1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "tree-log.h" 19 #include "volumes.h" 20 #include "dev-replace.h" 21 #include "qgroup.h" 22 #include "block-group.h" 23 #include "space-info.h" 24 #include "zoned.h" 25 26 #define BTRFS_ROOT_TRANS_TAG 0 27 28 /* 29 * Transaction states and transitions 30 * 31 * No running transaction (fs tree blocks are not modified) 32 * | 33 * | To next stage: 34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 35 * V 36 * Transaction N [[TRANS_STATE_RUNNING]] 37 * | 38 * | New trans handles can be attached to transaction N by calling all 39 * | start_transaction() variants. 40 * | 41 * | To next stage: 42 * | Call btrfs_commit_transaction() on any trans handle attached to 43 * | transaction N 44 * V 45 * Transaction N [[TRANS_STATE_COMMIT_START]] 46 * | 47 * | Will wait for previous running transaction to completely finish if there 48 * | is one 49 * | 50 * | Then one of the following happes: 51 * | - Wait for all other trans handle holders to release. 52 * | The btrfs_commit_transaction() caller will do the commit work. 53 * | - Wait for current transaction to be committed by others. 54 * | Other btrfs_commit_transaction() caller will do the commit work. 55 * | 56 * | At this stage, only btrfs_join_transaction*() variants can attach 57 * | to this running transaction. 58 * | All other variants will wait for current one to finish and attach to 59 * | transaction N+1. 60 * | 61 * | To next stage: 62 * | Caller is chosen to commit transaction N, and all other trans handle 63 * | haven been released. 64 * V 65 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 66 * | 67 * | The heavy lifting transaction work is started. 68 * | From running delayed refs (modifying extent tree) to creating pending 69 * | snapshots, running qgroups. 70 * | In short, modify supporting trees to reflect modifications of subvolume 71 * | trees. 72 * | 73 * | At this stage, all start_transaction() calls will wait for this 74 * | transaction to finish and attach to transaction N+1. 75 * | 76 * | To next stage: 77 * | Until all supporting trees are updated. 78 * V 79 * Transaction N [[TRANS_STATE_UNBLOCKED]] 80 * | Transaction N+1 81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 82 * | need to write them back to disk and update | 83 * | super blocks. | 84 * | | 85 * | At this stage, new transaction is allowed to | 86 * | start. | 87 * | All new start_transaction() calls will be | 88 * | attached to transid N+1. | 89 * | | 90 * | To next stage: | 91 * | Until all tree blocks are super blocks are | 92 * | written to block devices | 93 * V | 94 * Transaction N [[TRANS_STATE_COMPLETED]] V 95 * All tree blocks and super blocks are written. Transaction N+1 96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 97 * data structures will be cleaned up. | Life goes on 98 */ 99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 100 [TRANS_STATE_RUNNING] = 0U, 101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 103 __TRANS_ATTACH | 104 __TRANS_JOIN | 105 __TRANS_JOIN_NOSTART), 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 107 __TRANS_ATTACH | 108 __TRANS_JOIN | 109 __TRANS_JOIN_NOLOCK | 110 __TRANS_JOIN_NOSTART), 111 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 112 __TRANS_ATTACH | 113 __TRANS_JOIN | 114 __TRANS_JOIN_NOLOCK | 115 __TRANS_JOIN_NOSTART), 116 [TRANS_STATE_COMPLETED] = (__TRANS_START | 117 __TRANS_ATTACH | 118 __TRANS_JOIN | 119 __TRANS_JOIN_NOLOCK | 120 __TRANS_JOIN_NOSTART), 121 }; 122 123 void btrfs_put_transaction(struct btrfs_transaction *transaction) 124 { 125 WARN_ON(refcount_read(&transaction->use_count) == 0); 126 if (refcount_dec_and_test(&transaction->use_count)) { 127 BUG_ON(!list_empty(&transaction->list)); 128 WARN_ON(!RB_EMPTY_ROOT( 129 &transaction->delayed_refs.href_root.rb_root)); 130 WARN_ON(!RB_EMPTY_ROOT( 131 &transaction->delayed_refs.dirty_extent_root)); 132 if (transaction->delayed_refs.pending_csums) 133 btrfs_err(transaction->fs_info, 134 "pending csums is %llu", 135 transaction->delayed_refs.pending_csums); 136 /* 137 * If any block groups are found in ->deleted_bgs then it's 138 * because the transaction was aborted and a commit did not 139 * happen (things failed before writing the new superblock 140 * and calling btrfs_finish_extent_commit()), so we can not 141 * discard the physical locations of the block groups. 142 */ 143 while (!list_empty(&transaction->deleted_bgs)) { 144 struct btrfs_block_group *cache; 145 146 cache = list_first_entry(&transaction->deleted_bgs, 147 struct btrfs_block_group, 148 bg_list); 149 list_del_init(&cache->bg_list); 150 btrfs_unfreeze_block_group(cache); 151 btrfs_put_block_group(cache); 152 } 153 WARN_ON(!list_empty(&transaction->dev_update_list)); 154 kfree(transaction); 155 } 156 } 157 158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 159 { 160 struct btrfs_transaction *cur_trans = trans->transaction; 161 struct btrfs_fs_info *fs_info = trans->fs_info; 162 struct btrfs_root *root, *tmp; 163 struct btrfs_caching_control *caching_ctl, *next; 164 165 down_write(&fs_info->commit_root_sem); 166 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 167 dirty_list) { 168 list_del_init(&root->dirty_list); 169 free_extent_buffer(root->commit_root); 170 root->commit_root = btrfs_root_node(root); 171 extent_io_tree_release(&root->dirty_log_pages); 172 btrfs_qgroup_clean_swapped_blocks(root); 173 } 174 175 /* We can free old roots now. */ 176 spin_lock(&cur_trans->dropped_roots_lock); 177 while (!list_empty(&cur_trans->dropped_roots)) { 178 root = list_first_entry(&cur_trans->dropped_roots, 179 struct btrfs_root, root_list); 180 list_del_init(&root->root_list); 181 spin_unlock(&cur_trans->dropped_roots_lock); 182 btrfs_free_log(trans, root); 183 btrfs_drop_and_free_fs_root(fs_info, root); 184 spin_lock(&cur_trans->dropped_roots_lock); 185 } 186 spin_unlock(&cur_trans->dropped_roots_lock); 187 188 /* 189 * We have to update the last_byte_to_unpin under the commit_root_sem, 190 * at the same time we swap out the commit roots. 191 * 192 * This is because we must have a real view of the last spot the caching 193 * kthreads were while caching. Consider the following views of the 194 * extent tree for a block group 195 * 196 * commit root 197 * +----+----+----+----+----+----+----+ 198 * |\\\\| |\\\\|\\\\| |\\\\|\\\\| 199 * +----+----+----+----+----+----+----+ 200 * 0 1 2 3 4 5 6 7 201 * 202 * new commit root 203 * +----+----+----+----+----+----+----+ 204 * | | | |\\\\| | |\\\\| 205 * +----+----+----+----+----+----+----+ 206 * 0 1 2 3 4 5 6 7 207 * 208 * If the cache_ctl->progress was at 3, then we are only allowed to 209 * unpin [0,1) and [2,3], because the caching thread has already 210 * processed those extents. We are not allowed to unpin [5,6), because 211 * the caching thread will re-start it's search from 3, and thus find 212 * the hole from [4,6) to add to the free space cache. 213 */ 214 spin_lock(&fs_info->block_group_cache_lock); 215 list_for_each_entry_safe(caching_ctl, next, 216 &fs_info->caching_block_groups, list) { 217 struct btrfs_block_group *cache = caching_ctl->block_group; 218 219 if (btrfs_block_group_done(cache)) { 220 cache->last_byte_to_unpin = (u64)-1; 221 list_del_init(&caching_ctl->list); 222 btrfs_put_caching_control(caching_ctl); 223 } else { 224 cache->last_byte_to_unpin = caching_ctl->progress; 225 } 226 } 227 spin_unlock(&fs_info->block_group_cache_lock); 228 up_write(&fs_info->commit_root_sem); 229 } 230 231 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 232 unsigned int type) 233 { 234 if (type & TRANS_EXTWRITERS) 235 atomic_inc(&trans->num_extwriters); 236 } 237 238 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 239 unsigned int type) 240 { 241 if (type & TRANS_EXTWRITERS) 242 atomic_dec(&trans->num_extwriters); 243 } 244 245 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 246 unsigned int type) 247 { 248 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 249 } 250 251 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 252 { 253 return atomic_read(&trans->num_extwriters); 254 } 255 256 /* 257 * To be called after all the new block groups attached to the transaction 258 * handle have been created (btrfs_create_pending_block_groups()). 259 */ 260 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 261 { 262 struct btrfs_fs_info *fs_info = trans->fs_info; 263 264 if (!trans->chunk_bytes_reserved) 265 return; 266 267 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 268 269 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 270 trans->chunk_bytes_reserved, NULL); 271 trans->chunk_bytes_reserved = 0; 272 } 273 274 /* 275 * either allocate a new transaction or hop into the existing one 276 */ 277 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 278 unsigned int type) 279 { 280 struct btrfs_transaction *cur_trans; 281 282 spin_lock(&fs_info->trans_lock); 283 loop: 284 /* The file system has been taken offline. No new transactions. */ 285 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 286 spin_unlock(&fs_info->trans_lock); 287 return -EROFS; 288 } 289 290 cur_trans = fs_info->running_transaction; 291 if (cur_trans) { 292 if (TRANS_ABORTED(cur_trans)) { 293 spin_unlock(&fs_info->trans_lock); 294 return cur_trans->aborted; 295 } 296 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 297 spin_unlock(&fs_info->trans_lock); 298 return -EBUSY; 299 } 300 refcount_inc(&cur_trans->use_count); 301 atomic_inc(&cur_trans->num_writers); 302 extwriter_counter_inc(cur_trans, type); 303 spin_unlock(&fs_info->trans_lock); 304 return 0; 305 } 306 spin_unlock(&fs_info->trans_lock); 307 308 /* 309 * If we are ATTACH, we just want to catch the current transaction, 310 * and commit it. If there is no transaction, just return ENOENT. 