1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 35 #define BTRFS_ROOT_TRANS_TAG 0 36 37 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 38 [TRANS_STATE_RUNNING] = 0U, 39 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | 40 __TRANS_START), 41 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | 42 __TRANS_START | 43 __TRANS_ATTACH), 44 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | 45 __TRANS_START | 46 __TRANS_ATTACH | 47 __TRANS_JOIN), 48 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | 49 __TRANS_START | 50 __TRANS_ATTACH | 51 __TRANS_JOIN | 52 __TRANS_JOIN_NOLOCK), 53 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | 54 __TRANS_START | 55 __TRANS_ATTACH | 56 __TRANS_JOIN | 57 __TRANS_JOIN_NOLOCK), 58 }; 59 60 void btrfs_put_transaction(struct btrfs_transaction *transaction) 61 { 62 WARN_ON(atomic_read(&transaction->use_count) == 0); 63 if (atomic_dec_and_test(&transaction->use_count)) { 64 BUG_ON(!list_empty(&transaction->list)); 65 WARN_ON(transaction->delayed_refs.root.rb_node); 66 while (!list_empty(&transaction->pending_chunks)) { 67 struct extent_map *em; 68 69 em = list_first_entry(&transaction->pending_chunks, 70 struct extent_map, list); 71 list_del_init(&em->list); 72 free_extent_map(em); 73 } 74 kmem_cache_free(btrfs_transaction_cachep, transaction); 75 } 76 } 77 78 static noinline void switch_commit_root(struct btrfs_root *root) 79 { 80 free_extent_buffer(root->commit_root); 81 root->commit_root = btrfs_root_node(root); 82 } 83 84 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 85 unsigned int type) 86 { 87 if (type & TRANS_EXTWRITERS) 88 atomic_inc(&trans->num_extwriters); 89 } 90 91 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 92 unsigned int type) 93 { 94 if (type & TRANS_EXTWRITERS) 95 atomic_dec(&trans->num_extwriters); 96 } 97 98 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 99 unsigned int type) 100 { 101 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 102 } 103 104 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 105 { 106 return atomic_read(&trans->num_extwriters); 107 } 108 109 /* 110 * either allocate a new transaction or hop into the existing one 111 */ 112 static noinline int join_transaction(struct btrfs_root *root, unsigned int type) 113 { 114 struct btrfs_transaction *cur_trans; 115 struct btrfs_fs_info *fs_info = root->fs_info; 116 117 spin_lock(&fs_info->trans_lock); 118 loop: 119 /* The file system has been taken offline. No new transactions. */ 120 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 121 spin_unlock(&fs_info->trans_lock); 122 return -EROFS; 123 } 124 125 cur_trans = fs_info->running_transaction; 126 if (cur_trans) { 127 if (cur_trans->aborted) { 128 spin_unlock(&fs_info->trans_lock); 129 return cur_trans->aborted; 130 } 131 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 132 spin_unlock(&fs_info->trans_lock); 133 return -EBUSY; 134 } 135 atomic_inc(&cur_trans->use_count); 136 atomic_inc(&cur_trans->num_writers); 137 extwriter_counter_inc(cur_trans, type); 138 spin_unlock(&fs_info->trans_lock); 139 return 0; 140 } 141 spin_unlock(&fs_info->trans_lock); 142 143 /* 144 * If we are ATTACH, we just want to catch the current transaction, 145 * and commit it. If there is no transaction, just return ENOENT. 146 */ 147 if (type == TRANS_ATTACH) 148 return -ENOENT; 149 150 /* 151 * JOIN_NOLOCK only happens during the transaction commit, so 152 * it is impossible that ->running_transaction is NULL 153 */ 154 BUG_ON(type == TRANS_JOIN_NOLOCK); 155 156 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 157 if (!cur_trans) 158 return -ENOMEM; 159 160 spin_lock(&fs_info->trans_lock); 161 if (fs_info->running_transaction) { 162 /* 163 * someone started a transaction after we unlocked. Make sure 164 * to redo the checks above 165 */ 166 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 167 goto loop; 168 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 169 spin_unlock(&fs_info->trans_lock); 170 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 171 return -EROFS; 172 } 173 174 atomic_set(&cur_trans->num_writers, 1); 175 extwriter_counter_init(cur_trans, type); 176 init_waitqueue_head(&cur_trans->writer_wait); 177 init_waitqueue_head(&cur_trans->commit_wait); 178 cur_trans->state = TRANS_STATE_RUNNING; 179 /* 180 * One for this trans handle, one so it will live on until we 181 * commit the transaction. 182 */ 183 atomic_set(&cur_trans->use_count, 2); 184 cur_trans->start_time = get_seconds(); 185 186 cur_trans->delayed_refs.root = RB_ROOT; 187 cur_trans->delayed_refs.num_entries = 0; 188 cur_trans->delayed_refs.num_heads_ready = 0; 189 cur_trans->delayed_refs.num_heads = 0; 190 cur_trans->delayed_refs.flushing = 0; 191 cur_trans->delayed_refs.run_delayed_start = 0; 192 193 /* 194 * although the tree mod log is per file system and not per transaction, 195 * the log must never go across transaction boundaries. 196 */ 197 smp_mb(); 198 if (!list_empty(&fs_info->tree_mod_seq_list)) 199 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when " 200 "creating a fresh transaction\n"); 201 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 202 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when " 203 "creating a fresh transaction\n"); 204 atomic64_set(&fs_info->tree_mod_seq, 0); 205 206 spin_lock_init(&cur_trans->delayed_refs.lock); 207 atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0); 208 atomic_set(&cur_trans->delayed_refs.ref_seq, 0); 209 init_waitqueue_head(&cur_trans->delayed_refs.wait); 210 211 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 212 INIT_LIST_HEAD(&cur_trans->ordered_operations); 213 INIT_LIST_HEAD(&cur_trans->pending_chunks); 214 list_add_tail(&cur_trans->list, &fs_info->trans_list); 215 extent_io_tree_init(&cur_trans->dirty_pages, 216 fs_info->btree_inode->i_mapping); 217 fs_info->generation++; 218 cur_trans->transid = fs_info->generation; 219 fs_info->running_transaction = cur_trans; 220 cur_trans->aborted = 0; 221 spin_unlock(&fs_info->trans_lock); 222 223 return 0; 224 } 225 226 /* 227 * this does all the record keeping required to make sure that a reference 228 * counted root is properly recorded in a given transaction. This is required 229 * to make sure the old root from before we joined the transaction is deleted 230 * when the transaction commits 231 */ 232 static int record_root_in_trans(struct btrfs_trans_handle *trans, 233 struct btrfs_root *root) 234 { 235 if (root->ref_cows && root->last_trans < trans->transid) { 236 WARN_ON(root == root->fs_info->extent_root); 237 WARN_ON(root->commit_root != root->node); 238 239 /* 240 * see below for in_trans_setup usage rules 241 * we have the reloc mutex held now, so there 242 * is only one writer in this function 243 */ 244 root->in_trans_setup = 1; 245 246 /* make sure readers find in_trans_setup before 247 * they find our root->last_trans update 248 */ 249 smp_wmb(); 250 251 spin_lock(&root->fs_info->fs_roots_radix_lock); 252 if (root->last_trans == trans->transid) { 253 spin_unlock(&root->fs_info->fs_roots_radix_lock); 254 return 0; 255 } 256 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 257 (unsigned long)root->root_key.objectid, 258 BTRFS_ROOT_TRANS_TAG); 259 spin_unlock(&root->fs_info->fs_roots_radix_lock); 260 root->last_trans = trans->transid; 261 262 /* this is pretty tricky. We don't want to 263 * take the relocation lock in btrfs_record_root_in_trans 264 * unless we're really doing the first setup for this root in 265 * this transaction. 