1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/sched.h> 21 #include <linux/writeback.h> 22 #include <linux/pagemap.h> 23 #include <linux/blkdev.h> 24 #include "ctree.h" 25 #include "disk-io.h" 26 #include "transaction.h" 27 #include "locking.h" 28 #include "tree-log.h" 29 30 #define BTRFS_ROOT_TRANS_TAG 0 31 32 static noinline void put_transaction(struct btrfs_transaction *transaction) 33 { 34 WARN_ON(transaction->use_count == 0); 35 transaction->use_count--; 36 if (transaction->use_count == 0) { 37 list_del_init(&transaction->list); 38 memset(transaction, 0, sizeof(*transaction)); 39 kmem_cache_free(btrfs_transaction_cachep, transaction); 40 } 41 } 42 43 static noinline void switch_commit_root(struct btrfs_root *root) 44 { 45 free_extent_buffer(root->commit_root); 46 root->commit_root = btrfs_root_node(root); 47 } 48 49 /* 50 * either allocate a new transaction or hop into the existing one 51 */ 52 static noinline int join_transaction(struct btrfs_root *root) 53 { 54 struct btrfs_transaction *cur_trans; 55 cur_trans = root->fs_info->running_transaction; 56 if (!cur_trans) { 57 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, 58 GFP_NOFS); 59 BUG_ON(!cur_trans); 60 root->fs_info->generation++; 61 cur_trans->num_writers = 1; 62 cur_trans->num_joined = 0; 63 cur_trans->transid = root->fs_info->generation; 64 init_waitqueue_head(&cur_trans->writer_wait); 65 init_waitqueue_head(&cur_trans->commit_wait); 66 cur_trans->in_commit = 0; 67 cur_trans->blocked = 0; 68 cur_trans->use_count = 1; 69 cur_trans->commit_done = 0; 70 cur_trans->start_time = get_seconds(); 71 72 cur_trans->delayed_refs.root.rb_node = NULL; 73 cur_trans->delayed_refs.num_entries = 0; 74 cur_trans->delayed_refs.num_heads_ready = 0; 75 cur_trans->delayed_refs.num_heads = 0; 76 cur_trans->delayed_refs.flushing = 0; 77 cur_trans->delayed_refs.run_delayed_start = 0; 78 spin_lock_init(&cur_trans->delayed_refs.lock); 79 80 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 81 list_add_tail(&cur_trans->list, &root->fs_info->trans_list); 82 extent_io_tree_init(&cur_trans->dirty_pages, 83 root->fs_info->btree_inode->i_mapping, 84 GFP_NOFS); 85 spin_lock(&root->fs_info->new_trans_lock); 86 root->fs_info->running_transaction = cur_trans; 87 spin_unlock(&root->fs_info->new_trans_lock); 88 } else { 89 cur_trans->num_writers++; 90 cur_trans->num_joined++; 91 } 92 93 return 0; 94 } 95 96 /* 97 * this does all the record keeping required to make sure that a reference 98 * counted root is properly recorded in a given transaction. This is required 99 * to make sure the old root from before we joined the transaction is deleted 100 * when the transaction commits 101 */ 102 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans, 103 struct btrfs_root *root) 104 { 105 if (root->ref_cows && root->last_trans < trans->transid) { 106 WARN_ON(root == root->fs_info->extent_root); 107 WARN_ON(root->commit_root != root->node); 108 109 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 110 (unsigned long)root->root_key.objectid, 111 BTRFS_ROOT_TRANS_TAG); 112 root->last_trans = trans->transid; 113 btrfs_init_reloc_root(trans, root); 114 } 115 return 0; 116 } 117 118 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 119 struct btrfs_root *root) 120 { 121 if (!root->ref_cows) 122 return 0; 123 124 mutex_lock(&root->fs_info->trans_mutex); 125 if (root->last_trans == trans->transid) { 126 mutex_unlock(&root->fs_info->trans_mutex); 127 return 0; 128 } 129 130 record_root_in_trans(trans, root); 131 mutex_unlock(&root->fs_info->trans_mutex); 132 return 0; 133 } 134 135 /* wait for commit against the current transaction to become unblocked 136 * when this is done, it is safe to start a new transaction, but the current 137 * transaction might not be fully on disk. 138 */ 139 static void wait_current_trans(struct btrfs_root *root) 140 { 141 struct btrfs_transaction *cur_trans; 142 143 cur_trans = root->fs_info->running_transaction; 144 if (cur_trans && cur_trans->blocked) { 145 DEFINE_WAIT(wait); 146 cur_trans->use_count++; 