311 */ 312 if (type == TRANS_ATTACH) 313 return -ENOENT; 314 315 /* 316 * JOIN_NOLOCK only happens during the transaction commit, so 317 * it is impossible that ->running_transaction is NULL 318 */ 319 BUG_ON(type == TRANS_JOIN_NOLOCK); 320 321 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 322 if (!cur_trans) 323 return -ENOMEM; 324 325 spin_lock(&fs_info->trans_lock); 326 if (fs_info->running_transaction) { 327 /* 328 * someone started a transaction after we unlocked. Make sure 329 * to redo the checks above 330 */ 331 kfree(cur_trans); 332 goto loop; 333 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 334 spin_unlock(&fs_info->trans_lock); 335 kfree(cur_trans); 336 return -EROFS; 337 } 338 339 cur_trans->fs_info = fs_info; 340 atomic_set(&cur_trans->pending_ordered, 0); 341 init_waitqueue_head(&cur_trans->pending_wait); 342 atomic_set(&cur_trans->num_writers, 1); 343 extwriter_counter_init(cur_trans, type); 344 init_waitqueue_head(&cur_trans->writer_wait); 345 init_waitqueue_head(&cur_trans->commit_wait); 346 cur_trans->state = TRANS_STATE_RUNNING; 347 /* 348 * One for this trans handle, one so it will live on until we 349 * commit the transaction. 350 */ 351 refcount_set(&cur_trans->use_count, 2); 352 cur_trans->flags = 0; 353 cur_trans->start_time = ktime_get_seconds(); 354 355 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 356 357 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 358 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 359 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 360 361 /* 362 * although the tree mod log is per file system and not per transaction, 363 * the log must never go across transaction boundaries. 364 */ 365 smp_mb(); 366 if (!list_empty(&fs_info->tree_mod_seq_list)) 367 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 368 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 369 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 370 atomic64_set(&fs_info->tree_mod_seq, 0); 371 372 spin_lock_init(&cur_trans->delayed_refs.lock); 373 374 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 375 INIT_LIST_HEAD(&cur_trans->dev_update_list); 376 INIT_LIST_HEAD(&cur_trans->switch_commits); 377 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 378 INIT_LIST_HEAD(&cur_trans->io_bgs); 379 INIT_LIST_HEAD(&cur_trans->dropped_roots); 380 mutex_init(&cur_trans->cache_write_mutex); 381 spin_lock_init(&cur_trans->dirty_bgs_lock); 382 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 383 spin_lock_init(&cur_trans->dropped_roots_lock); 384 INIT_LIST_HEAD(&cur_trans->releasing_ebs); 385 spin_lock_init(&cur_trans->releasing_ebs_lock); 386 list_add_tail(&cur_trans->list, &fs_info->trans_list); 387 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 388 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 389 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 390 IO_TREE_FS_PINNED_EXTENTS, NULL); 391 fs_info->generation++; 392 cur_trans->transid = fs_info->generation; 393 fs_info->running_transaction = cur_trans; 394 cur_trans->aborted = 0; 395 spin_unlock(&fs_info->trans_lock); 396 397 return 0; 398 } 399 400 /* 401 * This does all the record keeping required to make sure that a shareable root 402 * is properly recorded in a given transaction. This is required to make sure 403 * the old root from before we joined the transaction is deleted when the 404 * transaction commits. 405 */ 406 static int record_root_in_trans(struct btrfs_trans_handle *trans, 407 struct btrfs_root *root, 408 int force) 409 { 410 struct btrfs_fs_info *fs_info = root->fs_info; 411 412 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 413 root->last_trans < trans->transid) || force) { 414 WARN_ON(root == fs_info->extent_root); 415 WARN_ON(!force && root->commit_root != root->node); 416 417 /* 418 * see below for IN_TRANS_SETUP usage rules 419 * we have the reloc mutex held now, so there 420 * is only one writer in this function 421 */ 422 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 423 424 /* make sure readers find IN_TRANS_SETUP before 425 * they find our root->last_trans update 426 */ 427 smp_wmb(); 428 429 spin_lock(&fs_info->fs_roots_radix_lock); 430 if (root->last_trans == trans->transid && !force) { 431 spin_unlock(&fs_info->fs_roots_radix_lock); 432 return 0; 433 } 434 radix_tree_tag_set(&fs_info->fs_roots_radix, 435 (unsigned long)root->root_key.objectid, 436 BTRFS_ROOT_TRANS_TAG); 437 spin_unlock(&fs_info->fs_roots_radix_lock); 438 root->last_trans = trans->transid; 439 440 /* this is pretty tricky. We don't want to 441 * take the relocation lock in btrfs_record_root_in_trans 442 * unless we're really doing the first setup for this root in 443 * this transaction. 444 * 445 * Normally we'd use root->last_trans as a flag to decide 446 * if we want to take the expensive mutex. 447 * 448 * But, we have to set root->last_trans before we 449 * init the relocation root, otherwise, we trip over warnings 450 * in ctree.c. The solution used here is to flag ourselves 451 * with root IN_TRANS_SETUP. When this is 1, we're still 452 * fixing up the reloc trees and everyone must wait. 453 * 454 * When this is zero, they can trust root->last_trans and fly 455 * through btrfs_record_root_in_trans without having to take the 456 * lock. smp_wmb() makes sure that all the writes above are 457 * done before we pop in the zero below 458 */ 459 btrfs_init_reloc_root(trans, root); 460 smp_mb__before_atomic(); 461 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 462 } 463 return 0; 464 } 465 466 467 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 468 struct btrfs_root *root) 469 { 470 struct btrfs_fs_info *fs_info = root->fs_info; 471 struct btrfs_transaction *cur_trans = trans->transaction; 472 473 /* Add ourselves to the transaction dropped list */ 474 spin_lock(&cur_trans->dropped_roots_lock); 475 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 476 spin_unlock(&cur_trans->dropped_roots_lock); 477 478 /* Make sure we don't try to update the root at commit time */ 479 spin_lock(&fs_info->fs_roots_radix_lock); 480 radix_tree_tag_clear(&fs_info->fs_roots_radix, 481 (unsigned long)root->root_key.objectid, 482 BTRFS_ROOT_TRANS_TAG); 483 spin_unlock(&fs_info->fs_roots_radix_lock); 484 } 485 486 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 487 struct btrfs_root *root) 488 { 489 struct btrfs_fs_info *fs_info = root->fs_info; 490 491 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 492 return 0; 493 494 /* 495 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 496 * and barriers 497 */ 498 smp_rmb(); 499 if (root->last_trans == trans->transid && 500 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 501 return 0; 502 503 mutex_lock(&fs_info->reloc_mutex); 504 record_root_in_trans(trans, root, 0); 505 mutex_unlock(&fs_info->reloc_mutex); 506 507 return 0; 508 } 509 510 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 511 { 512 return (trans->state >= TRANS_STATE_COMMIT_START && 513 trans->state < TRANS_STATE_UNBLOCKED && 514 !TRANS_ABORTED(trans)); 515 } 516 517 /* wait for commit against the current transaction to become unblocked 518 * when this is done, it is safe to start a new transaction, but the current 519 * transaction might not be fully on disk. 520 */ 521 static void wait_current_trans(struct btrfs_fs_info *fs_info) 522 { 523 struct btrfs_transaction *cur_trans; 524 525 spin_lock(&fs_info->trans_lock); 526 cur_trans = fs_info->running_transaction; 527 if (cur_trans && is_transaction_blocked(cur_trans)) { 528 refcount_inc(&cur_trans->use_count); 529 spin_unlock(&fs_info->trans_lock); 530 531 wait_event(fs_info->transaction_wait, 532 cur_trans->state >= TRANS_STATE_UNBLOCKED || 533 TRANS_ABORTED(cur_trans)); 534 btrfs_put_transaction(cur_trans); 535 } else { 536 spin_unlock(&fs_info->trans_lock); 537 } 538 } 539 540 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 541 { 542 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 543 return 0; 544 545 if (type == TRANS_START) 546 return 1; 547 548 return 0; 549 } 550 551 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 552 { 553 struct btrfs_fs_info *fs_info = root->fs_info; 554 555 if (!fs_info->reloc_ctl || 556 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 557 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 558 root->reloc_root) 559 return false; 560 561 return true; 562 } 563 564 static struct btrfs_trans_handle * 565 start_transaction(struct btrfs_root *root, unsigned int num_items, 566 unsigned int type, enum btrfs_reserve_flush_enum flush, 567 bool enforce_qgroups) 568 { 569 struct btrfs_fs_info *fs_info = root->fs_info; 570 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 571 struct btrfs_trans_handle *h; 572 struct btrfs_transaction *cur_trans; 573 u64 num_bytes = 0; 574 u64 qgroup_reserved = 0; 575 bool reloc_reserved = false; 576 bool do_chunk_alloc = false; 577 int ret; 578 579 /* Send isn't supposed to start transactions. */ 580 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 581 582 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 583 return ERR_PTR(-EROFS); 584 585 if (current->journal_info) { 586 WARN_ON(type & TRANS_EXTWRITERS); 587 h = current->journal_info; 588 refcount_inc(&h->use_count); 589 WARN_ON(refcount_read(&h->use_count) > 2); 590 h->orig_rsv = h->block_rsv; 591 h->block_rsv = NULL; 592 goto got_it; 593 } 594 595 /* 596 * Do the reservation before we join the transaction so we can do all 597 * the appropriate flushing if need be. 598 */ 599 if (num_items && root != fs_info->chunk_root) { 600 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 601 u64 delayed_refs_bytes = 0; 602 603 qgroup_reserved = num_items * fs_info->nodesize; 604 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 605 enforce_qgroups); 606 if (ret) 607 return ERR_PTR(ret); 608 609 /* 610 * We want to reserve all the bytes we may need all at once, so 611 * we only do 1 enospc flushing cycle per transaction start. We 612 * accomplish this by simply assuming we'll do 2 x num_items 613 * worth of delayed refs updates in this trans handle, and 614 * refill that amount for whatever is missing in the reserve. 