1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 #include "qgroup.h" 35 36 #define BTRFS_ROOT_TRANS_TAG 0 37 38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 39 [TRANS_STATE_RUNNING] = 0U, 40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | 41 __TRANS_START), 42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | 43 __TRANS_START | 44 __TRANS_ATTACH), 45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | 46 __TRANS_START | 47 __TRANS_ATTACH | 48 __TRANS_JOIN), 49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | 50 __TRANS_START | 51 __TRANS_ATTACH | 52 __TRANS_JOIN | 53 __TRANS_JOIN_NOLOCK), 54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | 55 __TRANS_START | 56 __TRANS_ATTACH | 57 __TRANS_JOIN | 58 __TRANS_JOIN_NOLOCK), 59 }; 60 61 void btrfs_put_transaction(struct btrfs_transaction *transaction) 62 { 63 WARN_ON(atomic_read(&transaction->use_count) == 0); 64 if (atomic_dec_and_test(&transaction->use_count)) { 65 BUG_ON(!list_empty(&transaction->list)); 66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 67 if (transaction->delayed_refs.pending_csums) 68 printk(KERN_ERR "pending csums is %llu\n", 69 transaction->delayed_refs.pending_csums); 70 while (!list_empty(&transaction->pending_chunks)) { 71 struct extent_map *em; 72 73 em = list_first_entry(&transaction->pending_chunks, 74 struct extent_map, list); 75 list_del_init(&em->list); 76 free_extent_map(em); 77 } 78 /* 79 * If any block groups are found in ->deleted_bgs then it's 80 * because the transaction was aborted and a commit did not 81 * happen (things failed before writing the new superblock 82 * and calling btrfs_finish_extent_commit()), so we can not 83 * discard the physical locations of the block groups. 84 */ 85 while (!list_empty(&transaction->deleted_bgs)) { 86 struct btrfs_block_group_cache *cache; 87 88 cache = list_first_entry(&transaction->deleted_bgs, 89 struct btrfs_block_group_cache, 90 bg_list); 91 list_del_init(&cache->bg_list); 92 btrfs_put_block_group_trimming(cache); 93 btrfs_put_block_group(cache); 94 } 95 kmem_cache_free(btrfs_transaction_cachep, transaction); 96 } 97 } 98 99 static void clear_btree_io_tree(struct extent_io_tree *tree) 100 { 101 spin_lock(&tree->lock); 102 /* 103 * Do a single barrier for the waitqueue_active check here, the state 104 * of the waitqueue should not change once clear_btree_io_tree is 105 * called. 106 */ 107 smp_mb(); 108 while (!RB_EMPTY_ROOT(&tree->state)) { 109 struct rb_node *node; 110 struct extent_state *state; 111 112 node = rb_first(&tree->state); 113 state = rb_entry(node, struct extent_state, rb_node); 114 rb_erase(&state->rb_node, &tree->state); 115 RB_CLEAR_NODE(&state->rb_node); 116 /* 117 * btree io trees aren't supposed to have tasks waiting for 118 * changes in the flags of extent states ever. 119 */ 120 ASSERT(!waitqueue_active(&state->wq)); 121 free_extent_state(state); 122 123 cond_resched_lock(&tree->lock); 124 } 125 spin_unlock(&tree->lock); 126 } 127 128 static noinline void switch_commit_roots(struct btrfs_transaction *trans, 129 struct btrfs_fs_info *fs_info) 130 { 131 struct btrfs_root *root, *tmp; 132 133 down_write(&fs_info->commit_root_sem); 134 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 135 dirty_list) { 136 list_del_init(&root->dirty_list); 137 free_extent_buffer(root->commit_root); 138 root->commit_root = btrfs_root_node(root); 139 if (is_fstree(root->objectid)) 140 btrfs_unpin_free_ino(root); 141 clear_btree_io_tree(&root->dirty_log_pages); 142 } 143 144 /* We can free old roots now. */ 145 spin_lock(&trans->dropped_roots_lock); 146 while (!list_empty(&trans->dropped_roots)) { 147 root = list_first_entry(&trans->dropped_roots, 148 struct btrfs_root, root_list); 149 list_del_init(&root->root_list); 150 spin_unlock(&trans->dropped_roots_lock); 151 btrfs_drop_and_free_fs_root(fs_info, root); 152 spin_lock(&trans->dropped_roots_lock); 153 } 154 spin_unlock(&trans->dropped_roots_lock); 155 up_write(&fs_info->commit_root_sem); 156 } 157 158 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 159 unsigned int type) 160 { 161 if (type & TRANS_EXTWRITERS) 162 atomic_inc(&trans->num_extwriters); 163 } 164 165 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 166 unsigned int type) 167 { 168 if (type & TRANS_EXTWRITERS) 169 atomic_dec(&trans->num_extwriters); 170 } 171 172 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 173 unsigned int type) 174 { 175 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 176 } 177 178 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 179 { 180 return atomic_read(&trans->num_extwriters); 181 } 182 183 /* 184 * either allocate a new transaction or hop into the existing one 185 */ 186 static noinline int join_transaction(struct btrfs_root *root, unsigned int type) 187 { 188 struct btrfs_transaction *cur_trans; 189 struct btrfs_fs_info *fs_info = root->fs_info; 190 191 spin_lock(&fs_info->trans_lock); 192 loop: 193 /* The file system has been taken offline. No new transactions. */ 194 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 195 spin_unlock(&fs_info->trans_lock); 196 return -EROFS; 197 } 198 199 cur_trans = fs_info->running_transaction; 200 if (cur_trans) { 201 if (cur_trans->aborted) { 202 spin_unlock(&fs_info->trans_lock); 203 return cur_trans->aborted; 204 } 205 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 206 spin_unlock(&fs_info->trans_lock); 207 return -EBUSY; 208 } 209 atomic_inc(&cur_trans->use_count); 210 atomic_inc(&cur_trans->num_writers); 211 extwriter_counter_inc(cur_trans, type); 212 spin_unlock(&fs_info->trans_lock); 213 return 0; 214 } 215 spin_unlock(&fs_info->trans_lock); 216 217 /* 218 * If we are ATTACH, we just want to catch the current transaction, 219 * and commit it. If there is no transaction, just return ENOENT. 220 */ 221 if (type == TRANS_ATTACH) 222 return -ENOENT; 223 224 /* 225 * JOIN_NOLOCK only happens during the transaction commit, so 226 * it is impossible that ->running_transaction is NULL 227 */ 228 BUG_ON(type == TRANS_JOIN_NOLOCK); 229 230 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 231 if (!cur_trans) 232 return -ENOMEM; 233 234 spin_lock(&fs_info->trans_lock); 235 if (fs_info->running_transaction) { 236 /* 237 * someone started a transaction after we unlocked. Make sure 238 * to redo the checks above 239 */ 240 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 241 goto loop; 242 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 243 spin_unlock(&fs_info->trans_lock); 244 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 245 return -EROFS; 246 } 247 248 atomic_set(&cur_trans->num_writers, 1); 249 extwriter_counter_init(cur_trans, type); 250 init_waitqueue_head(&cur_trans->writer_wait); 251 init_waitqueue_head(&cur_trans->commit_wait); 252 init_waitqueue_head(&cur_trans->pending_wait); 253 cur_trans->state = TRANS_STATE_RUNNING; 254 /* 255 * One for this trans handle, one so it will live on until we 256 * commit the transaction. 257 */ 258 atomic_set(&cur_trans->use_count, 2); 259 atomic_set(&cur_trans->pending_ordered, 0); 260 cur_trans->flags = 0; 261 cur_trans->start_time = get_seconds(); 262 263 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 264 265 cur_trans->delayed_refs.href_root = RB_ROOT; 266 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 267 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 268 269 /* 270 * although the tree mod log is per file system and not per transaction, 271 * the log must never go across transaction boundaries. 272 */ 273 smp_mb(); 274 if (!list_empty(&fs_info->tree_mod_seq_list)) 275 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when " 276 "creating a fresh transaction\n"); 277 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 278 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when " 279 "creating a fresh transaction\n"); 280 atomic64_set(&fs_info->tree_mod_seq, 0); 281 282 spin_lock_init(&cur_trans->delayed_refs.lock); 283 284 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 285 INIT_LIST_HEAD(&cur_trans->pending_chunks); 286 INIT_LIST_HEAD(&cur_trans->switch_commits); 287 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 288 INIT_LIST_HEAD(&cur_trans->io_bgs); 289 INIT_LIST_HEAD(&cur_trans->dropped_roots); 290 mutex_init(&cur_trans->cache_write_mutex); 291 cur_trans->num_dirty_bgs = 0; 292 spin_lock_init(&cur_trans->dirty_bgs_lock); 293 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 294 spin_lock_init(&cur_trans->dropped_roots_lock); 295 list_add_tail(&cur_trans->list, &fs_info->trans_list); 296 extent_io_tree_init(&cur_trans->dirty_pages, 297 fs_info->btree_inode->i_mapping); 298 fs_info->generation++; 299 cur_trans->transid = fs_info->generation; 300 fs_info->running_transaction = cur_trans; 301 cur_trans->aborted = 0; 302 spin_unlock(&fs_info->trans_lock); 303 304 return 0; 305 } 306 307 /* 308 * this does all the record keeping required to make sure that a reference 309 * counted root is properly recorded in a given