xref: /openbmc/linux/fs/btrfs/transaction.c (revision 7fe2f639)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31 
32 #define BTRFS_ROOT_TRANS_TAG 0
33 
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 {
36 	WARN_ON(atomic_read(&transaction->use_count) == 0);
37 	if (atomic_dec_and_test(&transaction->use_count)) {
38 		BUG_ON(!list_empty(&transaction->list));
39 		memset(transaction, 0, sizeof(*transaction));
40 		kmem_cache_free(btrfs_transaction_cachep, transaction);
41 	}
42 }
43 
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46 	free_extent_buffer(root->commit_root);
47 	root->commit_root = btrfs_root_node(root);
48 }
49 
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root, int nofail)
54 {
55 	struct btrfs_transaction *cur_trans;
56 
57 	spin_lock(&root->fs_info->trans_lock);
58 	if (root->fs_info->trans_no_join) {
59 		if (!nofail) {
60 			spin_unlock(&root->fs_info->trans_lock);
61 			return -EBUSY;
62 		}
63 	}
64 
65 	cur_trans = root->fs_info->running_transaction;
66 	if (cur_trans) {
67 		atomic_inc(&cur_trans->use_count);
68 		atomic_inc(&cur_trans->num_writers);
69 		cur_trans->num_joined++;
70 		spin_unlock(&root->fs_info->trans_lock);
71 		return 0;
72 	}
73 	spin_unlock(&root->fs_info->trans_lock);
74 
75 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
76 	if (!cur_trans)
77 		return -ENOMEM;
78 	spin_lock(&root->fs_info->trans_lock);
79 	if (root->fs_info->running_transaction) {
80 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
81 		cur_trans = root->fs_info->running_transaction;
82 		atomic_inc(&cur_trans->use_count);
83 		atomic_inc(&cur_trans->num_writers);
84 		cur_trans->num_joined++;
85 		spin_unlock(&root->fs_info->trans_lock);
86 		return 0;
87 	}
88 	atomic_set(&cur_trans->num_writers, 1);
89 	cur_trans->num_joined = 0;
90 	init_waitqueue_head(&cur_trans->writer_wait);
91 	init_waitqueue_head(&cur_trans->commit_wait);
92 	cur_trans->in_commit = 0;
93 	cur_trans->blocked = 0;
94 	/*
95 	 * One for this trans handle, one so it will live on until we
96 	 * commit the transaction.
97 	 */
98 	atomic_set(&cur_trans->use_count, 2);
99 	cur_trans->commit_done = 0;
100 	cur_trans->start_time = get_seconds();
101 
102 	cur_trans->delayed_refs.root = RB_ROOT;
103 	cur_trans->delayed_refs.num_entries = 0;
104 	cur_trans->delayed_refs.num_heads_ready = 0;
105 	cur_trans->delayed_refs.num_heads = 0;
106 	cur_trans->delayed_refs.flushing = 0;
107 	cur_trans->delayed_refs.run_delayed_start = 0;
108 	spin_lock_init(&cur_trans->commit_lock);
109 	spin_lock_init(&cur_trans->delayed_refs.lock);
110 
111 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
112 	list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
113 	extent_io_tree_init(&cur_trans->dirty_pages,
114 			     root->fs_info->btree_inode->i_mapping);
115 	root->fs_info->generation++;
116 	cur_trans->transid = root->fs_info->generation;
117 	root->fs_info->running_transaction = cur_trans;
118 	spin_unlock(&root->fs_info->trans_lock);
119 
120 	return 0;
121 }
122 
123 /*
124  * this does all the record keeping required to make sure that a reference
125  * counted root is properly recorded in a given transaction.  This is required
126  * to make sure the old root from before we joined the transaction is deleted
127  * when the transaction commits
128  */
129 static int record_root_in_trans(struct btrfs_trans_handle *trans,
130 			       struct btrfs_root *root)
131 {
132 	if (root->ref_cows && root->last_trans < trans->transid) {
133 		WARN_ON(root == root->fs_info->extent_root);
134 		WARN_ON(root->commit_root != root->node);
135 
136 		/*
137 		 * see below for in_trans_setup usage rules
138 		 * we have the reloc mutex held now, so there
139 		 * is only one writer in this function
140 		 */
141 		root->in_trans_setup = 1;
142 
143 		/* make sure readers find in_trans_setup before
144 		 * they find our root->last_trans update
145 		 */
146 		smp_wmb();
147 
148 		spin_lock(&root->fs_info->fs_roots_radix_lock);
149 		if (root->last_trans == trans->transid) {
150 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
151 			return 0;
152 		}
153 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
154 			   (unsigned long)root->root_key.objectid,
155 			   BTRFS_ROOT_TRANS_TAG);
156 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
157 		root->last_trans = trans->transid;
158 
159 		/* this is pretty tricky.  We don't want to
160 		 * take the relocation lock in btrfs_record_root_in_trans
161 		 * unless we're really doing the first setup for this root in
162 		 * this transaction.
163 		 *
164 		 * Normally we'd use root->last_trans as a flag to decide
165 		 * if we want to take the expensive mutex.
166 		 *
167 		 * But, we have to set root->last_trans before we
168 		 * init the relocation root, otherwise, we trip over warnings
169 		 * in ctree.c.  The solution used here is to flag ourselves
170 		 * with root->in_trans_setup.  When this is 1, we're still
171 		 * fixing up the reloc trees and everyone must wait.