615 */ 616 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 617 if (flush == BTRFS_RESERVE_FLUSH_ALL && 618 delayed_refs_rsv->full == 0) { 619 delayed_refs_bytes = num_bytes; 620 num_bytes <<= 1; 621 } 622 623 /* 624 * Do the reservation for the relocation root creation 625 */ 626 if (need_reserve_reloc_root(root)) { 627 num_bytes += fs_info->nodesize; 628 reloc_reserved = true; 629 } 630 631 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 632 if (ret) 633 goto reserve_fail; 634 if (delayed_refs_bytes) { 635 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 636 delayed_refs_bytes); 637 num_bytes -= delayed_refs_bytes; 638 } 639 640 if (rsv->space_info->force_alloc) 641 do_chunk_alloc = true; 642 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 643 !delayed_refs_rsv->full) { 644 /* 645 * Some people call with btrfs_start_transaction(root, 0) 646 * because they can be throttled, but have some other mechanism 647 * for reserving space. We still want these guys to refill the 648 * delayed block_rsv so just add 1 items worth of reservation 649 * here. 650 */ 651 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 652 if (ret) 653 goto reserve_fail; 654 } 655 again: 656 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 657 if (!h) { 658 ret = -ENOMEM; 659 goto alloc_fail; 660 } 661 662 /* 663 * If we are JOIN_NOLOCK we're already committing a transaction and 664 * waiting on this guy, so we don't need to do the sb_start_intwrite 665 * because we're already holding a ref. We need this because we could 666 * have raced in and did an fsync() on a file which can kick a commit 667 * and then we deadlock with somebody doing a freeze. 668 * 669 * If we are ATTACH, it means we just want to catch the current 670 * transaction and commit it, so we needn't do sb_start_intwrite(). 671 */ 672 if (type & __TRANS_FREEZABLE) 673 sb_start_intwrite(fs_info->sb); 674 675 if (may_wait_transaction(fs_info, type)) 676 wait_current_trans(fs_info); 677 678 do { 679 ret = join_transaction(fs_info, type); 680 if (ret == -EBUSY) { 681 wait_current_trans(fs_info); 682 if (unlikely(type == TRANS_ATTACH || 683 type == TRANS_JOIN_NOSTART)) 684 ret = -ENOENT; 685 } 686 } while (ret == -EBUSY); 687 688 if (ret < 0) 689 goto join_fail; 690 691 cur_trans = fs_info->running_transaction; 692 693 h->transid = cur_trans->transid; 694 h->transaction = cur_trans; 695 h->root = root; 696 refcount_set(&h->use_count, 1); 697 h->fs_info = root->fs_info; 698 699 h->type = type; 700 h->can_flush_pending_bgs = true; 701 INIT_LIST_HEAD(&h->new_bgs); 702 703 smp_mb(); 704 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 705 may_wait_transaction(fs_info, type)) { 706 current->journal_info = h; 707 btrfs_commit_transaction(h); 708 goto again; 709 } 710 711 if (num_bytes) { 712 trace_btrfs_space_reservation(fs_info, "transaction", 713 h->transid, num_bytes, 1); 714 h->block_rsv = &fs_info->trans_block_rsv; 715 h->bytes_reserved = num_bytes; 716 h->reloc_reserved = reloc_reserved; 717 } 718 719 got_it: 720 if (!current->journal_info) 721 current->journal_info = h; 722 723 /* 724 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 725 * ALLOC_FORCE the first run through, and then we won't allocate for 726 * anybody else who races in later. We don't care about the return 727 * value here. 728 */ 729 if (do_chunk_alloc && num_bytes) { 730 u64 flags = h->block_rsv->space_info->flags; 731 732 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 733 CHUNK_ALLOC_NO_FORCE); 734 } 735 736 /* 737 * btrfs_record_root_in_trans() needs to alloc new extents, and may 738 * call btrfs_join_transaction() while we're also starting a 739 * transaction. 740 * 741 * Thus it need to be called after current->journal_info initialized, 742 * or we can deadlock. 743 */ 744 btrfs_record_root_in_trans(h, root); 745 746 return h; 747 748 join_fail: 749 if (type & __TRANS_FREEZABLE) 750 sb_end_intwrite(fs_info->sb); 751 kmem_cache_free(btrfs_trans_handle_cachep, h); 752 alloc_fail: 753 if (num_bytes) 754 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 755 num_bytes, NULL); 756 reserve_fail: 757 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 758 return ERR_PTR(ret); 759 } 760 761 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 762 unsigned int num_items) 763 { 764 return start_transaction(root, num_items, TRANS_START, 765 BTRFS_RESERVE_FLUSH_ALL, true); 766 } 767 768 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 769 struct btrfs_root *root, 770 unsigned int num_items) 771 { 772 return start_transaction(root, num_items, TRANS_START, 773 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 774 } 775 776 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 777 { 778 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 779 true); 780 } 781 782 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 783 { 784 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 785 BTRFS_RESERVE_NO_FLUSH, true); 786 } 787 788 /* 789 * Similar to regular join but it never starts a transaction when none is 790 * running or after waiting for the current one to finish. 791 */ 792 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 793 { 794 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 795 BTRFS_RESERVE_NO_FLUSH, true); 796 } 797 798 /* 799 * btrfs_attach_transaction() - catch the running transaction 800 * 801 * It is used when we want to commit the current the transaction, but 802 * don't want to start a new one. 803 * 804 * Note: If this function return -ENOENT, it just means there is no 805 * running transaction. But it is possible that the inactive transaction 806 * is still in the memory, not fully on disk. If you hope there is no 807 * inactive transaction in the fs when -ENOENT is returned, you should 808 * invoke 809 * btrfs_attach_transaction_barrier() 810 */ 811 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 812 { 813 return start_transaction(root, 0, TRANS_ATTACH, 814 BTRFS_RESERVE_NO_FLUSH, true); 815 } 816 817 /* 818 * btrfs_attach_transaction_barrier() - catch the running transaction 819 * 820 * It is similar to the above function, the difference is this one 821 * will wait for all the inactive transactions until they fully 822 * complete. 823 */ 824 struct btrfs_trans_handle * 825 btrfs_attach_transaction_barrier(struct btrfs_root *root) 826 { 827 struct btrfs_trans_handle *trans; 828 829 trans = start_transaction(root, 0, TRANS_ATTACH, 830 BTRFS_RESERVE_NO_FLUSH, true); 831 if (trans == ERR_PTR(-ENOENT)) 832 btrfs_wait_for_commit(root->fs_info, 0); 833 834 return trans; 835 } 836 837 /* Wait for a transaction commit to reach at least the given state. */ 838 static noinline void wait_for_commit(struct btrfs_transaction *commit, 839 const enum btrfs_trans_state min_state) 840 { 841 wait_event(commit->commit_wait, commit->state >= min_state); 842 } 843 844 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 845 { 846 struct btrfs_transaction *cur_trans = NULL, *t; 847 int ret = 0; 848 849 if (transid) { 850 if (transid <= fs_info->last_trans_committed) 851 goto out; 852 853 /* find specified transaction */ 854 spin_lock(&fs_info->trans_lock); 855 list_for_each_entry(t, &fs_info->trans_list, list) { 856 if (t->transid == transid) { 857 cur_trans = t; 858 refcount_inc(&cur_trans->use_count); 859 ret = 0; 860 break; 861 } 862 if (t->transid > transid) { 863 ret = 0; 864 break; 865 } 866 } 867 spin_unlock(&fs_info->trans_lock); 868 869 /* 870 * The specified transaction doesn't exist, or we 871 * raced with btrfs_commit_transaction 872 */ 873 if (!cur_trans) { 874 if (transid > fs_info->last_trans_committed) 875 ret = -EINVAL; 876 goto out; 877 } 878 } else { 879 /* find newest transaction that is committing | committed */ 880 spin_lock(&fs_info->trans_lock); 881 list_for_each_entry_reverse(t, &fs_info->trans_list, 882 list) { 883 if (t->state >= TRANS_STATE_COMMIT_START) { 884 if (t->state == TRANS_STATE_COMPLETED) 885 break; 886 cur_trans = t; 887 refcount_inc(&cur_trans->use_count); 888 break; 889 } 890 } 891 spin_unlock(&fs_info->trans_lock); 892 if (!cur_trans) 893 goto out; /* nothing committing|committed */ 894 } 895 896 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 897 btrfs_put_transaction(cur_trans); 898 out: 899 return ret; 900 } 901 902 void btrfs_throttle(struct btrfs_fs_info *fs_info) 903 { 904 wait_current_trans(fs_info); 905 } 906 907 static bool should_end_transaction(struct btrfs_trans_handle *trans) 908 { 909 struct btrfs_fs_info *fs_info = trans->fs_info; 910 911 if (btrfs_check_space_for_delayed_refs(fs_info)) 912 return true; 913 914 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 915 } 916 917 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 918 { 919 struct btrfs_transaction *cur_trans = trans->transaction; 920 921 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 922 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 923 return true; 924 925 return should_end_transaction(trans); 926 } 927 928 