transaction. This is required 310 * to make sure the old root from before we joined the transaction is deleted 311 * when the transaction commits 312 */ 313 static int record_root_in_trans(struct btrfs_trans_handle *trans, 314 struct btrfs_root *root, 315 int force) 316 { 317 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 318 root->last_trans < trans->transid) || force) { 319 WARN_ON(root == root->fs_info->extent_root); 320 WARN_ON(root->commit_root != root->node); 321 322 /* 323 * see below for IN_TRANS_SETUP usage rules 324 * we have the reloc mutex held now, so there 325 * is only one writer in this function 326 */ 327 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 328 329 /* make sure readers find IN_TRANS_SETUP before 330 * they find our root->last_trans update 331 */ 332 smp_wmb(); 333 334 spin_lock(&root->fs_info->fs_roots_radix_lock); 335 if (root->last_trans == trans->transid && !force) { 336 spin_unlock(&root->fs_info->fs_roots_radix_lock); 337 return 0; 338 } 339 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 340 (unsigned long)root->root_key.objectid, 341 BTRFS_ROOT_TRANS_TAG); 342 spin_unlock(&root->fs_info->fs_roots_radix_lock); 343 root->last_trans = trans->transid; 344 345 /* this is pretty tricky. We don't want to 346 * take the relocation lock in btrfs_record_root_in_trans 347 * unless we're really doing the first setup for this root in 348 * this transaction. 349 * 350 * Normally we'd use root->last_trans as a flag to decide 351 * if we want to take the expensive mutex. 352 * 353 * But, we have to set root->last_trans before we 354 * init the relocation root, otherwise, we trip over warnings 355 * in ctree.c. The solution used here is to flag ourselves 356 * with root IN_TRANS_SETUP. When this is 1, we're still 357 * fixing up the reloc trees and everyone must wait. 358 * 359 * When this is zero, they can trust root->last_trans and fly 360 * through btrfs_record_root_in_trans without having to take the 361 * lock. smp_wmb() makes sure that all the writes above are 362 * done before we pop in the zero below 363 */ 364 btrfs_init_reloc_root(trans, root); 365 smp_mb__before_atomic(); 366 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 367 } 368 return 0; 369 } 370 371 372 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 373 struct btrfs_root *root) 374 { 375 struct btrfs_transaction *cur_trans = trans->transaction; 376 377 /* Add ourselves to the transaction dropped list */ 378 spin_lock(&cur_trans->dropped_roots_lock); 379 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 380 spin_unlock(&cur_trans->dropped_roots_lock); 381 382 /* Make sure we don't try to update the root at commit time */ 383 spin_lock(&root->fs_info->fs_roots_radix_lock); 384 radix_tree_tag_clear(&root->fs_info->fs_roots_radix, 385 (unsigned long)root->root_key.objectid, 386 BTRFS_ROOT_TRANS_TAG); 387 spin_unlock(&root->fs_info->fs_roots_radix_lock); 388 } 389 390 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 391 struct btrfs_root *root) 392 { 393 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 394 return 0; 395 396 /* 397 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 398 * and barriers 399 */ 400 smp_rmb(); 401 if (root->last_trans == trans->transid && 402 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 403 return 0; 404 405 mutex_lock(&root->fs_info->reloc_mutex); 406 record_root_in_trans(trans, root, 0); 407 mutex_unlock(&root->fs_info->reloc_mutex); 408 409 return 0; 410 } 411 412 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 413 { 414 return (trans->state >= TRANS_STATE_BLOCKED && 415 trans->state < TRANS_STATE_UNBLOCKED && 416 !trans->aborted); 417 } 418 419 /* wait for commit against the current transaction to become unblocked 420 * when this is done, it is safe to start a new transaction, but the current 421 * transaction might not be fully on disk. 422 */ 423 static void wait_current_trans(struct btrfs_root *root) 424 { 425 struct btrfs_transaction *cur_trans; 426 427 spin_lock(&root->fs_info->trans_lock); 428 cur_trans = root->fs_info->running_transaction; 429 if (cur_trans && is_transaction_blocked(cur_trans)) { 430 atomic_inc(&cur_trans->use_count); 431 spin_unlock(&root->fs_info->trans_lock); 432 433 wait_event(root->fs_info->transaction_wait, 434 cur_trans->state >= TRANS_STATE_UNBLOCKED || 435 cur_trans->aborted); 436 btrfs_put_transaction(cur_trans); 437 } else { 438 spin_unlock(&root->fs_info->trans_lock); 439 } 440 } 441 442 static int may_wait_transaction(struct btrfs_root *root, int type) 443 { 444 if (root->fs_info->log_root_recovering) 445 return 0; 446 447 if (type == TRANS_USERSPACE) 448 return 1; 449 450 if (type == TRANS_START && 451 !atomic_read(&root->fs_info->open_ioctl_trans)) 452 return 1; 453 454 return 0; 455 } 456 457 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 458 { 459 if (!root->fs_info->reloc_ctl || 460 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 461 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 462 root->reloc_root) 463 return false; 464 465 return true; 466 } 467 468 static struct btrfs_trans_handle * 469 start_transaction(struct btrfs_root *root, unsigned int num_items, 470 unsigned int type, enum btrfs_reserve_flush_enum flush) 471 { 472 struct btrfs_trans_handle *h; 473 struct btrfs_transaction *cur_trans; 474 u64 num_bytes = 0; 475 u64 qgroup_reserved = 0; 476 bool reloc_reserved = false; 477 int ret; 478 479 /* Send isn't supposed to start transactions. */ 480 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 481 482 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 483 return ERR_PTR(-EROFS); 484 485 if (current->journal_info) { 486 WARN_ON(type & TRANS_EXTWRITERS); 487 h = current->journal_info; 488 h->use_count++; 489 WARN_ON(h->use_count > 2); 490 h->orig_rsv = h->block_rsv; 491 h->block_rsv = NULL; 492 goto got_it; 493 } 494 495 /* 496 * Do the reservation before we join the transaction so we can do all 497 * the appropriate flushing if need be. 498 */ 499 if (num_items > 0 && root != root->fs_info->chunk_root) { 500 qgroup_reserved = num_items * root->nodesize; 501 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved); 502 if (ret) 503 return ERR_PTR(ret); 504 505 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 506 /* 507 * Do the reservation for the relocation root creation 508 */ 509 if (need_reserve_reloc_root(root)) { 510 num_bytes += root->nodesize; 511 reloc_reserved = true; 512 } 513 514 ret = btrfs_block_rsv_add(root, 515 &root->fs_info->trans_block_rsv, 516 num_bytes, flush); 517 if (ret) 518 goto reserve_fail; 519 } 520 again: 521 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 522 if (!h) { 523 ret = -ENOMEM; 524 goto alloc_fail; 525 } 526 527 /* 528 * If we are JOIN_NOLOCK we're already committing a transaction and 529 * waiting on this guy, so we don't need to do the sb_start_intwrite 530 * because we're already holding a ref. We need this because we could 531 * have raced in and did an fsync() on a file which can kick a commit 532 * and then we deadlock with somebody doing a freeze. 533 * 534 * If we are ATTACH, it means we just want to catch the current 535 * transaction and commit it, so we needn't do sb_start_intwrite(). 536 */ 537 if (type & __TRANS_FREEZABLE) 538 sb_start_intwrite(root->fs_info->sb); 539 540 if (may_wait_transaction(root, type)) 541 wait_current_trans(root); 542 543 do { 544 ret = join_transaction(root, type); 545 if (ret == -EBUSY) { 546 wait_current_trans(root); 547 if (unlikely(type == TRANS_ATTACH)) 548 ret = -ENOENT; 549 } 550 } while (ret == -EBUSY); 551 552 if (ret < 0) { 553 /* We must get the transaction if we are JOIN_NOLOCK. */ 554 BUG_ON(type == TRANS_JOIN_NOLOCK); 555 goto join_fail; 556 } 557 558 cur_trans = root->fs_info->running_transaction; 559 560 h->transid = cur_trans->transid; 561 h->transaction = cur_trans; 562 h->root = root; 563 h->use_count = 1; 564 565 h->type = type; 566 h->can_flush_pending_bgs = true; 567 INIT_LIST_HEAD(&h->qgroup_ref_list); 568 INIT_LIST_HEAD(&h->new_bgs); 569 570 smp_mb(); 571 if (cur_trans->state >= TRANS_STATE_BLOCKED && 572 may_wait_transaction(root, type)) { 573 current->journal_info = h; 574 btrfs_commit_transaction(h, root); 575 goto again; 576 } 577 578 if (num_bytes) { 579 trace_btrfs_space_reservation(root->fs_info, "transaction", 580 h->transid, num_bytes, 1); 581 h->block_rsv = &root->fs_info->trans_block_rsv; 582 h->bytes_reserved = num_bytes; 583 h->reloc_reserved = reloc_reserved; 584 } 585 586 got_it: 587 btrfs_record_root_in_trans(h, root); 588 589 if (!current->journal_info && type != TRANS_USERSPACE) 590 current->journal_info = h; 591 return h; 592 593 join_fail: 594 if (type & __TRANS_FREEZABLE) 595 sb_end_intwrite(root->fs_info->sb); 596 kmem_cache_free(btrfs_trans_handle_cachep, h); 597 alloc_fail: 598 if (num_bytes) 599 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 600 num_bytes); 601 reserve_fail: 602 btrfs_qgroup_free_meta(root, qgroup_reserved); 