147 while (1) { 148 prepare_to_wait(&root->fs_info->transaction_wait, &wait, 149 TASK_UNINTERRUPTIBLE); 150 if (cur_trans->blocked) { 151 mutex_unlock(&root->fs_info->trans_mutex); 152 schedule(); 153 mutex_lock(&root->fs_info->trans_mutex); 154 finish_wait(&root->fs_info->transaction_wait, 155 &wait); 156 } else { 157 finish_wait(&root->fs_info->transaction_wait, 158 &wait); 159 break; 160 } 161 } 162 put_transaction(cur_trans); 163 } 164 } 165 166 enum btrfs_trans_type { 167 TRANS_START, 168 TRANS_JOIN, 169 TRANS_USERSPACE, 170 }; 171 172 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root, 173 int num_blocks, int type) 174 { 175 struct btrfs_trans_handle *h = 176 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 177 int ret; 178 179 mutex_lock(&root->fs_info->trans_mutex); 180 if (!root->fs_info->log_root_recovering && 181 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) || 182 type == TRANS_USERSPACE)) 183 wait_current_trans(root); 184 ret = join_transaction(root); 185 BUG_ON(ret); 186 187 h->transid = root->fs_info->running_transaction->transid; 188 h->transaction = root->fs_info->running_transaction; 189 h->blocks_reserved = num_blocks; 190 h->blocks_used = 0; 191 h->block_group = 0; 192 h->alloc_exclude_nr = 0; 193 h->alloc_exclude_start = 0; 194 h->delayed_ref_updates = 0; 195 196 if (!current->journal_info && type != TRANS_USERSPACE) 197 current->journal_info = h; 198 199 root->fs_info->running_transaction->use_count++; 200 record_root_in_trans(h, root); 201 mutex_unlock(&root->fs_info->trans_mutex); 202 return h; 203 } 204 205 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 206 int num_blocks) 207 { 208 return start_transaction(root, num_blocks, TRANS_START); 209 } 210 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root, 211 int num_blocks) 212 { 213 return start_transaction(root, num_blocks, TRANS_JOIN); 214 } 215 216 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r, 217 int num_blocks) 218 { 219 return start_transaction(r, num_blocks, TRANS_USERSPACE); 220 } 221 222 /* wait for a transaction commit to be fully complete */ 223 static noinline int wait_for_commit(struct btrfs_root *root, 224 struct btrfs_transaction *commit) 225 { 226 DEFINE_WAIT(wait); 227 mutex_lock(&root->fs_info->trans_mutex); 228 while (!commit->commit_done) { 229 prepare_to_wait(&commit->commit_wait, &wait, 230 TASK_UNINTERRUPTIBLE); 231 if (commit->commit_done) 232 break; 233 mutex_unlock(&root->fs_info->trans_mutex); 234 schedule(); 235 mutex_lock(&root->fs_info->trans_mutex); 236 } 237 mutex_unlock(&root->fs_info->trans_mutex); 238 finish_wait(&commit->commit_wait, &wait); 239 return 0; 240 } 241 242 #if 0 243 /* 244 * rate limit against the drop_snapshot code. This helps to slow down new 245 * operations if the drop_snapshot code isn't able to keep up. 246 */ 247 static void throttle_on_drops(struct btrfs_root *root) 248 { 249 struct btrfs_fs_info *info = root->fs_info; 250 int harder_count = 0; 251 252 harder: 253 if (atomic_read(&info->throttles)) { 254 DEFINE_WAIT(wait); 255 int thr; 256 thr = atomic_read(&info->throttle_gen); 257 258 do { 259 prepare_to_wait(&info->transaction_throttle, 260 &wait, TASK_UNINTERRUPTIBLE); 261 if (!atomic_read(&info->throttles)) { 262 finish_wait(&info->transaction_throttle, &wait); 263 break; 264 } 265 schedule(); 266 finish_wait(&info->transaction_throttle, &wait); 267 } while (thr == atomic_read(&info->throttle_gen)); 268 harder_count++; 269 270 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 && 271 harder_count < 2) 272 goto harder; 273 274 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 && 275 harder_count < 10) 276 goto harder; 277 278 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 && 279 harder_count < 20) 280 goto harder; 281 } 282 } 283 #endif 284 285 void btrfs_throttle(struct btrfs_root *root) 286 { 287 mutex_lock(&root->fs_info->trans_mutex); 288 if (!root->fs_info->open_ioctl_trans) 289 wait_current_trans(root); 290 mutex_unlock(&root->fs_info->trans_mutex); 291 } 292 293 