266 * 267 * Normally we'd use root->last_trans as a flag to decide 268 * if we want to take the expensive mutex. 269 * 270 * But, we have to set root->last_trans before we 271 * init the relocation root, otherwise, we trip over warnings 272 * in ctree.c. The solution used here is to flag ourselves 273 * with root->in_trans_setup. When this is 1, we're still 274 * fixing up the reloc trees and everyone must wait. 275 * 276 * When this is zero, they can trust root->last_trans and fly 277 * through btrfs_record_root_in_trans without having to take the 278 * lock. smp_wmb() makes sure that all the writes above are 279 * done before we pop in the zero below 280 */ 281 btrfs_init_reloc_root(trans, root); 282 smp_wmb(); 283 root->in_trans_setup = 0; 284 } 285 return 0; 286 } 287 288 289 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 290 struct btrfs_root *root) 291 { 292 if (!root->ref_cows) 293 return 0; 294 295 /* 296 * see record_root_in_trans for comments about in_trans_setup usage 297 * and barriers 298 */ 299 smp_rmb(); 300 if (root->last_trans == trans->transid && 301 !root->in_trans_setup) 302 return 0; 303 304 mutex_lock(&root->fs_info->reloc_mutex); 305 record_root_in_trans(trans, root); 306 mutex_unlock(&root->fs_info->reloc_mutex); 307 308 return 0; 309 } 310 311 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 312 { 313 return (trans->state >= TRANS_STATE_BLOCKED && 314 trans->state < TRANS_STATE_UNBLOCKED && 315 !trans->aborted); 316 } 317 318 /* wait for commit against the current transaction to become unblocked 319 * when this is done, it is safe to start a new transaction, but the current 320 * transaction might not be fully on disk. 321 */ 322 static void wait_current_trans(struct btrfs_root *root) 323 { 324 struct btrfs_transaction *cur_trans; 325 326 spin_lock(&root->fs_info->trans_lock); 327 cur_trans = root->fs_info->running_transaction; 328 if (cur_trans && is_transaction_blocked(cur_trans)) { 329 atomic_inc(&cur_trans->use_count); 330 spin_unlock(&root->fs_info->trans_lock); 331 332 wait_event(root->fs_info->transaction_wait, 333 cur_trans->state >= TRANS_STATE_UNBLOCKED || 334 cur_trans->aborted); 335 btrfs_put_transaction(cur_trans); 336 } else { 337 spin_unlock(&root->fs_info->trans_lock); 338 } 339 } 340 341 static int may_wait_transaction(struct btrfs_root *root, int type) 342 { 343 if (root->fs_info->log_root_recovering) 344 return 0; 345 346 if (type == TRANS_USERSPACE) 347 return 1; 348 349 if (type == TRANS_START && 350 !atomic_read(&root->fs_info->open_ioctl_trans)) 351 return 1; 352 353 return 0; 354 } 355 356 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 357 { 358 if (!root->fs_info->reloc_ctl || 359 !root->ref_cows || 360 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 361 root->reloc_root) 362 return false; 363 364 return true; 365 } 366 367 static struct btrfs_trans_handle * 368 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type, 369 enum btrfs_reserve_flush_enum flush) 370 { 371 struct btrfs_trans_handle *h; 372 struct btrfs_transaction *cur_trans; 373 u64 num_bytes = 0; 374 u64 qgroup_reserved = 0; 375 bool reloc_reserved = false; 376 int ret; 377 378 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 379 return ERR_PTR(-EROFS); 380 381 if (current->journal_info) { 382 WARN_ON(type & TRANS_EXTWRITERS); 383 h = current->journal_info; 384 h->use_count++; 385 WARN_ON(h->use_count > 2); 386 h->orig_rsv = h->block_rsv; 387 h->block_rsv = NULL; 388 goto got_it; 389 } 390 391 /* 392 * Do the reservation before we join the transaction so we can do all 393 * the appropriate flushing if need be. 394 */ 395 if (num_items > 0 && root != root->fs_info->chunk_root) { 396 if (root->fs_info->quota_enabled && 397 is_fstree(root->root_key.objectid)) { 398 qgroup_reserved = num_items * root->leafsize; 399 ret = btrfs_qgroup_reserve(root, qgroup_reserved); 400 if (ret) 401 return ERR_PTR(ret); 402 } 403 404 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 405 /* 406 * Do the reservation for the relocation root creation 407 */ 408 if (unlikely(need_reserve_reloc_root(root))) { 409 num_bytes += root->nodesize; 410 reloc_reserved = true; 411 } 412 413 ret = btrfs_block_rsv_add(root, 414 &root->fs_info->trans_block_rsv, 415 num_bytes, flush); 416 if (ret) 417 goto reserve_fail; 418 } 419 again: 420 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 421 if (!h) { 422 ret = -ENOMEM; 423 goto alloc_fail; 424 } 425 426 /* 427 * If we are JOIN_NOLOCK we're already committing a transaction and 428 * waiting on this guy, so we don't need to do the sb_start_intwrite 429 * because we're already holding a ref. We need this because we could 430 * have raced in and did an fsync() on a file which can kick a commit 431 * and then we deadlock with somebody doing a freeze. 432 * 433 * If we are ATTACH, it means we just want to catch the current 434 * transaction and commit it, so we needn't do sb_start_intwrite(). 435 */ 436 if (type & __TRANS_FREEZABLE) 437 sb_start_intwrite(root->fs_info->sb); 438 439 if (may_wait_transaction(root, type)) 440 wait_current_trans(root); 441 442 do { 443 ret = join_transaction(root, type); 444 if (ret == -EBUSY) { 445 wait_current_trans(root); 446 if (unlikely(type == TRANS_ATTACH)) 447 ret = -ENOENT; 448 } 449 } while (ret == -EBUSY); 450 451 if (ret < 0) { 452 /* We must get the transaction if we are JOIN_NOLOCK. */ 453 BUG_ON(type == TRANS_JOIN_NOLOCK); 454 goto join_fail; 455 } 456 457 cur_trans = root->fs_info->running_transaction; 458 459 h->transid = cur_trans->transid; 460 h->transaction = cur_trans; 461 h->blocks_used = 0; 462 h->bytes_reserved = 0; 463 h->root = root; 464 h->delayed_ref_updates = 0; 465 h->use_count = 1; 466 h->adding_csums = 0; 467 h->block_rsv = NULL; 468 h->orig_rsv = NULL; 469 h->aborted = 0; 470 h->qgroup_reserved = 0; 471 h->delayed_ref_elem.seq = 0; 472 h->type = type; 473 h->allocating_chunk = false; 474 h->reloc_reserved = false; 475 INIT_LIST_HEAD(&h->qgroup_ref_list); 476 INIT_LIST_HEAD(&h->new_bgs); 477 478 smp_mb(); 479 if (cur_trans->state >= TRANS_STATE_BLOCKED && 480 may_wait_transaction(root, type)) { 481 btrfs_commit_transaction(h, root); 482 goto again; 483 } 484 485 if (num_bytes) { 486 trace_btrfs_space_reservation(root->fs_info, "transaction", 487 h->transid, num_bytes, 1); 488 h->block_rsv = &root->fs_info->trans_block_rsv; 489 h->bytes_reserved = num_bytes; 490 h->reloc_reserved = reloc_reserved; 491 } 492 h->qgroup_reserved = qgroup_reserved; 493 494 got_it: 495 btrfs_record_root_in_trans(h, root); 496 497 if (!current->journal_info && type != TRANS_USERSPACE) 498 current->journal_info = h; 499 return h; 500 501 join_fail: 502 if (type & __TRANS_FREEZABLE) 503 sb_end_intwrite(root->fs_info->sb); 504 kmem_cache_free(btrfs_trans_handle_cachep, h); 505 alloc_fail: 506 if (num_bytes) 507 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 508 num_bytes); 509 reserve_fail: 510 if (qgroup_reserved) 511 btrfs_qgroup_free(root, qgroup_reserved); 512 return ERR_PTR(ret); 513 } 514 515 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 516 int num_items) 517 { 518 return start_transaction(root, num_items, TRANS_START, 519 BTRFS_RESERVE_FLUSH_ALL); 