603 return ERR_PTR(ret); 604 } 605 606 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 607 unsigned int num_items) 608 { 609 return start_transaction(root, num_items, TRANS_START, 610 BTRFS_RESERVE_FLUSH_ALL); 611 } 612 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 613 struct btrfs_root *root, 614 unsigned int num_items, 615 int min_factor) 616 { 617 struct btrfs_trans_handle *trans; 618 u64 num_bytes; 619 int ret; 620 621 trans = btrfs_start_transaction(root, num_items); 622 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 623 return trans; 624 625 trans = btrfs_start_transaction(root, 0); 626 if (IS_ERR(trans)) 627 return trans; 628 629 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 630 ret = btrfs_cond_migrate_bytes(root->fs_info, 631 &root->fs_info->trans_block_rsv, 632 num_bytes, 633 min_factor); 634 if (ret) { 635 btrfs_end_transaction(trans, root); 636 return ERR_PTR(ret); 637 } 638 639 trans->block_rsv = &root->fs_info->trans_block_rsv; 640 trans->bytes_reserved = num_bytes; 641 trace_btrfs_space_reservation(root->fs_info, "transaction", 642 trans->transid, num_bytes, 1); 643 644 return trans; 645 } 646 647 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 648 struct btrfs_root *root, 649 unsigned int num_items) 650 { 651 return start_transaction(root, num_items, TRANS_START, 652 BTRFS_RESERVE_FLUSH_LIMIT); 653 } 654 655 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 656 { 657 return start_transaction(root, 0, TRANS_JOIN, 658 BTRFS_RESERVE_NO_FLUSH); 659 } 660 661 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 662 { 663 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 664 BTRFS_RESERVE_NO_FLUSH); 665 } 666 667 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 668 { 669 return start_transaction(root, 0, TRANS_USERSPACE, 670 BTRFS_RESERVE_NO_FLUSH); 671 } 672 673 /* 674 * btrfs_attach_transaction() - catch the running transaction 675 * 676 * It is used when we want to commit the current the transaction, but 677 * don't want to start a new one. 678 * 679 * Note: If this function return -ENOENT, it just means there is no 680 * running transaction. But it is possible that the inactive transaction 681 * is still in the memory, not fully on disk. If you hope there is no 682 * inactive transaction in the fs when -ENOENT is returned, you should 683 * invoke 684 * btrfs_attach_transaction_barrier() 685 */ 686 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 687 { 688 return start_transaction(root, 0, TRANS_ATTACH, 689 BTRFS_RESERVE_NO_FLUSH); 690 } 691 692 /* 693 * btrfs_attach_transaction_barrier() - catch the running transaction 694 * 695 * It is similar to the above function, the differentia is this one 696 * will wait for all the inactive transactions until they fully 697 * complete. 698 */ 699 struct btrfs_trans_handle * 700 btrfs_attach_transaction_barrier(struct btrfs_root *root) 701 { 702 struct btrfs_trans_handle *trans; 703 704 trans = start_transaction(root, 0, TRANS_ATTACH, 705 BTRFS_RESERVE_NO_FLUSH); 706 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 707 btrfs_wait_for_commit(root, 0); 708 709 return trans; 710 } 711 712 /* wait for a transaction commit to be fully complete */ 713 static noinline void wait_for_commit(struct btrfs_root *root, 714 struct btrfs_transaction *commit) 715 { 716 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 717 } 718 719 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 720 { 721 struct btrfs_transaction *cur_trans = NULL, *t; 722 int ret = 0; 723 724 if (transid) { 725 if (transid <= root->fs_info->last_trans_committed) 726 goto out; 727 728 /* find specified transaction */ 729 spin_lock(&root->fs_info->trans_lock); 730 list_for_each_entry(t, &root->fs_info->trans_list, list) { 731 if (t->transid == transid) { 732 cur_trans = t; 733 atomic_inc(&cur_trans->use_count); 734 ret = 0; 735 break; 736 } 737 if (t->transid > transid) { 738 ret = 0; 739 break; 740 } 741 } 742 spin_unlock(&root->fs_info->trans_lock); 743 744 /* 745 * The specified transaction doesn't exist, or we 746 * raced with btrfs_commit_transaction 747 */ 748 if (!cur_trans) { 749 if (transid > root->fs_info->last_trans_committed) 750 ret = -EINVAL; 751 goto out; 752 } 753 } else { 754 /* find newest transaction that is committing | committed */ 755 spin_lock(&root->fs_info->trans_lock); 756 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 757 list) { 758 if (t->state >= TRANS_STATE_COMMIT_START) { 759 if (t->state == TRANS_STATE_COMPLETED) 760 break; 761 cur_trans = t; 762 atomic_inc(&cur_trans->use_count); 763 break; 764 } 765 } 766 spin_unlock(&root->fs_info->trans_lock); 767 if (!cur_trans) 768 goto out; /* nothing committing|committed */ 769 } 770 771 wait_for_commit(root, cur_trans); 772 btrfs_put_transaction(cur_trans); 773 out: 774 return ret; 775 } 776 777 void btrfs_throttle(struct btrfs_root *root) 778 { 779 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 780 wait_current_trans(root); 781 } 782 783 static int should_end_transaction(struct btrfs_trans_handle *trans, 784 struct btrfs_root *root) 785 { 786 if (root->fs_info->global_block_rsv.space_info->full && 787 btrfs_check_space_for_delayed_refs(trans, root)) 788 return 1; 789 790 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 791 } 792 793 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 794 struct btrfs_root *root) 795 { 796 struct btrfs_transaction *cur_trans = trans->transaction; 797 int updates; 798 int err; 799 800 smp_mb(); 801 if (cur_trans->state >= TRANS_STATE_BLOCKED || 802 cur_trans->delayed_refs.flushing) 803 return 1; 804 805 updates = trans->delayed_ref_updates; 806 trans->delayed_ref_updates = 0; 807 if (updates) { 808 err = btrfs_run_delayed_refs(trans, root, updates * 2); 809 if (err) /* Error code will also eval true */ 810 return err; 811 } 812 813 return should_end_transaction(trans, root); 814 } 815 816 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 817 struct btrfs_root *root, int throttle) 818 { 819 struct btrfs_transaction *cur_trans = trans->transaction; 820 struct btrfs_fs_info *info = root->fs_info; 821 unsigned long cur = trans->delayed_ref_updates; 822 int lock = (trans->type != TRANS_JOIN_NOLOCK); 823 int err = 0; 824 int must_run_delayed_refs = 0; 825 826 if (trans->use_count > 1) { 827 trans->use_count--; 828 trans->block_rsv = trans->orig_rsv; 829 return 0; 830 } 831 832 btrfs_trans_release_metadata(trans, root); 833 trans->block_rsv = NULL; 834 835 if (!list_empty(&trans->new_bgs)) 836 btrfs_create_pending_block_groups(trans, root); 837 838 trans->delayed_ref_updates = 0; 839 if (!trans->sync) { 840 must_run_delayed_refs = 841 btrfs_should_throttle_delayed_refs(trans, root); 842 cur = max_t(unsigned long, cur, 32); 843 844 /* 845 * don't make the caller wait if they are from a NOLOCK 846 * or ATTACH transaction, it will deadlock with commit 847 */ 848 if (must_run_delayed_refs == 1 && 849 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 850 must_run_delayed_refs = 2; 851 } 852 853 btrfs_trans_release_metadata(trans, root); 854 trans->block_rsv = NULL; 855 856 if (!list_empty(&trans->new_bgs)) 857 btrfs_create_pending_block_groups(trans, root); 858 859 btrfs_trans_release_chunk_metadata(trans); 860 861 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 862 should_end_transaction(trans, root) && 863 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 864 spin_lock(&info->trans_lock); 865 if (cur_trans->state == TRANS_STATE_RUNNING) 866 cur_trans->state = TRANS_STATE_BLOCKED; 867 spin_unlock(&info->trans_lock); 868 } 869 870 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 871 if (throttle) 872 return btrfs_commit_transaction(trans, root); 873 else 874 wake_up_process(info->transaction_kthread); 875 } 876 877 if (trans->type & __TRANS_FREEZABLE) 878 sb_end_intwrite(root->fs_info->sb); 879 880 WARN_ON(cur_trans != info->running_transaction); 881 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 882 atomic_dec(&cur_trans->num_writers); 883 extwriter_counter_dec(cur_trans, trans->type); 884 885 /* 886 * Make sure counter is updated before we wake up waiters. 