172 		 *
173 		 * When this is zero, they can trust root->last_trans and fly
174 		 * through btrfs_record_root_in_trans without having to take the
175 		 * lock.  smp_wmb() makes sure that all the writes above are
176 		 * done before we pop in the zero below
177 		 */
178 		btrfs_init_reloc_root(trans, root);
179 		smp_wmb();
180 		root->in_trans_setup = 0;
181 	}
182 	return 0;
183 }
184 
185 
186 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
187 			       struct btrfs_root *root)
188 {
189 	if (!root->ref_cows)
190 		return 0;
191 
192 	/*
193 	 * see record_root_in_trans for comments about in_trans_setup usage
194 	 * and barriers
195 	 */
196 	smp_rmb();
197 	if (root->last_trans == trans->transid &&
198 	    !root->in_trans_setup)
199 		return 0;
200 
201 	mutex_lock(&root->fs_info->reloc_mutex);
202 	record_root_in_trans(trans, root);
203 	mutex_unlock(&root->fs_info->reloc_mutex);
204 
205 	return 0;
206 }
207 
208 /* wait for commit against the current transaction to become unblocked
209  * when this is done, it is safe to start a new transaction, but the current
210  * transaction might not be fully on disk.
211  */
212 static void wait_current_trans(struct btrfs_root *root)
213 {
214 	struct btrfs_transaction *cur_trans;
215 
216 	spin_lock(&root->fs_info->trans_lock);
217 	cur_trans = root->fs_info->running_transaction;
218 	if (cur_trans && cur_trans->blocked) {
219 		DEFINE_WAIT(wait);
220 		atomic_inc(&cur_trans->use_count);
221 		spin_unlock(&root->fs_info->trans_lock);
222 		while (1) {
223 			prepare_to_wait(&root->fs_info->transaction_wait, &wait,
224 					TASK_UNINTERRUPTIBLE);
225 			if (!cur_trans->blocked)
226 				break;
227 			schedule();
228 		}
229 		finish_wait(&root->fs_info->transaction_wait, &wait);
230 		put_transaction(cur_trans);
231 	} else {
232 		spin_unlock(&root->fs_info->trans_lock);
233 	}
234 }
235 
236 enum btrfs_trans_type {
237 	TRANS_START,
238 	TRANS_JOIN,
239 	TRANS_USERSPACE,
240 	TRANS_JOIN_NOLOCK,
241 };
242 
243 static int may_wait_transaction(struct btrfs_root *root, int type)
244 {
245 	if (root->fs_info->log_root_recovering)
246 		return 0;
247 
248 	if (type == TRANS_USERSPACE)
249 		return 1;
250 
251 	if (type == TRANS_START &&
252 	    !atomic_read(&root->fs_info->open_ioctl_trans))
253 		return 1;
254 
255 	return 0;
256 }
257 
258 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
259 						    u64 num_items, int type)
260 {
261 	struct btrfs_trans_handle *h;
262 	struct btrfs_transaction *cur_trans;
263 	int retries = 0;
264 	int ret;
265 
266 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
267 		return ERR_PTR(-EROFS);
268 
269 	if (current->journal_info) {
270 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
271 		h = current->journal_info;
272 		h->use_count++;
273 		h->orig_rsv = h->block_rsv;
274 		h->block_rsv = NULL;
275 		goto got_it;
276 	}
277 again:
278 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
279 	if (!h)
280 		return ERR_PTR(-ENOMEM);
281 
282 	if (may_wait_transaction(root, type))
283 		wait_current_trans(root);
284 
285 	do {
286 		ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
287 		if (ret == -EBUSY)
288 			wait_current_trans(root);
289 	} while (ret == -EBUSY);
290 
291 	if (ret < 0) {
292 		kmem_cache_free(btrfs_trans_handle_cachep, h);
293 		return ERR_PTR(ret);
294 	}
295 
296 	cur_trans = root->fs_info->running_transaction;
297 
298 	h->transid = cur_trans->transid;
299 	h->transaction = cur_trans;
300 	h->blocks_used = 0;
301 	h->bytes_reserved = 0;
302 	h->delayed_ref_updates = 0;
303 	h->use_count = 1;
304 	h->block_rsv = NULL;
305 	h->orig_rsv = NULL;
306 
307 	smp_mb();
308 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
309 		btrfs_commit_transaction(h, root);
310 		goto again;
311 	}
312 
313 	if (num_items > 0) {
314 		ret = btrfs_trans_reserve_metadata(h, root, num_items);
315 		if (ret == -EAGAIN && !retries) {
316 			retries++;
317 			btrfs_commit_transaction(h, root);
318 			goto again;
319 		} else if (ret == -EAGAIN) {
320 			/*
321 			 * We have already retried and got EAGAIN, so really we
322 			 * don't have space, so set ret to -ENOSPC.