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 294 struct btrfs_root *root, int throttle) 295 { 296 struct btrfs_transaction *cur_trans; 297 struct btrfs_fs_info *info = root->fs_info; 298 int count = 0; 299 300 while (count < 4) { 301 unsigned long cur = trans->delayed_ref_updates; 302 trans->delayed_ref_updates = 0; 303 if (cur && 304 trans->transaction->delayed_refs.num_heads_ready > 64) { 305 trans->delayed_ref_updates = 0; 306 307 /* 308 * do a full flush if the transaction is trying 309 * to close 310 */ 311 if (trans->transaction->delayed_refs.flushing) 312 cur = 0; 313 btrfs_run_delayed_refs(trans, root, cur); 314 } else { 315 break; 316 } 317 count++; 318 } 319 320 mutex_lock(&info->trans_mutex); 321 cur_trans = info->running_transaction; 322 WARN_ON(cur_trans != trans->transaction); 323 WARN_ON(cur_trans->num_writers < 1); 324 cur_trans->num_writers--; 325 326 if (waitqueue_active(&cur_trans->writer_wait)) 327 wake_up(&cur_trans->writer_wait); 328 put_transaction(cur_trans); 329 mutex_unlock(&info->trans_mutex); 330 331 if (current->journal_info == trans) 332 current->journal_info = NULL; 333 memset(trans, 0, sizeof(*trans)); 334 kmem_cache_free(btrfs_trans_handle_cachep, trans); 335 336 if (throttle) 337 btrfs_run_delayed_iputs(root); 338 339 return 0; 340 } 341 342 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 343 struct btrfs_root *root) 344 { 345 return __btrfs_end_transaction(trans, root, 0); 346 } 347 348 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 349 struct btrfs_root *root) 350 { 351 return __btrfs_end_transaction(trans, root, 1); 352 } 353 354 /* 355 * when btree blocks are allocated, they have some corresponding bits set for 356 * them in one of two extent_io trees. This is used to make sure all of 357 * those extents are sent to disk but does not wait on them 358 */ 359 int btrfs_write_marked_extents(struct btrfs_root *root, 360 struct extent_io_tree *dirty_pages, int mark) 361 { 362 int ret; 363 int err = 0; 364 int werr = 0; 365 struct page *page; 366 struct inode *btree_inode = root->fs_info->btree_inode; 367 u64 start = 0; 368 u64 end; 369 unsigned long index; 370 371 while (1) { 372 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 373 mark); 374 if (ret) 375 break; 376 while (start <= end) { 377 cond_resched(); 378 379 index = start >> PAGE_CACHE_SHIFT; 380 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 381 page = find_get_page(btree_inode->i_mapping, index); 382 if (!page) 383 continue; 384 385 btree_lock_page_hook(page); 386 if (!page->mapping) { 387 unlock_page(page); 388 page_cache_release(page); 389 continue; 390 } 391 392 if (PageWriteback(page)) { 393 if (PageDirty(page)) 394 wait_on_page_writeback(page); 395 else { 396 unlock_page(page); 397 page_cache_release(page); 398 continue; 399 } 400 } 401 err = write_one_page(page, 0); 402 if (err) 403 werr = err; 404 page_cache_release(page); 405 } 406 } 407 if (err) 408 werr = err; 409 return werr; 410 } 411 412 /* 413 * when btree blocks are allocated, they have some corresponding bits set for 414 * them in one of two extent_io trees. This is used to make sure all of 415 * those extents are on disk for transaction or log commit. We wait 416 * on all the pages and clear them from the dirty pages state tree 417 */ 418 int btrfs_wait_marked_extents(struct btrfs_root *root, 419 struct extent_io_tree *dirty_pages, int mark) 420 { 421 int ret; 422 int err = 0; 423 int werr = 0; 424 struct page *page; 425 struct inode *btree_inode = root->fs_info->btree_inode; 426 u64 start = 0; 427 u64 end; 428 unsigned long index; 429 430 while (1) { 431 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 432 mark); 433 if (ret) 434 break; 435 436 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 437 while (start <= end) { 438 index = start >> PAGE_CACHE_SHIFT; 439 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 440 page = find_get_page(btree_inode->i_mapping, index); 441 if (!page) 442 continue; 443 if (PageDirty(page)) { 444 btree_lock_page_hook(page); 445 wait_on_page_writeback(page); 