xref: /openbmc/linux/fs/btrfs/transaction.c (revision 6a143a7c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 #include "block-group.h"
23 #include "space-info.h"
24 #include "zoned.h"
25 
26 #define BTRFS_ROOT_TRANS_TAG 0
27 
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |						    Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update	    |
83  * | super blocks.				    |
84  * |						    |
85  * | At this stage, new transaction is allowed to   |
86  * | start.					    |
87  * | All new start_transaction() calls will be	    |
88  * | attached to transid N+1.			    |
89  * |						    |
90  * | To next stage:				    |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices			    |
93  * V						    |
94  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.	    | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100 	[TRANS_STATE_RUNNING]		= 0U,
101 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
102 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
103 					   __TRANS_ATTACH |
104 					   __TRANS_JOIN |
105 					   __TRANS_JOIN_NOSTART),
106 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
107 					   __TRANS_ATTACH |
108 					   __TRANS_JOIN |
109 					   __TRANS_JOIN_NOLOCK |
110 					   __TRANS_JOIN_NOSTART),
111 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
112 					   __TRANS_ATTACH |
113 					   __TRANS_JOIN |
114 					   __TRANS_JOIN_NOLOCK |
115 					   __TRANS_JOIN_NOSTART),
116 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
117 					   __TRANS_ATTACH |
118 					   __TRANS_JOIN |
119 					   __TRANS_JOIN_NOLOCK |
120 					   __TRANS_JOIN_NOSTART),
121 };
122 
123 void btrfs_put_transaction(struct btrfs_transaction *transaction)
124 {
125 	WARN_ON(refcount_read(&transaction->use_count) == 0);
126 	if (refcount_dec_and_test(&transaction->use_count)) {
127 		BUG_ON(!list_empty(&transaction->list));
128 		WARN_ON(!RB_EMPTY_ROOT(
129 				&transaction->delayed_refs.href_root.rb_root));
130 		WARN_ON(!RB_EMPTY_ROOT(
131 				&transaction->delayed_refs.dirty_extent_root));
132 		if (transaction->delayed_refs.pending_csums)
133 			btrfs_err(transaction->fs_info,
134 				  "pending csums is %llu",
135 				  transaction->delayed_refs.pending_csums);
136 		/*
137 		 * If any block groups are found in ->deleted_bgs then it's
138 		 * because the transaction was aborted and a commit did not
139 		 * happen (things failed before writing the new superblock
140 		 * and calling btrfs_finish_extent_commit()), so we can not
141 		 * discard the physical locations of the block groups.
142 		 */
143 		while (!list_empty(&transaction->deleted_bgs)) {
144 			struct btrfs_block_group *cache;
145 
146 			cache = list_first_entry(&transaction->deleted_bgs,
147 						 struct btrfs_block_group,
148 						 bg_list);
149 			list_del_init(&cache->bg_list);
150 			btrfs_unfreeze_block_group(cache);
151 			btrfs_put_block_group(cache);
152 		}
153 		WARN_ON(!list_empty(&transaction->dev_update_list));
154 		kfree(transaction);
155 	}
156 }
157 
158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
159 {
160 	struct btrfs_transaction *cur_trans = trans->transaction;
161 	struct btrfs_fs_info *fs_info = trans->fs_info;
162 	struct btrfs_root *root, *tmp;
163 	struct btrfs_caching_control *caching_ctl, *next;
164 
165 	down_write(&fs_info->commit_root_sem);
166 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
167 				 dirty_list) {
168 		list_del_init(&root->dirty_list);
169 		free_extent_buffer(root->commit_root);
170 		root->commit_root = btrfs_root_node(root);
171 		extent_io_tree_release(&root->dirty_log_pages);
172 		btrfs_qgroup_clean_swapped_blocks(root);
173 	}
174 
175 	/* We can free old roots now. */
176 	spin_lock(&cur_trans->dropped_roots_lock);
177 	while (!list_empty(&cur_trans->dropped_roots)) {
178 		root = list_first_entry(&cur_trans->dropped_roots,
179 					struct btrfs_root, root_list);
180 		list_del_init(&root->root_list);
181 		spin_unlock(&cur_trans->dropped_roots_lock);
182 		btrfs_free_log(trans, root);
183 		btrfs_drop_and_free_fs_root(fs_info, root);
184 		spin_lock(&cur_trans->dropped_roots_lock);
185 	}
186 	spin_unlock(&cur_trans->dropped_roots_lock);
187 
188 	/*
189 	 * We have to update the last_byte_to_unpin under the commit_root_sem,
190 	 * at the same time we swap out the commit roots.
191 	 *
192 	 * This is because we must have a real view of the last spot the caching
193 	 * kthreads were while caching.  Consider the following views of the
194 	 * extent tree for a block group
195 	 *
196 	 * commit root
197 	 * +----+----+----+----+----+----+----+
198 	 * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
199 	 * +----+----+----+----+----+----+----+
200 	 * 0    1    2    3    4    5    6    7
201 	 *
202 	 * new commit root
203 	 * +----+----+----+----+----+----+----+
204 	 * |    |    |    |\\\\|    |    |\\\\|
205 	 * +----+----+----+----+----+----+----+
206 	 * 0    1    2    3    4    5    6    7
207 	 *
208 	 * If the cache_ctl->progress was at 3, then we are only allowed to
209 	 * unpin [0,1) and [2,3], because the caching thread has already
210 	 * processed those extents.  We are not allowed to unpin [5,6), because
211 	 * the caching thread will re-start it's search from 3, and thus find
212 	 * the hole from [4,6) to add to the free space cache.
213 	 */
214 	spin_lock(&fs_info->block_group_cache_lock);
215 	list_for_each_entry_safe(caching_ctl, next,
216 				 &fs_info->caching_block_groups, list) {
217 		struct btrfs_block_group *cache = caching_ctl->block_group;
218 
219 		if (btrfs_block_group_done(cache)) {
220 			cache->last_byte_to_unpin = (u64)-1;
221 			list_del_init(&caching_ctl->list);
222 			btrfs_put_caching_control(caching_ctl);
223 		} else {
224 			cache->last_byte_to_unpin = caching_ctl->progress;
225 		}
226 	}
227 	spin_unlock(&fs_info->block_group_cache_lock);
228 	up_write(&fs_info->commit_root_sem);
229 }
230 
231 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
232 					 unsigned int type)
233 {
234 	if (type & TRANS_EXTWRITERS)
235 		atomic_inc(&trans->num_extwriters);
236 }
237 
238 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
239 					 unsigned int type)
240 {
241 	if (type & TRANS_EXTWRITERS)
242 		atomic_dec(&trans->num_extwriters);
243 }
244 
245 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
246 					  unsigned int type)
247 {
248 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
249 }
250 
251 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
252 {
253 	return atomic_read(&trans->num_extwriters);
254 }
255 
256 /*
257  * To be called after all the new block groups attached to the transaction
258  * handle have been created (btrfs_create_pending_block_groups()).
259  */
260 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
261 {
262 	struct btrfs_fs_info *fs_info = trans->fs_info;
263 
264 	if (!trans->chunk_bytes_reserved)
265 		return;
266 
267 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
268 
269 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
270 				trans->chunk_bytes_reserved, NULL);
271 	trans->chunk_bytes_reserved = 0;
272 }
273 
274 /*
275  * either allocate a new transaction or hop into the existing one
276  */
277 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
278 				     unsigned int type)
279 {
280 	struct btrfs_transaction *cur_trans;
281 
282 	spin_lock(&fs_info->trans_lock);
283 loop:
284 	/* The file system has been taken offline. No new transactions. */
285 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
286 		spin_unlock(&fs_info->trans_lock);
287 		return -EROFS;
288 	}
289 
290 	cur_trans = fs_info->running_transaction;
291 	if (cur_trans) {
292 		if (TRANS_ABORTED(cur_trans)) {
293 			spin_unlock(&fs_info->trans_lock);
294 			return cur_trans->aborted;
295 		}
296 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
297 			spin_unlock(&fs_info->trans_lock);
298 			return -EBUSY;
299 		}
300 		refcount_inc(&cur_trans->use_count);
301 		atomic_inc(&cur_trans->num_writers);
302 		extwriter_counter_inc(cur_trans, type);
303 		spin_unlock(&fs_info->trans_lock);
304 		return 0;
305 	}
306 	spin_unlock(&fs_info->trans_lock);
307 
308 	/*
309 	 * If we are ATTACH, we just want to catch the current transaction,
310 	 * and commit it. If there is no transaction, just return ENOENT.
311 	 */
312 	if (type == TRANS_ATTACH)
313 		return -ENOENT;
314 
315 	/*
316 	 * JOIN_NOLOCK only happens during the transaction commit, so
317 	 * it is impossible that ->running_transaction is NULL
318 	 */
319 	BUG_ON(type == TRANS_JOIN_NOLOCK);
320 
321 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
322 	if (!cur_trans)
323 		return -ENOMEM;
324 
325 	spin_lock(&fs_info->trans_lock);
326 	if (fs_info->running_transaction) {
327 		/*
328 		 * someone started a transaction after we unlocked.  Make sure
329 		 * to redo the checks above
330 		 */
331 		kfree(cur_trans);
332 		goto loop;
333 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
334 		spin_unlock(&fs_info->trans_lock);
335 		kfree(cur_trans);
336 		return -EROFS;
337 	}
338 
339 	cur_trans->fs_info = fs_info;
340 	atomic_set(&cur_trans->pending_ordered, 0);
341 	init_waitqueue_head(&cur_trans->pending_wait);
342 	atomic_set(&cur_trans->num_writers, 1);
343 	extwriter_counter_init(cur_trans, type);
344 	init_waitqueue_head(&cur_trans->writer_wait);
345 	init_waitqueue_head(&cur_trans->commit_wait);
346 	cur_trans->state = TRANS_STATE_RUNNING;
347 	/*
348 	 * One for this trans handle, one so it will live on until we
349 	 * commit the transaction.