323 			 */
324 			ret = -ENOSPC;
325 		}
326 
327 		if (ret < 0) {
328 			btrfs_end_transaction(h, root);
329 			return ERR_PTR(ret);
330 		}
331 	}
332 
333 got_it:
334 	btrfs_record_root_in_trans(h, root);
335 
336 	if (!current->journal_info && type != TRANS_USERSPACE)
337 		current->journal_info = h;
338 	return h;
339 }
340 
341 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
342 						   int num_items)
343 {
344 	return start_transaction(root, num_items, TRANS_START);
345 }
346 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
347 {
348 	return start_transaction(root, 0, TRANS_JOIN);
349 }
350 
351 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
352 {
353 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
354 }
355 
356 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
357 {
358 	return start_transaction(root, 0, TRANS_USERSPACE);
359 }
360 
361 /* wait for a transaction commit to be fully complete */
362 static noinline int wait_for_commit(struct btrfs_root *root,
363 				    struct btrfs_transaction *commit)
364 {
365 	DEFINE_WAIT(wait);
366 	while (!commit->commit_done) {
367 		prepare_to_wait(&commit->commit_wait, &wait,
368 				TASK_UNINTERRUPTIBLE);
369 		if (commit->commit_done)
370 			break;
371 		schedule();
372 	}
373 	finish_wait(&commit->commit_wait, &wait);
374 	return 0;
375 }
376 
377 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
378 {
379 	struct btrfs_transaction *cur_trans = NULL, *t;
380 	int ret;
381 
382 	ret = 0;
383 	if (transid) {
384 		if (transid <= root->fs_info->last_trans_committed)
385 			goto out;
386 
387 		/* find specified transaction */
388 		spin_lock(&root->fs_info->trans_lock);
389 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
390 			if (t->transid == transid) {
391 				cur_trans = t;
392 				atomic_inc(&cur_trans->use_count);
393 				break;
394 			}
395 			if (t->transid > transid)
396 				break;
397 		}
398 		spin_unlock(&root->fs_info->trans_lock);
399 		ret = -EINVAL;
400 		if (!cur_trans)
401 			goto out;  /* bad transid */
402 	} else {
403 		/* find newest transaction that is committing | committed */
404 		spin_lock(&root->fs_info->trans_lock);
405 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
406 					    list) {
407 			if (t->in_commit) {
408 				if (t->commit_done)
409 					break;
410 				cur_trans = t;
411 				atomic_inc(&cur_trans->use_count);
412 				break;
413 			}
414 		}
415 		spin_unlock(&root->fs_info->trans_lock);
416 		if (!cur_trans)
417 			goto out;  /* nothing committing|committed */
418 	}
419 
420 	wait_for_commit(root, cur_trans);
421 
422 	put_transaction(cur_trans);
423 	ret = 0;
424 out:
425 	return ret;
426 }
427 
428 void btrfs_throttle(struct btrfs_root *root)
429 {
430 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
431 		wait_current_trans(root);
432 }
433 
434 static int should_end_transaction(struct btrfs_trans_handle *trans,
435 				  struct btrfs_root *root)
436 {
437 	int ret;
438 	ret = btrfs_block_rsv_check(trans, root,
439 				    &root->fs_info->global_block_rsv, 0, 5);
440 	return ret ? 1 : 0;
441 }
442 
443 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
444 				 struct btrfs_root *root)
445 {
446 	struct btrfs_transaction *cur_trans = trans->transaction;
447 	int updates;
448 
449 	smp_mb();
450 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
451 		return 1;
452 
453 	updates = trans->delayed_ref_updates;
454 	trans->delayed_ref_updates = 0;
455 	if (updates)
456 		btrfs_run_delayed_refs(trans, root, updates);
457 
458 	return should_end_transaction(trans, root);
459 }
460 
461 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
462 			  struct btrfs_root *root, int throttle, int lock)
463 {
464 	struct btrfs_transaction *cur_trans = trans->transaction;
465 	struct btrfs_fs_info *info = root->fs_info;
466 	int count = 0;
467 
468 	if (--trans->use_count) {
469 		trans->block_rsv = trans->orig_rsv;
470 		return 0;
471 	}
472 
473 	while (count < 4) {
474 		unsigned long cur = trans->delayed_ref_updates;
475 		trans->delayed_ref_updates = 0;
476 		if (cur &&
477 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
478 			trans->delayed_ref_updates = 0;
479 
480 			/*
481 			 * do a full flush if the transaction is trying
482 			 * to close
483 			 */
484 			if (trans->transaction->delayed_refs.flushing)
485 				cur = 0;
486 			btrfs_run_delayed_refs(trans, root, cur);
487 		} else {
488 			break;
489 		}
490 		count++;
491 	}
492 
493 	btrfs_trans_release_metadata(trans, root);
494 
495 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
496 	    should_end_transaction(trans, root)) {
497 		trans->transaction->blocked = 1;
498 		smp_wmb();
499 	}
500 
501 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
502 		if (throttle)
503 			return btrfs_commit_transaction(trans, root);
504 		else
505 			wake_up_process(info->transaction_kthread);
506 	}
507 
508 	WARN_ON(cur_trans != info->running_transaction);
509 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
510 	atomic_dec(&cur_trans->num_writers);
511 
512 	smp_mb();
513 	if (waitqueue_active(&cur_trans->writer_wait))
514 		wake_up(&cur_trans->writer_wait);
515 	put_transaction(cur_trans);
516 
517 	if (current->journal_info == trans)
518 		current->journal_info = NULL;
519 	memset(trans, 0, sizeof(*trans));
520 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
521 
522 	if (throttle)
523 		btrfs_run_delayed_iputs(root);
524 
525 	return 0;
526 }
527 
528 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
529 			  struct btrfs_root *root)
530 {
531 	int ret;
532 
533 	ret = __btrfs_end_transaction(trans, root, 0, 1);
534 	if (ret)
535 		return ret;
536 	return 0;
537 }
538 
539 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