887 */ 888 smp_mb(); 889 if (waitqueue_active(&cur_trans->writer_wait)) 890 wake_up(&cur_trans->writer_wait); 891 btrfs_put_transaction(cur_trans); 892 893 if (current->journal_info == trans) 894 current->journal_info = NULL; 895 896 if (throttle) 897 btrfs_run_delayed_iputs(root); 898 899 if (trans->aborted || 900 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 901 wake_up_process(info->transaction_kthread); 902 err = -EIO; 903 } 904 assert_qgroups_uptodate(trans); 905 906 kmem_cache_free(btrfs_trans_handle_cachep, trans); 907 if (must_run_delayed_refs) { 908 btrfs_async_run_delayed_refs(root, cur, 909 must_run_delayed_refs == 1); 910 } 911 return err; 912 } 913 914 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 915 struct btrfs_root *root) 916 { 917 return __btrfs_end_transaction(trans, root, 0); 918 } 919 920 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 921 struct btrfs_root *root) 922 { 923 return __btrfs_end_transaction(trans, root, 1); 924 } 925 926 /* 927 * when btree blocks are allocated, they have some corresponding bits set for 928 * them in one of two extent_io trees. This is used to make sure all of 929 * those extents are sent to disk but does not wait on them 930 */ 931 int btrfs_write_marked_extents(struct btrfs_root *root, 932 struct extent_io_tree *dirty_pages, int mark) 933 { 934 int err = 0; 935 int werr = 0; 936 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 937 struct extent_state *cached_state = NULL; 938 u64 start = 0; 939 u64 end; 940 941 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 942 mark, &cached_state)) { 943 bool wait_writeback = false; 944 945 err = convert_extent_bit(dirty_pages, start, end, 946 EXTENT_NEED_WAIT, 947 mark, &cached_state); 948 /* 949 * convert_extent_bit can return -ENOMEM, which is most of the 950 * time a temporary error. So when it happens, ignore the error 951 * and wait for writeback of this range to finish - because we 952 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 953 * to btrfs_wait_marked_extents() would not know that writeback 954 * for this range started and therefore wouldn't wait for it to 955 * finish - we don't want to commit a superblock that points to 956 * btree nodes/leafs for which writeback hasn't finished yet 957 * (and without errors). 958 * We cleanup any entries left in the io tree when committing 959 * the transaction (through clear_btree_io_tree()). 960 */ 961 if (err == -ENOMEM) { 962 err = 0; 963 wait_writeback = true; 964 } 965 if (!err) 966 err = filemap_fdatawrite_range(mapping, start, end); 967 if (err) 968 werr = err; 969 else if (wait_writeback) 970 werr = filemap_fdatawait_range(mapping, start, end); 971 free_extent_state(cached_state); 972 cached_state = NULL; 973 cond_resched(); 974 start = end + 1; 975 } 976 return werr; 977 } 978 979 /* 980 * when btree blocks are allocated, they have some corresponding bits set for 981 * them in one of two extent_io trees. This is used to make sure all of 982 * those extents are on disk for transaction or log commit. We wait 983 * on all the pages and clear them from the dirty pages state tree 984 */ 985 int btrfs_wait_marked_extents(struct btrfs_root *root, 986 struct extent_io_tree *dirty_pages, int mark) 987 { 988 int err = 0; 989 int werr = 0; 990 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 991 struct extent_state *cached_state = NULL; 992 u64 start = 0; 993 u64 end; 994 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 995 bool errors = false; 996 997 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 998 EXTENT_NEED_WAIT, &cached_state)) { 999 /* 1000 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1001 * When committing the transaction, we'll remove any entries 1002 * left in the io tree. For a log commit, we don't remove them 1003 * after committing the log because the tree can be accessed 1004 * concurrently - we do it only at transaction commit time when 1005 * it's safe to do it (through clear_btree_io_tree()). 1006 */ 1007 err = clear_extent_bit(dirty_pages, start, end, 1008 EXTENT_NEED_WAIT, 1009 0, 0, &cached_state, GFP_NOFS); 1010 if (err == -ENOMEM) 1011 err = 0; 1012 if (!err) 1013 err = filemap_fdatawait_range(mapping, start, end); 1014 if (err) 1015 werr = err; 1016 free_extent_state(cached_state); 1017 cached_state = NULL; 1018 cond_resched(); 1019 start = end + 1; 1020 } 1021 if (err) 1022 werr = err; 1023 1024 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 1025 if ((mark & EXTENT_DIRTY) && 1026 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, 1027 &btree_ino->runtime_flags)) 1028 errors = true; 1029 1030 if ((mark & EXTENT_NEW) && 1031 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, 1032 &btree_ino->runtime_flags)) 1033 errors = true; 1034 } else { 1035 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR, 1036 &btree_ino->runtime_flags)) 1037 errors = true; 1038 } 1039 1040 if (errors && !werr) 1041 werr = -EIO; 1042 1043 return werr; 1044 } 1045 1046 /* 1047 * when btree blocks are allocated, they have some corresponding bits set for 1048 * them in one of two extent_io trees. This is used to make sure all of 1049 * those extents are on disk for transaction or log commit 1050 */ 1051 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 1052 struct extent_io_tree *dirty_pages, int mark) 1053 { 1054 int ret; 1055 int ret2; 1056 struct blk_plug plug; 1057 1058 blk_start_plug(&plug); 1059 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 1060 blk_finish_plug(&plug); 1061 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 1062 1063 if (ret) 1064 return ret; 1065 if (ret2) 1066 return ret2; 1067 return 0; 1068 } 1069 1070 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 1071 struct btrfs_root *root) 1072 { 1073 int ret; 1074 1075 ret = btrfs_write_and_wait_marked_extents(root, 1076 &trans->transaction->dirty_pages, 1077 EXTENT_DIRTY); 1078 clear_btree_io_tree(&trans->transaction->dirty_pages); 1079 1080 return ret; 1081 } 1082 1083 /* 1084 * this is used to update the root pointer in the tree of tree roots. 1085 * 1086 * But, in the case of the extent allocation tree, updating the root 1087 * pointer may allocate blocks which may change the root of the extent 1088 * allocation tree. 1089 * 1090 * So, this loops and repeats and makes sure the cowonly root didn't 1091 * change while the root pointer was being updated in the metadata. 1092 */ 1093 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1094 struct btrfs_root *root) 1095 { 1096 int ret; 1097 u64 old_root_bytenr; 1098 u64 old_root_used; 1099 struct btrfs_root *tree_root = root->fs_info->tree_root; 1100 1101 old_root_used = btrfs_root_used(&root->root_item); 1102 1103 while (1) { 1104 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1105 if (old_root_bytenr == root->node->start && 1106 old_root_used == btrfs_root_used(&root->root_item)) 1107 break; 1108 1109 btrfs_set_root_node(&root->root_item, root->node); 1110 ret = btrfs_update_root(trans, tree_root, 1111 &root->root_key, 1112 &root->root_item); 1113 if (ret) 1114 return ret; 1115 1116 old_root_used = btrfs_root_used(&root->root_item); 1117 } 1118 1119 return 0; 1120 } 1121 1122 /* 1123 * update all the cowonly tree roots on disk 1124 * 1125 * The error handling in this function may not be obvious. Any of the 1126 * failures will cause the file system to go offline. We still need 1127 * to clean up the delayed refs. 1128 */ 1129 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 1130 struct btrfs_root *root) 1131 { 1132 struct btrfs_fs_info *fs_info = root->fs_info; 1133 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1134 struct list_head *io_bgs = &trans->transaction->io_bgs; 1135 struct list_head *next; 1136 struct extent_buffer *eb; 1137 int ret; 1138 1139 eb = btrfs_lock_root_node(fs_info->tree_root); 1140 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1141 0, &eb); 1142 btrfs_tree_unlock(eb); 1143 free_extent_buffer(eb); 1144 1145 if (ret) 1146 return ret; 1147 1148 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1149 if (ret) 1150 return ret; 1151 1152 ret = btrfs_run_dev_stats(trans, root->fs_info); 1153 if (ret) 1154 return ret; 1155 ret = btrfs_run_dev_replace(trans, root->fs_info); 1156 if (ret) 1157 return ret; 1158 ret = btrfs_run_qgroups(trans, root->fs_info); 1159 if (ret) 1160 return ret; 1161 1162 ret = btrfs_setup_space_cache(trans, root); 1163 if (ret) 1164 return ret; 1165 1166 /* run_qgroups might have added some more refs */ 1167 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1168 if (ret) 1169 return ret; 1170 again: 1171 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1172 next = fs_info->dirty_cowonly_roots.next; 1173 list_del_init(next); 1174 root = list_entry(next, struct btrfs_root, dirty_list); 1175 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1176 1177 if (root != fs_info->extent_root) 1178 list_add_tail(&root->dirty_list, 1179 &trans->transaction->switch_commits); 1180 ret = update_cowonly_root(trans, root); 1181 if (ret) 1182 return ret; 1183 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1184 if (ret) 1185 return ret; 1186 } 1187 1188 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1189 ret = btrfs_write_dirty_block_groups(trans, root); 1190 if (ret) 1191 return ret; 1192 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1193 if (ret) 1194 return ret; 1195 } 1196 1197 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1198 goto again; 1199 1200 list_add_tail(&fs_info->extent_root->dirty_list, 1201 &trans->transaction->switch_commits); 1202 btrfs_after_dev_replace_commit(fs_info); 1203 1204 return 0; 1205 } 1206 1207 /* 1208 * dead roots are old snapshots that need to be deleted. This allocates 1209 * a dirty root struct and adds it into the list of dead roots that need to 1210 * be deleted 1211 */ 1212 void