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 929 930 { 931 struct btrfs_fs_info *fs_info = trans->fs_info; 932 933 if (!trans->block_rsv) { 934 ASSERT(!trans->bytes_reserved); 935 return; 936 } 937 938 if (!trans->bytes_reserved) 939 return; 940 941 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 942 trace_btrfs_space_reservation(fs_info, "transaction", 943 trans->transid, trans->bytes_reserved, 0); 944 btrfs_block_rsv_release(fs_info, trans->block_rsv, 945 trans->bytes_reserved, NULL); 946 trans->bytes_reserved = 0; 947 } 948 949 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 950 int throttle) 951 { 952 struct btrfs_fs_info *info = trans->fs_info; 953 struct btrfs_transaction *cur_trans = trans->transaction; 954 int err = 0; 955 956 if (refcount_read(&trans->use_count) > 1) { 957 refcount_dec(&trans->use_count); 958 trans->block_rsv = trans->orig_rsv; 959 return 0; 960 } 961 962 btrfs_trans_release_metadata(trans); 963 trans->block_rsv = NULL; 964 965 btrfs_create_pending_block_groups(trans); 966 967 btrfs_trans_release_chunk_metadata(trans); 968 969 if (trans->type & __TRANS_FREEZABLE) 970 sb_end_intwrite(info->sb); 971 972 WARN_ON(cur_trans != info->running_transaction); 973 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 974 atomic_dec(&cur_trans->num_writers); 975 extwriter_counter_dec(cur_trans, trans->type); 976 977 cond_wake_up(&cur_trans->writer_wait); 978 btrfs_put_transaction(cur_trans); 979 980 if (current->journal_info == trans) 981 current->journal_info = NULL; 982 983 if (throttle) 984 btrfs_run_delayed_iputs(info); 985 986 if (TRANS_ABORTED(trans) || 987 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 988 wake_up_process(info->transaction_kthread); 989 if (TRANS_ABORTED(trans)) 990 err = trans->aborted; 991 else 992 err = -EROFS; 993 } 994 995 kmem_cache_free(btrfs_trans_handle_cachep, trans); 996 return err; 997 } 998 999 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1000 { 1001 return __btrfs_end_transaction(trans, 0); 1002 } 1003 1004 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1005 { 1006 return __btrfs_end_transaction(trans, 1); 1007 } 1008 1009 /* 1010 * when btree blocks are allocated, they have some corresponding bits set for 1011 * them in one of two extent_io trees. This is used to make sure all of 1012 * those extents are sent to disk but does not wait on them 1013 */ 1014 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1015 struct extent_io_tree *dirty_pages, int mark) 1016 { 1017 int err = 0; 1018 int werr = 0; 1019 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1020 struct extent_state *cached_state = NULL; 1021 u64 start = 0; 1022 u64 end; 1023 1024 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1025 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1026 mark, &cached_state)) { 1027 bool wait_writeback = false; 1028 1029 err = convert_extent_bit(dirty_pages, start, end, 1030 EXTENT_NEED_WAIT, 1031 mark, &cached_state); 1032 /* 1033 * convert_extent_bit can return -ENOMEM, which is most of the 1034 * time a temporary error. So when it happens, ignore the error 1035 * and wait for writeback of this range to finish - because we 1036 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1037 * to __btrfs_wait_marked_extents() would not know that 1038 * writeback for this range started and therefore wouldn't 1039 * wait for it to finish - we don't want to commit a 1040 * superblock that points to btree nodes/leafs for which 1041 * writeback hasn't finished yet (and without errors). 1042 * We cleanup any entries left in the io tree when committing 1043 * the transaction (through extent_io_tree_release()). 1044 */ 1045 if (err == -ENOMEM) { 1046 err = 0; 1047 wait_writeback = true; 1048 } 1049 if (!err) 1050 err = filemap_fdatawrite_range(mapping, start, end); 1051 if (err) 1052 werr = err; 1053 else if (wait_writeback) 1054 werr = filemap_fdatawait_range(mapping, start, end); 1055 free_extent_state(cached_state); 1056 cached_state = NULL; 1057 cond_resched(); 1058 start = end + 1; 1059 } 1060 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1061 return werr; 1062 } 1063 1064 /* 1065 * when btree blocks are allocated, they have some corresponding bits set for 1066 * them in one of two extent_io trees. This is used to make sure all of 1067 * those extents are on disk for transaction or log commit. We wait 1068 * on all the pages and clear them from the dirty pages state tree 1069 */ 1070 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1071 struct extent_io_tree *dirty_pages) 1072 { 1073 int err = 0; 1074 int werr = 0; 1075 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1076 struct extent_state *cached_state = NULL; 1077 u64 start = 0; 1078 u64 end; 1079 1080 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1081 EXTENT_NEED_WAIT, &cached_state)) { 1082 /* 1083 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1084 * When committing the transaction, we'll remove any entries 1085 * left in the io tree. For a log commit, we don't remove them 1086 * after committing the log because the tree can be accessed 1087 * concurrently - we do it only at transaction commit time when 1088 * it's safe to do it (through extent_io_tree_release()). 1089 */ 1090 err = clear_extent_bit(dirty_pages, start, end, 1091 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1092 if (err == -ENOMEM) 1093 err = 0; 1094 if (!err) 1095 err = filemap_fdatawait_range(mapping, start, end); 1096 if (err) 1097 werr = err; 1098 free_extent_state(cached_state); 1099 cached_state = NULL; 1100 cond_resched(); 1101 start = end + 1; 1102 } 1103 if (err) 1104 werr = err; 1105 return werr; 1106 } 1107 1108 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1109 struct extent_io_tree *dirty_pages) 1110 { 1111 bool errors = false; 1112 int err; 1113 1114 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1115 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1116 errors = true; 1117 1118 if (errors && !err) 1119 err = -EIO; 1120 return err; 1121 } 1122 1123 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1124 { 1125 struct btrfs_fs_info *fs_info = log_root->fs_info; 1126 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1127 bool errors = false; 1128 int err; 1129 1130 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1131 1132 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1133 if ((mark & EXTENT_DIRTY) && 1134 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1135 errors = true; 1136 1137 if ((mark & EXTENT_NEW) && 1138 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1139 errors = true; 1140 1141 if (errors && !err) 1142 err = -EIO; 1143 return err; 1144 } 1145 1146 /* 1147 * When btree blocks are allocated the corresponding extents are marked dirty. 1148 * This function ensures such extents are persisted on disk for transaction or 1149 * log commit. 1150 * 1151 * @trans: transaction whose dirty pages we'd like to write 1152 */ 1153 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1154 { 1155 int ret; 1156 int ret2; 1157 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1158 struct btrfs_fs_info *fs_info = trans->fs_info; 1159 struct blk_plug plug; 1160 1161 blk_start_plug(&plug); 1162 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1163 blk_finish_plug(&plug); 1164 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1165 1166 extent_io_tree_release(&trans->transaction->dirty_pages); 1167 1168 if (ret) 1169 return ret; 1170 else if (ret2) 1171 return ret2; 1172 else 1173 return 0; 1174 } 1175 1176 /* 1177 * this is used to update the root pointer in the tree of tree roots. 1178 * 1179 * But, in the case of the extent allocation tree, updating the root 1180 * pointer may allocate blocks which may change the root of the extent 1181 * allocation tree. 1182 * 1183 * So, this loops and repeats and makes sure the cowonly root didn't 1184 * change while the root pointer was being updated in the metadata. 1185 */ 1186 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1187 struct btrfs_root *root) 1188 { 1189 int ret; 1190 u64 old_root_bytenr; 1191 u64 old_root_used; 1192 struct btrfs_fs_info *fs_info = root->fs_info; 1193 struct btrfs_root *tree_root = fs_info->tree_root; 1194 1195 old_root_used = btrfs_root_used(&root->root_item); 1196 1197 while (1) { 1198 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1199 if (old_root_bytenr == root->node->start && 1200 old_root_used == btrfs_root_used(&root->root_item)) 1201 break; 1202 1203 btrfs_set_root_node(&root->root_item, root->node); 1204 ret = btrfs_update_root(trans, tree_root, 1205 &root->root_key, 1206 &root->root_item); 1207 if (ret) 1208 return ret; 1209 1210 old_root_used = btrfs_root_used(&root->root_item); 1211 } 1212 1213 return 0; 1214 } 1215 1216 /* 1217 * update all the cowonly tree roots on disk 1218 * 1219 * The error handling in this function may not be obvious. Any of the 1220 * failures will cause the file system to go offline. We still need 1221 * to clean up the delayed refs. 1222 */ 1223 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1224 { 1225 struct btrfs_fs_info *fs_info = trans->fs_info; 1226 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1227 struct list_head *io_bgs = &trans->transaction->io_bgs; 1228 struct list_head *next; 1229 struct extent_buffer *eb; 1230 int ret; 1231 1232 eb = btrfs_lock_root_node(fs_info->tree_root); 1233 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1234 0, &eb, BTRFS_NESTING_COW); 1235 btrfs_tree_unlock(eb); 1236 free_extent_buffer(eb); 1237 1238 if (ret) 1239 return ret; 1240 1241 ret = btrfs_run_dev_stats(trans); 1242 if (ret) 1243 return ret; 1244 ret = btrfs_run_dev_replace(trans); 1245 if (ret) 1246 return ret; 1247 ret = btrfs_run_qgroups(trans); 1248 if (ret) 1249 return ret; 1250 1251 ret = btrfs_setup_space_cache(trans); 1252 if (ret) 1253 return ret; 1254 1255 again: 1256 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1257 struct btrfs_root *root; 1258 next = fs_info->dirty_cowonly_roots.next; 1259 list_del_init(next); 1260 root = list_entry(next, struct btrfs_root, dirty_list); 1261 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1262 1263 if (root != fs_info->extent_root) 1264 list_add_tail(&root->dirty_list, 1265 &trans->transaction->switch_commits); 1266 ret = update_cowonly_root(trans, root); 1267 if (ret) 1268 return ret; 1269 } 1270 1271 /* Now flush any delayed refs generated by updating all of the roots */ 1272 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1273 if (ret) 1274 return ret; 1275 1276 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1277 ret = btrfs_write_dirty_block_groups(trans); 1278 if (ret) 1279 return ret; 1280 1281 /* 1282 * We're writing the dirty block groups, which could generate 1283 * delayed refs, which could generate more dirty block groups, 1284 * so we want to keep this flushing in this loop to make sure 1285 * everything gets run. 1286 */ 1287 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1288 if (ret) 1289 return ret; 1290 } 1291 1292 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1293 goto again; 1294 1295 list_add_tail(&fs_info->extent_root->dirty_list, 1296 &trans->transaction->switch_commits); 1297 1298 /* Update dev-replace pointer once everything is committed */ 1299 fs_info->dev_replace.committed_cursor_left = 1300 fs_info->dev_replace.cursor_left_last_write_of_item; 1301 1302 return 0; 1303 } 1304 1305 /* 1306 * dead roots are old snapshots that need to be deleted. This allocates 1307 * a dirty root struct and adds it into the list of dead roots that need to 1308 * be deleted 1309 */ 1310 void btrfs_add_dead_root(struct btrfs_root *root) 1311 { 1312 struct btrfs_fs_info *fs_info = root->fs_info; 1313 1314 spin_lock(&fs_info->trans_lock); 1315 if (list_empty(&root->root_list)) { 1316 btrfs_grab_root(root); 1317 list_add_tail(&root->root_list, &fs_info->dead_roots); 1318 } 1319 spin_unlock(&fs_info->trans_lock); 1320 } 1321 1322 /* 1323 * update all the cowonly tree roots on disk 1324 */ 1325 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1326 { 1327 struct btrfs_fs_info *fs_info = trans->fs_info; 1328 struct btrfs_root *gang[8]; 1329 int i; 1330 int ret; 1331 1332 spin_lock(&fs_info->fs_roots_radix_lock); 1333 while (1) { 1334 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1335 (void **)gang, 0, 1336 ARRAY_SIZE(gang), 1337 BTRFS_ROOT_TRANS_TAG); 1338 if (ret == 0) 1339 break; 1340 for (i = 0; i < ret; i++) { 1341 struct btrfs_root *root = gang[i]; 1342 int ret2; 1343 1344 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1345 (unsigned long)root->root_key.objectid, 1346 BTRFS_ROOT_TRANS_TAG); 1347 spin_unlock(&fs_info->fs_roots_radix_lock); 1348 1349 btrfs_free_log(trans, root); 1350 btrfs_update_reloc_root(trans, root); 1351 1352 /* see comments in should_cow_block() */ 1353 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1354 smp_mb__after_atomic(); 1355 1356 if (root->commit_root != root->node) { 1357 list_add_tail(&root->dirty_list, 1358 &trans->transaction->switch_commits); 1359 btrfs_set_root_node(&root->root_item, 1360 root->node); 1361 } 1362 1363 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1364 &root->root_key, 1365 &root->root_item); 1366 if (ret2) 1367 return ret2; 1368 spin_lock(&fs_info->fs_roots_radix_lock); 1369 btrfs_qgroup_free_meta_all_pertrans(root); 1370 } 1371 } 1372 spin_unlock(&fs_info->fs_roots_radix_lock); 1373 return 0; 1374 } 1375 1376 /* 1377 * defrag a given btree. 1378 * Every leaf in the btree is read and defragged. 1379 */ 1380 int btrfs_defrag_root(struct btrfs_root *root) 1381 { 1382 struct btrfs_fs_info *info = root->fs_info; 1383 struct btrfs_trans_handle *trans; 1384 int ret; 1385 1386 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1387 return 0; 1388 1389 while (1) { 1390 trans = btrfs_start_transaction(root, 0); 1391 if (IS_ERR(trans)) 1392 return PTR_ERR(trans); 1393 1394 ret = btrfs_defrag_leaves(trans, root); 1395 1396 btrfs_end_transaction(trans); 1397 btrfs_btree_balance_dirty(info); 1398 cond_resched(); 1399 1400 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1401 break; 1402 1403 if (btrfs_defrag_cancelled(info)) { 1404 btrfs_debug(info, "defrag_root cancelled"); 1405 ret = -EAGAIN; 1406 break; 1407 } 1408 } 1409 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1410 return ret; 1411 } 1412 1413 /* 1414 * Do all special snapshot related qgroup dirty hack. 1415 * 1416 * Will do all needed qgroup inherit and dirty hack like switch commit 1417 * roots inside one transaction and write all btree into disk, to make 1418 * qgroup works. 1419 */ 1420 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1421 struct btrfs_root *src, 1422 struct btrfs_root *parent, 1423 struct btrfs_qgroup_inherit *inherit, 1424 u64 dst_objectid) 1425 { 1426 struct btrfs_fs_info *fs_info = src->fs_info; 1427 int ret; 1428 1429 /* 1430 * Save some performance in the case that qgroups are not 1431 * enabled. If this check races with the ioctl, rescan will 1432 * kick in anyway. 1433 */ 1434 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1435 return 0; 1436 1437 /* 1438 * Ensure dirty @src will be committed. Or, after coming 1439 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1440 * recorded root will never be updated again, causing an outdated root 1441 * item. 1442 */ 1443 record_root_in_trans(trans, src, 1); 1444 1445 /* 1446 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1447 * src root, so we must run the delayed refs here. 1448 * 1449 * However this isn't particularly fool proof, because there's no 1450 * synchronization keeping us from changing the tree after this point 1451 * before we do the qgroup_inherit, or even from making changes while 1452 * we're doing the qgroup_inherit. But that's a problem for the future, 1453 * for now flush the delayed refs to narrow the race window where the 1454 * qgroup counters could end up wrong. 1455 */ 1456 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1457 if (ret) { 1458 btrfs_abort_transaction(trans, ret); 1459 goto out; 1460 } 1461 1462 /* 1463 * We are going to commit transaction, see btrfs_commit_transaction() 1464 * comment for reason locking tree_log_mutex 1465 */ 1466 mutex_lock(&fs_info->tree_log_mutex); 1467 1468 ret = commit_fs_roots(trans); 1469 if (ret) 1470 goto out; 1471 ret = btrfs_qgroup_account_extents(trans); 1472 if (ret < 0) 1473 goto out; 1474 1475 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1476 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1477 inherit); 1478 if (ret < 0) 1479 goto out; 1480 1481 /* 1482 * Now we do a simplified commit transaction, which will: 1483 * 1) commit all subvolume and extent tree 1484 * To ensure all subvolume and extent tree have a valid 1485 * commit_root to accounting later insert_dir_item() 1486 * 2) write all btree blocks onto disk 1487 * This is to make sure later btree modification will be cowed 1488 * Or commit_root can be populated and cause wrong qgroup numbers 1489 * In this simplified commit, we don't really care about other trees 1490 * like chunk and root tree, as they won't affect qgroup. 1491 * And we don't write super to avoid half committed status. 1492 */ 1493 ret = commit_cowonly_roots(trans); 1494 if (ret) 1495 goto out; 1496 switch_commit_roots(trans); 1497 ret = btrfs_write_and_wait_transaction(trans); 1498 if (ret) 1499 btrfs_handle_fs_error(fs_info, ret, 1500 "Error while writing out transaction for qgroup"); 1501 1502 out: 1503 mutex_unlock(&fs_info->tree_log_mutex); 1504 1505 /* 1506 * Force parent root to be updated, as we recorded it before so its 1507 * last_trans == cur_transid. 1508 * Or it won't be committed again onto disk after later 1509 * insert_dir_item() 1510 */ 1511 if (!ret) 1512 record_root_in_trans(trans, parent, 1); 1513 return ret; 1514 } 1515 1516 /* 1517 * new snapshots need to be created at a very specific time in the 1518 * transaction commit. This does the actual creation. 1519 * 1520 * Note: 1521 * If the error which may affect the commitment of the current transaction 1522 * happens, we should return the error number. If the error which just affect 1523 * the creation of the pending snapshots, just return 0. 1524 */ 1525 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1526 struct btrfs_pending_snapshot *pending) 1527 { 1528 1529 struct btrfs_fs_info *fs_info = trans->fs_info; 1530 struct btrfs_key key; 1531 struct btrfs_root_item *new_root_item; 1532 struct btrfs_root *tree_root = fs_info->tree_root; 1533 struct btrfs_root *root = pending->root; 1534 struct btrfs_root *parent_root; 1535 struct btrfs_block_rsv *rsv; 1536 struct inode *parent_inode; 1537 struct btrfs_path *path; 1538 struct btrfs_dir_item *dir_item; 1539 struct dentry *dentry; 1540 struct extent_buffer *tmp; 1541 struct extent_buffer *old; 1542 struct timespec64 cur_time; 1543 int ret = 0; 1544 u64 to_reserve = 0; 1545 u64 index = 0; 1546 u64 objectid; 1547 u64 root_flags; 1548 1549 ASSERT(pending->path); 1550 path = pending->path; 1551 1552 ASSERT(pending->root_item); 1553 new_root_item = pending->root_item; 1554 1555 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1556 if (pending->error) 1557 goto no_free_objectid; 1558 1559 /* 1560 * Make qgroup to skip current new snapshot's qgroupid, as it is 1561 * accounted by later btrfs_qgroup_inherit(). 