540 				   struct btrfs_root *root)
541 {
542 	int ret;
543 
544 	ret = __btrfs_end_transaction(trans, root, 1, 1);
545 	if (ret)
546 		return ret;
547 	return 0;
548 }
549 
550 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
551 				 struct btrfs_root *root)
552 {
553 	int ret;
554 
555 	ret = __btrfs_end_transaction(trans, root, 0, 0);
556 	if (ret)
557 		return ret;
558 	return 0;
559 }
560 
561 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
562 				struct btrfs_root *root)
563 {
564 	return __btrfs_end_transaction(trans, root, 1, 1);
565 }
566 
567 /*
568  * when btree blocks are allocated, they have some corresponding bits set for
569  * them in one of two extent_io trees.  This is used to make sure all of
570  * those extents are sent to disk but does not wait on them
571  */
572 int btrfs_write_marked_extents(struct btrfs_root *root,
573 			       struct extent_io_tree *dirty_pages, int mark)
574 {
575 	int ret;
576 	int err = 0;
577 	int werr = 0;
578 	struct page *page;
579 	struct inode *btree_inode = root->fs_info->btree_inode;
580 	u64 start = 0;
581 	u64 end;
582 	unsigned long index;
583 
584 	while (1) {
585 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
586 					    mark);
587 		if (ret)
588 			break;
589 		while (start <= end) {
590 			cond_resched();
591 
592 			index = start >> PAGE_CACHE_SHIFT;
593 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
594 			page = find_get_page(btree_inode->i_mapping, index);
595 			if (!page)
596 				continue;
597 
598 			btree_lock_page_hook(page);
599 			if (!page->mapping) {
600 				unlock_page(page);
601 				page_cache_release(page);
602 				continue;
603 			}
604 
605 			if (PageWriteback(page)) {
606 				if (PageDirty(page))
607 					wait_on_page_writeback(page);
608 				else {
609 					unlock_page(page);
610 					page_cache_release(page);
611 					continue;
612 				}
613 			}
614 			err = write_one_page(page, 0);
615 			if (err)
616 				werr = err;
617 			page_cache_release(page);
618 		}
619 	}
620 	if (err)
621 		werr = err;
622 	return werr;
623 }
624 
625 /*
626  * when btree blocks are allocated, they have some corresponding bits set for
627  * them in one of two extent_io trees.  This is used to make sure all of
628  * those extents are on disk for transaction or log commit.  We wait
629  * on all the pages and clear them from the dirty pages state tree
630  */
631 int btrfs_wait_marked_extents(struct btrfs_root *root,
632 			      struct extent_io_tree *dirty_pages, int mark)
633 {
634 	int ret;
635 	int err = 0;
636 	int werr = 0;
637 	struct page *page;
638 	struct inode *btree_inode = root->fs_info->btree_inode;
639 	u64 start = 0;
640 	u64 end;
641 	unsigned long index;
642 
643 	while (1) {
644 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
645 					    mark);
646 		if (ret)
647 			break;
648 
649 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
650 		while (start <= end) {
651 			index = start >> PAGE_CACHE_SHIFT;
652 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
653 			page = find_get_page(btree_inode->i_mapping, index);
654 			if (!page)
655 				continue;
656 			if (PageDirty(page)) {
657 				btree_lock_page_hook(page);
658 				wait_on_page_writeback(page);
659 				err = write_one_page(page, 0);
660 				if (err)
661 					werr = err;
662 			}
663 			wait_on_page_writeback(page);
664 			page_cache_release(page);
665 			cond_resched();
666 		}
667 	}
668 	if (err)
669 		werr = err;
670 	return werr;
671 }
672 
673 /*
674  * when btree blocks are allocated, they have some corresponding bits set for
675  * them in one of two extent_io trees.  This is used to make sure all of
676  * those extents are on disk for transaction or log commit
677  */
678 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
679 				struct extent_io_tree *dirty_pages, int mark)
680 {
681 	int ret;
682 	int ret2;
683 
684 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
685 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
686 	return ret || ret2;
687 }
688 
689 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
690 				     struct btrfs_root *root)
691 {
692 	if (!trans || !trans->transaction) {
693 		struct inode *btree_inode;
694 		btree_inode = root->fs_info->btree_inode;
695 		return filemap_write_and_wait(btree_inode->i_mapping);
696 	}
697 	return btrfs_write_and_wait_marked_extents(root,
698 					   &trans->transaction->dirty_pages,
699 					   EXTENT_DIRTY);
700 }
701 
702 /*
703  * this is used to update the root pointer in the tree of tree roots.
704  *
705  * But, in the case of the extent allocation tree, updating the root
706  * pointer may allocate blocks which may change the root of the extent
707  * allocation tree.
708  *
709  * So, this loops and repeats and makes sure the cowonly root didn't
710  * change while the root pointer was being updated in the metadata.
711  */
712 static int update_cowonly_root(struct btrfs_trans_handle *trans,
713 			       struct btrfs_root *root)
714 {
715 	int ret;
716 	u64 old_root_bytenr;
717 	u64 old_root_used;
718 	struct btrfs_root *tree_root = root->fs_info->tree_root;
719 
720 	old_root_used = btrfs_root_used(&root->root_item);
721 	btrfs_write_dirty_block_groups(trans, root);
722 
723 	while (1) {
724 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
725 		if (old_root_bytenr == root->node->start &&
726 		    old_root_used == btrfs_root_used(&root->root_item))
727 			break;
728 
729 		btrfs_set_root_node(&root->root_item, root->node);
730 		ret = btrfs_update_root(trans, tree_root,
731 					&root->root_key,
732 					&root->root_item);
733 		BUG_ON(ret);
734 
735 		old_root_used = btrfs_root_used(&root->root_item);
736 		ret = btrfs_write_dirty_block_groups(trans, root);
737 		BUG_ON(ret);
738 	}