350 	 */
351 	refcount_set(&cur_trans->use_count, 2);
352 	cur_trans->flags = 0;
353 	cur_trans->start_time = ktime_get_seconds();
354 
355 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
356 
357 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
358 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
359 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
360 
361 	/*
362 	 * although the tree mod log is per file system and not per transaction,
363 	 * the log must never go across transaction boundaries.
364 	 */
365 	smp_mb();
366 	if (!list_empty(&fs_info->tree_mod_seq_list))
367 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
368 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
369 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
370 	atomic64_set(&fs_info->tree_mod_seq, 0);
371 
372 	spin_lock_init(&cur_trans->delayed_refs.lock);
373 
374 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
375 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
376 	INIT_LIST_HEAD(&cur_trans->switch_commits);
377 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
378 	INIT_LIST_HEAD(&cur_trans->io_bgs);
379 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
380 	mutex_init(&cur_trans->cache_write_mutex);
381 	spin_lock_init(&cur_trans->dirty_bgs_lock);
382 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
383 	spin_lock_init(&cur_trans->dropped_roots_lock);
384 	INIT_LIST_HEAD(&cur_trans->releasing_ebs);
385 	spin_lock_init(&cur_trans->releasing_ebs_lock);
386 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
387 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
388 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
389 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
390 			IO_TREE_FS_PINNED_EXTENTS, NULL);
391 	fs_info->generation++;
392 	cur_trans->transid = fs_info->generation;
393 	fs_info->running_transaction = cur_trans;
394 	cur_trans->aborted = 0;
395 	spin_unlock(&fs_info->trans_lock);
396 
397 	return 0;
398 }
399 
400 /*
401  * This does all the record keeping required to make sure that a shareable root
402  * is properly recorded in a given transaction.  This is required to make sure
403  * the old root from before we joined the transaction is deleted when the
404  * transaction commits.
405  */
406 static int record_root_in_trans(struct btrfs_trans_handle *trans,
407 			       struct btrfs_root *root,
408 			       int force)
409 {
410 	struct btrfs_fs_info *fs_info = root->fs_info;
411 
412 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
413 	    root->last_trans < trans->transid) || force) {
414 		WARN_ON(root == fs_info->extent_root);
415 		WARN_ON(!force && root->commit_root != root->node);
416 
417 		/*
418 		 * see below for IN_TRANS_SETUP usage rules
419 		 * we have the reloc mutex held now, so there
420 		 * is only one writer in this function
421 		 */
422 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
423 
424 		/* make sure readers find IN_TRANS_SETUP before
425 		 * they find our root->last_trans update
426 		 */
427 		smp_wmb();
428 
429 		spin_lock(&fs_info->fs_roots_radix_lock);
430 		if (root->last_trans == trans->transid && !force) {
431 			spin_unlock(&fs_info->fs_roots_radix_lock);
432 			return 0;
433 		}
434 		radix_tree_tag_set(&fs_info->fs_roots_radix,
435 				   (unsigned long)root->root_key.objectid,
436 				   BTRFS_ROOT_TRANS_TAG);
437 		spin_unlock(&fs_info->fs_roots_radix_lock);
438 		root->last_trans = trans->transid;
439 
440 		/* this is pretty tricky.  We don't want to
441 		 * take the relocation lock in btrfs_record_root_in_trans
442 		 * unless we're really doing the first setup for this root in
443 		 * this transaction.
444 		 *
445 		 * Normally we'd use root->last_trans as a flag to decide
446 		 * if we want to take the expensive mutex.
447 		 *
448 		 * But, we have to set root->last_trans before we
449 		 * init the relocation root, otherwise, we trip over warnings
450 		 * in ctree.c.  The solution used here is to flag ourselves
451 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
452 		 * fixing up the reloc trees and everyone must wait.
453 		 *
454 		 * When this is zero, they can trust root->last_trans and fly
455 		 * through btrfs_record_root_in_trans without having to take the
456 		 * lock.  smp_wmb() makes sure that all the writes above are
457 		 * done before we pop in the zero below
458 		 */
459 		btrfs_init_reloc_root(trans, root);
460 		smp_mb__before_atomic();
461 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
462 	}
463 	return 0;
464 }
465 
466 
467 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
468 			    struct btrfs_root *root)
469 {
470 	struct btrfs_fs_info *fs_info = root->fs_info;
471 	struct btrfs_transaction *cur_trans = trans->transaction;
472 
473 	/* Add ourselves to the transaction dropped list */
474 	spin_lock(&cur_trans->dropped_roots_lock);
475 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
476 	spin_unlock(&cur_trans->dropped_roots_lock);
477 
478 	/* Make sure we don't try to update the root at commit time */
479 	spin_lock(&fs_info->fs_roots_radix_lock);
480 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
481 			     (unsigned long)root->root_key.objectid,
482 			     BTRFS_ROOT_TRANS_TAG);
483 	spin_unlock(&fs_info->fs_roots_radix_lock);
484 }
485 
486 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
487 			       struct btrfs_root *root)
488 {
489 	struct btrfs_fs_info *fs_info = root->fs_info;
490 
491 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
492 		return 0;
493 
494 	/*
495 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
496 	 * and barriers
497 	 */
498 	smp_rmb();
499 	if (root->last_trans == trans->transid &&
500 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
501 		return 0;
502 
503 	mutex_lock(&fs_info->reloc_mutex);
504 	record_root_in_trans(trans, root, 0);
505 	mutex_unlock(&fs_info->reloc_mutex);
506 
507 	return 0;
508 }
509 
510 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
511 {
512 	return (trans->state >= TRANS_STATE_COMMIT_START &&
513 		trans->state < TRANS_STATE_UNBLOCKED &&
514 		!TRANS_ABORTED(trans));
515 }
516 
517 /* wait for commit against the current transaction to become unblocked
518  * when this is done, it is safe to start a new transaction, but the current
519  * transaction might not be fully on disk.
520  */
521 static void wait_current_trans(struct btrfs_fs_info *fs_info)
522 {
523 	struct btrfs_transaction *cur_trans;
524 
525 	spin_lock(&fs_info->trans_lock);
526 	cur_trans = fs_info->running_transaction;
527 	if (cur_trans && is_transaction_blocked(cur_trans)) {
528 		refcount_inc(&cur_trans->use_count);
529 		spin_unlock(&fs_info->trans_lock);
530 
531 		wait_event(fs_info->transaction_wait,
532 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
533 			   TRANS_ABORTED(cur_trans));
534 		btrfs_put_transaction(cur_trans);
535 	} else {
536 		spin_unlock(&fs_info->trans_lock);
537 	}
538 }
539 
540 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
541 {
542 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
543 		return 0;
544 
545 	if (type == TRANS_START)
546 		return 1;
547 
548 	return 0;
549 }
550 
551 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
552 {
553 	struct btrfs_fs_info *fs_info = root->fs_info;
554 
555 	if (!fs_info->reloc_ctl ||
556 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
557 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
558 	    root->reloc_root)
559 		return false;
560 
561 	return true;
562 }
563 
564 static struct btrfs_trans_handle *
565 start_transaction(struct btrfs_root *root, unsigned int num_items,
566 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
567 		  bool enforce_qgroups)
568 {
569 	struct btrfs_fs_info *fs_info = root->fs_info;
570 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
571 	struct btrfs_trans_handle *h;
572 	struct btrfs_transaction *cur_trans;
573 	u64 num_bytes = 0;
574 	u64 qgroup_reserved = 0;
575 	bool reloc_reserved = false;
576 	bool do_chunk_alloc = false;
577 	int ret;
578 
579 	/* Send isn't supposed to start transactions. */
580 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
581 
582 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
583 		return ERR_PTR(-EROFS);
584 
585 	if (current->journal_info) {
586 		WARN_ON(type & TRANS_EXTWRITERS);
587 		h = current->journal_info;
588 		refcount_inc(&h->use_count);
589 		WARN_ON(refcount_read(&h->use_count) > 2);
590 		h->orig_rsv = h->block_rsv;
591 		h->block_rsv = NULL;
592 		goto got_it;
593 	}
594 
595 	/*
596 	 * Do the reservation before we join the transaction so we can do all
597 	 * the appropriate flushing if need be.
598 	 */
599 	if (num_items && root != fs_info->chunk_root) {
600 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
601 		u64 delayed_refs_bytes = 0;
602 
603 		qgroup_reserved = num_items * fs_info->nodesize;
604 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
605 				enforce_qgroups);
606 		if (ret)
607 			return ERR_PTR(ret);
608 
609 		/*
610 		 * We want to reserve all the bytes we may need all at once, so
611 		 * we only do 1 enospc flushing cycle per transaction start.  We
612 		 * accomplish this by simply assuming we'll do 2 x num_items
613 		 * worth of delayed refs updates in this trans handle, and
614 		 * refill that amount for whatever is missing in the reserve.
615 		 */
616 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
617 		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
618 		    delayed_refs_rsv->full == 0) {
619 			delayed_refs_bytes = num_bytes;
620 			num_bytes <<= 1;
621 		}
622 
623 		/*
624 		 * Do the reservation for the relocation root creation
625 		 */
626 		if (need_reserve_reloc_root(root)) {
627 			num_bytes += fs_info->nodesize;
628 			reloc_reserved = true;
629 		}
630 
631 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
632 		if (ret)
633 			goto reserve_fail;
634 		if (delayed_refs_bytes) {
635 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
636 							  delayed_refs_bytes);
637 			num_bytes -= delayed_refs_bytes;
638 		}
639 
640 		if (rsv->space_info->force_alloc)
641 			do_chunk_alloc = true;
642 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
643 		   !delayed_refs_rsv->full) {
644 		/*
645 		 * Some people call with btrfs_start_transaction(root, 0)
646 		 * because they can be throttled, but have some other mechanism
647 		 * for reserving space.  We still want these guys to refill the
648 		 * delayed block_rsv so just add 1 items worth of reservation
649 		 * here.