1562 */ 1563 btrfs_set_skip_qgroup(trans, objectid); 1564 1565 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1566 1567 if (to_reserve > 0) { 1568 pending->error = btrfs_block_rsv_add(root, 1569 &pending->block_rsv, 1570 to_reserve, 1571 BTRFS_RESERVE_NO_FLUSH); 1572 if (pending->error) 1573 goto clear_skip_qgroup; 1574 } 1575 1576 key.objectid = objectid; 1577 key.offset = (u64)-1; 1578 key.type = BTRFS_ROOT_ITEM_KEY; 1579 1580 rsv = trans->block_rsv; 1581 trans->block_rsv = &pending->block_rsv; 1582 trans->bytes_reserved = trans->block_rsv->reserved; 1583 trace_btrfs_space_reservation(fs_info, "transaction", 1584 trans->transid, 1585 trans->bytes_reserved, 1); 1586 dentry = pending->dentry; 1587 parent_inode = pending->dir; 1588 parent_root = BTRFS_I(parent_inode)->root; 1589 record_root_in_trans(trans, parent_root, 0); 1590 1591 cur_time = current_time(parent_inode); 1592 1593 /* 1594 * insert the directory item 1595 */ 1596 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1597 BUG_ON(ret); /* -ENOMEM */ 1598 1599 /* check if there is a file/dir which has the same name. */ 1600 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1601 btrfs_ino(BTRFS_I(parent_inode)), 1602 dentry->d_name.name, 1603 dentry->d_name.len, 0); 1604 if (dir_item != NULL && !IS_ERR(dir_item)) { 1605 pending->error = -EEXIST; 1606 goto dir_item_existed; 1607 } else if (IS_ERR(dir_item)) { 1608 ret = PTR_ERR(dir_item); 1609 btrfs_abort_transaction(trans, ret); 1610 goto fail; 1611 } 1612 btrfs_release_path(path); 1613 1614 /* 1615 * pull in the delayed directory update 1616 * and the delayed inode item 1617 * otherwise we corrupt the FS during 1618 * snapshot 1619 */ 1620 ret = btrfs_run_delayed_items(trans); 1621 if (ret) { /* Transaction aborted */ 1622 btrfs_abort_transaction(trans, ret); 1623 goto fail; 1624 } 1625 1626 record_root_in_trans(trans, root, 0); 1627 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1628 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1629 btrfs_check_and_init_root_item(new_root_item); 1630 1631 root_flags = btrfs_root_flags(new_root_item); 1632 if (pending->readonly) 1633 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1634 else 1635 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1636 btrfs_set_root_flags(new_root_item, root_flags); 1637 1638 btrfs_set_root_generation_v2(new_root_item, 1639 trans->transid); 1640 generate_random_guid(new_root_item->uuid); 1641 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1642 BTRFS_UUID_SIZE); 1643 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1644 memset(new_root_item->received_uuid, 0, 1645 sizeof(new_root_item->received_uuid)); 1646 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1647 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1648 btrfs_set_root_stransid(new_root_item, 0); 1649 btrfs_set_root_rtransid(new_root_item, 0); 1650 } 1651 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1652 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1653 btrfs_set_root_otransid(new_root_item, trans->transid); 1654 1655 old = btrfs_lock_root_node(root); 1656 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1657 BTRFS_NESTING_COW); 1658 if (ret) { 1659 btrfs_tree_unlock(old); 1660 free_extent_buffer(old); 1661 btrfs_abort_transaction(trans, ret); 1662 goto fail; 1663 } 1664 1665 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1666 /* clean up in any case */ 1667 btrfs_tree_unlock(old); 1668 free_extent_buffer(old); 1669 if (ret) { 1670 btrfs_abort_transaction(trans, ret); 1671 goto fail; 1672 } 1673 /* see comments in should_cow_block() */ 1674 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1675 smp_wmb(); 1676 1677 btrfs_set_root_node(new_root_item, tmp); 1678 /* record when the snapshot was created in key.offset */ 1679 key.offset = trans->transid; 1680 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1681 btrfs_tree_unlock(tmp); 1682 free_extent_buffer(tmp); 1683 if (ret) { 1684 btrfs_abort_transaction(trans, ret); 1685 goto fail; 1686 } 1687 1688 /* 1689 * insert root back/forward references 1690 */ 1691 ret = btrfs_add_root_ref(trans, objectid, 1692 parent_root->root_key.objectid, 1693 btrfs_ino(BTRFS_I(parent_inode)), index, 1694 dentry->d_name.name, dentry->d_name.len); 1695 if (ret) { 1696 btrfs_abort_transaction(trans, ret); 1697 goto fail; 1698 } 1699 1700 key.offset = (u64)-1; 1701 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1702 if (IS_ERR(pending->snap)) { 1703 ret = PTR_ERR(pending->snap); 1704 pending->snap = NULL; 1705 btrfs_abort_transaction(trans, ret); 1706 goto fail; 1707 } 1708 1709 ret = btrfs_reloc_post_snapshot(trans, pending); 1710 if (ret) { 1711 btrfs_abort_transaction(trans, ret); 1712 goto fail; 1713 } 1714 1715 /* 1716 * Do special qgroup accounting for snapshot, as we do some qgroup 1717 * snapshot hack to do fast snapshot. 1718 * To co-operate with that hack, we do hack again. 1719 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1720 */ 1721 ret = qgroup_account_snapshot(trans, root, parent_root, 1722 pending->inherit, objectid); 1723 if (ret < 0) 1724 goto fail; 1725 1726 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1727 dentry->d_name.len, BTRFS_I(parent_inode), 1728 &key, BTRFS_FT_DIR, index); 1729 /* We have check then name at the beginning, so it is impossible. */ 1730 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1731 if (ret) { 1732 btrfs_abort_transaction(trans, ret); 1733 goto fail; 1734 } 1735 1736 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1737 dentry->d_name.len * 2); 1738 parent_inode->i_mtime = parent_inode->i_ctime = 1739 current_time(parent_inode); 1740 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode)); 1741 if (ret) { 1742 btrfs_abort_transaction(trans, ret); 1743 goto fail; 1744 } 1745 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1746 BTRFS_UUID_KEY_SUBVOL, 1747 objectid); 1748 if (ret) { 1749 btrfs_abort_transaction(trans, ret); 1750 goto fail; 1751 } 1752 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1753 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1754 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1755 objectid); 1756 if (ret && ret != -EEXIST) { 1757 btrfs_abort_transaction(trans, ret); 1758 goto fail; 1759 } 1760 } 1761 1762 fail: 1763 pending->error = ret; 1764 dir_item_existed: 1765 trans->block_rsv = rsv; 1766 trans->bytes_reserved = 0; 1767 clear_skip_qgroup: 1768 btrfs_clear_skip_qgroup(trans); 1769 no_free_objectid: 1770 kfree(new_root_item); 1771 pending->root_item = NULL; 1772 btrfs_free_path(path); 1773 pending->path = NULL; 1774 1775 return ret; 1776 } 1777 1778 /* 1779 * create all the snapshots we've scheduled for creation 1780 */ 1781 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1782 { 1783 struct btrfs_pending_snapshot *pending, *next; 1784 struct list_head *head = &trans->transaction->pending_snapshots; 1785 int ret = 0; 1786 1787 list_for_each_entry_safe(pending, next, head, list) { 1788 list_del(&pending->list); 1789 ret = create_pending_snapshot(trans, pending); 1790 if (ret) 1791 break; 1792 } 1793 return ret; 1794 } 1795 1796 static void update_super_roots(struct btrfs_fs_info *fs_info) 1797 { 1798 struct btrfs_root_item *root_item; 1799 struct btrfs_super_block *super; 1800 1801 super = fs_info->super_copy; 1802 1803 root_item = &fs_info->chunk_root->root_item; 1804 super->chunk_root = root_item->bytenr; 1805 super->chunk_root_generation = root_item->generation; 1806 super->chunk_root_level = root_item->level; 1807 1808 root_item = &fs_info->tree_root->root_item; 1809 super->root = root_item->bytenr; 1810 super->generation = root_item->generation; 1811 super->root_level = root_item->level; 1812 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1813 super->cache_generation = root_item->generation; 1814 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1815 super->cache_generation = 0; 1816 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1817 super->uuid_tree_generation = root_item->generation; 1818 } 1819 1820 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1821 { 1822 struct btrfs_transaction *trans; 1823 int ret = 0; 1824 1825 spin_lock(&info->trans_lock); 1826 trans = info->running_transaction; 1827 if (trans) 1828 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1829 spin_unlock(&info->trans_lock); 1830 return ret; 1831 } 1832 1833 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1834 { 1835 struct btrfs_transaction *trans; 1836 int ret = 0; 1837 1838 spin_lock(&info->trans_lock); 1839 trans = info->running_transaction; 1840 if (trans) 1841 ret = is_transaction_blocked(trans); 1842 spin_unlock(&info->trans_lock); 1843 return ret; 1844 } 1845 1846 /* 1847 * wait for the current transaction commit to start and block subsequent 1848 * transaction joins 1849 */ 1850 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1851 struct btrfs_transaction *trans) 1852 { 1853 wait_event(fs_info->transaction_blocked_wait, 1854 trans->state >= TRANS_STATE_COMMIT_START || 1855 TRANS_ABORTED(trans)); 1856 } 1857 1858 /* 1859 * wait for the current transaction to start and then become unblocked. 1860 * caller holds ref. 1861 */ 1862 static void wait_current_trans_commit_start_and_unblock( 1863 struct btrfs_fs_info *fs_info, 1864 struct btrfs_transaction *trans) 1865 { 1866 wait_event(fs_info->transaction_wait, 1867 trans->state >= TRANS_STATE_UNBLOCKED || 1868 TRANS_ABORTED(trans)); 1869 } 1870 1871 /* 1872 * commit transactions asynchronously. once btrfs_commit_transaction_async 1873 * returns, any subsequent transaction will not be allowed to join. 1874 */ 1875 struct btrfs_async_commit { 1876 struct btrfs_trans_handle *newtrans; 1877 struct work_struct work; 1878 }; 1879 1880 static void do_async_commit(struct work_struct *work) 1881 { 1882 struct btrfs_async_commit *ac = 1883 container_of(work, struct btrfs_async_commit, work); 1884 1885 /* 1886 * We've got freeze protection passed with the transaction. 