520 } 521 522 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 523 struct btrfs_root *root, int num_items) 524 { 525 return start_transaction(root, num_items, TRANS_START, 526 BTRFS_RESERVE_FLUSH_LIMIT); 527 } 528 529 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 530 { 531 return start_transaction(root, 0, TRANS_JOIN, 0); 532 } 533 534 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 535 { 536 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 537 } 538 539 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 540 { 541 return start_transaction(root, 0, TRANS_USERSPACE, 0); 542 } 543 544 /* 545 * btrfs_attach_transaction() - catch the running transaction 546 * 547 * It is used when we want to commit the current the transaction, but 548 * don't want to start a new one. 549 * 550 * Note: If this function return -ENOENT, it just means there is no 551 * running transaction. But it is possible that the inactive transaction 552 * is still in the memory, not fully on disk. If you hope there is no 553 * inactive transaction in the fs when -ENOENT is returned, you should 554 * invoke 555 * btrfs_attach_transaction_barrier() 556 */ 557 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 558 { 559 return start_transaction(root, 0, TRANS_ATTACH, 0); 560 } 561 562 /* 563 * btrfs_attach_transaction_barrier() - catch the running transaction 564 * 565 * It is similar to the above function, the differentia is this one 566 * will wait for all the inactive transactions until they fully 567 * complete. 568 */ 569 struct btrfs_trans_handle * 570 btrfs_attach_transaction_barrier(struct btrfs_root *root) 571 { 572 struct btrfs_trans_handle *trans; 573 574 trans = start_transaction(root, 0, TRANS_ATTACH, 0); 575 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 576 btrfs_wait_for_commit(root, 0); 577 578 return trans; 579 } 580 581 /* wait for a transaction commit to be fully complete */ 582 static noinline void wait_for_commit(struct btrfs_root *root, 583 struct btrfs_transaction *commit) 584 { 585 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 586 } 587 588 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 589 { 590 struct btrfs_transaction *cur_trans = NULL, *t; 591 int ret = 0; 592 593 if (transid) { 594 if (transid <= root->fs_info->last_trans_committed) 595 goto out; 596 597 ret = -EINVAL; 598 /* find specified transaction */ 599 spin_lock(&root->fs_info->trans_lock); 600 list_for_each_entry(t, &root->fs_info->trans_list, list) { 601 if (t->transid == transid) { 602 cur_trans = t; 603 atomic_inc(&cur_trans->use_count); 604 ret = 0; 605 break; 606 } 607 if (t->transid > transid) { 608 ret = 0; 609 break; 610 } 611 } 612 spin_unlock(&root->fs_info->trans_lock); 613 /* The specified transaction doesn't exist */ 614 if (!cur_trans) 615 goto out; 616 } else { 617 /* find newest transaction that is committing | committed */ 618 spin_lock(&root->fs_info->trans_lock); 619 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 620 list) { 621 if (t->state >= TRANS_STATE_COMMIT_START) { 622 if (t->state == TRANS_STATE_COMPLETED) 623 break; 624 cur_trans = t; 625 atomic_inc(&cur_trans->use_count); 626 break; 627 } 628 } 629 spin_unlock(&root->fs_info->trans_lock); 630 if (!cur_trans) 631 goto out; /* nothing committing|committed */ 632 } 633 634 wait_for_commit(root, cur_trans); 635 btrfs_put_transaction(cur_trans); 636 out: 637 return ret; 638 } 639 640 void btrfs_throttle(struct btrfs_root *root) 641 { 642 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 643 wait_current_trans(root); 644 } 645 646 static int should_end_transaction(struct btrfs_trans_handle *trans, 647 struct btrfs_root *root) 648 { 649 if (root->fs_info->global_block_rsv.space_info->full && 650 btrfs_should_throttle_delayed_refs(trans, root)) 651 return 1; 652 653 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 654 } 655 656 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 657 struct btrfs_root *root) 658 { 659 struct btrfs_transaction *cur_trans = trans->transaction; 660 int updates; 661 int err; 662 663 smp_mb(); 664 if (cur_trans->state >= TRANS_STATE_BLOCKED || 665 cur_trans->delayed_refs.flushing) 666 return 1; 667 668 updates = trans->delayed_ref_updates; 669 trans->delayed_ref_updates = 0; 670 if (updates) { 671 err = btrfs_run_delayed_refs(trans, root, updates); 672 if (err) /* Error code will also eval true */ 673 return err; 674 } 675 676 return should_end_transaction(trans, root); 677 } 678 679 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 680 struct btrfs_root *root, int throttle) 681 { 682 struct btrfs_transaction *cur_trans = trans->transaction; 683 struct btrfs_fs_info *info = root->fs_info; 684 unsigned long cur = trans->delayed_ref_updates; 685 int lock = (trans->type != TRANS_JOIN_NOLOCK); 686 int err = 0; 687 688 if (--trans->use_count) { 689 trans->block_rsv = trans->orig_rsv; 690 return 0; 691 } 692 693 /* 694 * do the qgroup accounting as early as possible 695 */ 696 err = btrfs_delayed_refs_qgroup_accounting(trans, info); 697 698 btrfs_trans_release_metadata(trans, root); 699 trans->block_rsv = NULL; 700 701 if (trans->qgroup_reserved) { 702 /* 703 * the same root has to be passed here between start_transaction 704 * and end_transaction. Subvolume quota depends on this. 705 */ 706 btrfs_qgroup_free(trans->root, trans->qgroup_reserved); 707 trans->qgroup_reserved = 0; 708 } 709 710 if (!list_empty(&trans->new_bgs)) 711 btrfs_create_pending_block_groups(trans, root); 712 713 trans->delayed_ref_updates = 0; 714 if (btrfs_should_throttle_delayed_refs(trans, root)) { 715 cur = max_t(unsigned long, cur, 1); 716 trans->delayed_ref_updates = 0; 717 btrfs_run_delayed_refs(trans, root, cur); 718 } 719 720 btrfs_trans_release_metadata(trans, root); 721 trans->block_rsv = NULL; 722 723 if (!list_empty(&trans->new_bgs)) 724 btrfs_create_pending_block_groups(trans, root); 725 726 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 727 should_end_transaction(trans, root) && 728 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 729 spin_lock(&info->trans_lock); 730 if (cur_trans->state == TRANS_STATE_RUNNING) 731 cur_trans->state = TRANS_STATE_BLOCKED; 732 spin_unlock(&info->trans_lock); 733 } 734 735 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 736 if (throttle) { 737 /* 738 * We may race with somebody else here so end up having 739 * to call end_transaction on ourselves again, so inc 740 * our use_count. 