650 		 */
651 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
652 		if (ret)
653 			goto reserve_fail;
654 	}
655 again:
656 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
657 	if (!h) {
658 		ret = -ENOMEM;
659 		goto alloc_fail;
660 	}
661 
662 	/*
663 	 * If we are JOIN_NOLOCK we're already committing a transaction and
664 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
665 	 * because we're already holding a ref.  We need this because we could
666 	 * have raced in and did an fsync() on a file which can kick a commit
667 	 * and then we deadlock with somebody doing a freeze.
668 	 *
669 	 * If we are ATTACH, it means we just want to catch the current
670 	 * transaction and commit it, so we needn't do sb_start_intwrite().
671 	 */
672 	if (type & __TRANS_FREEZABLE)
673 		sb_start_intwrite(fs_info->sb);
674 
675 	if (may_wait_transaction(fs_info, type))
676 		wait_current_trans(fs_info);
677 
678 	do {
679 		ret = join_transaction(fs_info, type);
680 		if (ret == -EBUSY) {
681 			wait_current_trans(fs_info);
682 			if (unlikely(type == TRANS_ATTACH ||
683 				     type == TRANS_JOIN_NOSTART))
684 				ret = -ENOENT;
685 		}
686 	} while (ret == -EBUSY);
687 
688 	if (ret < 0)
689 		goto join_fail;
690 
691 	cur_trans = fs_info->running_transaction;
692 
693 	h->transid = cur_trans->transid;
694 	h->transaction = cur_trans;
695 	h->root = root;
696 	refcount_set(&h->use_count, 1);
697 	h->fs_info = root->fs_info;
698 
699 	h->type = type;
700 	h->can_flush_pending_bgs = true;
701 	INIT_LIST_HEAD(&h->new_bgs);
702 
703 	smp_mb();
704 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
705 	    may_wait_transaction(fs_info, type)) {
706 		current->journal_info = h;
707 		btrfs_commit_transaction(h);
708 		goto again;
709 	}
710 
711 	if (num_bytes) {
712 		trace_btrfs_space_reservation(fs_info, "transaction",
713 					      h->transid, num_bytes, 1);
714 		h->block_rsv = &fs_info->trans_block_rsv;
715 		h->bytes_reserved = num_bytes;
716 		h->reloc_reserved = reloc_reserved;
717 	}
718 
719 got_it:
720 	if (!current->journal_info)
721 		current->journal_info = h;
722 
723 	/*
724 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
725 	 * ALLOC_FORCE the first run through, and then we won't allocate for
726 	 * anybody else who races in later.  We don't care about the return
727 	 * value here.
728 	 */
729 	if (do_chunk_alloc && num_bytes) {
730 		u64 flags = h->block_rsv->space_info->flags;
731 
732 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
733 				  CHUNK_ALLOC_NO_FORCE);
734 	}
735 
736 	/*
737 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
738 	 * call btrfs_join_transaction() while we're also starting a
739 	 * transaction.
740 	 *
741 	 * Thus it need to be called after current->journal_info initialized,
742 	 * or we can deadlock.
743 	 */
744 	btrfs_record_root_in_trans(h, root);
745 
746 	return h;
747 
748 join_fail:
749 	if (type & __TRANS_FREEZABLE)
750 		sb_end_intwrite(fs_info->sb);
751 	kmem_cache_free(btrfs_trans_handle_cachep, h);
752 alloc_fail:
753 	if (num_bytes)
754 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
755 					num_bytes, NULL);
756 reserve_fail:
757 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
758 	return ERR_PTR(ret);
759 }
760 
761 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
762 						   unsigned int num_items)
763 {
764 	return start_transaction(root, num_items, TRANS_START,
765 				 BTRFS_RESERVE_FLUSH_ALL, true);
766 }
767 
768 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
769 					struct btrfs_root *root,
770 					unsigned int num_items)
771 {
772 	return start_transaction(root, num_items, TRANS_START,
773 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
774 }
775 
776 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
777 {
778 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
779 				 true);
780 }
781 
782 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
783 {
784 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
785 				 BTRFS_RESERVE_NO_FLUSH, true);
786 }
787 
788 /*
789  * Similar to regular join but it never starts a transaction when none is
790  * running or after waiting for the current one to finish.
791  */
792 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
793 {
794 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
795 				 BTRFS_RESERVE_NO_FLUSH, true);
796 }
797 
798 /*
799  * btrfs_attach_transaction() - catch the running transaction
800  *
801  * It is used when we want to commit the current the transaction, but
802  * don't want to start a new one.
803  *
804  * Note: If this function return -ENOENT, it just means there is no
805  * running transaction. But it is possible that the inactive transaction
806  * is still in the memory, not fully on disk. If you hope there is no
807  * inactive transaction in the fs when -ENOENT is returned, you should
808  * invoke
809  *     btrfs_attach_transaction_barrier()
810  */
811 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
812 {
813 	return start_transaction(root, 0, TRANS_ATTACH,
814 				 BTRFS_RESERVE_NO_FLUSH, true);
815 }
816 
817 /*
818  * btrfs_attach_transaction_barrier() - catch the running transaction
819  *
820  * It is similar to the above function, the difference is this one
821  * will wait for all the inactive transactions until they fully
822  * complete.
823  */
824 struct btrfs_trans_handle *
825 btrfs_attach_transaction_barrier(struct btrfs_root *root)
826 {
827 	struct btrfs_trans_handle *trans;
828 
829 	trans = start_transaction(root, 0, TRANS_ATTACH,
830 				  BTRFS_RESERVE_NO_FLUSH, true);
831 	if (trans == ERR_PTR(-ENOENT))
832 		btrfs_wait_for_commit(root->fs_info, 0);
833 
834 	return trans;
835 }
836 
837 /* Wait for a transaction commit to reach at least the given state. */
838 static noinline void wait_for_commit(struct btrfs_transaction *commit,
839 				     const enum btrfs_trans_state min_state)
840 {
841 	wait_event(commit->commit_wait, commit->state >= min_state);
842 }
843 
844 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
845 {
846 	struct btrfs_transaction *cur_trans = NULL, *t;
847 	int ret = 0;
848 
849 	if (transid) {
850 		if (transid <= fs_info->last_trans_committed)
851 			goto out;
852 
853 		/* find specified transaction */
854 		spin_lock(&fs_info->trans_lock);
855 		list_for_each_entry(t, &fs_info->trans_list, list) {
856 			if (t->transid == transid) {
857 				cur_trans = t;
858 				refcount_inc(&cur_trans->use_count);
859 				ret = 0;
860 				break;
861 			}
862 			if (t->transid > transid) {
863 				ret = 0;
864 				break;
865 			}
866 		}
867 		spin_unlock(&fs_info->trans_lock);
868 
869 		/*
870 		 * The specified transaction doesn't exist, or we
871 		 * raced with btrfs_commit_transaction
872 		 */
873 		if (!cur_trans) {
874 			if (transid > fs_info->last_trans_committed)
875 				ret = -EINVAL;
876 			goto out;
877 		}
878 	} else {
879 		/* find newest transaction that is committing | committed */
880 		spin_lock(&fs_info->trans_lock);
881 		list_for_each_entry_reverse(t, &fs_info->trans_list,
882 					    list) {
883 			if (t->state >= TRANS_STATE_COMMIT_START) {
884 				if (t->state == TRANS_STATE_COMPLETED)
885 					break;
886 				cur_trans = t;
887 				refcount_inc(&cur_trans->use_count);
888 				break;
889 			}
890 		}
891 		spin_unlock(&fs_info->trans_lock);
892 		if (!cur_trans)
893 			goto out;  /* nothing committing|committed */
894 	}
895 
896 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
897 	btrfs_put_transaction(cur_trans);
898 out:
899 	return ret;
900 }
901 
902 void btrfs_throttle(struct btrfs_fs_info *fs_info)
903 {
904 	wait_current_trans(fs_info);
905 }
906 
907 static bool should_end_transaction(struct btrfs_trans_handle *trans)
908 {
909 	struct btrfs_fs_info *fs_info = trans->fs_info;
910 
911 	if (btrfs_check_space_for_delayed_refs(fs_info))
912 		return true;
913 
914 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
915 }
916 
917 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
918 {
919 	struct btrfs_transaction *cur_trans = trans->transaction;
920 
921 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
922 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
923 		return true;
924 
925 	return should_end_transaction(trans);
926 }
927 
928 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
929 
930 {
931 	struct btrfs_fs_info *fs_info = trans->fs_info;
932 
933 	if (!trans->block_rsv) {
934 		ASSERT(!trans->bytes_reserved);
935 		return;
936 	}
937 
938 	if (!trans->bytes_reserved)
939 		return;
940 
941 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
942 	trace_btrfs_space_reservation(fs_info, "transaction",
943 				      trans->transid, trans->bytes_reserved, 0);
944 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
945 				trans->bytes_reserved, NULL);
946 	trans->bytes_reserved = 0;
947 }
948 
949 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
950 				   int throttle)
951 {
952 	struct btrfs_fs_info *info = trans->fs_info;
953 	struct btrfs_transaction *cur_trans = trans->transaction;
954 	int err = 0;
955 
956 	if (refcount_read(&trans->use_count) > 1) {
957 		refcount_dec(&trans->use_count);
958 		trans->block_rsv = trans->orig_rsv;
959 		return 0;
960 	}
961 
962 	btrfs_trans_release_metadata(trans);
963 	trans->block_rsv = NULL;
964 
965 	btrfs_create_pending_block_groups(trans);
966 
967 	btrfs_trans_release_chunk_metadata(trans);
968 
969 	if (trans->type & __TRANS_FREEZABLE)
970 		sb_end_intwrite(info->sb);
971 
972 	WARN_ON(cur_trans != info->running_transaction);
973 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
974 	atomic_dec(&cur_trans->num_writers);
975 	extwriter_counter_dec(cur_trans, trans->type);
976 
977 	cond_wake_up(&cur_trans->writer_wait);
978 	btrfs_put_transaction(cur_trans);
979 
980 	if (current->journal_info == trans)
981 		current->journal_info = NULL;
982 
983 	if (throttle)
984 		btrfs_run_delayed_iputs(info);
985 
986 	if (TRANS_ABORTED(trans) ||
987 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
988 		wake_up_process(info->transaction_kthread);
989 		if (TRANS_ABORTED(trans))
990 			err = trans->aborted;
991 		else
992 			err = -EROFS;
993 	}
994 
995 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
996 	return err;
997 }
998 
999 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1000 {
1001 	return __btrfs_end_transaction(trans, 0);
1002 }
1003 
1004 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1005 {
1006 	return __btrfs_end_transaction(trans, 1);
1007 }
1008 
1009 /*
1010  * when btree blocks are allocated, they have some corresponding bits set for
1011  * them in one of two extent_io trees.  This is used to make sure all of
1012  * those extents are sent to disk but does not wait on them
1013  */
1014 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1015 			       struct extent_io_tree *dirty_pages, int mark)
1016 {
1017 	int err = 0;
1018 	int werr = 0;
1019 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1020 	struct extent_state *cached_state = NULL;
1021 	u64 start = 0;
1022 	u64 end;
1023 
1024 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1025 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1026 				      mark, &cached_state)) {
1027 		bool wait_writeback = false;
1028 
1029 		err = convert_extent_bit(dirty_pages, start, end,
1030 					 EXTENT_NEED_WAIT,
1031 					 mark, &cached_state);
1032 		/*
1033 		 * convert_extent_bit can return -ENOMEM, which is most of the
1034 		 * time a temporary error. So when it happens, ignore the error
1035 		 * and wait for writeback of this range to finish - because we
1036 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1037 		 * to __btrfs_wait_marked_extents() would not know that
1038 		 * writeback for this range started and therefore wouldn't
1039 		 * wait for it to finish - we don't want to commit a
1040 		 * superblock that points to btree nodes/leafs for which
1041 		 * writeback hasn't finished yet (and without errors).