739 
740 	if (root != root->fs_info->extent_root)
741 		switch_commit_root(root);
742 
743 	return 0;
744 }
745 
746 /*
747  * update all the cowonly tree roots on disk
748  */
749 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
750 					 struct btrfs_root *root)
751 {
752 	struct btrfs_fs_info *fs_info = root->fs_info;
753 	struct list_head *next;
754 	struct extent_buffer *eb;
755 	int ret;
756 
757 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
758 	BUG_ON(ret);
759 
760 	eb = btrfs_lock_root_node(fs_info->tree_root);
761 	btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
762 	btrfs_tree_unlock(eb);
763 	free_extent_buffer(eb);
764 
765 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
766 	BUG_ON(ret);
767 
768 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
769 		next = fs_info->dirty_cowonly_roots.next;
770 		list_del_init(next);
771 		root = list_entry(next, struct btrfs_root, dirty_list);
772 
773 		update_cowonly_root(trans, root);
774 	}
775 
776 	down_write(&fs_info->extent_commit_sem);
777 	switch_commit_root(fs_info->extent_root);
778 	up_write(&fs_info->extent_commit_sem);
779 
780 	return 0;
781 }
782 
783 /*
784  * dead roots are old snapshots that need to be deleted.  This allocates
785  * a dirty root struct and adds it into the list of dead roots that need to
786  * be deleted
787  */
788 int btrfs_add_dead_root(struct btrfs_root *root)
789 {
790 	spin_lock(&root->fs_info->trans_lock);
791 	list_add(&root->root_list, &root->fs_info->dead_roots);
792 	spin_unlock(&root->fs_info->trans_lock);
793 	return 0;
794 }
795 
796 /*
797  * update all the cowonly tree roots on disk
798  */
799 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
800 				    struct btrfs_root *root)
801 {
802 	struct btrfs_root *gang[8];
803 	struct btrfs_fs_info *fs_info = root->fs_info;
804 	int i;
805 	int ret;
806 	int err = 0;
807 
808 	spin_lock(&fs_info->fs_roots_radix_lock);
809 	while (1) {
810 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
811 						 (void **)gang, 0,
812 						 ARRAY_SIZE(gang),
813 						 BTRFS_ROOT_TRANS_TAG);
814 		if (ret == 0)
815 			break;
816 		for (i = 0; i < ret; i++) {
817 			root = gang[i];
818 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
819 					(unsigned long)root->root_key.objectid,
820 					BTRFS_ROOT_TRANS_TAG);
821 			spin_unlock(&fs_info->fs_roots_radix_lock);
822 
823 			btrfs_free_log(trans, root);
824 			btrfs_update_reloc_root(trans, root);
825 			btrfs_orphan_commit_root(trans, root);
826 
827 			btrfs_save_ino_cache(root, trans);
828 
829 			if (root->commit_root != root->node) {
830 				mutex_lock(&root->fs_commit_mutex);
831 				switch_commit_root(root);
832 				btrfs_unpin_free_ino(root);
833 				mutex_unlock(&root->fs_commit_mutex);
834 
835 				btrfs_set_root_node(&root->root_item,
836 						    root->node);
837 			}
838 
839 			err = btrfs_update_root(trans, fs_info->tree_root,
840 						&root->root_key,
841 						&root->root_item);
842 			spin_lock(&fs_info->fs_roots_radix_lock);
843 			if (err)
844 				break;
845 		}
846 	}
847 	spin_unlock(&fs_info->fs_roots_radix_lock);
848 	return err;
849 }
850 
851 /*
852  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
853  * otherwise every leaf in the btree is read and defragged.
854  */
855 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
856 {
857 	struct btrfs_fs_info *info = root->fs_info;
858 	struct btrfs_trans_handle *trans;
859 	int ret;
860 	unsigned long nr;
861 
862 	if (xchg(&root->defrag_running, 1))
863 		return 0;
864 
865 	while (1) {
866 		trans = btrfs_start_transaction(root, 0);
867 		if (IS_ERR(trans))
868 			return PTR_ERR(trans);
869 
870 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
871 
872 		nr = trans->blocks_used;
873 		btrfs_end_transaction(trans, root);
874 		btrfs_btree_balance_dirty(info->tree_root, nr);
875 		cond_resched();
876 
877 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
878 			break;
879 	}
880 	root->defrag_running = 0;
881 	return ret;
882 }
883 
884 /*
885  * new snapshots need to be created at a very specific time in the
886  * transaction commit.  This does the actual creation
887  */
888 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
889 				   struct btrfs_fs_info *fs_info,
890 				   struct btrfs_pending_snapshot *pending)
891 {
892 	struct btrfs_key key;
893 	struct btrfs_root_item *new_root_item;
894 	struct btrfs_root *tree_root = fs_info->tree_root;
895 	struct btrfs_root *root = pending->root;
896 	struct btrfs_root *parent_root;
897 	struct inode *parent_inode;
898 	struct dentry *parent;
899 	struct dentry *dentry;
900 	struct extent_buffer *tmp;
901 	struct extent_buffer *old;
902 	int ret;
903 	u64 to_reserve = 0;
904 	u64 index = 0;
905 	u64 objectid;
906 	u64 root_flags;
907 
908 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
909 	if (!new_root_item) {
910 		pending->error = -ENOMEM;
911 		goto fail;
912 	}
913 
914 	ret = btrfs_find_free_objectid(tree_root, &objectid);
915 	if (ret) {
916 		pending->error = ret;
917 		goto fail;
918 	}
919 
920 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
921 	btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
922 
923 	if (to_reserve > 0) {
924 		ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
925 					  to_reserve);
926 		if (ret) {
927 			pending->error = ret;
928 			goto fail;
929 		}
930 	}
931 
932 	key.objectid = objectid;
933 	key.offset = (u64)-1;
934 	key.type = BTRFS_ROOT_ITEM_KEY;
935 
936 	trans->block_rsv = &pending->block_rsv;
937 
938 	dentry = pending->dentry;
939 	parent = dget_parent(dentry);
940 	parent_inode = parent->d_inode;
941 	parent_root = BTRFS_I(parent_inode)->root;
942 	record_root_in_trans(trans, parent_root);
943 
944 	/*