1887 * Tell lockdep about it. 1888 */ 1889 if (ac->newtrans->type & __TRANS_FREEZABLE) 1890 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1891 1892 current->journal_info = ac->newtrans; 1893 1894 btrfs_commit_transaction(ac->newtrans); 1895 kfree(ac); 1896 } 1897 1898 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1899 int wait_for_unblock) 1900 { 1901 struct btrfs_fs_info *fs_info = trans->fs_info; 1902 struct btrfs_async_commit *ac; 1903 struct btrfs_transaction *cur_trans; 1904 1905 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1906 if (!ac) 1907 return -ENOMEM; 1908 1909 INIT_WORK(&ac->work, do_async_commit); 1910 ac->newtrans = btrfs_join_transaction(trans->root); 1911 if (IS_ERR(ac->newtrans)) { 1912 int err = PTR_ERR(ac->newtrans); 1913 kfree(ac); 1914 return err; 1915 } 1916 1917 /* take transaction reference */ 1918 cur_trans = trans->transaction; 1919 refcount_inc(&cur_trans->use_count); 1920 1921 btrfs_end_transaction(trans); 1922 1923 /* 1924 * Tell lockdep we've released the freeze rwsem, since the 1925 * async commit thread will be the one to unlock it. 1926 */ 1927 if (ac->newtrans->type & __TRANS_FREEZABLE) 1928 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1929 1930 schedule_work(&ac->work); 1931 1932 /* wait for transaction to start and unblock */ 1933 if (wait_for_unblock) 1934 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1935 else 1936 wait_current_trans_commit_start(fs_info, cur_trans); 1937 1938 if (current->journal_info == trans) 1939 current->journal_info = NULL; 1940 1941 btrfs_put_transaction(cur_trans); 1942 return 0; 1943 } 1944 1945 1946 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1947 { 1948 struct btrfs_fs_info *fs_info = trans->fs_info; 1949 struct btrfs_transaction *cur_trans = trans->transaction; 1950 1951 WARN_ON(refcount_read(&trans->use_count) > 1); 1952 1953 btrfs_abort_transaction(trans, err); 1954 1955 spin_lock(&fs_info->trans_lock); 1956 1957 /* 1958 * If the transaction is removed from the list, it means this 1959 * transaction has been committed successfully, so it is impossible 1960 * to call the cleanup function. 1961 */ 1962 BUG_ON(list_empty(&cur_trans->list)); 1963 1964 list_del_init(&cur_trans->list); 1965 if (cur_trans == fs_info->running_transaction) { 1966 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1967 spin_unlock(&fs_info->trans_lock); 1968 wait_event(cur_trans->writer_wait, 1969 atomic_read(&cur_trans->num_writers) == 1); 1970 1971 spin_lock(&fs_info->trans_lock); 1972 } 1973 spin_unlock(&fs_info->trans_lock); 1974 1975 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1976 1977 spin_lock(&fs_info->trans_lock); 1978 if (cur_trans == fs_info->running_transaction) 1979 fs_info->running_transaction = NULL; 1980 spin_unlock(&fs_info->trans_lock); 1981 1982 if (trans->type & __TRANS_FREEZABLE) 1983 sb_end_intwrite(fs_info->sb); 1984 btrfs_put_transaction(cur_trans); 1985 btrfs_put_transaction(cur_trans); 1986 1987 trace_btrfs_transaction_commit(trans->root); 1988 1989 if (current->journal_info == trans) 1990 current->journal_info = NULL; 1991 btrfs_scrub_cancel(fs_info); 1992 1993 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1994 } 1995 1996 /* 1997 * Release reserved delayed ref space of all pending block groups of the 1998 * transaction and remove them from the list 1999 */ 2000 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2001 { 2002 struct btrfs_fs_info *fs_info = trans->fs_info; 2003 struct btrfs_block_group *block_group, *tmp; 2004 2005 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2006 btrfs_delayed_refs_rsv_release(fs_info, 1); 2007 list_del_init(&block_group->bg_list); 2008 } 2009 } 2010 2011 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2012 { 2013 /* 2014 * We use writeback_inodes_sb here because if we used 2015 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2016 * Currently are holding the fs freeze lock, if we do an async flush 2017 * we'll do btrfs_join_transaction() and deadlock because we need to 2018 * wait for the fs freeze lock. Using the direct flushing we benefit 2019 * from already being in a transaction and our join_transaction doesn't 2020 * have to re-take the fs freeze lock. 2021 */ 2022 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2023 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2024 return 0; 2025 } 2026 2027 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2028 { 2029 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2030 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2031 } 2032 2033 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2034 { 2035 struct btrfs_fs_info *fs_info = trans->fs_info; 2036 struct btrfs_transaction *cur_trans = trans->transaction; 2037 struct btrfs_transaction *prev_trans = NULL; 2038 int ret; 2039 2040 ASSERT(refcount_read(&trans->use_count) == 1); 2041 2042 /* 2043 * Some places just start a transaction to commit it. We need to make 2044 * sure that if this commit fails that the abort code actually marks the 2045 * transaction as failed, so set trans->dirty to make the abort code do 2046 * the right thing. 2047 */ 2048 trans->dirty = true; 2049 2050 /* Stop the commit early if ->aborted is set */ 2051 if (TRANS_ABORTED(cur_trans)) { 2052 ret = cur_trans->aborted; 2053 btrfs_end_transaction(trans); 2054 return ret; 2055 } 2056 2057 btrfs_trans_release_metadata(trans); 2058 trans->block_rsv = NULL; 2059 2060 /* 2061 * We only want one transaction commit doing the flushing so we do not 2062 * waste a bunch of time on lock contention on the extent root node. 2063 */ 2064 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2065 &cur_trans->delayed_refs.flags)) { 2066 /* 2067 * Make a pass through all the delayed refs we have so far. 2068 * Any running threads may add more while we are here. 2069 */ 2070 ret = btrfs_run_delayed_refs(trans, 0); 2071 if (ret) { 2072 btrfs_end_transaction(trans); 2073 return ret; 2074 } 2075 } 2076 2077 btrfs_create_pending_block_groups(trans); 2078 2079 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2080 int run_it = 0; 2081 2082 /* this mutex is also taken before trying to set 2083 * block groups readonly. We need to make sure 2084 * that nobody has set a block group readonly 2085 * after a extents from that block group have been 2086 * allocated for cache files. btrfs_set_block_group_ro 2087 * will wait for the transaction to commit if it 2088 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2089 * 2090 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2091 * only one process starts all the block group IO. It wouldn't 2092 * hurt to have more than one go through, but there's no 2093 * real advantage to it either. 2094 */ 2095 mutex_lock(&fs_info->ro_block_group_mutex); 2096 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2097 &cur_trans->flags)) 2098 run_it = 1; 2099 mutex_unlock(&fs_info->ro_block_group_mutex); 2100 2101 if (run_it) { 2102 ret = btrfs_start_dirty_block_groups(trans); 2103 if (ret) { 2104 btrfs_end_transaction(trans); 2105 return ret; 2106 } 2107 } 2108 } 2109 2110 spin_lock(&fs_info->trans_lock); 2111 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2112 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2113 2114 spin_unlock(&fs_info->trans_lock); 2115 refcount_inc(&cur_trans->use_count); 2116 2117 if (trans->in_fsync) 2118 want_state = TRANS_STATE_SUPER_COMMITTED; 2119 ret = btrfs_end_transaction(trans); 2120 wait_for_commit(cur_trans, want_state); 2121 2122 if (TRANS_ABORTED(cur_trans)) 2123 ret = cur_trans->aborted; 2124 2125 btrfs_put_transaction(cur_trans); 2126 2127 return ret; 2128 } 2129 2130 cur_trans->state = TRANS_STATE_COMMIT_START; 2131 wake_up(&fs_info->transaction_blocked_wait); 2132 2133 if (cur_trans->list.prev != &fs_info->trans_list) { 2134 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2135 2136 if (trans->in_fsync) 2137 want_state = TRANS_STATE_SUPER_COMMITTED; 2138 2139 prev_trans = list_entry(cur_trans->list.prev, 2140 struct btrfs_transaction, list); 2141 if (prev_trans->state < want_state) { 2142 refcount_inc(&prev_trans->use_count); 2143 spin_unlock(&fs_info->trans_lock); 2144 2145 wait_for_commit(prev_trans, want_state); 2146 2147 ret = READ_ONCE(prev_trans->aborted); 2148 2149 btrfs_put_transaction(prev_trans); 2150 if (ret) 2151 goto cleanup_transaction; 2152 } else { 2153 spin_unlock(&fs_info->trans_lock); 2154 } 2155 } else { 2156 spin_unlock(&fs_info->trans_lock); 2157 /* 2158 * The previous transaction was aborted and was already removed 2159 * from the list of transactions at fs_info->trans_list. So we 2160 * abort to prevent writing a new superblock that reflects a 2161 * corrupt state (pointing to trees with unwritten nodes/leafs). 2162 */ 2163 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) { 2164 ret = -EROFS; 2165 goto cleanup_transaction; 2166 } 2167 } 2168 2169 extwriter_counter_dec(cur_trans, trans->type); 2170 2171 ret = btrfs_start_delalloc_flush(fs_info); 2172 if (ret) 2173 goto cleanup_transaction; 2174 2175 ret = btrfs_run_delayed_items(trans); 2176 if (ret) 2177 goto cleanup_transaction; 2178 2179 wait_event(cur_trans->writer_wait, 2180 extwriter_counter_read(cur_trans) == 0); 2181 2182 /* some pending stuffs might be added after the previous flush. */ 2183 ret = btrfs_run_delayed_items(trans); 2184 if (ret) 2185 goto cleanup_transaction; 2186 2187 btrfs_wait_delalloc_flush(fs_info); 2188 2189 /* 2190 * Wait for all ordered extents started by a fast fsync that joined this 2191 * transaction. Otherwise if this transaction commits before the ordered 2192 * extents complete we lose logged data after a power failure. 