1042 		 * We cleanup any entries left in the io tree when committing
1043 		 * the transaction (through extent_io_tree_release()).
1044 		 */
1045 		if (err == -ENOMEM) {
1046 			err = 0;
1047 			wait_writeback = true;
1048 		}
1049 		if (!err)
1050 			err = filemap_fdatawrite_range(mapping, start, end);
1051 		if (err)
1052 			werr = err;
1053 		else if (wait_writeback)
1054 			werr = filemap_fdatawait_range(mapping, start, end);
1055 		free_extent_state(cached_state);
1056 		cached_state = NULL;
1057 		cond_resched();
1058 		start = end + 1;
1059 	}
1060 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1061 	return werr;
1062 }
1063 
1064 /*
1065  * when btree blocks are allocated, they have some corresponding bits set for
1066  * them in one of two extent_io trees.  This is used to make sure all of
1067  * those extents are on disk for transaction or log commit.  We wait
1068  * on all the pages and clear them from the dirty pages state tree
1069  */
1070 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1071 				       struct extent_io_tree *dirty_pages)
1072 {
1073 	int err = 0;
1074 	int werr = 0;
1075 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1076 	struct extent_state *cached_state = NULL;
1077 	u64 start = 0;
1078 	u64 end;
1079 
1080 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1081 				      EXTENT_NEED_WAIT, &cached_state)) {
1082 		/*
1083 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1084 		 * When committing the transaction, we'll remove any entries
1085 		 * left in the io tree. For a log commit, we don't remove them
1086 		 * after committing the log because the tree can be accessed
1087 		 * concurrently - we do it only at transaction commit time when
1088 		 * it's safe to do it (through extent_io_tree_release()).
1089 		 */
1090 		err = clear_extent_bit(dirty_pages, start, end,
1091 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1092 		if (err == -ENOMEM)
1093 			err = 0;
1094 		if (!err)
1095 			err = filemap_fdatawait_range(mapping, start, end);
1096 		if (err)
1097 			werr = err;
1098 		free_extent_state(cached_state);
1099 		cached_state = NULL;
1100 		cond_resched();
1101 		start = end + 1;
1102 	}
1103 	if (err)
1104 		werr = err;
1105 	return werr;
1106 }
1107 
1108 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1109 		       struct extent_io_tree *dirty_pages)
1110 {
1111 	bool errors = false;
1112 	int err;
1113 
1114 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1115 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1116 		errors = true;
1117 
1118 	if (errors && !err)
1119 		err = -EIO;
1120 	return err;
1121 }
1122 
1123 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1124 {
1125 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1126 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1127 	bool errors = false;
1128 	int err;
1129 
1130 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1131 
1132 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1133 	if ((mark & EXTENT_DIRTY) &&
1134 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1135 		errors = true;
1136 
1137 	if ((mark & EXTENT_NEW) &&
1138 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1139 		errors = true;
1140 
1141 	if (errors && !err)
1142 		err = -EIO;
1143 	return err;
1144 }
1145 
1146 /*
1147  * When btree blocks are allocated the corresponding extents are marked dirty.
1148  * This function ensures such extents are persisted on disk for transaction or
1149  * log commit.
1150  *
1151  * @trans: transaction whose dirty pages we'd like to write
1152  */
1153 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1154 {
1155 	int ret;
1156 	int ret2;
1157 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1158 	struct btrfs_fs_info *fs_info = trans->fs_info;
1159 	struct blk_plug plug;
1160 
1161 	blk_start_plug(&plug);
1162 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1163 	blk_finish_plug(&plug);
1164 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1165 
1166 	extent_io_tree_release(&trans->transaction->dirty_pages);
1167 
1168 	if (ret)
1169 		return ret;
1170 	else if (ret2)
1171 		return ret2;
1172 	else
1173 		return 0;
1174 }
1175 
1176 /*
1177  * this is used to update the root pointer in the tree of tree roots.
1178  *
1179  * But, in the case of the extent allocation tree, updating the root
1180  * pointer may allocate blocks which may change the root of the extent
1181  * allocation tree.
1182  *
1183  * So, this loops and repeats and makes sure the cowonly root didn't
1184  * change while the root pointer was being updated in the metadata.
1185  */
1186 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1187 			       struct btrfs_root *root)
1188 {
1189 	int ret;
1190 	u64 old_root_bytenr;
1191 	u64 old_root_used;
1192 	struct btrfs_fs_info *fs_info = root->fs_info;
1193 	struct btrfs_root *tree_root = fs_info->tree_root;
1194 
1195 	old_root_used = btrfs_root_used(&root->root_item);
1196 
1197 	while (1) {
1198 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1199 		if (old_root_bytenr == root->node->start &&
1200 		    old_root_used == btrfs_root_used(&root->root_item))
1201 			break;
1202 
1203 		btrfs_set_root_node(&root->root_item, root->node);
1204 		ret = btrfs_update_root(trans, tree_root,
1205 					&root->root_key,
1206 					&root->root_item);
1207 		if (ret)
1208 			return ret;
1209 
1210 		old_root_used = btrfs_root_used(&root->root_item);
1211 	}
1212 
1213 	return 0;
1214 }
1215 
1216 /*
1217  * update all the cowonly tree roots on disk
1218  *
1219  * The error handling in this function may not be obvious. Any of the
1220  * failures will cause the file system to go offline. We still need
1221  * to clean up the delayed refs.
1222  */
1223 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1224 {
1225 	struct btrfs_fs_info *fs_info = trans->fs_info;
1226 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1227 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1228 	struct list_head *next;
1229 	struct extent_buffer *eb;
1230 	int ret;
1231 
1232 	eb = btrfs_lock_root_node(fs_info->tree_root);
1233 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1234 			      0, &eb, BTRFS_NESTING_COW);
1235 	btrfs_tree_unlock(eb);
1236 	free_extent_buffer(eb);
1237 
1238 	if (ret)
1239 		return ret;
1240 
1241 	ret = btrfs_run_dev_stats(trans);
1242 	if (ret)
1243 		return ret;
1244 	ret = btrfs_run_dev_replace(trans);
1245 	if (ret)
1246 		return ret;
1247 	ret = btrfs_run_qgroups(trans);
1248 	if (ret)
1249 		return ret;
1250 
1251 	ret = btrfs_setup_space_cache(trans);
1252 	if (ret)
1253 		return ret;
1254 
1255 again:
1256 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1257 		struct btrfs_root *root;
1258 		next = fs_info->dirty_cowonly_roots.next;
1259 		list_del_init(next);
1260 		root = list_entry(next, struct btrfs_root, dirty_list);
1261 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1262 
1263 		if (root != fs_info->extent_root)
1264 			list_add_tail(&root->dirty_list,
1265 				      &trans->transaction->switch_commits);
1266 		ret = update_cowonly_root(trans, root);
1267 		if (ret)
1268 			return ret;
1269 	}
1270 
1271 	/* Now flush any delayed refs generated by updating all of the roots */
1272 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1273 	if (ret)
1274 		return ret;
1275 
1276 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1277 		ret = btrfs_write_dirty_block_groups(trans);
1278 		if (ret)
1279 			return ret;
1280 
1281 		/*
1282 		 * We're writing the dirty block groups, which could generate
1283 		 * delayed refs, which could generate more dirty block groups,
1284 		 * so we want to keep this flushing in this loop to make sure
1285 		 * everything gets run.
