 1718 1719 /* 1720 * We needn't worry about the delayed items because we will 1721 * deal with them in create_pending_snapshot(), which is the 1722 * core function of the snapshot creation. 1723 */ 1724 ret = create_pending_snapshots(trans, root->fs_info); 1725 if (ret) { 1726 mutex_unlock(&root->fs_info->reloc_mutex); 1727 goto cleanup_transaction; 1728 } 1729 1730 /* 1731 * We insert the dir indexes of the snapshots and update the inode 1732 * of the snapshots' parents after the snapshot creation, so there 1733 * are some delayed items which are not dealt with. Now deal with 1734 * them. 1735 * 1736 * We needn't worry that this operation will corrupt the snapshots, 1737 * because all the tree which are snapshoted will be forced to COW 1738 * the nodes and leaves. 1739 */ 1740 ret = btrfs_run_delayed_items(trans, root); 1741 if (ret) { 1742 mutex_unlock(&root->fs_info->reloc_mutex); 1743 goto cleanup_transaction; 1744 } 1745 1746 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1747 if (ret) { 1748 mutex_unlock(&root->fs_info->reloc_mutex); 1749 goto cleanup_transaction; 1750 } 1751 1752 /* 1753 * make sure none of the code above managed to slip in a 1754 * delayed item 1755 */ 1756 btrfs_assert_delayed_root_empty(root); 1757 1758 WARN_ON(cur_trans != trans->transaction); 1759 1760 btrfs_scrub_pause(root); 1761 /* btrfs_commit_tree_roots is responsible for getting the 1762 * various roots consistent with each other. Every pointer 1763 * in the tree of tree roots has to point to the most up to date 1764 * root for every subvolume and other tree. So, we have to keep 1765 * the tree logging code from jumping in and changing any 1766 * of the trees. 1767 * 1768 * At this point in the commit, there can't be any tree-log 1769 * writers, but a little lower down we drop the trans mutex 1770 * and let new people in. By holding the tree_log_mutex 1771 * from now until after the super is written, we avoid races 1772 * with the tree-log code. 1773 */ 1774 mutex_lock(&root->fs_info->tree_log_mutex); 1775 1776 ret = commit_fs_roots(trans, root); 1777 if (ret) { 1778 mutex_unlock(&root->fs_info->tree_log_mutex); 1779 mutex_unlock(&root->fs_info->reloc_mutex); 1780 goto cleanup_transaction; 1781 } 1782 1783 /* commit_fs_roots gets rid of all the tree log roots, it is now 1784 * safe to free the root of tree log roots 1785 */ 1786 btrfs_free_log_root_tree(trans, root->fs_info); 1787 1788 ret = commit_cowonly_roots(trans, root); 1789 if (ret) { 1790 mutex_unlock(&root->fs_info->tree_log_mutex); 1791 mutex_unlock(&root->fs_info->reloc_mutex); 1792 goto cleanup_transaction; 1793 } 1794 1795 /* 1796 * The tasks which save the space cache and inode cache may also 1797 * update ->aborted, check it. 1798 */ 1799 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1800 ret = cur_trans->aborted; 1801 mutex_unlock(&root->fs_info->tree_log_mutex); 1802 mutex_unlock(&root->fs_info->reloc_mutex); 1803 goto cleanup_transaction; 1804 } 1805 1806 btrfs_prepare_extent_commit(trans, root); 1807 1808 cur_trans = root->fs_info->running_transaction; 1809 1810 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1811 root->fs_info->tree_root->node); 1812 switch_commit_root(root->fs_info->tree_root); 1813 1814 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1815 root->fs_info->chunk_root->node); 1816 switch_commit_root(root->fs_info->chunk_root); 1817 1818 assert_qgroups_uptodate(trans); 1819 update_super_roots(root); 1820 1821 if (!root->fs_info->log_root_recovering) { 1822 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 1823 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 1824 } 1825 1826 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 1827 sizeof(*root->fs_info->super_copy)); 