btrfs_add_dead_root(struct btrfs_root *root) 1213 { 1214 spin_lock(&root->fs_info->trans_lock); 1215 if (list_empty(&root->root_list)) 1216 list_add_tail(&root->root_list, &root->fs_info->dead_roots); 1217 spin_unlock(&root->fs_info->trans_lock); 1218 } 1219 1220 /* 1221 * update all the cowonly tree roots on disk 1222 */ 1223 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 1224 struct btrfs_root *root) 1225 { 1226 struct btrfs_root *gang[8]; 1227 struct btrfs_fs_info *fs_info = root->fs_info; 1228 int i; 1229 int ret; 1230 int err = 0; 1231 1232 spin_lock(&fs_info->fs_roots_radix_lock); 1233 while (1) { 1234 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1235 (void **)gang, 0, 1236 ARRAY_SIZE(gang), 1237 BTRFS_ROOT_TRANS_TAG); 1238 if (ret == 0) 1239 break; 1240 for (i = 0; i < ret; i++) { 1241 root = gang[i]; 1242 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1243 (unsigned long)root->root_key.objectid, 1244 BTRFS_ROOT_TRANS_TAG); 1245 spin_unlock(&fs_info->fs_roots_radix_lock); 1246 1247 btrfs_free_log(trans, root); 1248 btrfs_update_reloc_root(trans, root); 1249 btrfs_orphan_commit_root(trans, root); 1250 1251 btrfs_save_ino_cache(root, trans); 1252 1253 /* see comments in should_cow_block() */ 1254 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1255 smp_mb__after_atomic(); 1256 1257 if (root->commit_root != root->node) { 1258 list_add_tail(&root->dirty_list, 1259 &trans->transaction->switch_commits); 1260 btrfs_set_root_node(&root->root_item, 1261 root->node); 1262 } 1263 1264 err = btrfs_update_root(trans, fs_info->tree_root, 1265 &root->root_key, 1266 &root->root_item); 1267 spin_lock(&fs_info->fs_roots_radix_lock); 1268 if (err) 1269 break; 1270 btrfs_qgroup_free_meta_all(root); 1271 } 1272 } 1273 spin_unlock(&fs_info->fs_roots_radix_lock); 1274 return err; 1275 } 1276 1277 /* 1278 * defrag a given btree. 1279 * Every leaf in the btree is read and defragged. 1280 */ 1281 int btrfs_defrag_root(struct btrfs_root *root) 1282 { 1283 struct btrfs_fs_info *info = root->fs_info; 1284 struct btrfs_trans_handle *trans; 1285 int ret; 1286 1287 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1288 return 0; 1289 1290 while (1) { 1291 trans = btrfs_start_transaction(root, 0); 1292 if (IS_ERR(trans)) 1293 return PTR_ERR(trans); 1294 1295 ret = btrfs_defrag_leaves(trans, root); 1296 1297 btrfs_end_transaction(trans, root); 1298 btrfs_btree_balance_dirty(info->tree_root); 1299 cond_resched(); 1300 1301 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 1302 break; 1303 1304 if (btrfs_defrag_cancelled(root->fs_info)) { 1305 pr_debug("BTRFS: defrag_root cancelled\n"); 1306 ret = -EAGAIN; 1307 break; 1308 } 1309 } 1310 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1311 return ret; 1312 } 1313 1314 /* Bisesctability fixup, remove in 4.8 */ 1315 #ifndef btrfs_std_error 1316 #define btrfs_std_error btrfs_handle_fs_error 1317 #endif 1318 1319 /* 1320 * Do all special snapshot related qgroup dirty hack. 1321 * 1322 * Will do all needed qgroup inherit and dirty hack like switch commit 1323 * roots inside one transaction and write all btree into disk, to make 1324 * qgroup works. 1325 */ 1326 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1327 struct btrfs_root *src, 1328 struct btrfs_root *parent, 1329 struct btrfs_qgroup_inherit *inherit, 1330 u64 dst_objectid) 1331 { 1332 struct btrfs_fs_info *fs_info = src->fs_info; 1333 int ret; 1334 1335 /* 1336 * Save some performance in the case that qgroups are not 1337 * enabled. If this check races with the ioctl, rescan will 1338 * kick in anyway. 1339 */ 1340 mutex_lock(&fs_info->qgroup_ioctl_lock); 1341 if (!fs_info->quota_enabled) { 1342 mutex_unlock(&fs_info->qgroup_ioctl_lock); 1343 return 0; 1344 } 1345 mutex_unlock(&fs_info->qgroup_ioctl_lock); 1346 1347 /* 1348 * We are going to commit transaction, see btrfs_commit_transaction() 1349 * comment for reason locking tree_log_mutex 1350 */ 1351 mutex_lock(&fs_info->tree_log_mutex); 1352 1353 ret = commit_fs_roots(trans, src); 1354 if (ret) 1355 goto out; 1356 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info); 1357 if (ret < 0) 1358 goto out; 1359 ret = btrfs_qgroup_account_extents(trans, fs_info); 1360 if (ret < 0) 1361 goto out; 1362 1363 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1364 ret = btrfs_qgroup_inherit(trans, fs_info, 1365 src->root_key.objectid, dst_objectid, 1366 inherit); 1367 if (ret < 0) 1368 goto out; 1369 1370 /* 1371 * Now we do a simplified commit transaction, which will: 1372 * 1) commit all subvolume and extent tree 1373 * To ensure all subvolume and extent tree have a valid 1374 * commit_root to accounting later insert_dir_item() 1375 * 2) write all btree blocks onto disk 1376 * This is to make sure later btree modification will be cowed 1377 * Or commit_root can be populated and cause wrong qgroup numbers 1378 * In this simplified commit, we don't really care about other trees 1379 * like chunk and root tree, as they won't affect qgroup. 1380 * And we don't write super to avoid half committed status. 1381 */ 1382 ret = commit_cowonly_roots(trans, src); 1383 if (ret) 1384 goto out; 1385 switch_commit_roots(trans->transaction, fs_info); 1386 ret = btrfs_write_and_wait_transaction(trans, src); 1387 if (ret) 1388 btrfs_std_error(fs_info, ret, 1389 "Error while writing out transaction for qgroup"); 1390 1391 out: 1392 mutex_unlock(&fs_info->tree_log_mutex); 1393 1394 /* 1395 * Force parent root to be updated, as we recorded it before so its 1396 * last_trans == cur_transid. 1397 * Or it won't be committed again onto disk after later 1398 * insert_dir_item() 1399 */ 1400 if (!ret) 1401 record_root_in_trans(trans, parent, 1); 1402 return ret; 1403 } 1404 1405 /* 1406 * new snapshots need to be created at a very specific time in the 1407 * transaction commit. This does the actual creation. 1408 * 1409 * Note: 1410 * If the error which may affect the commitment of the current transaction 1411 * happens, we should return the error number. If the error which just affect 1412 * the creation of the pending snapshots, just return 0. 1413 */ 1414 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1415 struct btrfs_fs_info *fs_info, 1416 struct btrfs_pending_snapshot *pending) 1417 { 1418 struct btrfs_key key; 1419 struct btrfs_root_item *new_root_item; 1420 struct btrfs_root *tree_root = fs_info->tree_root; 1421 struct btrfs_root *root = pending->root; 1422 struct btrfs_root *parent_root; 1423 struct btrfs_block_rsv *rsv; 1424 struct inode *parent_inode; 1425 struct btrfs_path *path; 1426 struct btrfs_dir_item *dir_item; 1427 struct dentry *dentry; 1428 struct extent_buffer *tmp; 1429 struct extent_buffer *old; 1430 struct timespec cur_time; 1431 int ret = 0; 1432 u64 to_reserve = 0; 1433 u64 index = 0; 1434 u64 objectid; 1435 u64 root_flags; 1436 uuid_le new_uuid; 1437 1438 ASSERT(pending->path); 1439 path = pending->path; 1440 1441 ASSERT(pending->root_item); 1442 new_root_item = pending->root_item; 1443 1444 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1445 if (pending->error) 1446 goto no_free_objectid; 1447 1448 /* 1449 * Make qgroup to skip current new snapshot's qgroupid, as it is 1450 * accounted by later btrfs_qgroup_inherit(). 1451 */ 1452 btrfs_set_skip_qgroup(trans, objectid); 1453 1454 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1455 1456 if (to_reserve > 0) { 1457 pending->error = btrfs_block_rsv_add(root, 1458 &pending->block_rsv, 1459 to_reserve, 1460 BTRFS_RESERVE_NO_FLUSH); 1461 if (pending->error) 1462 goto clear_skip_qgroup; 1463 } 1464 1465 key.objectid = objectid; 1466 key.offset = (u64)-1; 1467 key.type = BTRFS_ROOT_ITEM_KEY; 1468 1469 rsv = trans->block_rsv; 1470 trans->block_rsv = &pending->block_rsv; 1471 trans->bytes_reserved = trans->block_rsv->reserved; 1472 trace_btrfs_space_reservation(root->fs_info, "transaction", 1473 trans->transid, 1474 trans->bytes_reserved, 1); 1475 dentry = pending->dentry; 1476 parent_inode = pending->dir; 1477 parent_root = BTRFS_I(parent_inode)->root; 1478 record_root_in_trans(trans, parent_root, 0); 1479 1480 cur_time = current_fs_time(parent_inode->i_sb); 1481 1482 /* 1483 * insert the directory item 1484 */ 1485 ret = btrfs_set_inode_index(parent_inode, &index); 1486 BUG_ON(ret); /* -ENOMEM */ 1487 1488 /* check if there is a file/dir which has the same name. */ 1489 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1490 btrfs_ino(parent_inode), 1491 dentry->d_name.name, 1492 dentry->d_name.len, 0); 1493 if (dir_item != NULL && !IS_ERR(dir_item)) { 1494 pending->error = -EEXIST; 1495 goto dir_item_existed; 1496 } else if (IS_ERR(dir_item)) { 1497 ret = PTR_ERR(dir_item); 1498 btrfs_abort_transaction(trans, root, ret); 1499 goto fail; 1500 } 1501 btrfs_release_path(path); 1502 1503 /* 1504 * pull in the delayed directory update 1505 * and the delayed inode item 1506 * otherwise we corrupt the FS during 1507 * snapshot 1508 */ 1509 ret = btrfs_run_delayed_items(trans, root); 1510 if (ret) { /* Transaction aborted */ 1511 btrfs_abort_transaction(trans, root, ret); 1512 goto fail; 1513 } 1514 1515 record_root_in_trans(trans, root, 0); 1516 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1517 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1518 btrfs_check_and_init_root_item(new_root_item); 1519 1520 root_flags = btrfs_root_flags(new_root_item); 1521 if (pending->readonly) 1522 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1523 else 1524 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1525 btrfs_set_root_flags(new_root_item, root_flags); 1526 1527 btrfs_set_root_generation_v2(new_root_item, 1528 trans->transid); 1529 uuid_le_gen(&new_uuid); 1530 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1531 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1532 BTRFS_UUID_SIZE); 1533 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1534 memset(new_root_item->received_uuid, 0, 1535 sizeof(new_root_item->received_uuid)); 1536 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1537 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1538 btrfs_set_root_stransid(new_root_item, 0); 1539 btrfs_set_root_rtransid(new_root_item, 0); 1540 } 1541 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1542 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1543 btrfs_set_root_otransid(new_root_item, trans->transid); 1544 1545 old = btrfs_lock_root_node(root); 1546 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1547 if (ret) { 1548 btrfs_tree_unlock(old); 1549 free_extent_buffer(old); 1550 btrfs_abort_transaction(trans, root, ret); 1551 goto fail; 1552 } 1553 1554 btrfs_set_lock_blocking(old); 1555 1556 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1557 /* clean up in any case */ 1558 btrfs_tree_unlock(old); 1559 free_extent_buffer(old); 1560 if (ret) { 1561 btrfs_abort_transaction(trans, root, ret); 1562 goto fail; 1563 } 1564 /* see comments in should_cow_block() */ 1565 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1566 smp_wmb(); 1567 1568 btrfs_set_root_node(new_root_item, tmp); 1569 /* record when the snapshot was created in key.offset */ 1570 key.offset = trans->transid; 1571 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1572 btrfs_tree_unlock(tmp); 1573 free_extent_buffer(tmp); 1574 if (ret) { 1575 btrfs_abort_transaction(trans, root, ret); 1576 goto fail; 1577 } 1578 1579 /* 1580 * insert root back/forward references 1581 */ 1582 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1583 parent_root->root_key.objectid, 1584 btrfs_ino(parent_inode), index, 1585 dentry->d_name.name, dentry->d_name.len); 1586 if (ret) { 1587 btrfs_abort_transaction(trans, root, ret); 1588 goto fail; 1589 } 1590 1591 key.offset = (u64)-1; 1592 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1593 if (IS_ERR(pending->snap)) { 1594 ret = PTR_ERR(pending->snap); 1595 btrfs_abort_transaction(trans, root, ret); 1596 goto fail; 1597 } 1598 1599 ret = btrfs_reloc_post_snapshot(trans, pending); 1600 if (ret) { 1601 btrfs_abort_transaction(trans, root, ret); 1602 goto fail; 1603 } 1604 1605 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1606 if (ret) { 1607 btrfs_abort_transaction(trans, root, ret); 1608 goto fail; 1609 } 1610 1611 /* 1612 * Do special qgroup accounting for snapshot, as we do some qgroup 1613 * snapshot hack to do fast snapshot. 1614 * To co-operate with that hack, we do hack again. 1615 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1616 */ 1617 ret = qgroup_account_snapshot(trans, root, parent_root, 1618 pending->inherit, objectid); 1619 if (ret < 0) 1620 goto fail; 1621 1622 ret = btrfs_insert_dir_item(trans, parent_root, 1623 dentry->d_name.name, dentry->d_name.len, 1624 parent_inode, &key, 1625 BTRFS_FT_DIR, index); 1626 /* We have check then name at the beginning, so it is impossible. */ 1627 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1628 if (ret) { 1629 btrfs_abort_transaction(trans, root, ret); 1630 goto fail; 1631 } 1632 1633 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1634 dentry->d_name.len * 2); 1635 parent_inode->i_mtime = parent_inode->i_ctime = 1636 current_fs_time(parent_inode->i_sb); 1637 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1638 if (ret) { 1639 btrfs_abort_transaction(trans, root, ret); 1640 goto fail; 1641 } 1642 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b, 1643 BTRFS_UUID_KEY_SUBVOL, objectid); 1644 if (ret) { 1645 btrfs_abort_transaction(trans, root, ret); 1646 goto fail; 1647 } 1648 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1649 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 1650 new_root_item->received_uuid, 1651 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1652 objectid); 1653 if (ret && ret != -EEXIST) { 1654 btrfs_abort_transaction(trans, root, ret); 1655 goto fail; 1656 } 1657 } 1658 1659 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1660 if (ret) { 1661 btrfs_abort_transaction(trans, root, ret); 1662 goto fail; 1663 } 1664 1665 fail: 1666 pending->error = ret; 1667 dir_item_existed: 1668 trans->block_rsv = rsv; 1669 trans->bytes_reserved = 0; 1670 clear_skip_qgroup: 1671 btrfs_clear_skip_qgroup(trans); 1672 no_free_objectid: 1673 kfree(new_root_item); 1674 pending->root_item = NULL; 1675 btrfs_free_path(path); 1676 pending->path = NULL; 1677 1678 return ret; 1679 } 1680 1681 /* 1682 * create all the snapshots we've scheduled for creation 1683 */ 1684 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1685 struct btrfs_fs_info *fs_info) 1686 { 1687 struct btrfs_pending_snapshot *pending, *next; 1688 struct list_head *head = &trans->transaction->pending_snapshots; 1689 int ret = 0; 1690 1691 list_for_each_entry_safe(pending, next, head, list) { 1692 list_del(&pending->list); 1693 ret = create_pending_snapshot(trans, fs_info, pending); 1694 if (ret) 1695 break; 1696 } 1697 return ret; 1698 } 1699 1700 static void update_super_roots(struct btrfs_root *root) 1701 { 1702 struct btrfs_root_item *root_item; 1703 struct btrfs_super_block *super; 1704 1705 super = root->fs_info->super_copy; 1706 1707 root_item = &root->fs_info->chunk_root->root_item; 1708 super->chunk_root = root_item->bytenr; 1709 super->chunk_root_generation = root_item->generation; 1710 super->chunk_root_level = root_item->level; 1711 1712 root_item = &root->fs_info->tree_root->root_item; 1713 super->root = root_item->bytenr; 1714 super->generation = root_item->generation; 1715 super->root_level = root_item->level; 1716 if (btrfs_test_opt(root, SPACE_CACHE)) 1717 super->cache_generation = root_item->generation; 1718 if (root->fs_info->update_uuid_tree_gen) 1719 super->uuid_tree_generation = root_item->generation; 1720 } 1721 1722 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1723 { 1724 struct btrfs_transaction *trans; 1725 int ret = 0; 1726 1727 spin_lock(&info->trans_lock); 1728 trans = info->running_transaction; 1729 if (trans) 1730 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1731 spin_unlock(&info->trans_lock); 1732 return ret; 1733 } 1734 1735 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1736 { 1737 struct btrfs_transaction *trans; 1738 int ret = 0; 1739 1740 spin_lock(&info->trans_lock); 1741 trans = info->running_transaction; 1742 if (trans) 1743 ret = is_transaction_blocked(trans); 1744 spin_unlock(&info->trans_lock); 1745 return ret; 1746 } 1747 1748 /* 1749 * wait for the current transaction commit to start and block subsequent 1750 * transaction joins 1751 */ 1752 static void wait_current_trans_commit_start(struct btrfs_root *root, 1753 struct btrfs_transaction *trans) 1754 { 1755 wait_event(root->fs_info->transaction_blocked_wait, 1756 trans->state >= TRANS_STATE_COMMIT_START || 1757 trans->aborted); 1758 } 1759 1760 /* 1761 * wait for the current transaction to start and then become unblocked. 1762 * caller holds ref. 1763 */ 1764 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1765 struct btrfs_transaction *trans) 1766 { 1767 wait_event(root->fs_info->transaction_wait, 1768 trans->state >= TRANS_STATE_UNBLOCKED || 1769 trans->aborted); 1770 } 1771 1772 /* 1773 * commit transactions asynchronously. once btrfs_commit_transaction_async 1774 * returns, any subsequent transaction will not be allowed to join. 1775 */ 1776 struct btrfs_async_commit { 1777 struct btrfs_trans_handle *newtrans; 1778 struct btrfs_root *root; 1779 struct work_struct work; 1780 }; 1781 1782 static void do_async_commit(struct work_struct *work) 1783 { 1784 struct btrfs_async_commit *ac = 1785 container_of(work, struct btrfs_async_commit, work); 1786 1787 /* 1788 * We've got freeze protection passed with the transaction. 