741 */ 742 trans->use_count++; 743 return btrfs_commit_transaction(trans, root); 744 } else { 745 wake_up_process(info->transaction_kthread); 746 } 747 } 748 749 if (trans->type & __TRANS_FREEZABLE) 750 sb_end_intwrite(root->fs_info->sb); 751 752 WARN_ON(cur_trans != info->running_transaction); 753 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 754 atomic_dec(&cur_trans->num_writers); 755 extwriter_counter_dec(cur_trans, trans->type); 756 757 smp_mb(); 758 if (waitqueue_active(&cur_trans->writer_wait)) 759 wake_up(&cur_trans->writer_wait); 760 btrfs_put_transaction(cur_trans); 761 762 if (current->journal_info == trans) 763 current->journal_info = NULL; 764 765 if (throttle) 766 btrfs_run_delayed_iputs(root); 767 768 if (trans->aborted || 769 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 770 wake_up_process(info->transaction_kthread); 771 err = -EIO; 772 } 773 assert_qgroups_uptodate(trans); 774 775 kmem_cache_free(btrfs_trans_handle_cachep, trans); 776 return err; 777 } 778 779 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 780 struct btrfs_root *root) 781 { 782 return __btrfs_end_transaction(trans, root, 0); 783 } 784 785 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 786 struct btrfs_root *root) 787 { 788 return __btrfs_end_transaction(trans, root, 1); 789 } 790 791 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans, 792 struct btrfs_root *root) 793 { 794 return __btrfs_end_transaction(trans, root, 1); 795 } 796 797 /* 798 * when btree blocks are allocated, they have some corresponding bits set for 799 * them in one of two extent_io trees. This is used to make sure all of 800 * those extents are sent to disk but does not wait on them 801 */ 802 int btrfs_write_marked_extents(struct btrfs_root *root, 803 struct extent_io_tree *dirty_pages, int mark) 804 { 805 int err = 0; 806 int werr = 0; 807 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 808 struct extent_state *cached_state = NULL; 809 u64 start = 0; 810 u64 end; 811 812 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 813 mark, &cached_state)) { 814 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 815 mark, &cached_state, GFP_NOFS); 816 cached_state = NULL; 817 err = filemap_fdatawrite_range(mapping, start, end); 818 if (err) 819 werr = err; 820 cond_resched(); 821 start = end + 1; 822 } 823 if (err) 824 werr = err; 825 return werr; 826 } 827 828 /* 829 * when btree blocks are allocated, they have some corresponding bits set for 830 * them in one of two extent_io trees. This is used to make sure all of 831 * those extents are on disk for transaction or log commit. We wait 832 * on all the pages and clear them from the dirty pages state tree 833 */ 834 int btrfs_wait_marked_extents(struct btrfs_root *root, 835 struct extent_io_tree *dirty_pages, int mark) 836 { 837 int err = 0; 838 int werr = 0; 839 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 840 struct extent_state *cached_state = NULL; 841 u64 start = 0; 842 u64 end; 843 844 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 845 EXTENT_NEED_WAIT, &cached_state)) { 846 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 847 0, 0, &cached_state, GFP_NOFS); 848 err = filemap_fdatawait_range(mapping, start, end); 849 if (err) 850 werr = err; 851 cond_resched(); 852 start = end + 1; 853 } 854 if (err) 855 werr = err; 856 return werr; 857 } 858 859 /* 860 * when btree blocks are allocated, they have some corresponding bits set for 861 * them in one of two extent_io trees. This is used to make sure all of 862 * those extents are on disk for transaction or log commit 863 */ 864 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 865 struct extent_io_tree *dirty_pages, int mark) 866 { 867 int ret; 868 int ret2; 869 struct blk_plug plug; 870 871 blk_start_plug(&plug); 872 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 873 blk_finish_plug(&plug); 874 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 875 876 if (ret) 877 return ret; 878 if (ret2) 879 return ret2; 880 return 0; 881 } 882 883 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 884 struct btrfs_root *root) 885 { 886 if (!trans || !trans->transaction) { 887 struct inode *btree_inode; 888 btree_inode = root->fs_info->btree_inode; 889 return filemap_write_and_wait(btree_inode->i_mapping); 890 } 891 return btrfs_write_and_wait_marked_extents(root, 892 &trans->transaction->dirty_pages, 893 EXTENT_DIRTY); 894 } 895 896 /* 897 * this is used to update the root pointer in the tree of tree roots. 898 * 899 * But, in the case of the extent allocation tree, updating the root 900 * pointer may allocate blocks which may change the root of the extent 901 * allocation tree. 902 * 903 * So, this loops and repeats and makes sure the cowonly root didn't 904 * change while the root pointer was being updated in the metadata. 905 */ 906 static int update_cowonly_root(struct btrfs_trans_handle *trans, 907 struct btrfs_root *root) 908 { 909 int ret; 910 u64 old_root_bytenr; 911 u64 old_root_used; 912 struct btrfs_root *tree_root = root->fs_info->tree_root; 913 914 old_root_used = btrfs_root_used(&root->root_item); 915 btrfs_write_dirty_block_groups(trans, root); 916 917 while (1) { 918 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 919 if (old_root_bytenr == root->node->start && 920 old_root_used == btrfs_root_used(&root->root_item)) 921 break; 922 923 btrfs_set_root_node(&root->root_item, root->node); 924 ret = btrfs_update_root(trans, tree_root, 925 &root->root_key, 926 &root->root_item); 927 if (ret) 928 return ret; 929 930 old_root_used = btrfs_root_used(&root->root_item); 931 ret = btrfs_write_dirty_block_groups(trans, root); 932 if (ret) 933 return ret; 934 } 935 936 if (root != root->fs_info->extent_root) 937 switch_commit_root(root); 938 939 return 0; 940 } 941 942 /* 943 * update all the cowonly tree roots on disk 944 * 945 * The error handling in this function may not be obvious. Any of the 946 * failures will cause the file system to go offline. We still need 947 * to clean up the delayed refs. 948 */ 949 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 950 struct btrfs_root *root) 951 { 952 struct btrfs_fs_info *fs_info = root->fs_info; 953 struct list_head *next; 954 struct extent_buffer *eb; 955 int ret; 956 957 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 958 if (ret) 959 return ret; 960 961 eb = btrfs_lock_root_node(fs_info->tree_root); 962 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 963 0, &eb); 964 btrfs_tree_unlock(eb); 965 free_extent_buffer(eb); 966 967 if (ret) 968 return ret; 969 970 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 971 if (ret) 972 return ret; 973 974 ret = btrfs_run_dev_stats(trans, root->fs_info); 975 if (ret) 976 return ret; 977 ret = btrfs_run_dev_replace(trans, root->fs_info); 978 if (ret) 979 return ret; 980 ret = btrfs_run_qgroups(trans, root->fs_info); 981 if (ret) 982 return ret; 983 984 /* run_qgroups might have added some more refs */ 985 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 986 if (ret) 987 return ret; 988 989 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 990 next = fs_info->dirty_cowonly_roots.next; 991 list_del_init(next); 992 root = list_entry(next, struct btrfs_root, dirty_list); 993 994 ret = update_cowonly_root(trans, root); 995 if (ret) 996 return ret; 997 } 998 999 down_write(&fs_info->extent_commit_sem); 1000 switch_commit_root(fs_info->extent_root); 1001 up_write(&fs_info->extent_commit_sem); 1002 1003 btrfs_after_dev_replace_commit(fs_info); 1004 1005 return 0; 1006 } 1007 1008 /* 1009 * dead roots are old snapshots that need to be deleted. This allocates 1010 * a dirty root struct and adds it into the list of dead roots that need to 1011 * be deleted 1012 */ 1013 void btrfs_add_dead_root(struct btrfs_root *root) 1014 { 1015 spin_lock(&root->fs_info->trans_lock); 1016 if (list_empty(&root->root_list)) 1017 list_add_tail(&root->root_list, &root->fs_info->dead_roots); 1018 spin_unlock(&root->fs_info->trans_lock); 1019 } 1020 1021 /* 1022 * update all the cowonly tree roots on disk 1023 */ 1024 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 1025 struct btrfs_root *root) 1026 { 1027 struct btrfs_root *gang[8]; 1028 struct btrfs_fs_info *fs_info = root->fs_info; 