1286 		 */
1287 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1288 		if (ret)
1289 			return ret;
1290 	}
1291 
1292 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1293 		goto again;
1294 
1295 	list_add_tail(&fs_info->extent_root->dirty_list,
1296 		      &trans->transaction->switch_commits);
1297 
1298 	/* Update dev-replace pointer once everything is committed */
1299 	fs_info->dev_replace.committed_cursor_left =
1300 		fs_info->dev_replace.cursor_left_last_write_of_item;
1301 
1302 	return 0;
1303 }
1304 
1305 /*
1306  * dead roots are old snapshots that need to be deleted.  This allocates
1307  * a dirty root struct and adds it into the list of dead roots that need to
1308  * be deleted
1309  */
1310 void btrfs_add_dead_root(struct btrfs_root *root)
1311 {
1312 	struct btrfs_fs_info *fs_info = root->fs_info;
1313 
1314 	spin_lock(&fs_info->trans_lock);
1315 	if (list_empty(&root->root_list)) {
1316 		btrfs_grab_root(root);
1317 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1318 	}
1319 	spin_unlock(&fs_info->trans_lock);
1320 }
1321 
1322 /*
1323  * update all the cowonly tree roots on disk
1324  */
1325 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1326 {
1327 	struct btrfs_fs_info *fs_info = trans->fs_info;
1328 	struct btrfs_root *gang[8];
1329 	int i;
1330 	int ret;
1331 
1332 	spin_lock(&fs_info->fs_roots_radix_lock);
1333 	while (1) {
1334 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1335 						 (void **)gang, 0,
1336 						 ARRAY_SIZE(gang),
1337 						 BTRFS_ROOT_TRANS_TAG);
1338 		if (ret == 0)
1339 			break;
1340 		for (i = 0; i < ret; i++) {
1341 			struct btrfs_root *root = gang[i];
1342 			int ret2;
1343 
1344 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1345 					(unsigned long)root->root_key.objectid,
1346 					BTRFS_ROOT_TRANS_TAG);
1347 			spin_unlock(&fs_info->fs_roots_radix_lock);
1348 
1349 			btrfs_free_log(trans, root);
1350 			btrfs_update_reloc_root(trans, root);
1351 
1352 			/* see comments in should_cow_block() */
1353 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1354 			smp_mb__after_atomic();
1355 
1356 			if (root->commit_root != root->node) {
1357 				list_add_tail(&root->dirty_list,
1358 					&trans->transaction->switch_commits);
1359 				btrfs_set_root_node(&root->root_item,
1360 						    root->node);
1361 			}
1362 
1363 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1364 						&root->root_key,
1365 						&root->root_item);
1366 			if (ret2)
1367 				return ret2;
1368 			spin_lock(&fs_info->fs_roots_radix_lock);
1369 			btrfs_qgroup_free_meta_all_pertrans(root);
1370 		}
1371 	}
1372 	spin_unlock(&fs_info->fs_roots_radix_lock);
1373 	return 0;
1374 }
1375 
1376 /*
1377  * defrag a given btree.
1378  * Every leaf in the btree is read and defragged.
1379  */
1380 int btrfs_defrag_root(struct btrfs_root *root)
1381 {
1382 	struct btrfs_fs_info *info = root->fs_info;
1383 	struct btrfs_trans_handle *trans;
1384 	int ret;
1385 
1386 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1387 		return 0;
1388 
1389 	while (1) {
1390 		trans = btrfs_start_transaction(root, 0);
1391 		if (IS_ERR(trans))
1392 			return PTR_ERR(trans);
1393 
1394 		ret = btrfs_defrag_leaves(trans, root);
1395 
1396 		btrfs_end_transaction(trans);
1397 		btrfs_btree_balance_dirty(info);
1398 		cond_resched();
1399 
1400 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1401 			break;
1402 
1403 		if (btrfs_defrag_cancelled(info)) {
1404 			btrfs_debug(info, "defrag_root cancelled");
1405 			ret = -EAGAIN;
1406 			break;
1407 		}
1408 	}
1409 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1410 	return ret;
1411 }
1412 
1413 /*
1414  * Do all special snapshot related qgroup dirty hack.
1415  *
1416  * Will do all needed qgroup inherit and dirty hack like switch commit
1417  * roots inside one transaction and write all btree into disk, to make
1418  * qgroup works.
1419  */
1420 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1421 				   struct btrfs_root *src,
1422 				   struct btrfs_root *parent,
1423 				   struct btrfs_qgroup_inherit *inherit,
1424 				   u64 dst_objectid)
1425 {
1426 	struct btrfs_fs_info *fs_info = src->fs_info;
1427 	int ret;
1428 
1429 	/*
1430 	 * Save some performance in the case that qgroups are not
1431 	 * enabled. If this check races with the ioctl, rescan will
1432 	 * kick in anyway.
1433 	 */
1434 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1435 		return 0;
1436 
1437 	/*
1438 	 * Ensure dirty @src will be committed.  Or, after coming
1439 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1440 	 * recorded root will never be updated again, causing an outdated root
1441 	 * item.
1442 	 */
1443 	record_root_in_trans(trans, src, 1);
1444 
1445 	/*
1446 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1447 	 * src root, so we must run the delayed refs here.
1448 	 *
1449 	 * However this isn't particularly fool proof, because there's no
1450 	 * synchronization keeping us from changing the tree after this point
1451 	 * before we do the qgroup_inherit, or even from making changes while
1452 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1453 	 * for now flush the delayed refs to narrow the race window where the
1454 	 * qgroup counters could end up wrong.
1455 	 */
1456 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1457 	if (ret) {
1458 		btrfs_abort_transaction(trans, ret);
1459 		goto out;
1460 	}
1461 
1462 	/*
1463 	 * We are going to commit transaction, see btrfs_commit_transaction()
1464 	 * comment for reason locking tree_log_mutex
1465 	 */
1466 	mutex_lock(&fs_info->tree_log_mutex);
1467 
1468 	ret = commit_fs_roots(trans);
1469 	if (ret)
1470 		goto out;
1471 	ret = btrfs_qgroup_account_extents(trans);
1472 	if (ret < 0)
1473 		goto out;
1474 
1475 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1476 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1477 				   inherit);
1478 	if (ret < 0)
1479 		goto out;
1480 
1481 	/*
1482 	 * Now we do a simplified commit transaction, which will:
1483 	 * 1) commit all subvolume and extent tree
1484 	 *    To ensure all subvolume and extent tree have a valid
1485 	 *    commit_root to accounting later insert_dir_item()
1486 	 * 2) write all btree blocks onto disk
1487 	 *    This is to make sure later btree modification will be cowed
1488 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1489 	 * In this simplified commit, we don't really care about other trees
1490 	 * like chunk and root tree, as they won't affect qgroup.
1491 	 * And we don't write super to avoid half committed status.
1492 	 */
1493 	ret = commit_cowonly_roots(trans);
1494 	if (ret)
1495 		goto out;
1496 	switch_commit_roots(trans);
1497 	ret = btrfs_write_and_wait_transaction(trans);
1498 	if (ret)
1499 		btrfs_handle_fs_error(fs_info, ret,
1500 			"Error while writing out transaction for qgroup");
1501 
1502 out:
1503 	mutex_unlock(&fs_info->tree_log_mutex);
1504 
1505 	/*
1506 	 * Force parent root to be updated, as we recorded it before so its
1507 	 * last_trans == cur_transid.
1508 	 * Or it won't be committed again onto disk after later
1509 	 * insert_dir_item()
1510 	 */
1511 	if (!ret)
1512 		record_root_in_trans(trans, parent, 1);
1513 	return ret;
1514 }
1515 
1516 /*
1517  * new snapshots need to be created at a very specific time in the
1518  * transaction commit.  This does the actual creation.
1519  *
1520  * Note:
1521  * If the error which may affect the commitment of the current transaction
1522  * happens, we should return the error number. If the error which just affect
1523  * the creation of the pending snapshots, just return 0.
1524  */
1525 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1526 				   struct btrfs_pending_snapshot *pending)
1527 {
1528 
1529 	struct btrfs_fs_info *fs_info = trans->fs_info;
1530 	struct btrfs_key key;
1531 	struct btrfs_root_item *new_root_item;
1532 	struct btrfs_root *tree_root = fs_info->tree_root;
1533 	struct btrfs_root *root = pending->root;
1534 	struct btrfs_root *parent_root;
1535 	struct btrfs_block_rsv *rsv;
1536 	struct inode *parent_inode;
1537 	struct btrfs_path *path;
1538 	struct btrfs_dir_item *dir_item;
1539 	struct dentry *dentry;
1540 	struct extent_buffer *tmp;
1541 	struct extent_buffer *old;
1542 	struct timespec64 cur_time;
1543 	int ret = 0;
1544 	u64 to_reserve = 0;
1545 	u64 index = 0;
1546 	u64 objectid;
1547 	u64 root_flags;
1548 
1549 	ASSERT(pending->path);
1550 	path = pending->path;
1551 
1552 	ASSERT(pending->root_item);
1553 	new_root_item = pending->root_item;
1554 
1555 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1556 	if (pending->error)
1557 		goto no_free_objectid;
1558 
1559 	/*
1560 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1561 	 * accounted by later btrfs_qgroup_inherit().