1789 * Tell lockdep about it. 1790 */ 1791 if (ac->newtrans->type & __TRANS_FREEZABLE) 1792 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS); 1793 1794 current->journal_info = ac->newtrans; 1795 1796 btrfs_commit_transaction(ac->newtrans, ac->root); 1797 kfree(ac); 1798 } 1799 1800 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1801 struct btrfs_root *root, 1802 int wait_for_unblock) 1803 { 1804 struct btrfs_async_commit *ac; 1805 struct btrfs_transaction *cur_trans; 1806 1807 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1808 if (!ac) 1809 return -ENOMEM; 1810 1811 INIT_WORK(&ac->work, do_async_commit); 1812 ac->root = root; 1813 ac->newtrans = btrfs_join_transaction(root); 1814 if (IS_ERR(ac->newtrans)) { 1815 int err = PTR_ERR(ac->newtrans); 1816 kfree(ac); 1817 return err; 1818 } 1819 1820 /* take transaction reference */ 1821 cur_trans = trans->transaction; 1822 atomic_inc(&cur_trans->use_count); 1823 1824 btrfs_end_transaction(trans, root); 1825 1826 /* 1827 * Tell lockdep we've released the freeze rwsem, since the 1828 * async commit thread will be the one to unlock it. 1829 */ 1830 if (ac->newtrans->type & __TRANS_FREEZABLE) 1831 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS); 1832 1833 schedule_work(&ac->work); 1834 1835 /* wait for transaction to start and unblock */ 1836 if (wait_for_unblock) 1837 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1838 else 1839 wait_current_trans_commit_start(root, cur_trans); 1840 1841 if (current->journal_info == trans) 1842 current->journal_info = NULL; 1843 1844 btrfs_put_transaction(cur_trans); 1845 return 0; 1846 } 1847 1848 1849 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1850 struct btrfs_root *root, int err) 1851 { 1852 struct btrfs_transaction *cur_trans = trans->transaction; 1853 DEFINE_WAIT(wait); 1854 1855 WARN_ON(trans->use_count > 1); 1856 1857 btrfs_abort_transaction(trans, root, err); 1858 1859 spin_lock(&root->fs_info->trans_lock); 1860 1861 /* 1862 * If the transaction is removed from the list, it means this 1863 * transaction has been committed successfully, so it is impossible 1864 * to call the cleanup function. 1865 */ 1866 BUG_ON(list_empty(&cur_trans->list)); 1867 1868 list_del_init(&cur_trans->list); 1869 if (cur_trans == root->fs_info->running_transaction) { 1870 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1871 spin_unlock(&root->fs_info->trans_lock); 1872 wait_event(cur_trans->writer_wait, 1873 atomic_read(&cur_trans->num_writers) == 1); 1874 1875 spin_lock(&root->fs_info->trans_lock); 1876 } 1877 spin_unlock(&root->fs_info->trans_lock); 1878 1879 btrfs_cleanup_one_transaction(trans->transaction, root); 1880 1881 spin_lock(&root->fs_info->trans_lock); 1882 if (cur_trans == root->fs_info->running_transaction) 1883 root->fs_info->running_transaction = NULL; 1884 spin_unlock(&root->fs_info->trans_lock); 1885 1886 if (trans->type & __TRANS_FREEZABLE) 1887 sb_end_intwrite(root->fs_info->sb); 1888 btrfs_put_transaction(cur_trans); 1889 btrfs_put_transaction(cur_trans); 1890 1891 trace_btrfs_transaction_commit(root); 1892 1893 if (current->journal_info == trans) 1894 current->journal_info = NULL; 1895 btrfs_scrub_cancel(root->fs_info); 1896 1897 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1898 } 1899 1900 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1901 { 1902 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1903 return btrfs_start_delalloc_roots(fs_info, 1, -1); 1904 return 0; 1905 } 1906 1907 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1908 { 1909 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1910 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1); 1911 } 1912 1913 static inline void 1914 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans) 1915 { 1916 wait_event(cur_trans->pending_wait, 1917 atomic_read(&cur_trans->pending_ordered) == 0); 1918 } 1919 1920 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1921 struct btrfs_root *root) 1922 { 1923 struct btrfs_transaction *cur_trans = trans->transaction; 1924 struct btrfs_transaction *prev_trans = NULL; 1925 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 1926 int ret; 1927 1928 /* Stop the commit early if ->aborted is set */ 1929 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1930 ret = cur_trans->aborted; 1931 btrfs_end_transaction(trans, root); 1932 return ret; 1933 } 1934 1935 /* make a pass through all the delayed refs we have so far 1936 * any runnings procs may add more while we are here 1937 */ 1938 ret = btrfs_run_delayed_refs(trans, root, 0); 1939 if (ret) { 1940 btrfs_end_transaction(trans, root); 1941 return ret; 1942 } 1943 1944 btrfs_trans_release_metadata(trans, root); 1945 trans->block_rsv = NULL; 1946 1947 cur_trans = trans->transaction; 1948 1949 /* 1950 * set the flushing flag so procs in this transaction have to 1951 * start sending their work down. 1952 */ 1953 cur_trans->delayed_refs.flushing = 1; 1954 smp_wmb(); 1955 1956 if (!list_empty(&trans->new_bgs)) 1957 btrfs_create_pending_block_groups(trans, root); 1958 1959 ret = btrfs_run_delayed_refs(trans, root, 0); 1960 if (ret) { 1961 btrfs_end_transaction(trans, root); 1962 return ret; 1963 } 1964 1965 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 1966 int run_it = 0; 1967 1968 /* this mutex is also taken before trying to set 1969 * block groups readonly. We need to make sure 1970 * that nobody has set a block group readonly 1971 * after a extents from that block group have been 1972 * allocated for cache files. btrfs_set_block_group_ro 1973 * will wait for the transaction to commit if it 1974 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 1975 * 1976 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 1977 * only one process starts all the block group IO. It wouldn't 1978 * hurt to have more than one go through, but there's no 1979 * real advantage to it either. 1980 */ 1981 mutex_lock(&root->fs_info->ro_block_group_mutex); 1982 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 1983 &cur_trans->flags)) 1984 run_it = 1; 1985 mutex_unlock(&root->fs_info->ro_block_group_mutex); 1986 1987 if (run_it) 1988 ret = btrfs_start_dirty_block_groups(trans, root); 1989 } 1990 if (ret) { 1991 btrfs_end_transaction(trans, root); 1992 return ret; 1993 } 1994 1995 spin_lock(&root->fs_info->trans_lock); 1996 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1997 spin_unlock(&root->fs_info->trans_lock); 1998 atomic_inc(&cur_trans->use_count); 1999 ret = btrfs_end_transaction(trans, root); 2000 2001 wait_for_commit(root, cur_trans); 2002 2003 if (unlikely(cur_trans->aborted)) 2004 ret = cur_trans->aborted; 2005 2006 btrfs_put_transaction(cur_trans); 2007 2008 return ret; 2009 } 2010 2011 cur_trans->state = TRANS_STATE_COMMIT_START; 2012 wake_up(&root->fs_info->transaction_blocked_wait); 2013 2014 if (cur_trans->list.prev != &root->fs_info->trans_list) { 2015 prev_trans = list_entry(cur_trans->list.prev, 2016 struct btrfs_transaction, list); 2017 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2018 atomic_inc(&prev_trans->use_count); 2019 spin_unlock(&root->fs_info->trans_lock); 2020 2021 wait_for_commit(root, prev_trans); 2022 ret = prev_trans->aborted; 2023 2024 btrfs_put_transaction(prev_trans); 2025 if (ret) 2026 goto cleanup_transaction; 2027 } else { 2028 spin_unlock(&root->fs_info->trans_lock); 2029 } 2030 } else { 2031 spin_unlock(&root->fs_info->trans_lock); 2032 } 2033 2034 extwriter_counter_dec(cur_trans, trans->type); 2035 2036 ret = btrfs_start_delalloc_flush(root->fs_info); 2037 if (ret) 2038 goto cleanup_transaction; 2039 2040 ret = btrfs_run_delayed_items(trans, root); 2041 if (ret) 2042 goto cleanup_transaction; 2043 2044 wait_event(cur_trans->writer_wait, 2045 extwriter_counter_read(cur_trans) == 0); 2046 2047 /* some pending stuffs might be added after the previous flush. */ 2048 ret = btrfs_run_delayed_items(trans, root); 2049 if (ret) 2050 goto cleanup_transaction; 2051 2052 btrfs_wait_delalloc_flush(root->fs_info); 2053 2054 btrfs_wait_pending_ordered(cur_trans); 2055 2056 btrfs_scrub_pause(root); 2057 /* 2058 * Ok now we need to make sure to block out any other joins while we 2059 * commit the transaction. We could have started a join before setting 2060 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2061 */ 2062 spin_lock(&root->fs_info->trans_lock); 2063 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2064 spin_unlock(&root->fs_info->trans_lock); 2065 wait_event(cur_trans->writer_wait, 2066 atomic_read(&cur_trans->num_writers) == 1); 2067 2068 /* ->aborted might be set after the previous check, so check it */ 2069 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 2070 ret = cur_trans->aborted; 2071 goto scrub_continue; 2072 } 2073 /* 2074 * the reloc mutex makes sure that we stop 2075 * the balancing code from coming in and moving 2076 * extents around in the middle of the commit 2077 */ 2078 mutex_lock(&root->fs_info->reloc_mutex); 2079 2080 /* 2081 * We needn't worry about the delayed items because we will 2082 * deal with them in create_pending_snapshot(), which is the 2083 * core function of the snapshot creation. 