1029 int i; 1030 int ret; 1031 int err = 0; 1032 1033 spin_lock(&fs_info->fs_roots_radix_lock); 1034 while (1) { 1035 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1036 (void **)gang, 0, 1037 ARRAY_SIZE(gang), 1038 BTRFS_ROOT_TRANS_TAG); 1039 if (ret == 0) 1040 break; 1041 for (i = 0; i < ret; i++) { 1042 root = gang[i]; 1043 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1044 (unsigned long)root->root_key.objectid, 1045 BTRFS_ROOT_TRANS_TAG); 1046 spin_unlock(&fs_info->fs_roots_radix_lock); 1047 1048 btrfs_free_log(trans, root); 1049 btrfs_update_reloc_root(trans, root); 1050 btrfs_orphan_commit_root(trans, root); 1051 1052 btrfs_save_ino_cache(root, trans); 1053 1054 /* see comments in should_cow_block() */ 1055 root->force_cow = 0; 1056 smp_wmb(); 1057 1058 if (root->commit_root != root->node) { 1059 mutex_lock(&root->fs_commit_mutex); 1060 switch_commit_root(root); 1061 btrfs_unpin_free_ino(root); 1062 mutex_unlock(&root->fs_commit_mutex); 1063 1064 btrfs_set_root_node(&root->root_item, 1065 root->node); 1066 } 1067 1068 err = btrfs_update_root(trans, fs_info->tree_root, 1069 &root->root_key, 1070 &root->root_item); 1071 spin_lock(&fs_info->fs_roots_radix_lock); 1072 if (err) 1073 break; 1074 } 1075 } 1076 spin_unlock(&fs_info->fs_roots_radix_lock); 1077 return err; 1078 } 1079 1080 /* 1081 * defrag a given btree. 1082 * Every leaf in the btree is read and defragged. 1083 */ 1084 int btrfs_defrag_root(struct btrfs_root *root) 1085 { 1086 struct btrfs_fs_info *info = root->fs_info; 1087 struct btrfs_trans_handle *trans; 1088 int ret; 1089 1090 if (xchg(&root->defrag_running, 1)) 1091 return 0; 1092 1093 while (1) { 1094 trans = btrfs_start_transaction(root, 0); 1095 if (IS_ERR(trans)) 1096 return PTR_ERR(trans); 1097 1098 ret = btrfs_defrag_leaves(trans, root); 1099 1100 btrfs_end_transaction(trans, root); 1101 btrfs_btree_balance_dirty(info->tree_root); 1102 cond_resched(); 1103 1104 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 1105 break; 1106 1107 if (btrfs_defrag_cancelled(root->fs_info)) { 1108 printk(KERN_DEBUG "btrfs: defrag_root cancelled\n"); 1109 ret = -EAGAIN; 1110 break; 1111 } 1112 } 1113 root->defrag_running = 0; 1114 return ret; 1115 } 1116 1117 /* 1118 * new snapshots need to be created at a very specific time in the 1119 * transaction commit. This does the actual creation. 1120 * 1121 * Note: 1122 * If the error which may affect the commitment of the current transaction 1123 * happens, we should return the error number. If the error which just affect 1124 * the creation of the pending snapshots, just return 0. 1125 */ 1126 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1127 struct btrfs_fs_info *fs_info, 1128 struct btrfs_pending_snapshot *pending) 1129 { 1130 struct btrfs_key key; 1131 struct btrfs_root_item *new_root_item; 1132 struct btrfs_root *tree_root = fs_info->tree_root; 1133 struct btrfs_root *root = pending->root; 1134 struct btrfs_root *parent_root; 1135 struct btrfs_block_rsv *rsv; 1136 struct inode *parent_inode; 1137 struct btrfs_path *path; 1138 struct btrfs_dir_item *dir_item; 1139 struct dentry *dentry; 1140 struct extent_buffer *tmp; 1141 struct extent_buffer *old; 1142 struct timespec cur_time = CURRENT_TIME; 1143 int ret = 0; 1144 u64 to_reserve = 0; 1145 u64 index = 0; 1146 u64 objectid; 1147 u64 root_flags; 1148 uuid_le new_uuid; 1149 1150 path = btrfs_alloc_path(); 1151 if (!path) { 1152 pending->error = -ENOMEM; 1153 return 0; 1154 } 1155 1156 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1157 if (!new_root_item) { 1158 pending->error = -ENOMEM; 1159 goto root_item_alloc_fail; 1160 } 1161 1162 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1163 if (pending->error) 1164 goto no_free_objectid; 1165 1166 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); 1167 1168 if (to_reserve > 0) { 1169 pending->error = btrfs_block_rsv_add(root, 1170 &pending->block_rsv, 1171 to_reserve, 1172 BTRFS_RESERVE_NO_FLUSH); 1173 if (pending->error) 1174 goto no_free_objectid; 1175 } 1176 1177 pending->error = btrfs_qgroup_inherit(trans, fs_info, 1178 root->root_key.objectid, 1179 objectid, pending->inherit); 1180 if (pending->error) 1181 goto no_free_objectid; 1182 1183 key.objectid = objectid; 1184 key.offset = (u64)-1; 1185 key.type = BTRFS_ROOT_ITEM_KEY; 1186 1187 rsv = trans->block_rsv; 1188 trans->block_rsv = &pending->block_rsv; 1189 trans->bytes_reserved = trans->block_rsv->reserved; 1190 1191 dentry = pending->dentry; 1192 parent_inode = pending->dir; 1193 parent_root = BTRFS_I(parent_inode)->root; 1194 record_root_in_trans(trans, parent_root); 1195 1196 /* 1197 * insert the directory item 1198 */ 1199 ret = btrfs_set_inode_index(parent_inode, &index); 1200 BUG_ON(ret); /* -ENOMEM */ 1201 1202 /* check if there is a file/dir which has the same name. */ 1203 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1204 btrfs_ino(parent_inode), 1205 dentry->d_name.name, 1206 dentry->d_name.len, 0); 1207 if (dir_item != NULL && !IS_ERR(dir_item)) { 1208 pending->error = -EEXIST; 1209 goto dir_item_existed; 1210 } else if (IS_ERR(dir_item)) { 1211 ret = PTR_ERR(dir_item); 1212 btrfs_abort_transaction(trans, root, ret); 1213 goto fail; 1214 } 1215 btrfs_release_path(path); 1216 1217 /* 1218 * pull in the delayed directory update 1219 * and the delayed inode item 1220 * otherwise we corrupt the FS during 1221 * snapshot 1222 */ 1223 ret = btrfs_run_delayed_items(trans, root); 1224 if (ret) { /* Transaction aborted */ 1225 btrfs_abort_transaction(trans, root, ret); 1226 goto fail; 1227 } 1228 1229 record_root_in_trans(trans, root); 1230 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1231 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1232 btrfs_check_and_init_root_item(new_root_item); 1233 1234 root_flags = btrfs_root_flags(new_root_item); 1235 if (pending->readonly) 1236 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1237 else 1238 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1239 btrfs_set_root_flags(new_root_item, root_flags); 1240 1241 btrfs_set_root_generation_v2(new_root_item, 1242 trans->transid); 1243 uuid_le_gen(&new_uuid); 1244 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1245 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1246 BTRFS_UUID_SIZE); 1247 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1248 memset(new_root_item->received_uuid, 0, 1249 sizeof(new_root_item->received_uuid)); 1250 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1251 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1252 btrfs_set_root_stransid(new_root_item, 0); 1253 btrfs_set_root_rtransid(new_root_item, 0); 1254 } 1255 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1256 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1257 btrfs_set_root_otransid(new_root_item, trans->transid); 1258 1259 old = btrfs_lock_root_node(root); 1260 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1261 if (ret) { 1262 btrfs_tree_unlock(old); 1263 free_extent_buffer(old); 1264 btrfs_abort_transaction(trans, root, ret); 1265 goto fail; 1266 } 1267 1268 btrfs_set_lock_blocking(old); 1269 1270 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1271 /* clean up in any case */ 1272 btrfs_tree_unlock(old); 1273 free_extent_buffer(old); 1274 if (ret) { 1275 btrfs_abort_transaction(trans, root, ret); 1276 goto fail; 1277 } 