945 	 * insert the directory item
946 	 */
947 	ret = btrfs_set_inode_index(parent_inode, &index);
948 	BUG_ON(ret);
949 	ret = btrfs_insert_dir_item(trans, parent_root,
950 				dentry->d_name.name, dentry->d_name.len,
951 				parent_inode, &key,
952 				BTRFS_FT_DIR, index);
953 	BUG_ON(ret);
954 
955 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
956 					 dentry->d_name.len * 2);
957 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
958 	BUG_ON(ret);
959 
960 	/*
961 	 * pull in the delayed directory update
962 	 * and the delayed inode item
963 	 * otherwise we corrupt the FS during
964 	 * snapshot
965 	 */
966 	ret = btrfs_run_delayed_items(trans, root);
967 	BUG_ON(ret);
968 
969 	record_root_in_trans(trans, root);
970 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
971 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
972 	btrfs_check_and_init_root_item(new_root_item);
973 
974 	root_flags = btrfs_root_flags(new_root_item);
975 	if (pending->readonly)
976 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
977 	else
978 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
979 	btrfs_set_root_flags(new_root_item, root_flags);
980 
981 	old = btrfs_lock_root_node(root);
982 	btrfs_cow_block(trans, root, old, NULL, 0, &old);
983 	btrfs_set_lock_blocking(old);
984 
985 	btrfs_copy_root(trans, root, old, &tmp, objectid);
986 	btrfs_tree_unlock(old);
987 	free_extent_buffer(old);
988 
989 	btrfs_set_root_node(new_root_item, tmp);
990 	/* record when the snapshot was created in key.offset */
991 	key.offset = trans->transid;
992 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
993 	btrfs_tree_unlock(tmp);
994 	free_extent_buffer(tmp);
995 	BUG_ON(ret);
996 
997 	/*
998 	 * insert root back/forward references
999 	 */
1000 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1001 				 parent_root->root_key.objectid,
1002 				 btrfs_ino(parent_inode), index,
1003 				 dentry->d_name.name, dentry->d_name.len);
1004 	BUG_ON(ret);
1005 	dput(parent);
1006 
1007 	key.offset = (u64)-1;
1008 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1009 	BUG_ON(IS_ERR(pending->snap));
1010 
1011 	btrfs_reloc_post_snapshot(trans, pending);
1012 	btrfs_orphan_post_snapshot(trans, pending);
1013 fail:
1014 	kfree(new_root_item);
1015 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1016 	return 0;
1017 }
1018 
1019 /*
1020  * create all the snapshots we've scheduled for creation
1021  */
1022 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1023 					     struct btrfs_fs_info *fs_info)
1024 {
1025 	struct btrfs_pending_snapshot *pending;
1026 	struct list_head *head = &trans->transaction->pending_snapshots;
1027 	int ret;
1028 
1029 	list_for_each_entry(pending, head, list) {
1030 		ret = create_pending_snapshot(trans, fs_info, pending);
1031 		BUG_ON(ret);
1032 	}
1033 	return 0;
1034 }
1035 
1036 static void update_super_roots(struct btrfs_root *root)
1037 {
1038 	struct btrfs_root_item *root_item;
1039 	struct btrfs_super_block *super;
1040 
1041 	super = &root->fs_info->super_copy;
1042 
1043 	root_item = &root->fs_info->chunk_root->root_item;
1044 	super->chunk_root = root_item->bytenr;
1045 	super->chunk_root_generation = root_item->generation;
1046 	super->chunk_root_level = root_item->level;
1047 
1048 	root_item = &root->fs_info->tree_root->root_item;
1049 	super->root = root_item->bytenr;
1050 	super->generation = root_item->generation;
1051 	super->root_level = root_item->level;
1052 	if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1053 		super->cache_generation = root_item->generation;
1054 }
1055 
1056 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1057 {
1058 	int ret = 0;
1059 	spin_lock(&info->trans_lock);
1060 	if (info->running_transaction)
1061 		ret = info->running_transaction->in_commit;
1062 	spin_unlock(&info->trans_lock);
1063 	return ret;
1064 }
1065 
1066 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1067 {
1068 	int ret = 0;
1069 	spin_lock(&info->trans_lock);
1070 	if (info->running_transaction)
1071 		ret = info->running_transaction->blocked;
1072 	spin_unlock(&info->trans_lock);
1073 	return ret;
1074 }
1075 
1076 /*
1077  * wait for the current transaction commit to start and block subsequent
1078  * transaction joins
1079  */
1080 static void wait_current_trans_commit_start(struct btrfs_root *root,
1081 					    struct btrfs_transaction *trans)
1082 {
1083 	DEFINE_WAIT(wait);
1084 
1085 	if (trans->in_commit)
1086 		return;
1087 
1088 	while (1) {
1089 		prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait,
1090 				TASK_UNINTERRUPTIBLE);
1091 		if (trans->in_commit) {
1092 			finish_wait(&root->fs_info->transaction_blocked_wait,
1093 				    &wait);
1094 			break;
1095 		}
1096 		schedule();
1097 		finish_wait(&root->fs_info->transaction_blocked_wait, &wait);
1098 	}
1099 }
1100 
1101 /*
1102  * wait for the current transaction to start and then become unblocked.
1103  * caller holds ref.
1104  */
1105 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1106 					 struct btrfs_transaction *trans)
1107 {
1108 	DEFINE_WAIT(wait);
1109 
1110 	if (trans->commit_done || (trans->in_commit && !trans->blocked))
1111 		return;
1112 
1113 	while (1) {
1114 		prepare_to_wait(&root->fs_info->transaction_wait, &wait,
1115 				TASK_UNINTERRUPTIBLE);
1116 		if (trans->commit_done ||
1117 		    (trans->in_commit && !trans->blocked)) {
1118 			finish_wait(&root->fs_info->transaction_wait,
1119 				    &wait);
1120 			break;
1121 		}
1122 		schedule();
1123 		finish_wait(&root->fs_info->transaction_wait,
1124 			    &wait);
1125 	}
1126 }
1127 
1128 /*
1129  * commit transactions asynchronously. once btrfs_commit_transaction_async
1130  * returns, any subsequent transaction will not be allowed to join.