1828 1829 spin_lock(&root->fs_info->trans_lock); 1830 cur_trans->state = TRANS_STATE_UNBLOCKED; 1831 root->fs_info->running_transaction = NULL; 1832 spin_unlock(&root->fs_info->trans_lock); 1833 mutex_unlock(&root->fs_info->reloc_mutex); 1834 1835 wake_up(&root->fs_info->transaction_wait); 1836 1837 ret = btrfs_write_and_wait_transaction(trans, root); 1838 if (ret) { 1839 btrfs_error(root->fs_info, ret, 1840 "Error while writing out transaction"); 1841 mutex_unlock(&root->fs_info->tree_log_mutex); 1842 goto cleanup_transaction; 1843 } 1844 1845 ret = write_ctree_super(trans, root, 0); 1846 if (ret) { 1847 mutex_unlock(&root->fs_info->tree_log_mutex); 1848 goto cleanup_transaction; 1849 } 1850 1851 /* 1852 * the super is written, we can safely allow the tree-loggers 1853 * to go about their business 1854 */ 1855 mutex_unlock(&root->fs_info->tree_log_mutex); 1856 1857 btrfs_finish_extent_commit(trans, root); 1858 1859 root->fs_info->last_trans_committed = cur_trans->transid; 1860 /* 1861 * We needn't acquire the lock here because there is no other task 1862 * which can change it. 1863 */ 1864 cur_trans->state = TRANS_STATE_COMPLETED; 1865 wake_up(&cur_trans->commit_wait); 1866 1867 spin_lock(&root->fs_info->trans_lock); 1868 list_del_init(&cur_trans->list); 1869 spin_unlock(&root->fs_info->trans_lock); 1870 1871 put_transaction(cur_trans); 1872 put_transaction(cur_trans); 1873 1874 if (trans->type & __TRANS_FREEZABLE) 1875 sb_end_intwrite(root->fs_info->sb); 1876 1877 trace_btrfs_transaction_commit(root); 1878 1879 btrfs_scrub_continue(root); 1880 1881 if (current->journal_info == trans) 1882 current->journal_info = NULL; 1883 1884 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1885 1886 if (current != root->fs_info->transaction_kthread) 1887 btrfs_run_delayed_iputs(root); 1888 1889 return ret; 1890 1891 cleanup_transaction: 1892 btrfs_trans_release_metadata(trans, root); 1893 trans->block_rsv = NULL; 1894 if (trans->qgroup_reserved) { 1895 btrfs_qgroup_free(root, trans->qgroup_reserved); 1896 trans->qgroup_reserved = 0; 1897 } 1898 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction."); 1899 if (current->journal_info == trans) 1900 current->journal_info = NULL; 1901 cleanup_transaction(trans, root, ret); 1902 1903 return ret; 1904 } 1905 1906 /* 1907 * return < 0 if error 1908 * 0 if there are no more dead_roots at the time of call 1909 * 1 there are more to be processed, call me again 1910 * 1911 * The return value indicates there are certainly more snapshots to delete, but 1912 * if there comes a new one during processing, it may return 0. We don't mind, 1913 * because btrfs_commit_super will poke cleaner thread and it will process it a 1914 * few seconds later. 1915 */ 1916 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 1917 { 1918 int ret; 1919 struct btrfs_fs_info *fs_info = root->fs_info; 1920 1921 spin_lock(&fs_info->trans_lock); 1922 if (list_empty(&fs_info->dead_roots)) { 1923 spin_unlock(&fs_info->trans_lock); 1924 return 0; 1925 } 1926 root = list_first_entry(&fs_info->dead_roots, 1927 struct btrfs_root, root_list); 1928 list_del_init(&root->root_list); 1929 spin_unlock(&fs_info->trans_lock); 1930 1931 pr_debug("btrfs: cleaner removing %llu\n", 1932 (unsigned long long)root->objectid); 1933 1934 btrfs_kill_all_delayed_nodes(root); 1935 1936 if (btrfs_header_backref_rev(root->node) < 1937 BTRFS_MIXED_BACKREF_REV) 1938 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 1939 else 1940 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 1941 /* 1942 * If we encounter a transaction abort during snapshot cleaning, we 1943 * don't want to crash here 1944 */ 1945 BUG_ON(ret < 0 && ret != -EAGAIN && ret != -EROFS); 1946 return 1; 1947 } 1948