1278 1279 /* see comments in should_cow_block() */ 1280 root->force_cow = 1; 1281 smp_wmb(); 1282 1283 btrfs_set_root_node(new_root_item, tmp); 1284 /* record when the snapshot was created in key.offset */ 1285 key.offset = trans->transid; 1286 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1287 btrfs_tree_unlock(tmp); 1288 free_extent_buffer(tmp); 1289 if (ret) { 1290 btrfs_abort_transaction(trans, root, ret); 1291 goto fail; 1292 } 1293 1294 /* 1295 * insert root back/forward references 1296 */ 1297 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1298 parent_root->root_key.objectid, 1299 btrfs_ino(parent_inode), index, 1300 dentry->d_name.name, dentry->d_name.len); 1301 if (ret) { 1302 btrfs_abort_transaction(trans, root, ret); 1303 goto fail; 1304 } 1305 1306 key.offset = (u64)-1; 1307 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1308 if (IS_ERR(pending->snap)) { 1309 ret = PTR_ERR(pending->snap); 1310 btrfs_abort_transaction(trans, root, ret); 1311 goto fail; 1312 } 1313 1314 ret = btrfs_reloc_post_snapshot(trans, pending); 1315 if (ret) { 1316 btrfs_abort_transaction(trans, root, ret); 1317 goto fail; 1318 } 1319 1320 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1321 if (ret) { 1322 btrfs_abort_transaction(trans, root, ret); 1323 goto fail; 1324 } 1325 1326 ret = btrfs_insert_dir_item(trans, parent_root, 1327 dentry->d_name.name, dentry->d_name.len, 1328 parent_inode, &key, 1329 BTRFS_FT_DIR, index); 1330 /* We have check then name at the beginning, so it is impossible. */ 1331 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1332 if (ret) { 1333 btrfs_abort_transaction(trans, root, ret); 1334 goto fail; 1335 } 1336 1337 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1338 dentry->d_name.len * 2); 1339 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1340 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1341 if (ret) { 1342 btrfs_abort_transaction(trans, root, ret); 1343 goto fail; 1344 } 1345 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b, 1346 BTRFS_UUID_KEY_SUBVOL, objectid); 1347 if (ret) { 1348 btrfs_abort_transaction(trans, root, ret); 1349 goto fail; 1350 } 1351 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1352 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 1353 new_root_item->received_uuid, 1354 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1355 objectid); 1356 if (ret && ret != -EEXIST) { 1357 btrfs_abort_transaction(trans, root, ret); 1358 goto fail; 1359 } 1360 } 1361 fail: 1362 pending->error = ret; 1363 dir_item_existed: 1364 trans->block_rsv = rsv; 1365 trans->bytes_reserved = 0; 1366 no_free_objectid: 1367 kfree(new_root_item); 1368 root_item_alloc_fail: 1369 btrfs_free_path(path); 1370 return ret; 1371 } 1372 1373 /* 1374 * create all the snapshots we've scheduled for creation 1375 */ 1376 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1377 struct btrfs_fs_info *fs_info) 1378 { 1379 struct btrfs_pending_snapshot *pending, *next; 1380 struct list_head *head = &trans->transaction->pending_snapshots; 1381 int ret = 0; 1382 1383 list_for_each_entry_safe(pending, next, head, list) { 1384 list_del(&pending->list); 1385 ret = create_pending_snapshot(trans, fs_info, pending); 1386 if (ret) 1387 break; 1388 } 1389 return ret; 1390 } 1391 1392 static void update_super_roots(struct btrfs_root *root) 1393 { 1394 struct btrfs_root_item *root_item; 1395 struct btrfs_super_block *super; 1396 1397 super = root->fs_info->super_copy; 1398 1399 root_item = &root->fs_info->chunk_root->root_item; 1400 super->chunk_root = root_item->bytenr; 1401 super->chunk_root_generation = root_item->generation; 1402 super->chunk_root_level = root_item->level; 1403 1404 root_item = &root->fs_info->tree_root->root_item; 1405 super->root = root_item->bytenr; 1406 super->generation = root_item->generation; 1407 super->root_level = root_item->level; 1408 if (btrfs_test_opt(root, SPACE_CACHE)) 1409 super->cache_generation = root_item->generation; 1410 if (root->fs_info->update_uuid_tree_gen) 1411 super->uuid_tree_generation = root_item->generation; 1412 } 1413 1414 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1415 { 1416 struct btrfs_transaction *trans; 1417 int ret = 0; 1418 1419 spin_lock(&info->trans_lock); 1420 trans = info->running_transaction; 1421 if (trans) 1422 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1423 spin_unlock(&info->trans_lock); 1424 return ret; 1425 } 1426 1427 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1428 { 1429 struct btrfs_transaction *trans; 1430 int ret = 0; 1431 1432 spin_lock(&info->trans_lock); 1433 trans = info->running_transaction; 1434 if (trans) 1435 ret = is_transaction_blocked(trans); 1436 spin_unlock(&info->trans_lock); 1437 return ret; 1438 } 1439 1440 /* 1441 * wait for the current transaction commit to start and block subsequent 1442 * transaction joins 1443 */ 1444 static void wait_current_trans_commit_start(struct btrfs_root *root, 1445 struct btrfs_transaction *trans) 1446 { 1447 wait_event(root->fs_info->transaction_blocked_wait, 1448 trans->state >= TRANS_STATE_COMMIT_START || 1449 trans->aborted); 1450 } 1451 1452 /* 1453 * wait for the current transaction to start and then become unblocked. 1454 * caller holds ref. 1455 */ 1456 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1457 struct btrfs_transaction *trans) 1458 { 1459 wait_event(root->fs_info->transaction_wait, 1460 trans->state >= TRANS_STATE_UNBLOCKED || 1461 trans->aborted); 1462 } 1463 1464 /* 1465 * commit transactions asynchronously. once btrfs_commit_transaction_async 1466 * returns, any subsequent transaction will not be allowed to join. 1467 */ 1468 struct btrfs_async_commit { 1469 struct btrfs_trans_handle *newtrans; 1470 struct btrfs_root *root; 1471 struct work_struct work; 1472 }; 1473 1474 static void do_async_commit(struct work_struct *work) 1475 { 1476 struct btrfs_async_commit *ac = 1477 container_of(work, struct btrfs_async_commit, work); 1478 1479 /* 1480 * We've got freeze protection passed with the transaction. 1481 * Tell lockdep about it. 1482 */ 1483 if (ac->newtrans->type & __TRANS_FREEZABLE) 1484 rwsem_acquire_read( 1485 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1486 0, 1, _THIS_IP_); 1487 1488 current->journal_info = ac->newtrans; 1489 1490 btrfs_commit_transaction(ac->newtrans, ac->root); 1491 kfree(ac); 1492 } 1493 1494 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1495 struct btrfs_root *root, 1496 int wait_for_unblock) 1497 { 1498 struct btrfs_async_commit *ac; 1499 struct btrfs_transaction *cur_trans; 1500 1501 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1502 if (!ac) 1503 return -ENOMEM; 1504 1505 INIT_WORK(&ac->work, do_async_commit); 1506 ac->root = root; 1507 ac->newtrans = btrfs_join_transaction(root); 1508 if (IS_ERR(ac->newtrans)) { 1509 int err = PTR_ERR(ac->newtrans); 1510 kfree(ac); 1511 return err; 1512 } 1513 1514 /* take transaction reference */ 1515 cur_trans = trans->transaction; 1516 atomic_inc(&cur_trans->use_count); 1517 1518 btrfs_end_transaction(trans, root); 1519 1520 /* 1521 * Tell lockdep we've released the freeze rwsem, since the 1522 * async commit thread will be the one to unlock it. 1523 */ 1524 if (ac->newtrans->type & __TRANS_FREEZABLE) 1525 rwsem_release( 1526 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1527 1, _THIS_IP_); 1528 1529 schedule_work(&ac->work); 1530 1531 /* wait for transaction to start and unblock */ 1532 if (wait_for_unblock) 1533 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1534 else 1535 wait_current_trans_commit_start(root, cur_trans); 1536 1537 if (current->journal_info == trans) 1538 current->journal_info = NULL; 1539 1540 btrfs_put_transaction(cur_trans); 1541 return 0; 1542 } 1543 1544 1545 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1546 struct btrfs_root *root, int err) 1547 { 1548 struct btrfs_transaction *cur_trans = trans->transaction; 1549 DEFINE_WAIT(wait); 1550 1551 WARN_ON(trans->use_count > 1); 1552 1553 btrfs_abort_transaction(trans, root, err); 1554 1555 spin_lock(&root->fs_info->trans_lock); 1556 1557 /* 1558 * If the transaction is removed from the list, it means this 1559 * transaction has been committed successfully, so it is impossible 1560 * to call the cleanup function. 