446 err = write_one_page(page, 0); 447 if (err) 448 werr = err; 449 } 450 wait_on_page_writeback(page); 451 page_cache_release(page); 452 cond_resched(); 453 } 454 } 455 if (err) 456 werr = err; 457 return werr; 458 } 459 460 /* 461 * when btree blocks are allocated, they have some corresponding bits set for 462 * them in one of two extent_io trees. This is used to make sure all of 463 * those extents are on disk for transaction or log commit 464 */ 465 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 466 struct extent_io_tree *dirty_pages, int mark) 467 { 468 int ret; 469 int ret2; 470 471 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 472 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 473 return ret || ret2; 474 } 475 476 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 477 struct btrfs_root *root) 478 { 479 if (!trans || !trans->transaction) { 480 struct inode *btree_inode; 481 btree_inode = root->fs_info->btree_inode; 482 return filemap_write_and_wait(btree_inode->i_mapping); 483 } 484 return btrfs_write_and_wait_marked_extents(root, 485 &trans->transaction->dirty_pages, 486 EXTENT_DIRTY); 487 } 488 489 /* 490 * this is used to update the root pointer in the tree of tree roots. 491 * 492 * But, in the case of the extent allocation tree, updating the root 493 * pointer may allocate blocks which may change the root of the extent 494 * allocation tree. 495 * 496 * So, this loops and repeats and makes sure the cowonly root didn't 497 * change while the root pointer was being updated in the metadata. 498 */ 499 static int update_cowonly_root(struct btrfs_trans_handle *trans, 500 struct btrfs_root *root) 501 { 502 int ret; 503 u64 old_root_bytenr; 504 u64 old_root_used; 505 struct btrfs_root *tree_root = root->fs_info->tree_root; 506 507 old_root_used = btrfs_root_used(&root->root_item); 508 btrfs_write_dirty_block_groups(trans, root); 509 510 while (1) { 511 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 512 if (old_root_bytenr == root->node->start && 513 old_root_used == btrfs_root_used(&root->root_item)) 514 break; 515 516 btrfs_set_root_node(&root->root_item, root->node); 517 ret = btrfs_update_root(trans, tree_root, 518 &root->root_key, 519 &root->root_item); 520 BUG_ON(ret); 521 522 old_root_used = btrfs_root_used(&root->root_item); 523 ret = btrfs_write_dirty_block_groups(trans, root); 524 BUG_ON(ret); 525 } 526 527 if (root != root->fs_info->extent_root) 528 switch_commit_root(root); 529 530 return 0; 531 } 532 533 /* 534 * update all the cowonly tree roots on disk 535 */ 536 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 537 struct btrfs_root *root) 538 { 539 struct btrfs_fs_info *fs_info = root->fs_info; 540 struct list_head *next; 541 struct extent_buffer *eb; 542 int ret; 543 544 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 545 BUG_ON(ret); 546 547 eb = btrfs_lock_root_node(fs_info->tree_root); 548 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb); 549 btrfs_tree_unlock(eb); 550 free_extent_buffer(eb); 551 552 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 553 BUG_ON(ret); 554 555 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 556 next = fs_info->dirty_cowonly_roots.next; 557 list_del_init(next); 558 root = list_entry(next, struct btrfs_root, dirty_list); 559 560 update_cowonly_root(trans, root); 561 } 562 563 down_write(&fs_info->extent_commit_sem); 564 switch_commit_root(fs_info->extent_root); 565 up_write(&fs_info->extent_commit_sem); 566 567 return 0; 568 } 569 570 /* 571 * dead roots are old snapshots that need to be deleted. This allocates 572 * a dirty root struct and adds it into the list of dead roots that need to 573 * be deleted 574 */ 575 int btrfs_add_dead_root(struct btrfs_root *root) 576 { 577 mutex_lock(&root->fs_info->trans_mutex); 578 list_add(&root->root_list, &root->fs_info->dead_roots); 579 mutex_unlock(&root->fs_info->trans_mutex); 580 return 0; 581 } 582 583 /* 584 * update all the cowonly tree roots on disk 585 */ 586 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 