2193 */ 2194 wait_event(cur_trans->pending_wait, 2195 atomic_read(&cur_trans->pending_ordered) == 0); 2196 2197 btrfs_scrub_pause(fs_info); 2198 /* 2199 * Ok now we need to make sure to block out any other joins while we 2200 * commit the transaction. We could have started a join before setting 2201 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2202 */ 2203 spin_lock(&fs_info->trans_lock); 2204 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2205 spin_unlock(&fs_info->trans_lock); 2206 wait_event(cur_trans->writer_wait, 2207 atomic_read(&cur_trans->num_writers) == 1); 2208 2209 if (TRANS_ABORTED(cur_trans)) { 2210 ret = cur_trans->aborted; 2211 goto scrub_continue; 2212 } 2213 /* 2214 * the reloc mutex makes sure that we stop 2215 * the balancing code from coming in and moving 2216 * extents around in the middle of the commit 2217 */ 2218 mutex_lock(&fs_info->reloc_mutex); 2219 2220 /* 2221 * We needn't worry about the delayed items because we will 2222 * deal with them in create_pending_snapshot(), which is the 2223 * core function of the snapshot creation. 2224 */ 2225 ret = create_pending_snapshots(trans); 2226 if (ret) 2227 goto unlock_reloc; 2228 2229 /* 2230 * We insert the dir indexes of the snapshots and update the inode 2231 * of the snapshots' parents after the snapshot creation, so there 2232 * are some delayed items which are not dealt with. Now deal with 2233 * them. 2234 * 2235 * We needn't worry that this operation will corrupt the snapshots, 2236 * because all the tree which are snapshoted will be forced to COW 2237 * the nodes and leaves. 2238 */ 2239 ret = btrfs_run_delayed_items(trans); 2240 if (ret) 2241 goto unlock_reloc; 2242 2243 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2244 if (ret) 2245 goto unlock_reloc; 2246 2247 /* 2248 * make sure none of the code above managed to slip in a 2249 * delayed item 2250 */ 2251 btrfs_assert_delayed_root_empty(fs_info); 2252 2253 WARN_ON(cur_trans != trans->transaction); 2254 2255 /* btrfs_commit_tree_roots is responsible for getting the 2256 * various roots consistent with each other. Every pointer 2257 * in the tree of tree roots has to point to the most up to date 2258 * root for every subvolume and other tree. So, we have to keep 2259 * the tree logging code from jumping in and changing any 2260 * of the trees. 2261 * 2262 * At this point in the commit, there can't be any tree-log 2263 * writers, but a little lower down we drop the trans mutex 2264 * and let new people in. By holding the tree_log_mutex 2265 * from now until after the super is written, we avoid races 2266 * with the tree-log code. 2267 */ 2268 mutex_lock(&fs_info->tree_log_mutex); 2269 2270 ret = commit_fs_roots(trans); 2271 if (ret) 2272 goto unlock_tree_log; 2273 2274 /* 2275 * Since the transaction is done, we can apply the pending changes 2276 * before the next transaction. 2277 */ 2278 btrfs_apply_pending_changes(fs_info); 2279 2280 /* commit_fs_roots gets rid of all the tree log roots, it is now 2281 * safe to free the root of tree log roots 2282 */ 2283 btrfs_free_log_root_tree(trans, fs_info); 2284 2285 /* 2286 * Since fs roots are all committed, we can get a quite accurate 2287 * new_roots. So let's do quota accounting. 2288 */ 2289 ret = btrfs_qgroup_account_extents(trans); 2290 if (ret < 0) 2291 goto unlock_tree_log; 2292 2293 ret = commit_cowonly_roots(trans); 2294 if (ret) 2295 goto unlock_tree_log; 2296 2297 /* 2298 * The tasks which save the space cache and inode cache may also 2299 * update ->aborted, check it. 2300 */ 2301 if (TRANS_ABORTED(cur_trans)) { 2302 ret = cur_trans->aborted; 2303 goto unlock_tree_log; 2304 } 2305 2306 cur_trans = fs_info->running_transaction; 2307 2308 btrfs_set_root_node(&fs_info->tree_root->root_item, 2309 fs_info->tree_root->node); 2310 list_add_tail(&fs_info->tree_root->dirty_list, 2311 &cur_trans->switch_commits); 2312 2313 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2314 fs_info->chunk_root->node); 2315 list_add_tail(&fs_info->chunk_root->dirty_list, 2316 &cur_trans->switch_commits); 2317 2318 switch_commit_roots(trans); 2319 2320 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2321 ASSERT(list_empty(&cur_trans->io_bgs)); 2322 update_super_roots(fs_info); 2323 2324 btrfs_set_super_log_root(fs_info->super_copy, 0); 2325 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2326 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2327 sizeof(*fs_info->super_copy)); 2328 2329 btrfs_commit_device_sizes(cur_trans); 2330 2331 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2332 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2333 2334 btrfs_trans_release_chunk_metadata(trans); 2335 2336 spin_lock(&fs_info->trans_lock); 2337 cur_trans->state = TRANS_STATE_UNBLOCKED; 2338 fs_info->running_transaction = NULL; 2339 spin_unlock(&fs_info->trans_lock); 2340 mutex_unlock(&fs_info->reloc_mutex); 2341 2342 wake_up(&fs_info->transaction_wait); 2343 2344 ret = btrfs_write_and_wait_transaction(trans); 2345 if (ret) { 2346 btrfs_handle_fs_error(fs_info, ret, 2347 "Error while writing out transaction"); 2348 /* 2349 * reloc_mutex has been unlocked, tree_log_mutex is still held 2350 * but we can't jump to unlock_tree_log causing double unlock 2351 */ 2352 mutex_unlock(&fs_info->tree_log_mutex); 2353 goto scrub_continue; 2354 } 2355 2356 /* 2357 * At this point, we should have written all the tree blocks allocated 2358 * in this transaction. So it's now safe to free the redirtyied extent 2359 * buffers. 2360 */ 2361 btrfs_free_redirty_list(cur_trans); 2362 2363 ret = write_all_supers(fs_info, 0); 2364 /* 2365 * the super is written, we can safely allow the tree-loggers 2366 * to go about their business 2367 */ 2368 mutex_unlock(&fs_info->tree_log_mutex); 2369 if (ret) 2370 goto scrub_continue; 2371 2372 /* 2373 * We needn't acquire the lock here because there is no other task 2374 * which can change it. 2375 */ 2376 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2377 wake_up(&cur_trans->commit_wait); 2378 2379 btrfs_finish_extent_commit(trans); 2380 2381 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2382 btrfs_clear_space_info_full(fs_info); 2383 2384 fs_info->last_trans_committed = cur_trans->transid; 2385 /* 2386 * We needn't acquire the lock here because there is no other task 2387 * which can change it. 2388 */ 2389 cur_trans->state = TRANS_STATE_COMPLETED; 2390 wake_up(&cur_trans->commit_wait); 2391 2392 spin_lock(&fs_info->trans_lock); 2393 list_del_init(&cur_trans->list); 2394 spin_unlock(&fs_info->trans_lock); 2395 2396 btrfs_put_transaction(cur_trans); 2397 btrfs_put_transaction(cur_trans); 2398 2399 if (trans->type & __TRANS_FREEZABLE) 2400 sb_end_intwrite(fs_info->sb); 2401 2402 trace_btrfs_transaction_commit(trans->root); 2403 2404 btrfs_scrub_continue(fs_info); 2405 2406 if (current->journal_info == trans) 2407 current->journal_info = NULL; 2408 2409 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2410 2411 return ret; 2412 2413 unlock_tree_log: 2414 mutex_unlock(&fs_info->tree_log_mutex); 2415 unlock_reloc: 2416 mutex_unlock(&fs_info->reloc_mutex); 2417 scrub_continue: 2418 btrfs_scrub_continue(fs_info); 2419 cleanup_transaction: 2420 btrfs_trans_release_metadata(trans); 2421 btrfs_cleanup_pending_block_groups(trans); 2422 btrfs_trans_release_chunk_metadata(trans); 2423 trans->block_rsv = NULL; 2424 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2425 if (current->journal_info == trans) 2426 current->journal_info = NULL; 2427 cleanup_transaction(trans, ret); 2428 2429 return ret; 2430 } 2431 2432 /* 2433 * return < 0 if error 2434 * 0 if there are no more dead_roots at the time of call 2435 * 1 there are more to be processed, call me again 2436 * 2437 * The return value indicates there are certainly more snapshots to delete, but 2438 * if there comes a new one during processing, it may return 0. We don't mind, 2439 * because btrfs_commit_super will poke cleaner thread and it will process it a 2440 * few seconds later. 2441 */ 2442 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2443 { 2444 int ret; 2445 struct btrfs_fs_info *fs_info = root->fs_info; 2446 2447 spin_lock(&fs_info->trans_lock); 2448 if (list_empty(&fs_info->dead_roots)) { 2449 spin_unlock(&fs_info->trans_lock); 2450 return 0; 2451 } 2452 root = list_first_entry(&fs_info->dead_roots, 2453 struct btrfs_root, root_list); 2454 list_del_init(&root->root_list); 2455 spin_unlock(&fs_info->trans_lock); 2456 2457 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2458 2459 btrfs_kill_all_delayed_nodes(root); 2460 2461 if (btrfs_header_backref_rev(root->node) < 2462 BTRFS_MIXED_BACKREF_REV) 2463 ret = btrfs_drop_snapshot(root, 0, 0); 2464 else 2465 ret = btrfs_drop_snapshot(root, 1, 0); 2466 2467 btrfs_put_root(root); 2468 return (ret < 0) ? 0 : 1; 2469 } 2470 2471 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2472 { 2473 unsigned long prev; 2474 unsigned long bit; 2475 2476 prev = xchg(&fs_info->pending_changes, 0); 2477 if (!prev) 2478 return; 2479 2480 bit = 1 << BTRFS_PENDING_COMMIT; 2481 if (prev & bit) 2482 btrfs_debug(fs_info, "pending commit done"); 2483 prev &= ~bit; 2484 2485 if (prev) 2486 btrfs_warn(fs_info, 2487 "unknown pending changes left 0x%lx, ignoring", prev); 2488 } 2489