1131  */
1132 struct btrfs_async_commit {
1133 	struct btrfs_trans_handle *newtrans;
1134 	struct btrfs_root *root;
1135 	struct delayed_work work;
1136 };
1137 
1138 static void do_async_commit(struct work_struct *work)
1139 {
1140 	struct btrfs_async_commit *ac =
1141 		container_of(work, struct btrfs_async_commit, work.work);
1142 
1143 	btrfs_commit_transaction(ac->newtrans, ac->root);
1144 	kfree(ac);
1145 }
1146 
1147 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1148 				   struct btrfs_root *root,
1149 				   int wait_for_unblock)
1150 {
1151 	struct btrfs_async_commit *ac;
1152 	struct btrfs_transaction *cur_trans;
1153 
1154 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1155 	if (!ac)
1156 		return -ENOMEM;
1157 
1158 	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1159 	ac->root = root;
1160 	ac->newtrans = btrfs_join_transaction(root);
1161 	if (IS_ERR(ac->newtrans)) {
1162 		int err = PTR_ERR(ac->newtrans);
1163 		kfree(ac);
1164 		return err;
1165 	}
1166 
1167 	/* take transaction reference */
1168 	cur_trans = trans->transaction;
1169 	atomic_inc(&cur_trans->use_count);
1170 
1171 	btrfs_end_transaction(trans, root);
1172 	schedule_delayed_work(&ac->work, 0);
1173 
1174 	/* wait for transaction to start and unblock */
1175 	if (wait_for_unblock)
1176 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1177 	else
1178 		wait_current_trans_commit_start(root, cur_trans);
1179 
1180 	if (current->journal_info == trans)
1181 		current->journal_info = NULL;
1182 
1183 	put_transaction(cur_trans);
1184 	return 0;
1185 }
1186 
1187 /*
1188  * btrfs_transaction state sequence:
1189  *    in_commit = 0, blocked = 0  (initial)
1190  *    in_commit = 1, blocked = 1
1191  *    blocked = 0
1192  *    commit_done = 1
1193  */
1194 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1195 			     struct btrfs_root *root)
1196 {
1197 	unsigned long joined = 0;
1198 	struct btrfs_transaction *cur_trans;
1199 	struct btrfs_transaction *prev_trans = NULL;
1200 	DEFINE_WAIT(wait);
1201 	int ret;
1202 	int should_grow = 0;
1203 	unsigned long now = get_seconds();
1204 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1205 
1206 	btrfs_run_ordered_operations(root, 0);
1207 
1208 	/* make a pass through all the delayed refs we have so far
1209 	 * any runnings procs may add more while we are here
1210 	 */
1211 	ret = btrfs_run_delayed_refs(trans, root, 0);
1212 	BUG_ON(ret);
1213 
1214 	btrfs_trans_release_metadata(trans, root);
1215 
1216 	cur_trans = trans->transaction;
1217 	/*
1218 	 * set the flushing flag so procs in this transaction have to
1219 	 * start sending their work down.
1220 	 */
1221 	cur_trans->delayed_refs.flushing = 1;
1222 
1223 	ret = btrfs_run_delayed_refs(trans, root, 0);
1224 	BUG_ON(ret);
1225 
1226 	spin_lock(&cur_trans->commit_lock);
1227 	if (cur_trans->in_commit) {
1228 		spin_unlock(&cur_trans->commit_lock);
1229 		atomic_inc(&cur_trans->use_count);
1230 		btrfs_end_transaction(trans, root);
1231 
1232 		ret = wait_for_commit(root, cur_trans);
1233 		BUG_ON(ret);
1234 
1235 		put_transaction(cur_trans);
1236 
1237 		return 0;
1238 	}
1239 
1240 	trans->transaction->in_commit = 1;
1241 	trans->transaction->blocked = 1;
1242 	spin_unlock(&cur_trans->commit_lock);
1243 	wake_up(&root->fs_info->transaction_blocked_wait);
1244 
1245 	spin_lock(&root->fs_info->trans_lock);
1246 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1247 		prev_trans = list_entry(cur_trans->list.prev,
1248 					struct btrfs_transaction, list);
1249 		if (!prev_trans->commit_done) {
1250 			atomic_inc(&prev_trans->use_count);
1251 			spin_unlock(&root->fs_info->trans_lock);
1252 
1253 			wait_for_commit(root, prev_trans);
1254 
1255 			put_transaction(prev_trans);
1256 		} else {
1257 			spin_unlock(&root->fs_info->trans_lock);
1258 		}
1259 	} else {
1260 		spin_unlock(&root->fs_info->trans_lock);
1261 	}
1262 
1263 	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1264 		should_grow = 1;
1265 
1266 	do {
1267 		int snap_pending = 0;
1268 
1269 		joined = cur_trans->num_joined;
1270 		if (!list_empty(&trans->transaction->pending_snapshots))
1271 			snap_pending = 1;
1272 
1273 		WARN_ON(cur_trans != trans->transaction);
1274 
1275 		if (flush_on_commit || snap_pending) {
1276 			btrfs_start_delalloc_inodes(root, 1);
1277 			ret = btrfs_wait_ordered_extents(root, 0, 1);
1278 			BUG_ON(ret);
1279 		}
1280 
1281 		ret = btrfs_run_delayed_items(trans, root);
1282 		BUG_ON(ret);
1283 
1284 		/*
1285 		 * rename don't use btrfs_join_transaction, so, once we
1286 		 * set the transaction to blocked above, we aren't going
1287 		 * to get any new ordered operations.  We can safely run
1288 		 * it here and no for sure that nothing new will be added
1289 		 * to the list
1290 		 */
1291 		btrfs_run_ordered_operations(root, 1);
1292 
1293 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1294 				TASK_UNINTERRUPTIBLE);
1295 
1296 		if (atomic_read(&cur_trans->num_writers) > 1)
1297 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1298 		else if (should_grow)
1299 			schedule_timeout(1);
1300 
1301 		finish_wait(&cur_trans->writer_wait, &wait);
1302 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1303 		 (should_grow && cur_trans->num_joined != joined));
1304 
1305 	/*
1306 	 * Ok now we need to make sure to block out any other joins while we
1307 	 * commit the transaction.  We could have started a join before setting
1308 	 * no_join so make sure to wait for num_writers to == 1 again.