587 struct btrfs_root *root) 588 { 589 struct btrfs_root *gang[8]; 590 struct btrfs_fs_info *fs_info = root->fs_info; 591 int i; 592 int ret; 593 int err = 0; 594 595 while (1) { 596 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 597 (void **)gang, 0, 598 ARRAY_SIZE(gang), 599 BTRFS_ROOT_TRANS_TAG); 600 if (ret == 0) 601 break; 602 for (i = 0; i < ret; i++) { 603 root = gang[i]; 604 radix_tree_tag_clear(&fs_info->fs_roots_radix, 605 (unsigned long)root->root_key.objectid, 606 BTRFS_ROOT_TRANS_TAG); 607 608 btrfs_free_log(trans, root); 609 btrfs_update_reloc_root(trans, root); 610 611 if (root->commit_root != root->node) { 612 switch_commit_root(root); 613 btrfs_set_root_node(&root->root_item, 614 root->node); 615 } 616 617 err = btrfs_update_root(trans, fs_info->tree_root, 618 &root->root_key, 619 &root->root_item); 620 if (err) 621 break; 622 } 623 } 624 return err; 625 } 626 627 /* 628 * defrag a given btree. If cacheonly == 1, this won't read from the disk, 629 * otherwise every leaf in the btree is read and defragged. 630 */ 631 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly) 632 { 633 struct btrfs_fs_info *info = root->fs_info; 634 int ret; 635 struct btrfs_trans_handle *trans; 636 unsigned long nr; 637 638 smp_mb(); 639 if (root->defrag_running) 640 return 0; 641 trans = btrfs_start_transaction(root, 1); 642 while (1) { 643 root->defrag_running = 1; 644 ret = btrfs_defrag_leaves(trans, root, cacheonly); 645 nr = trans->blocks_used; 646 btrfs_end_transaction(trans, root); 647 btrfs_btree_balance_dirty(info->tree_root, nr); 648 cond_resched(); 649 650 trans = btrfs_start_transaction(root, 1); 651 if (root->fs_info->closing || ret != -EAGAIN) 652 break; 653 } 654 root->defrag_running = 0; 655 smp_mb(); 656 btrfs_end_transaction(trans, root); 657 return 0; 658 } 659 660 #if 0 661 /* 662 * when dropping snapshots, we generate a ton of delayed refs, and it makes 663 * sense not to join the transaction while it is trying to flush the current 664 * queue of delayed refs out. 665 * 666 * This is used by the drop snapshot code only 667 */ 668 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info) 669 { 670 DEFINE_WAIT(wait); 671 672 mutex_lock(&info->trans_mutex); 673 while (info->running_transaction && 674 info->running_transaction->delayed_refs.flushing) { 675 prepare_to_wait(&info->transaction_wait, &wait, 676 TASK_UNINTERRUPTIBLE); 677 mutex_unlock(&info->trans_mutex); 678 679 schedule(); 680 681 mutex_lock(&info->trans_mutex); 682 finish_wait(&info->transaction_wait, &wait); 683 } 684 mutex_unlock(&info->trans_mutex); 685 return 0; 686 } 687 688 /* 689 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on 690 * all of them 691 */ 692 int btrfs_drop_dead_root(struct btrfs_root *root) 693 { 694 struct btrfs_trans_handle *trans; 695 struct btrfs_root *tree_root = root->fs_info->tree_root; 696 unsigned long nr; 697 int ret; 698 699 while (1) { 700 /* 701 * we don't want to jump in and create a bunch of 702 * delayed refs if the transaction is starting to close 703 */ 704 wait_transaction_pre_flush(tree_root->fs_info); 705 trans = btrfs_start_transaction(tree_root, 1); 706 707 /* 708 * we've joined a transaction, make sure it isn't 709 * closing right now 710 */ 711 if (trans->transaction->delayed_refs.flushing) { 712 btrfs_end_transaction(trans, tree_root); 713 continue; 714 } 715 716 ret = btrfs_drop_snapshot(trans, root); 717 if (ret != -EAGAIN) 718 break; 719 720 ret = btrfs_update_root(trans, tree_root, 721 &root->root_key, 722 &root->root_item); 723 if (ret) 724 break; 725 726 nr = trans->blocks_used; 727 ret = btrfs_end_transaction(trans, tree_root); 728 BUG_ON(ret); 729 730 btrfs_btree_balance_dirty(tree_root, nr); 731 cond_resched(); 732 } 733 BUG_ON(ret); 734 735 ret = btrfs_del_root(trans, tree_root, &root->root_key); 736 BUG_ON(ret); 737 738 nr = trans->blocks_used; 739 ret = btrfs_end_transaction(trans, tree_root); 740 BUG_ON(ret); 741 742 free_extent_buffer(root->node); 743 free_extent_buffer(root->commit_root); 744 kfree(root); 