1562 	 */
1563 	btrfs_set_skip_qgroup(trans, objectid);
1564 
1565 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1566 
1567 	if (to_reserve > 0) {
1568 		pending->error = btrfs_block_rsv_add(root,
1569 						     &pending->block_rsv,
1570 						     to_reserve,
1571 						     BTRFS_RESERVE_NO_FLUSH);
1572 		if (pending->error)
1573 			goto clear_skip_qgroup;
1574 	}
1575 
1576 	key.objectid = objectid;
1577 	key.offset = (u64)-1;
1578 	key.type = BTRFS_ROOT_ITEM_KEY;
1579 
1580 	rsv = trans->block_rsv;
1581 	trans->block_rsv = &pending->block_rsv;
1582 	trans->bytes_reserved = trans->block_rsv->reserved;
1583 	trace_btrfs_space_reservation(fs_info, "transaction",
1584 				      trans->transid,
1585 				      trans->bytes_reserved, 1);
1586 	dentry = pending->dentry;
1587 	parent_inode = pending->dir;
1588 	parent_root = BTRFS_I(parent_inode)->root;
1589 	record_root_in_trans(trans, parent_root, 0);
1590 
1591 	cur_time = current_time(parent_inode);
1592 
1593 	/*
1594 	 * insert the directory item
1595 	 */
1596 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1597 	BUG_ON(ret); /* -ENOMEM */
1598 
1599 	/* check if there is a file/dir which has the same name. */
1600 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1601 					 btrfs_ino(BTRFS_I(parent_inode)),
1602 					 dentry->d_name.name,
1603 					 dentry->d_name.len, 0);
1604 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1605 		pending->error = -EEXIST;
1606 		goto dir_item_existed;
1607 	} else if (IS_ERR(dir_item)) {
1608 		ret = PTR_ERR(dir_item);
1609 		btrfs_abort_transaction(trans, ret);
1610 		goto fail;
1611 	}
1612 	btrfs_release_path(path);
1613 
1614 	/*
1615 	 * pull in the delayed directory update
1616 	 * and the delayed inode item
1617 	 * otherwise we corrupt the FS during
1618 	 * snapshot
1619 	 */
1620 	ret = btrfs_run_delayed_items(trans);
1621 	if (ret) {	/* Transaction aborted */
1622 		btrfs_abort_transaction(trans, ret);
1623 		goto fail;
1624 	}
1625 
1626 	record_root_in_trans(trans, root, 0);
1627 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1628 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1629 	btrfs_check_and_init_root_item(new_root_item);
1630 
1631 	root_flags = btrfs_root_flags(new_root_item);
1632 	if (pending->readonly)
1633 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1634 	else
1635 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1636 	btrfs_set_root_flags(new_root_item, root_flags);
1637 
1638 	btrfs_set_root_generation_v2(new_root_item,
1639 			trans->transid);
1640 	generate_random_guid(new_root_item->uuid);
1641 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1642 			BTRFS_UUID_SIZE);
1643 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1644 		memset(new_root_item->received_uuid, 0,
1645 		       sizeof(new_root_item->received_uuid));
1646 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1647 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1648 		btrfs_set_root_stransid(new_root_item, 0);
1649 		btrfs_set_root_rtransid(new_root_item, 0);
1650 	}
1651 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1652 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1653 	btrfs_set_root_otransid(new_root_item, trans->transid);
1654 
1655 	old = btrfs_lock_root_node(root);
1656 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1657 			      BTRFS_NESTING_COW);
1658 	if (ret) {
1659 		btrfs_tree_unlock(old);
1660 		free_extent_buffer(old);
1661 		btrfs_abort_transaction(trans, ret);
1662 		goto fail;
1663 	}
1664 
1665 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1666 	/* clean up in any case */
1667 	btrfs_tree_unlock(old);
1668 	free_extent_buffer(old);
1669 	if (ret) {
1670 		btrfs_abort_transaction(trans, ret);
1671 		goto fail;
1672 	}
1673 	/* see comments in should_cow_block() */
1674 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1675 	smp_wmb();
1676 
1677 	btrfs_set_root_node(new_root_item, tmp);
1678 	/* record when the snapshot was created in key.offset */
1679 	key.offset = trans->transid;
1680 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1681 	btrfs_tree_unlock(tmp);
1682 	free_extent_buffer(tmp);
1683 	if (ret) {
1684 		btrfs_abort_transaction(trans, ret);
1685 		goto fail;
1686 	}
1687 
1688 	/*
1689 	 * insert root back/forward references
1690 	 */
1691 	ret = btrfs_add_root_ref(trans, objectid,
1692 				 parent_root->root_key.objectid,
1693 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1694 				 dentry->d_name.name, dentry->d_name.len);
1695 	if (ret) {
1696 		btrfs_abort_transaction(trans, ret);
1697 		goto fail;
1698 	}
1699 
1700 	key.offset = (u64)-1;
1701 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1702 	if (IS_ERR(pending->snap)) {
1703 		ret = PTR_ERR(pending->snap);
1704 		pending->snap = NULL;
1705 		btrfs_abort_transaction(trans, ret);
1706 		goto fail;
1707 	}
1708 
1709 	ret = btrfs_reloc_post_snapshot(trans, pending);
1710 	if (ret) {
1711 		btrfs_abort_transaction(trans, ret);
1712 		goto fail;
1713 	}
1714 
1715 	/*
1716 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1717 	 * snapshot hack to do fast snapshot.
1718 	 * To co-operate with that hack, we do hack again.
1719 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1720 	 */
1721 	ret = qgroup_account_snapshot(trans, root, parent_root,
1722 				      pending->inherit, objectid);
1723 	if (ret < 0)
1724 		goto fail;
1725 
1726 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1727 				    dentry->d_name.len, BTRFS_I(parent_inode),
1728 				    &key, BTRFS_FT_DIR, index);
1729 	/* We have check then name at the beginning, so it is impossible. */
1730 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1731 	if (ret) {
1732 		btrfs_abort_transaction(trans, ret);
1733 		goto fail;
1734 	}
1735 
1736 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1737 					 dentry->d_name.len * 2);
1738 	parent_inode->i_mtime = parent_inode->i_ctime =
1739 		current_time(parent_inode);
1740 	ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1741 	if (ret) {
1742 		btrfs_abort_transaction(trans, ret);
1743 		goto fail;
1744 	}
1745 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1746 				  BTRFS_UUID_KEY_SUBVOL,
1747 				  objectid);
1748 	if (ret) {
1749 		btrfs_abort_transaction(trans, ret);
1750 		goto fail;
1751 	}
1752 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1753 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1754 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1755 					  objectid);
1756 		if (ret && ret != -EEXIST) {
1757 			btrfs_abort_transaction(trans, ret);
1758 			goto fail;
1759 		}
1760 	}
1761 
1762 fail:
1763 	pending->error = ret;
1764 dir_item_existed:
1765 	trans->block_rsv = rsv;
1766 	trans->bytes_reserved = 0;
1767 clear_skip_qgroup:
1768 	btrfs_clear_skip_qgroup(trans);
1769 no_free_objectid:
1770 	kfree(new_root_item);
1771 	pending->root_item = NULL;
1772 	btrfs_free_path(path);
1773 	pending->path = NULL;
1774 
1775 	return ret;
1776 }
1777 
1778 /*
1779  * create all the snapshots we've scheduled for creation
1780  */
1781 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1782 {
1783 	struct btrfs_pending_snapshot *pending, *next;
1784 	struct list_head *head = &trans->transaction->pending_snapshots;
1785 	int ret = 0;
1786 
1787 	list_for_each_entry_safe(pending, next, head, list) {
1788 		list_del(&pending->list);
1789 		ret = create_pending_snapshot(trans, pending);
1790 		if (ret)
1791 			break;
1792 	}
1793 	return ret;
1794 }
1795 
1796 static void update_super_roots(struct btrfs_fs_info *fs_info)
1797 {
1798 	struct btrfs_root_item *root_item;
1799 	struct btrfs_super_block *super;
1800 
1801 	super = fs_info->super_copy;
1802 
1803 	root_item = &fs_info->chunk_root->root_item;
1804 	super->chunk_root = root_item->bytenr;
1805 	super->chunk_root_generation = root_item->generation;
1806 	super->chunk_root_level = root_item->level;
1807 
1808 	root_item = &fs_info->tree_root->root_item;
1809 	super->root = root_item->bytenr;
1810 	super->generation = root_item->generation;
1811 	super->root_level = root_item->level;
1812 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1813 		super->cache_generation = root_item->generation;
1814 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1815 		super->cache_generation = 0;
1816 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1817 		super->uuid_tree_generation = root_item->generation;
1818 }
1819 
1820 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1821 {
1822 	struct btrfs_transaction *trans;
1823 	int ret = 0;
1824 
1825 	spin_lock(&info->trans_lock);
1826 	trans = info->running_transaction;
1827 	if (trans)
1828 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1829 	spin_unlock(&info->trans_lock);
1830 	return ret;
1831 }
1832 
1833 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1834 {
1835 	struct btrfs_transaction *trans;
1836 	int ret = 0;
1837 
1838 	spin_lock(&info->trans_lock);
1839 	trans = info->running_transaction;
1840 	if (trans)
1841 		ret = is_transaction_blocked(trans);
1842 	spin_unlock(&info->trans_lock);
1843 	return ret;
1844 }
1845 
1846 /*
1847  * wait for the current transaction commit to start and block subsequent
1848  * transaction joins
1849  */
1850 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1851 					    struct btrfs_transaction *trans)
1852 {
1853 	wait_event(fs_info->transaction_blocked_wait,
1854 		   trans->state >= TRANS_STATE_COMMIT_START ||
1855 		   TRANS_ABORTED(trans));
1856 }
1857 
1858 /*
1859  * wait for the current transaction to start and then become unblocked.
1860  * caller holds ref.
1861  */
1862 static void wait_current_trans_commit_start_and_unblock(
1863 					struct btrfs_fs_info *fs_info,
1864 					struct btrfs_transaction *trans)
1865 {
1866 	wait_event(fs_info->transaction_wait,
1867 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1868 		   TRANS_ABORTED(trans));
1869 }
1870 
1871 /*
1872  * commit transactions asynchronously. once btrfs_commit_transaction_async
1873  * returns, any subsequent transaction will not be allowed to join.
1874  */
1875 struct btrfs_async_commit {
1876 	struct btrfs_trans_handle *newtrans;
1877 	struct work_struct work;
1878 };
1879 
1880 static void do_async_commit(struct work_struct *work)
1881 {
1882 	struct btrfs_async_commit *ac =
1883 		container_of(work, struct btrfs_async_commit, work);
1884 
1885 	/*
1886 	 * We've got freeze protection passed with the transaction.
1887 	 * Tell lockdep about it.
1888 	 */
1889 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1890 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1891 
1892 	current->journal_info = ac->newtrans;
1893 
1894 	btrfs_commit_transaction(ac->newtrans);
1895 	kfree(ac);
1896 }
1897 
1898 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1899 				   int wait_for_unblock)
1900 {
1901 	struct btrfs_fs_info *fs_info = trans->fs_info;
1902 	struct btrfs_async_commit *ac;
1903 	struct btrfs_transaction *cur_trans;
1904 
1905 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1906 	if (!ac)
1907 		return -ENOMEM;
1908 
1909 	INIT_WORK(&ac->work, do_async_commit);
1910 	ac->newtrans = btrfs_join_transaction(trans->root);
1911 	if (IS_ERR(ac->newtrans)) {
1912 		int err = PTR_ERR(ac->newtrans);
1913 		kfree(ac);
1914 		return err;
1915 	}
1916 
1917 	/* take transaction reference */
1918 	cur_trans = trans->transaction;
1919 	refcount_inc(&cur_trans->use_count);
1920 
1921 	btrfs_end_transaction(trans);
1922 
1923 	/*
1924 	 * Tell lockdep we've released the freeze rwsem, since the
1925 	 * async commit thread will be the one to unlock it.