2084 */ 2085 ret = create_pending_snapshots(trans, root->fs_info); 2086 if (ret) { 2087 mutex_unlock(&root->fs_info->reloc_mutex); 2088 goto scrub_continue; 2089 } 2090 2091 /* 2092 * We insert the dir indexes of the snapshots and update the inode 2093 * of the snapshots' parents after the snapshot creation, so there 2094 * are some delayed items which are not dealt with. Now deal with 2095 * them. 2096 * 2097 * We needn't worry that this operation will corrupt the snapshots, 2098 * because all the tree which are snapshoted will be forced to COW 2099 * the nodes and leaves. 2100 */ 2101 ret = btrfs_run_delayed_items(trans, root); 2102 if (ret) { 2103 mutex_unlock(&root->fs_info->reloc_mutex); 2104 goto scrub_continue; 2105 } 2106 2107 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 2108 if (ret) { 2109 mutex_unlock(&root->fs_info->reloc_mutex); 2110 goto scrub_continue; 2111 } 2112 2113 /* Reocrd old roots for later qgroup accounting */ 2114 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info); 2115 if (ret) { 2116 mutex_unlock(&root->fs_info->reloc_mutex); 2117 goto scrub_continue; 2118 } 2119 2120 /* 2121 * make sure none of the code above managed to slip in a 2122 * delayed item 2123 */ 2124 btrfs_assert_delayed_root_empty(root); 2125 2126 WARN_ON(cur_trans != trans->transaction); 2127 2128 /* btrfs_commit_tree_roots is responsible for getting the 2129 * various roots consistent with each other. Every pointer 2130 * in the tree of tree roots has to point to the most up to date 2131 * root for every subvolume and other tree. So, we have to keep 2132 * the tree logging code from jumping in and changing any 2133 * of the trees. 2134 * 2135 * At this point in the commit, there can't be any tree-log 2136 * writers, but a little lower down we drop the trans mutex 2137 * and let new people in. By holding the tree_log_mutex 2138 * from now until after the super is written, we avoid races 2139 * with the tree-log code. 2140 */ 2141 mutex_lock(&root->fs_info->tree_log_mutex); 2142 2143 ret = commit_fs_roots(trans, root); 2144 if (ret) { 2145 mutex_unlock(&root->fs_info->tree_log_mutex); 2146 mutex_unlock(&root->fs_info->reloc_mutex); 2147 goto scrub_continue; 2148 } 2149 2150 /* 2151 * Since the transaction is done, we can apply the pending changes 2152 * before the next transaction. 2153 */ 2154 btrfs_apply_pending_changes(root->fs_info); 2155 2156 /* commit_fs_roots gets rid of all the tree log roots, it is now 2157 * safe to free the root of tree log roots 2158 */ 2159 btrfs_free_log_root_tree(trans, root->fs_info); 2160 2161 /* 2162 * Since fs roots are all committed, we can get a quite accurate 2163 * new_roots. So let's do quota accounting. 2164 */ 2165 ret = btrfs_qgroup_account_extents(trans, root->fs_info); 2166 if (ret < 0) { 2167 mutex_unlock(&root->fs_info->tree_log_mutex); 2168 mutex_unlock(&root->fs_info->reloc_mutex); 2169 goto scrub_continue; 2170 } 2171 2172 ret = commit_cowonly_roots(trans, root); 2173 if (ret) { 2174 mutex_unlock(&root->fs_info->tree_log_mutex); 2175 mutex_unlock(&root->fs_info->reloc_mutex); 2176 goto scrub_continue; 2177 } 2178 2179 /* 2180 * The tasks which save the space cache and inode cache may also 2181 * update ->aborted, check it. 2182 */ 2183 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 2184 ret = cur_trans->aborted; 2185 mutex_unlock(&root->fs_info->tree_log_mutex); 2186 mutex_unlock(&root->fs_info->reloc_mutex); 2187 goto scrub_continue; 2188 } 2189 2190 btrfs_prepare_extent_commit(trans, root); 2191 2192 cur_trans = root->fs_info->running_transaction; 2193 2194 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 2195 root->fs_info->tree_root->node); 2196 list_add_tail(&root->fs_info->tree_root->dirty_list, 2197 &cur_trans->switch_commits); 2198 2199 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 2200 root->fs_info->chunk_root->node); 2201 list_add_tail(&root->fs_info->chunk_root->dirty_list, 2202 &cur_trans->switch_commits); 2203 2204 switch_commit_roots(cur_trans, root->fs_info); 2205 2206 assert_qgroups_uptodate(trans); 2207 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2208 ASSERT(list_empty(&cur_trans->io_bgs)); 2209 update_super_roots(root); 2210 2211 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 2212 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 2213 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 2214 sizeof(*root->fs_info->super_copy)); 2215 2216 btrfs_update_commit_device_size(root->fs_info); 2217 btrfs_update_commit_device_bytes_used(root, cur_trans); 2218 2219 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 2220 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 2221 2222 btrfs_trans_release_chunk_metadata(trans); 2223 2224 spin_lock(&root->fs_info->trans_lock); 2225 cur_trans->state = TRANS_STATE_UNBLOCKED; 2226 root->fs_info->running_transaction = NULL; 2227 spin_unlock(&root->fs_info->trans_lock); 2228 mutex_unlock(&root->fs_info->reloc_mutex); 2229 2230 wake_up(&root->fs_info->transaction_wait); 2231 2232 ret = btrfs_write_and_wait_transaction(trans, root); 2233 if (ret) { 2234 btrfs_handle_fs_error(root->fs_info, ret, 2235 "Error while writing out transaction"); 2236 mutex_unlock(&root->fs_info->tree_log_mutex); 2237 goto scrub_continue; 2238 } 2239 2240 ret = write_ctree_super(trans, root, 0); 2241 if (ret) { 2242 mutex_unlock(&root->fs_info->tree_log_mutex); 2243 goto scrub_continue; 2244 } 2245 2246 /* 2247 * the super is written, we can safely allow the tree-loggers 2248 * to go about their business 2249 */ 2250 mutex_unlock(&root->fs_info->tree_log_mutex); 2251 2252 btrfs_finish_extent_commit(trans, root); 2253 2254 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2255 btrfs_clear_space_info_full(root->fs_info); 2256 2257 root->fs_info->last_trans_committed = cur_trans->transid; 2258 /* 2259 * We needn't acquire the lock here because there is no other task 2260 * which can change it. 2261 */ 2262 cur_trans->state = TRANS_STATE_COMPLETED; 2263 wake_up(&cur_trans->commit_wait); 2264 2265 spin_lock(&root->fs_info->trans_lock); 2266 list_del_init(&cur_trans->list); 2267 spin_unlock(&root->fs_info->trans_lock); 2268 2269 btrfs_put_transaction(cur_trans); 2270 btrfs_put_transaction(cur_trans); 2271 2272 if (trans->type & __TRANS_FREEZABLE) 2273 sb_end_intwrite(root->fs_info->sb); 2274 2275 trace_btrfs_transaction_commit(root); 2276 2277 btrfs_scrub_continue(root); 2278 2279 if (current->journal_info == trans) 2280 current->journal_info = NULL; 2281 2282 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2283 2284 if (current != root->fs_info->transaction_kthread && 2285 current != root->fs_info->cleaner_kthread) 2286 btrfs_run_delayed_iputs(root); 2287 2288 return ret; 2289 2290 scrub_continue: 2291 btrfs_scrub_continue(root); 2292 cleanup_transaction: 2293 btrfs_trans_release_metadata(trans, root); 2294 btrfs_trans_release_chunk_metadata(trans); 2295 trans->block_rsv = NULL; 2296 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction."); 2297 if (current->journal_info == trans) 2298 current->journal_info = NULL; 2299 cleanup_transaction(trans, root, ret); 2300 2301 return ret; 2302 } 2303 2304 /* 2305 * return < 0 if error 2306 * 0 if there are no more dead_roots at the time of call 2307 * 1 there are more to be processed, call me again 2308 * 2309 * The return value indicates there are certainly more snapshots to delete, but 2310 * if there comes a new one during processing, it may return 0. We don't mind, 2311 * because btrfs_commit_super will poke cleaner thread and it will process it a 2312 * few seconds later. 2313 */ 2314 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2315 { 2316 int ret; 2317 struct btrfs_fs_info *fs_info = root->fs_info; 2318 2319 spin_lock(&fs_info->trans_lock); 2320 if (list_empty(&fs_info->dead_roots)) { 2321 spin_unlock(&fs_info->trans_lock); 2322 return 0; 2323 } 2324 root = list_first_entry(&fs_info->dead_roots, 2325 struct btrfs_root, root_list); 2326 list_del_init(&root->root_list); 2327 spin_unlock(&fs_info->trans_lock); 2328 2329 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid); 2330 2331 btrfs_kill_all_delayed_nodes(root); 2332 2333 if (btrfs_header_backref_rev(root->node) < 2334 BTRFS_MIXED_BACKREF_REV) 2335 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2336 else 2337 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2338 2339 return (ret < 0) ? 0 : 1; 2340 } 2341 2342 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2343 { 2344 unsigned long prev; 2345 unsigned long bit; 2346 2347 prev = xchg(&fs_info->pending_changes, 0); 2348 if (!prev) 2349 return; 2350 2351 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2352 if (prev & bit) 2353 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2354 prev &= ~bit; 2355 2356 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2357 if (prev & bit) 2358 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2359 prev &= ~bit; 2360 2361 bit = 1 << BTRFS_PENDING_COMMIT; 2362 if (prev & bit) 2363 btrfs_debug(fs_info, "pending commit done"); 2364 prev &= ~bit; 2365 2366 if (prev) 2367 btrfs_warn(fs_info, 2368 "unknown pending changes left 0x%lx, ignoring", prev); 2369 } 2370