1561 */ 1562 BUG_ON(list_empty(&cur_trans->list)); 1563 1564 list_del_init(&cur_trans->list); 1565 if (cur_trans == root->fs_info->running_transaction) { 1566 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1567 spin_unlock(&root->fs_info->trans_lock); 1568 wait_event(cur_trans->writer_wait, 1569 atomic_read(&cur_trans->num_writers) == 1); 1570 1571 spin_lock(&root->fs_info->trans_lock); 1572 } 1573 spin_unlock(&root->fs_info->trans_lock); 1574 1575 btrfs_cleanup_one_transaction(trans->transaction, root); 1576 1577 spin_lock(&root->fs_info->trans_lock); 1578 if (cur_trans == root->fs_info->running_transaction) 1579 root->fs_info->running_transaction = NULL; 1580 spin_unlock(&root->fs_info->trans_lock); 1581 1582 if (trans->type & __TRANS_FREEZABLE) 1583 sb_end_intwrite(root->fs_info->sb); 1584 btrfs_put_transaction(cur_trans); 1585 btrfs_put_transaction(cur_trans); 1586 1587 trace_btrfs_transaction_commit(root); 1588 1589 btrfs_scrub_continue(root); 1590 1591 if (current->journal_info == trans) 1592 current->journal_info = NULL; 1593 1594 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1595 } 1596 1597 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans, 1598 struct btrfs_root *root) 1599 { 1600 int ret; 1601 1602 ret = btrfs_run_delayed_items(trans, root); 1603 /* 1604 * running the delayed items may have added new refs. account 1605 * them now so that they hinder processing of more delayed refs 1606 * as little as possible. 1607 */ 1608 if (ret) { 1609 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 1610 return ret; 1611 } 1612 1613 ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 1614 if (ret) 1615 return ret; 1616 1617 /* 1618 * rename don't use btrfs_join_transaction, so, once we 1619 * set the transaction to blocked above, we aren't going 1620 * to get any new ordered operations. We can safely run 1621 * it here and no for sure that nothing new will be added 1622 * to the list 1623 */ 1624 ret = btrfs_run_ordered_operations(trans, root, 1); 1625 1626 return ret; 1627 } 1628 1629 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1630 { 1631 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1632 return btrfs_start_delalloc_roots(fs_info, 1); 1633 return 0; 1634 } 1635 1636 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1637 { 1638 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1639 btrfs_wait_ordered_roots(fs_info, -1); 1640 } 1641 1642 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1643 struct btrfs_root *root) 1644 { 1645 struct btrfs_transaction *cur_trans = trans->transaction; 1646 struct btrfs_transaction *prev_trans = NULL; 1647 int ret; 1648 1649 ret = btrfs_run_ordered_operations(trans, root, 0); 1650 if (ret) { 1651 btrfs_abort_transaction(trans, root, ret); 1652 btrfs_end_transaction(trans, root); 1653 return ret; 1654 } 1655 1656 /* Stop the commit early if ->aborted is set */ 1657 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1658 ret = cur_trans->aborted; 1659 btrfs_end_transaction(trans, root); 1660 return ret; 1661 } 1662 1663 /* make a pass through all the delayed refs we have so far 1664 * any runnings procs may add more while we are here 1665 */ 1666 ret = btrfs_run_delayed_refs(trans, root, 0); 1667 if (ret) { 1668 btrfs_end_transaction(trans, root); 1669 return ret; 1670 } 1671 1672 btrfs_trans_release_metadata(trans, root); 1673 trans->block_rsv = NULL; 1674 if (trans->qgroup_reserved) { 1675 btrfs_qgroup_free(root, trans->qgroup_reserved); 1676 trans->qgroup_reserved = 0; 1677 } 1678 1679 cur_trans = trans->transaction; 1680 1681 /* 1682 * set the flushing flag so procs in this transaction have to 1683 * start sending their work down. 1684 */ 1685 cur_trans->delayed_refs.flushing = 1; 1686 smp_wmb(); 1687 1688 if (!list_empty(&trans->new_bgs)) 1689 btrfs_create_pending_block_groups(trans, root); 1690 1691 ret = btrfs_run_delayed_refs(trans, root, 0); 1692 if (ret) { 1693 btrfs_end_transaction(trans, root); 1694 return ret; 1695 } 1696 1697 spin_lock(&root->fs_info->trans_lock); 1698 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1699 spin_unlock(&root->fs_info->trans_lock); 1700 atomic_inc(&cur_trans->use_count); 1701 ret = btrfs_end_transaction(trans, root); 1702 1703 wait_for_commit(root, cur_trans); 1704 1705 btrfs_put_transaction(cur_trans); 1706 1707 return ret; 1708 } 1709 1710 cur_trans->state = TRANS_STATE_COMMIT_START; 1711 wake_up(&root->fs_info->transaction_blocked_wait); 1712 1713 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1714 prev_trans = list_entry(cur_trans->list.prev, 1715 struct btrfs_transaction, list); 1716 if (prev_trans->state != TRANS_STATE_COMPLETED) { 1717 atomic_inc(&prev_trans->use_count); 1718 spin_unlock(&root->fs_info->trans_lock); 1719 1720 wait_for_commit(root, prev_trans); 1721 1722 btrfs_put_transaction(prev_trans); 1723 } else { 1724 spin_unlock(&root->fs_info->trans_lock); 1725 } 1726 } else { 1727 spin_unlock(&root->fs_info->trans_lock); 1728 } 1729 1730 extwriter_counter_dec(cur_trans, trans->type); 1731 1732 ret = btrfs_start_delalloc_flush(root->fs_info); 1733 if (ret) 1734 goto cleanup_transaction; 1735 1736 ret = btrfs_flush_all_pending_stuffs(trans, root); 1737 if (ret) 1738 goto cleanup_transaction; 1739 1740 wait_event(cur_trans->writer_wait, 1741 extwriter_counter_read(cur_trans) == 0); 1742 1743 /* some pending stuffs might be added after the previous flush. */ 1744 ret = btrfs_flush_all_pending_stuffs(trans, root); 1745 if (ret) 1746 goto cleanup_transaction; 1747 1748 btrfs_wait_delalloc_flush(root->fs_info); 1749 /* 1750 * Ok now we need to make sure to block out any other joins while we 1751 * commit the transaction. We could have started a join before setting 1752 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 1753 */ 1754 spin_lock(&root->fs_info->trans_lock); 1755 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1756 spin_unlock(&root->fs_info->trans_lock); 1757 wait_event(cur_trans->writer_wait, 1758 atomic_read(&cur_trans->num_writers) == 1); 1759 1760 /* ->aborted might be set after the previous check, so check it */ 1761 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1762 ret = cur_trans->aborted; 1763 goto cleanup_transaction; 1764 } 1765 /* 1766 * the reloc mutex makes sure that we stop 1767 * the balancing code from coming in and moving 1768 * extents around in the middle of the commit 1769 */ 1770 mutex_lock(&root->fs_info->reloc_mutex); 1771 1772 /* 1773 * We needn't worry about the delayed items because we will 1774 * deal with them in create_pending_snapshot(), which is the 1775 * core function of the snapshot creation. 