1926 	 */
1927 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1928 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1929 
1930 	schedule_work(&ac->work);
1931 
1932 	/* wait for transaction to start and unblock */
1933 	if (wait_for_unblock)
1934 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1935 	else
1936 		wait_current_trans_commit_start(fs_info, cur_trans);
1937 
1938 	if (current->journal_info == trans)
1939 		current->journal_info = NULL;
1940 
1941 	btrfs_put_transaction(cur_trans);
1942 	return 0;
1943 }
1944 
1945 
1946 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1947 {
1948 	struct btrfs_fs_info *fs_info = trans->fs_info;
1949 	struct btrfs_transaction *cur_trans = trans->transaction;
1950 
1951 	WARN_ON(refcount_read(&trans->use_count) > 1);
1952 
1953 	btrfs_abort_transaction(trans, err);
1954 
1955 	spin_lock(&fs_info->trans_lock);
1956 
1957 	/*
1958 	 * If the transaction is removed from the list, it means this
1959 	 * transaction has been committed successfully, so it is impossible
1960 	 * to call the cleanup function.
1961 	 */
1962 	BUG_ON(list_empty(&cur_trans->list));
1963 
1964 	list_del_init(&cur_trans->list);
1965 	if (cur_trans == fs_info->running_transaction) {
1966 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1967 		spin_unlock(&fs_info->trans_lock);
1968 		wait_event(cur_trans->writer_wait,
1969 			   atomic_read(&cur_trans->num_writers) == 1);
1970 
1971 		spin_lock(&fs_info->trans_lock);
1972 	}
1973 	spin_unlock(&fs_info->trans_lock);
1974 
1975 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1976 
1977 	spin_lock(&fs_info->trans_lock);
1978 	if (cur_trans == fs_info->running_transaction)
1979 		fs_info->running_transaction = NULL;
1980 	spin_unlock(&fs_info->trans_lock);
1981 
1982 	if (trans->type & __TRANS_FREEZABLE)
1983 		sb_end_intwrite(fs_info->sb);
1984 	btrfs_put_transaction(cur_trans);
1985 	btrfs_put_transaction(cur_trans);
1986 
1987 	trace_btrfs_transaction_commit(trans->root);
1988 
1989 	if (current->journal_info == trans)
1990 		current->journal_info = NULL;
1991 	btrfs_scrub_cancel(fs_info);
1992 
1993 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1994 }
1995 
1996 /*
1997  * Release reserved delayed ref space of all pending block groups of the
1998  * transaction and remove them from the list
1999  */
2000 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2001 {
2002        struct btrfs_fs_info *fs_info = trans->fs_info;
2003        struct btrfs_block_group *block_group, *tmp;
2004 
2005        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2006                btrfs_delayed_refs_rsv_release(fs_info, 1);
2007                list_del_init(&block_group->bg_list);
2008        }
2009 }
2010 
2011 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2012 {
2013 	/*
2014 	 * We use writeback_inodes_sb here because if we used
2015 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2016 	 * Currently are holding the fs freeze lock, if we do an async flush
2017 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2018 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2019 	 * from already being in a transaction and our join_transaction doesn't
2020 	 * have to re-take the fs freeze lock.
2021 	 */
2022 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2023 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2024 	return 0;
2025 }
2026 
2027 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2028 {
2029 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2030 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2031 }
2032 
2033 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2034 {
2035 	struct btrfs_fs_info *fs_info = trans->fs_info;
2036 	struct btrfs_transaction *cur_trans = trans->transaction;
2037 	struct btrfs_transaction *prev_trans = NULL;
2038 	int ret;
2039 
2040 	ASSERT(refcount_read(&trans->use_count) == 1);
2041 
2042 	/*
2043 	 * Some places just start a transaction to commit it.  We need to make
2044 	 * sure that if this commit fails that the abort code actually marks the
2045 	 * transaction as failed, so set trans->dirty to make the abort code do
2046 	 * the right thing.
2047 	 */
2048 	trans->dirty = true;
2049 
2050 	/* Stop the commit early if ->aborted is set */
2051 	if (TRANS_ABORTED(cur_trans)) {
2052 		ret = cur_trans->aborted;
2053 		btrfs_end_transaction(trans);
2054 		return ret;
2055 	}
2056 
2057 	btrfs_trans_release_metadata(trans);
2058 	trans->block_rsv = NULL;
2059 
2060 	/*
2061 	 * We only want one transaction commit doing the flushing so we do not
2062 	 * waste a bunch of time on lock contention on the extent root node.
2063 	 */
2064 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2065 			      &cur_trans->delayed_refs.flags)) {
2066 		/*
2067 		 * Make a pass through all the delayed refs we have so far.
2068 		 * Any running threads may add more while we are here.
2069 		 */
2070 		ret = btrfs_run_delayed_refs(trans, 0);
2071 		if (ret) {
2072 			btrfs_end_transaction(trans);
2073 			return ret;
2074 		}
2075 	}
2076 
2077 	btrfs_create_pending_block_groups(trans);
2078 
2079 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2080 		int run_it = 0;
2081 
2082 		/* this mutex is also taken before trying to set
2083 		 * block groups readonly.  We need to make sure
2084 		 * that nobody has set a block group readonly
2085 		 * after a extents from that block group have been
2086 		 * allocated for cache files.  btrfs_set_block_group_ro
2087 		 * will wait for the transaction to commit if it
2088 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2089 		 *
2090 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2091 		 * only one process starts all the block group IO.  It wouldn't
2092 		 * hurt to have more than one go through, but there's no
2093 		 * real advantage to it either.
2094 		 */
2095 		mutex_lock(&fs_info->ro_block_group_mutex);
2096 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2097 				      &cur_trans->flags))
2098 			run_it = 1;
2099 		mutex_unlock(&fs_info->ro_block_group_mutex);
2100 
2101 		if (run_it) {
2102 			ret = btrfs_start_dirty_block_groups(trans);
2103 			if (ret) {
2104 				btrfs_end_transaction(trans);
2105 				return ret;
2106 			}
2107 		}
2108 	}
2109 
2110 	spin_lock(&fs_info->trans_lock);
2111 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2112 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2113 
2114 		spin_unlock(&fs_info->trans_lock);
2115 		refcount_inc(&cur_trans->use_count);
2116 
2117 		if (trans->in_fsync)
2118 			want_state = TRANS_STATE_SUPER_COMMITTED;
2119 		ret = btrfs_end_transaction(trans);
2120 		wait_for_commit(cur_trans, want_state);
2121 
2122 		if (TRANS_ABORTED(cur_trans))
2123 			ret = cur_trans->aborted;
2124 
2125 		btrfs_put_transaction(cur_trans);
2126 
2127 		return ret;
2128 	}
2129 
2130 	cur_trans->state = TRANS_STATE_COMMIT_START;
2131 	wake_up(&fs_info->transaction_blocked_wait);
2132 
2133 	if (cur_trans->list.prev != &fs_info->trans_list) {
2134 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2135 
2136 		if (trans->in_fsync)
2137 			want_state = TRANS_STATE_SUPER_COMMITTED;
2138 
2139 		prev_trans = list_entry(cur_trans->list.prev,
2140 					struct btrfs_transaction, list);
2141 		if (prev_trans->state < want_state) {
2142 			refcount_inc(&prev_trans->use_count);
2143 			spin_unlock(&fs_info->trans_lock);
2144 
2145 			wait_for_commit(prev_trans, want_state);
2146 
2147 			ret = READ_ONCE(prev_trans->aborted);
2148 
2149 			btrfs_put_transaction(prev_trans);
2150 			if (ret)
2151 				goto cleanup_transaction;
2152 		} else {
2153 			spin_unlock(&fs_info->trans_lock);
2154 		}
2155 	} else {
2156 		spin_unlock(&fs_info->trans_lock);
2157 		/*
2158 		 * The previous transaction was aborted and was already removed
2159 		 * from the list of transactions at fs_info->trans_list. So we
2160 		 * abort to prevent writing a new superblock that reflects a
2161 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2162 		 */
2163 		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2164 			ret = -EROFS;
2165 			goto cleanup_transaction;
2166 		}
2167 	}
2168 
2169 	extwriter_counter_dec(cur_trans, trans->type);
2170 
2171 	ret = btrfs_start_delalloc_flush(fs_info);
2172 	if (ret)
2173 		goto cleanup_transaction;
2174 
2175 	ret = btrfs_run_delayed_items(trans);
2176 	if (ret)
2177 		goto cleanup_transaction;
2178 
2179 	wait_event(cur_trans->writer_wait,
2180 		   extwriter_counter_read(cur_trans) == 0);
2181 
2182 	/* some pending stuffs might be added after the previous flush. */
2183 	ret = btrfs_run_delayed_items(trans);
2184 	if (ret)
2185 		goto cleanup_transaction;
2186 
2187 	btrfs_wait_delalloc_flush(fs_info);
2188 
2189 	/*
2190 	 * Wait for all ordered extents started by a fast fsync that joined this
2191 	 * transaction. Otherwise if this transaction commits before the ordered
2192 	 * extents complete we lose logged data after a power failure.
2193 	 */
2194 	wait_event(cur_trans->pending_wait,
2195 		   atomic_read(&cur_trans->pending_ordered) == 0);
2196 
2197 	btrfs_scrub_pause(fs_info);
2198 	/*
2199 	 * Ok now we need to make sure to block out any other joins while we
2200 	 * commit the transaction.  We could have started a join before setting
2201 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2202 	 */
2203 	spin_lock(&fs_info->trans_lock);
2204 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2205 	spin_unlock(&fs_info->trans_lock);
2206 	wait_event(cur_trans->writer_wait,
2207 		   atomic_read(&cur_trans->num_writers) == 1);
2208 
2209 	if (TRANS_ABORTED(cur_trans)) {
2210 		ret = cur_trans->aborted;
2211 		goto scrub_continue;
2212 	}
2213 	/*
2214 	 * the reloc mutex makes sure that we stop
2215 	 * the balancing code from coming in and moving
2216 	 * extents around in the middle of the commit
2217 	 */
2218 	mutex_lock(&fs_info->reloc_mutex);
2219 
2220 	/*
2221 	 * We needn't worry about the delayed items because we will
2222 	 * deal with them in create_pending_snapshot(), which is the
2223 	 * core function of the snapshot creation.