745 746 btrfs_btree_balance_dirty(tree_root, nr); 747 return ret; 748 } 749 #endif 750 751 /* 752 * new snapshots need to be created at a very specific time in the 753 * transaction commit. This does the actual creation 754 */ 755 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 756 struct btrfs_fs_info *fs_info, 757 struct btrfs_pending_snapshot *pending) 758 { 759 struct btrfs_key key; 760 struct btrfs_root_item *new_root_item; 761 struct btrfs_root *tree_root = fs_info->tree_root; 762 struct btrfs_root *root = pending->root; 763 struct extent_buffer *tmp; 764 struct extent_buffer *old; 765 int ret; 766 u64 objectid; 767 768 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 769 if (!new_root_item) { 770 ret = -ENOMEM; 771 goto fail; 772 } 773 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid); 774 if (ret) 775 goto fail; 776 777 record_root_in_trans(trans, root); 778 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 779 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 780 781 key.objectid = objectid; 782 /* record when the snapshot was created in key.offset */ 783 key.offset = trans->transid; 784 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 785 786 old = btrfs_lock_root_node(root); 787 btrfs_cow_block(trans, root, old, NULL, 0, &old); 788 btrfs_set_lock_blocking(old); 789 790 btrfs_copy_root(trans, root, old, &tmp, objectid); 791 btrfs_tree_unlock(old); 792 free_extent_buffer(old); 793 794 btrfs_set_root_node(new_root_item, tmp); 795 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 796 new_root_item); 797 btrfs_tree_unlock(tmp); 798 free_extent_buffer(tmp); 799 if (ret) 800 goto fail; 801 802 key.offset = (u64)-1; 803 memcpy(&pending->root_key, &key, sizeof(key)); 804 fail: 805 kfree(new_root_item); 806 return ret; 807 } 808 809 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info, 810 struct btrfs_pending_snapshot *pending) 811 { 812 int ret; 813 int namelen; 814 u64 index = 0; 815 struct btrfs_trans_handle *trans; 816 struct inode *parent_inode; 817 struct btrfs_root *parent_root; 818 819 parent_inode = pending->dentry->d_parent->d_inode; 820 parent_root = BTRFS_I(parent_inode)->root; 821 trans = btrfs_join_transaction(parent_root, 1); 822 823 /* 824 * insert the directory item 825 */ 826 namelen = strlen(pending->name); 827 ret = btrfs_set_inode_index(parent_inode, &index); 828 ret = btrfs_insert_dir_item(trans, parent_root, 829 pending->name, namelen, 830 parent_inode->i_ino, 831 &pending->root_key, BTRFS_FT_DIR, index); 832 833 if (ret) 834 goto fail; 835 836 btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2); 837 ret = btrfs_update_inode(trans, parent_root, parent_inode); 838 BUG_ON(ret); 839 840 ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root, 841 pending->root_key.objectid, 842 parent_root->root_key.objectid, 843 parent_inode->i_ino, index, pending->name, 844 namelen); 845 846 BUG_ON(ret); 847 848 fail: 849 btrfs_end_transaction(trans, fs_info->fs_root); 850 return ret; 851 } 852 853 /* 854 * create all the snapshots we've scheduled for creation 855 */ 856 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 857 struct btrfs_fs_info *fs_info) 858 { 859 struct btrfs_pending_snapshot *pending; 860 struct list_head *head = &trans->transaction->pending_snapshots; 861 int ret; 862 863 list_for_each_entry(pending, head, list) { 864 ret = create_pending_snapshot(trans, fs_info, pending); 865 BUG_ON(ret); 866 } 867 return 0; 868 } 869 870 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans, 871 struct btrfs_fs_info *fs_info) 872 { 873 struct btrfs_pending_snapshot *pending; 874 struct list_head *head = &trans->transaction->pending_snapshots; 875 int ret; 876 877 while (!list_empty(head)) { 878 pending = list_entry(head->next, 879 struct btrfs_pending_snapshot, list); 880 ret = finish_pending_snapshot(fs_info, pending); 881 BUG_ON(ret); 882 list_del(&pending->list); 883 kfree(pending->name); 884 kfree(pending); 885 } 886 return 0; 887 } 888 889 static void update_super_roots(struct btrfs_root *root) 890 { 891 struct btrfs_root_item *root_item; 892 struct btrfs_super_block *super; 893 894 super = &root->fs_info->super_copy; 895 896 root_item = &root->fs_info->chunk_root->root_item; 897 super->chunk_root = root_item->bytenr; 898 super->chunk_root_generation = root_item->generation; 899 super->chunk_root_level = root_item->level; 900 901 root_item = &root->fs_info->tree_root->root_item; 902 super->root = root_item->bytenr; 903 super->generation = root_item->generation; 904 super->root_level = root_item->level; 905 } 906 907 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 908 { 909 int ret = 0; 910 spin_lock(&info->new_trans_lock); 911 if (info->running_transaction) 912 ret = info->running_transaction->in_commit; 913 spin_unlock(&info->new_trans_lock); 914 return ret; 915 } 916 917 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 918 struct btrfs_root *root) 919 { 920 unsigned long joined = 0; 921 unsigned long timeout = 1; 922 struct btrfs_transaction *cur_trans; 923 struct btrfs_transaction *prev_trans = NULL; 924 DEFINE_WAIT(wait); 925 int ret; 926 int should_grow = 0; 927 unsigned long now = get_seconds(); 928 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT); 929 930 btrfs_run_ordered_operations(root, 0); 931 932 /* make a pass through all the delayed refs we have so far 933 * any runnings procs may add more while we are here 934 */ 935 ret = btrfs_run_delayed_refs(trans, root, 0); 936 BUG_ON(ret); 937 938 cur_trans = trans->transaction; 939 /* 940 * set the flushing flag so procs in this transaction have to 941 * start sending their work down. 942 */ 943 cur_trans->delayed_refs.flushing = 1; 944 945 ret = btrfs_run_delayed_refs(trans, root, 0); 946 BUG_ON(ret); 947 948 mutex_lock(&root->fs_info->trans_mutex); 949 if (cur_trans->in_commit) { 950 cur_trans->use_count++; 951 mutex_unlock(&root->fs_info->trans_mutex); 952 btrfs_end_transaction(trans, root); 953 954 ret = wait_for_commit(root, cur_trans); 955 BUG_ON(ret); 956 957 mutex_lock(&root->fs_info->trans_mutex); 958 put_transaction(cur_trans); 959 mutex_unlock(&root->fs_info->trans_mutex); 960 961 return 0; 962 } 963 964 trans->transaction->in_commit = 1; 965 trans->transaction->blocked = 1; 966 if (cur_trans->list.prev != &root->fs_info->trans_list) { 967 prev_trans = list_entry(cur_trans->list.prev, 968 struct btrfs_transaction, list); 969 if (!prev_trans->commit_done) { 970 prev_trans->use_count++; 971 mutex_unlock(&root->fs_info->trans_mutex); 972 973 wait_for_commit(root, prev_trans); 974 975 mutex_lock(&root->fs_info->trans_mutex); 976 put_transaction(prev_trans); 977 } 978 } 979 980 if (now < cur_trans->start_time || now - cur_trans->start_time < 1) 981 should_grow = 1; 982 983 do { 984 int snap_pending = 0; 985 joined = cur_trans->num_joined; 986 if (!list_empty(&trans->transaction->pending_snapshots)) 987 snap_pending = 1; 988 989 WARN_ON(cur_trans != trans->transaction); 990 prepare_to_wait(&cur_trans->writer_wait, &wait, 991 TASK_UNINTERRUPTIBLE); 992 993 if (cur_trans->num_writers > 1) 994 timeout = MAX_SCHEDULE_TIMEOUT; 995 else if (should_grow) 996 timeout = 1; 997 998 mutex_unlock(&root->fs_info->trans_mutex); 999 1000 if (flush_on_commit) { 1001 btrfs_start_delalloc_inodes(root, 1); 1002 ret = btrfs_wait_ordered_extents(root, 0, 1); 1003 BUG_ON(ret); 1004 } else if (snap_pending) { 1005 ret = btrfs_wait_ordered_extents(root, 0, 1); 1006 BUG_ON(ret); 1007 } 1008 1009 /* 1010 * rename don't use btrfs_join_transaction, so, once we 1011 * set the transaction to blocked above, we aren't going 1012 * to get any new ordered operations. We can safely run 1013 * it here and no for sure that nothing new will be added 1014 * to the list 1015 */ 1016 btrfs_run_ordered_operations(root, 1); 1017 1018 smp_mb(); 1019 if (cur_trans->num_writers > 1 || should_grow) 1020 schedule_timeout(timeout); 1021 1022 mutex_lock(&root->fs_info->trans_mutex); 1023 finish_wait(&cur_trans->writer_wait, &wait); 1024 } while (cur_trans->num_writers > 1 || 1025 (should_grow && cur_trans->num_joined != joined)); 1026 1027 ret = create_pending_snapshots(trans, root->fs_info); 1028 BUG_ON(ret); 1029 1030 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1031 BUG_ON(ret); 1032 1033 WARN_ON(cur_trans != trans->transaction); 1034 1035 /* btrfs_commit_tree_roots is responsible for getting the 1036 * various roots consistent with each other. Every pointer 1037 * in the tree of tree roots has to point to the most up to date 1038 * root for every subvolume and other tree. So, we have to keep 1039 * the tree logging code from jumping in and changing any 1040 * of the trees. 