1776 */ 1777 ret = create_pending_snapshots(trans, root->fs_info); 1778 if (ret) { 1779 mutex_unlock(&root->fs_info->reloc_mutex); 1780 goto cleanup_transaction; 1781 } 1782 1783 /* 1784 * We insert the dir indexes of the snapshots and update the inode 1785 * of the snapshots' parents after the snapshot creation, so there 1786 * are some delayed items which are not dealt with. Now deal with 1787 * them. 1788 * 1789 * We needn't worry that this operation will corrupt the snapshots, 1790 * because all the tree which are snapshoted will be forced to COW 1791 * the nodes and leaves. 1792 */ 1793 ret = btrfs_run_delayed_items(trans, root); 1794 if (ret) { 1795 mutex_unlock(&root->fs_info->reloc_mutex); 1796 goto cleanup_transaction; 1797 } 1798 1799 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1800 if (ret) { 1801 mutex_unlock(&root->fs_info->reloc_mutex); 1802 goto cleanup_transaction; 1803 } 1804 1805 /* 1806 * make sure none of the code above managed to slip in a 1807 * delayed item 1808 */ 1809 btrfs_assert_delayed_root_empty(root); 1810 1811 WARN_ON(cur_trans != trans->transaction); 1812 1813 btrfs_scrub_pause(root); 1814 /* btrfs_commit_tree_roots is responsible for getting the 1815 * various roots consistent with each other. Every pointer 1816 * in the tree of tree roots has to point to the most up to date 1817 * root for every subvolume and other tree. So, we have to keep 1818 * the tree logging code from jumping in and changing any 1819 * of the trees. 1820 * 1821 * At this point in the commit, there can't be any tree-log 1822 * writers, but a little lower down we drop the trans mutex 1823 * and let new people in. By holding the tree_log_mutex 1824 * from now until after the super is written, we avoid races 1825 * with the tree-log code. 1826 */ 1827 mutex_lock(&root->fs_info->tree_log_mutex); 1828 1829 ret = commit_fs_roots(trans, root); 1830 if (ret) { 1831 mutex_unlock(&root->fs_info->tree_log_mutex); 1832 mutex_unlock(&root->fs_info->reloc_mutex); 1833 goto cleanup_transaction; 1834 } 1835 1836 /* commit_fs_roots gets rid of all the tree log roots, it is now 1837 * safe to free the root of tree log roots 1838 */ 1839 btrfs_free_log_root_tree(trans, root->fs_info); 1840 1841 ret = commit_cowonly_roots(trans, root); 1842 if (ret) { 1843 mutex_unlock(&root->fs_info->tree_log_mutex); 1844 mutex_unlock(&root->fs_info->reloc_mutex); 1845 goto cleanup_transaction; 1846 } 1847 1848 /* 1849 * The tasks which save the space cache and inode cache may also 1850 * update ->aborted, check it. 1851 */ 1852 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1853 ret = cur_trans->aborted; 1854 mutex_unlock(&root->fs_info->tree_log_mutex); 1855 mutex_unlock(&root->fs_info->reloc_mutex); 1856 goto cleanup_transaction; 1857 } 1858 1859 btrfs_prepare_extent_commit(trans, root); 1860 1861 cur_trans = root->fs_info->running_transaction; 1862 1863 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1864 root->fs_info->tree_root->node); 1865 switch_commit_root(root->fs_info->tree_root); 1866 1867 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1868 root->fs_info->chunk_root->node); 1869 switch_commit_root(root->fs_info->chunk_root); 1870 1871 assert_qgroups_uptodate(trans); 1872 update_super_roots(root); 1873 1874 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 1875 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 1876 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 1877 sizeof(*root->fs_info->super_copy)); 1878 1879 spin_lock(&root->fs_info->trans_lock); 1880 cur_trans->state = TRANS_STATE_UNBLOCKED; 1881 root->fs_info->running_transaction = NULL; 1882 spin_unlock(&root->fs_info->trans_lock); 1883 mutex_unlock(&root->fs_info->reloc_mutex); 1884 1885 wake_up(&root->fs_info->transaction_wait); 1886 1887 ret = btrfs_write_and_wait_transaction(trans, root); 1888 if (ret) { 1889 btrfs_error(root->fs_info, ret, 1890 "Error while writing out transaction"); 1891 mutex_unlock(&root->fs_info->tree_log_mutex); 1892 goto cleanup_transaction; 1893 } 1894 1895 ret = write_ctree_super(trans, root, 0); 1896 if (ret) { 1897 mutex_unlock(&root->fs_info->tree_log_mutex); 1898 goto cleanup_transaction; 1899 } 1900 1901 /* 1902 * the super is written, we can safely allow the tree-loggers 1903 * to go about their business 1904 */ 1905 mutex_unlock(&root->fs_info->tree_log_mutex); 1906 1907 btrfs_finish_extent_commit(trans, root); 1908 1909 root->fs_info->last_trans_committed = cur_trans->transid; 1910 /* 1911 * We needn't acquire the lock here because there is no other task 1912 * which can change it. 1913 */ 1914 cur_trans->state = TRANS_STATE_COMPLETED; 1915 wake_up(&cur_trans->commit_wait); 1916 1917 spin_lock(&root->fs_info->trans_lock); 1918 list_del_init(&cur_trans->list); 1919 spin_unlock(&root->fs_info->trans_lock); 1920 1921 btrfs_put_transaction(cur_trans); 1922 btrfs_put_transaction(cur_trans); 1923 1924 if (trans->type & __TRANS_FREEZABLE) 1925 sb_end_intwrite(root->fs_info->sb); 1926 1927 trace_btrfs_transaction_commit(root); 1928 1929 btrfs_scrub_continue(root); 1930 1931 if (current->journal_info == trans) 1932 current->journal_info = NULL; 1933 1934 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1935 1936 if (current != root->fs_info->transaction_kthread) 1937 btrfs_run_delayed_iputs(root); 1938 1939 return ret; 1940 1941 cleanup_transaction: 1942 btrfs_trans_release_metadata(trans, root); 1943 trans->block_rsv = NULL; 1944 if (trans->qgroup_reserved) { 1945 btrfs_qgroup_free(root, trans->qgroup_reserved); 1946 trans->qgroup_reserved = 0; 1947 } 1948 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction."); 1949 if (current->journal_info == trans) 1950 current->journal_info = NULL; 1951 cleanup_transaction(trans, root, ret); 1952 1953 return ret; 1954 } 1955 1956 /* 1957 * return < 0 if error 1958 * 0 if there are no more dead_roots at the time of call 1959 * 1 there are more to be processed, call me again 1960 * 1961 * The return value indicates there are certainly more snapshots to delete, but 1962 * if there comes a new one during processing, it may return 0. We don't mind, 1963 * because btrfs_commit_super will poke cleaner thread and it will process it a 1964 * few seconds later. 1965 */ 1966 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 1967 { 1968 int ret; 1969 struct btrfs_fs_info *fs_info = root->fs_info; 1970 1971 spin_lock(&fs_info->trans_lock); 1972 if (list_empty(&fs_info->dead_roots)) { 1973 spin_unlock(&fs_info->trans_lock); 1974 return 0; 1975 } 1976 root = list_first_entry(&fs_info->dead_roots, 1977 struct btrfs_root, root_list); 1978 list_del_init(&root->root_list); 1979 spin_unlock(&fs_info->trans_lock); 1980 1981 pr_debug("btrfs: cleaner removing %llu\n", root->objectid); 1982 1983 btrfs_kill_all_delayed_nodes(root); 1984 1985 if (btrfs_header_backref_rev(root->node) < 1986 BTRFS_MIXED_BACKREF_REV) 1987 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 1988 else 1989 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 1990 /* 1991 * If we encounter a transaction abort during snapshot cleaning, we 1992 * don't want to crash here 1993 */ 1994 return (ret < 0) ? 0 : 1; 1995 } 1996