1309 	 */
1310 	spin_lock(&root->fs_info->trans_lock);
1311 	root->fs_info->trans_no_join = 1;
1312 	spin_unlock(&root->fs_info->trans_lock);
1313 	wait_event(cur_trans->writer_wait,
1314 		   atomic_read(&cur_trans->num_writers) == 1);
1315 
1316 	/*
1317 	 * the reloc mutex makes sure that we stop
1318 	 * the balancing code from coming in and moving
1319 	 * extents around in the middle of the commit
1320 	 */
1321 	mutex_lock(&root->fs_info->reloc_mutex);
1322 
1323 	ret = btrfs_run_delayed_items(trans, root);
1324 	BUG_ON(ret);
1325 
1326 	ret = create_pending_snapshots(trans, root->fs_info);
1327 	BUG_ON(ret);
1328 
1329 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1330 	BUG_ON(ret);
1331 
1332 	/*
1333 	 * make sure none of the code above managed to slip in a
1334 	 * delayed item
1335 	 */
1336 	btrfs_assert_delayed_root_empty(root);
1337 
1338 	WARN_ON(cur_trans != trans->transaction);
1339 
1340 	btrfs_scrub_pause(root);
1341 	/* btrfs_commit_tree_roots is responsible for getting the
1342 	 * various roots consistent with each other.  Every pointer
1343 	 * in the tree of tree roots has to point to the most up to date
1344 	 * root for every subvolume and other tree.  So, we have to keep
1345 	 * the tree logging code from jumping in and changing any
1346 	 * of the trees.
1347 	 *
1348 	 * At this point in the commit, there can't be any tree-log
1349 	 * writers, but a little lower down we drop the trans mutex
1350 	 * and let new people in.  By holding the tree_log_mutex
1351 	 * from now until after the super is written, we avoid races
1352 	 * with the tree-log code.
1353 	 */
1354 	mutex_lock(&root->fs_info->tree_log_mutex);
1355 
1356 	ret = commit_fs_roots(trans, root);
1357 	BUG_ON(ret);
1358 
1359 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1360 	 * safe to free the root of tree log roots
1361 	 */
1362 	btrfs_free_log_root_tree(trans, root->fs_info);
1363 
1364 	ret = commit_cowonly_roots(trans, root);
1365 	BUG_ON(ret);
1366 
1367 	btrfs_prepare_extent_commit(trans, root);
1368 
1369 	cur_trans = root->fs_info->running_transaction;
1370 
1371 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1372 			    root->fs_info->tree_root->node);
1373 	switch_commit_root(root->fs_info->tree_root);
1374 
1375 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1376 			    root->fs_info->chunk_root->node);
1377 	switch_commit_root(root->fs_info->chunk_root);
1378 
1379 	update_super_roots(root);
1380 
1381 	if (!root->fs_info->log_root_recovering) {
1382 		btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1383 		btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1384 	}
1385 
1386 	memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1387 	       sizeof(root->fs_info->super_copy));
1388 
1389 	trans->transaction->blocked = 0;
1390 	spin_lock(&root->fs_info->trans_lock);
1391 	root->fs_info->running_transaction = NULL;
1392 	root->fs_info->trans_no_join = 0;
1393 	spin_unlock(&root->fs_info->trans_lock);
1394 	mutex_unlock(&root->fs_info->reloc_mutex);
1395 
1396 	wake_up(&root->fs_info->transaction_wait);
1397 
1398 	ret = btrfs_write_and_wait_transaction(trans, root);
1399 	BUG_ON(ret);
1400 	write_ctree_super(trans, root, 0);
1401 
1402 	/*
1403 	 * the super is written, we can safely allow the tree-loggers
1404 	 * to go about their business
1405 	 */
1406 	mutex_unlock(&root->fs_info->tree_log_mutex);
1407 
1408 	btrfs_finish_extent_commit(trans, root);
1409 
1410 	cur_trans->commit_done = 1;
1411 
1412 	root->fs_info->last_trans_committed = cur_trans->transid;
1413 
1414 	wake_up(&cur_trans->commit_wait);
1415 
1416 	spin_lock(&root->fs_info->trans_lock);
1417 	list_del_init(&cur_trans->list);
1418 	spin_unlock(&root->fs_info->trans_lock);
1419 
1420 	put_transaction(cur_trans);
1421 	put_transaction(cur_trans);
1422 
1423 	trace_btrfs_transaction_commit(root);
1424 
1425 	btrfs_scrub_continue(root);
1426 
1427 	if (current->journal_info == trans)
1428 		current->journal_info = NULL;
1429 
1430 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1431 
1432 	if (current != root->fs_info->transaction_kthread)
1433 		btrfs_run_delayed_iputs(root);
1434 
1435 	return ret;
1436 }
1437 
1438 /*
1439  * interface function to delete all the snapshots we have scheduled for deletion
1440  */
1441 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1442 {
1443 	LIST_HEAD(list);
1444 	struct btrfs_fs_info *fs_info = root->fs_info;
1445 
1446 	spin_lock(&fs_info->trans_lock);
1447 	list_splice_init(&fs_info->dead_roots, &list);
1448 	spin_unlock(&fs_info->trans_lock);
1449 
1450 	while (!list_empty(&list)) {
1451 		root = list_entry(list.next, struct btrfs_root, root_list);
1452 		list_del(&root->root_list);
1453 
1454 		btrfs_kill_all_delayed_nodes(root);
1455 
1456 		if (btrfs_header_backref_rev(root->node) <
1457 		    BTRFS_MIXED_BACKREF_REV)
1458 			btrfs_drop_snapshot(root, NULL, 0);
1459 		else
1460 			btrfs_drop_snapshot(root, NULL, 1);
1461 	}
1462 	return 0;
1463 }
1464