1041 * 1042 * At this point in the commit, there can't be any tree-log 1043 * writers, but a little lower down we drop the trans mutex 1044 * and let new people in. By holding the tree_log_mutex 1045 * from now until after the super is written, we avoid races 1046 * with the tree-log code. 1047 */ 1048 mutex_lock(&root->fs_info->tree_log_mutex); 1049 1050 ret = commit_fs_roots(trans, root); 1051 BUG_ON(ret); 1052 1053 /* commit_fs_roots gets rid of all the tree log roots, it is now 1054 * safe to free the root of tree log roots 1055 */ 1056 btrfs_free_log_root_tree(trans, root->fs_info); 1057 1058 ret = commit_cowonly_roots(trans, root); 1059 BUG_ON(ret); 1060 1061 btrfs_prepare_extent_commit(trans, root); 1062 1063 cur_trans = root->fs_info->running_transaction; 1064 spin_lock(&root->fs_info->new_trans_lock); 1065 root->fs_info->running_transaction = NULL; 1066 spin_unlock(&root->fs_info->new_trans_lock); 1067 1068 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1069 root->fs_info->tree_root->node); 1070 switch_commit_root(root->fs_info->tree_root); 1071 1072 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1073 root->fs_info->chunk_root->node); 1074 switch_commit_root(root->fs_info->chunk_root); 1075 1076 update_super_roots(root); 1077 1078 if (!root->fs_info->log_root_recovering) { 1079 btrfs_set_super_log_root(&root->fs_info->super_copy, 0); 1080 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0); 1081 } 1082 1083 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy, 1084 sizeof(root->fs_info->super_copy)); 1085 1086 trans->transaction->blocked = 0; 1087 1088 wake_up(&root->fs_info->transaction_wait); 1089 1090 mutex_unlock(&root->fs_info->trans_mutex); 1091 ret = btrfs_write_and_wait_transaction(trans, root); 1092 BUG_ON(ret); 1093 write_ctree_super(trans, root, 0); 1094 1095 /* 1096 * the super is written, we can safely allow the tree-loggers 1097 * to go about their business 1098 */ 1099 mutex_unlock(&root->fs_info->tree_log_mutex); 1100 1101 btrfs_finish_extent_commit(trans, root); 1102 1103 /* do the directory inserts of any pending snapshot creations */ 1104 finish_pending_snapshots(trans, root->fs_info); 1105 1106 mutex_lock(&root->fs_info->trans_mutex); 1107 1108 cur_trans->commit_done = 1; 1109 1110 root->fs_info->last_trans_committed = cur_trans->transid; 1111 1112 wake_up(&cur_trans->commit_wait); 1113 1114 put_transaction(cur_trans); 1115 put_transaction(cur_trans); 1116 1117 mutex_unlock(&root->fs_info->trans_mutex); 1118 1119 if (current->journal_info == trans) 1120 current->journal_info = NULL; 1121 1122 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1123 1124 if (current != root->fs_info->transaction_kthread) 1125 btrfs_run_delayed_iputs(root); 1126 1127 return ret; 1128 } 1129 1130 /* 1131 * interface function to delete all the snapshots we have scheduled for deletion 1132 */ 1133 int btrfs_clean_old_snapshots(struct btrfs_root *root) 1134 { 1135 LIST_HEAD(list); 1136 struct btrfs_fs_info *fs_info = root->fs_info; 1137 1138 mutex_lock(&fs_info->trans_mutex); 1139 list_splice_init(&fs_info->dead_roots, &list); 1140 mutex_unlock(&fs_info->trans_mutex); 1141 1142 while (!list_empty(&list)) { 1143 root = list_entry(list.next, struct btrfs_root, root_list); 1144 list_del(&root->root_list); 1145 1146 if (btrfs_header_backref_rev(root->node) < 1147 BTRFS_MIXED_BACKREF_REV) 1148 btrfs_drop_snapshot(root, 0); 1149 else 1150 btrfs_drop_snapshot(root, 1); 1151 } 1152 return 0; 1153 } 1154