2224 	 */
2225 	ret = create_pending_snapshots(trans);
2226 	if (ret)
2227 		goto unlock_reloc;
2228 
2229 	/*
2230 	 * We insert the dir indexes of the snapshots and update the inode
2231 	 * of the snapshots' parents after the snapshot creation, so there
2232 	 * are some delayed items which are not dealt with. Now deal with
2233 	 * them.
2234 	 *
2235 	 * We needn't worry that this operation will corrupt the snapshots,
2236 	 * because all the tree which are snapshoted will be forced to COW
2237 	 * the nodes and leaves.
2238 	 */
2239 	ret = btrfs_run_delayed_items(trans);
2240 	if (ret)
2241 		goto unlock_reloc;
2242 
2243 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2244 	if (ret)
2245 		goto unlock_reloc;
2246 
2247 	/*
2248 	 * make sure none of the code above managed to slip in a
2249 	 * delayed item
2250 	 */
2251 	btrfs_assert_delayed_root_empty(fs_info);
2252 
2253 	WARN_ON(cur_trans != trans->transaction);
2254 
2255 	/* btrfs_commit_tree_roots is responsible for getting the
2256 	 * various roots consistent with each other.  Every pointer
2257 	 * in the tree of tree roots has to point to the most up to date
2258 	 * root for every subvolume and other tree.  So, we have to keep
2259 	 * the tree logging code from jumping in and changing any
2260 	 * of the trees.
2261 	 *
2262 	 * At this point in the commit, there can't be any tree-log
2263 	 * writers, but a little lower down we drop the trans mutex
2264 	 * and let new people in.  By holding the tree_log_mutex
2265 	 * from now until after the super is written, we avoid races
2266 	 * with the tree-log code.
2267 	 */
2268 	mutex_lock(&fs_info->tree_log_mutex);
2269 
2270 	ret = commit_fs_roots(trans);
2271 	if (ret)
2272 		goto unlock_tree_log;
2273 
2274 	/*
2275 	 * Since the transaction is done, we can apply the pending changes
2276 	 * before the next transaction.
2277 	 */
2278 	btrfs_apply_pending_changes(fs_info);
2279 
2280 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2281 	 * safe to free the root of tree log roots
2282 	 */
2283 	btrfs_free_log_root_tree(trans, fs_info);
2284 
2285 	/*
2286 	 * Since fs roots are all committed, we can get a quite accurate
2287 	 * new_roots. So let's do quota accounting.
2288 	 */
2289 	ret = btrfs_qgroup_account_extents(trans);
2290 	if (ret < 0)
2291 		goto unlock_tree_log;
2292 
2293 	ret = commit_cowonly_roots(trans);
2294 	if (ret)
2295 		goto unlock_tree_log;
2296 
2297 	/*
2298 	 * The tasks which save the space cache and inode cache may also
2299 	 * update ->aborted, check it.
2300 	 */
2301 	if (TRANS_ABORTED(cur_trans)) {
2302 		ret = cur_trans->aborted;
2303 		goto unlock_tree_log;
2304 	}
2305 
2306 	cur_trans = fs_info->running_transaction;
2307 
2308 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2309 			    fs_info->tree_root->node);
2310 	list_add_tail(&fs_info->tree_root->dirty_list,
2311 		      &cur_trans->switch_commits);
2312 
2313 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2314 			    fs_info->chunk_root->node);
2315 	list_add_tail(&fs_info->chunk_root->dirty_list,
2316 		      &cur_trans->switch_commits);
2317 
2318 	switch_commit_roots(trans);
2319 
2320 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2321 	ASSERT(list_empty(&cur_trans->io_bgs));
2322 	update_super_roots(fs_info);
2323 
2324 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2325 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2326 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2327 	       sizeof(*fs_info->super_copy));
2328 
2329 	btrfs_commit_device_sizes(cur_trans);
2330 
2331 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2332 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2333 
2334 	btrfs_trans_release_chunk_metadata(trans);
2335 
2336 	spin_lock(&fs_info->trans_lock);
2337 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2338 	fs_info->running_transaction = NULL;
2339 	spin_unlock(&fs_info->trans_lock);
2340 	mutex_unlock(&fs_info->reloc_mutex);
2341 
2342 	wake_up(&fs_info->transaction_wait);
2343 
2344 	ret = btrfs_write_and_wait_transaction(trans);
2345 	if (ret) {
2346 		btrfs_handle_fs_error(fs_info, ret,
2347 				      "Error while writing out transaction");
2348 		/*
2349 		 * reloc_mutex has been unlocked, tree_log_mutex is still held
2350 		 * but we can't jump to unlock_tree_log causing double unlock
2351 		 */
2352 		mutex_unlock(&fs_info->tree_log_mutex);
2353 		goto scrub_continue;
2354 	}
2355 
2356 	/*
2357 	 * At this point, we should have written all the tree blocks allocated
2358 	 * in this transaction. So it's now safe to free the redirtyied extent
2359 	 * buffers.
2360 	 */
2361 	btrfs_free_redirty_list(cur_trans);
2362 
2363 	ret = write_all_supers(fs_info, 0);
2364 	/*
2365 	 * the super is written, we can safely allow the tree-loggers
2366 	 * to go about their business
2367 	 */
2368 	mutex_unlock(&fs_info->tree_log_mutex);
2369 	if (ret)
2370 		goto scrub_continue;
2371 
2372 	/*
2373 	 * We needn't acquire the lock here because there is no other task
2374 	 * which can change it.
2375 	 */
2376 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2377 	wake_up(&cur_trans->commit_wait);
2378 
2379 	btrfs_finish_extent_commit(trans);
2380 
2381 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2382 		btrfs_clear_space_info_full(fs_info);
2383 
2384 	fs_info->last_trans_committed = cur_trans->transid;
2385 	/*
2386 	 * We needn't acquire the lock here because there is no other task
2387 	 * which can change it.
2388 	 */
2389 	cur_trans->state = TRANS_STATE_COMPLETED;
2390 	wake_up(&cur_trans->commit_wait);
2391 
2392 	spin_lock(&fs_info->trans_lock);
2393 	list_del_init(&cur_trans->list);
2394 	spin_unlock(&fs_info->trans_lock);
2395 
2396 	btrfs_put_transaction(cur_trans);
2397 	btrfs_put_transaction(cur_trans);
2398 
2399 	if (trans->type & __TRANS_FREEZABLE)
2400 		sb_end_intwrite(fs_info->sb);
2401 
2402 	trace_btrfs_transaction_commit(trans->root);
2403 
2404 	btrfs_scrub_continue(fs_info);
2405 
2406 	if (current->journal_info == trans)
2407 		current->journal_info = NULL;
2408 
2409 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2410 
2411 	return ret;
2412 
2413 unlock_tree_log:
2414 	mutex_unlock(&fs_info->tree_log_mutex);
2415 unlock_reloc:
2416 	mutex_unlock(&fs_info->reloc_mutex);
2417 scrub_continue:
2418 	btrfs_scrub_continue(fs_info);
2419 cleanup_transaction:
2420 	btrfs_trans_release_metadata(trans);
2421 	btrfs_cleanup_pending_block_groups(trans);
2422 	btrfs_trans_release_chunk_metadata(trans);
2423 	trans->block_rsv = NULL;
2424 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2425 	if (current->journal_info == trans)
2426 		current->journal_info = NULL;
2427 	cleanup_transaction(trans, ret);
2428 
2429 	return ret;
2430 }
2431 
2432 /*
2433  * return < 0 if error
2434  * 0 if there are no more dead_roots at the time of call
2435  * 1 there are more to be processed, call me again
2436  *
2437  * The return value indicates there are certainly more snapshots to delete, but
2438  * if there comes a new one during processing, it may return 0. We don't mind,
2439  * because btrfs_commit_super will poke cleaner thread and it will process it a
2440  * few seconds later.
2441  */
2442 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2443 {
2444 	int ret;
2445 	struct btrfs_fs_info *fs_info = root->fs_info;
2446 
2447 	spin_lock(&fs_info->trans_lock);
2448 	if (list_empty(&fs_info->dead_roots)) {
2449 		spin_unlock(&fs_info->trans_lock);
2450 		return 0;
2451 	}
2452 	root = list_first_entry(&fs_info->dead_roots,
2453 			struct btrfs_root, root_list);
2454 	list_del_init(&root->root_list);
2455 	spin_unlock(&fs_info->trans_lock);
2456 
2457 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2458 
2459 	btrfs_kill_all_delayed_nodes(root);
2460 
2461 	if (btrfs_header_backref_rev(root->node) <
2462 			BTRFS_MIXED_BACKREF_REV)
2463 		ret = btrfs_drop_snapshot(root, 0, 0);
2464 	else
2465 		ret = btrfs_drop_snapshot(root, 1, 0);
2466 
2467 	btrfs_put_root(root);
2468 	return (ret < 0) ? 0 : 1;
2469 }
2470 
2471 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2472 {
2473 	unsigned long prev;
2474 	unsigned long bit;
2475 
2476 	prev = xchg(&fs_info->pending_changes, 0);
2477 	if (!prev)
2478 		return;
2479 
2480 	bit = 1 << BTRFS_PENDING_COMMIT;
2481 	if (prev & bit)
2482 		btrfs_debug(fs_info, "pending commit done");
2483 	prev &= ~bit;
2484 
2485 	if (prev)
2486 		btrfs_warn(fs_info,
2487 			"unknown pending changes left 0x%lx, ignoring", prev);
2488 }
2489