1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 #include "qgroup.h" 35 36 #define BTRFS_ROOT_TRANS_TAG 0 37 38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 39 [TRANS_STATE_RUNNING] = 0U, 40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | 41 __TRANS_START), 42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | 43 __TRANS_START | 44 __TRANS_ATTACH), 45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | 46 __TRANS_START | 47 __TRANS_ATTACH | 48 __TRANS_JOIN), 49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | 50 __TRANS_START | 51 __TRANS_ATTACH | 52 __TRANS_JOIN | 53 __TRANS_JOIN_NOLOCK), 54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | 55 __TRANS_START | 56 __TRANS_ATTACH | 57 __TRANS_JOIN | 58 __TRANS_JOIN_NOLOCK), 59 }; 60 61 void btrfs_put_transaction(struct btrfs_transaction *transaction) 62 { 63 WARN_ON(atomic_read(&transaction->use_count) == 0); 64 if (atomic_dec_and_test(&transaction->use_count)) { 65 BUG_ON(!list_empty(&transaction->list)); 66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 67 while (!list_empty(&transaction->pending_chunks)) { 68 struct extent_map *em; 69 70 em = list_first_entry(&transaction->pending_chunks, 71 struct extent_map, list); 72 list_del_init(&em->list); 73 free_extent_map(em); 74 } 75 kmem_cache_free(btrfs_transaction_cachep, transaction); 76 } 77 } 78 79 static noinline void switch_commit_roots(struct btrfs_transaction *trans, 80 struct btrfs_fs_info *fs_info) 81 { 82 struct btrfs_root *root, *tmp; 83 84 down_write(&fs_info->commit_root_sem); 85 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 86 dirty_list) { 87 list_del_init(&root->dirty_list); 88 free_extent_buffer(root->commit_root); 89 root->commit_root = btrfs_root_node(root); 90 if (is_fstree(root->objectid)) 91 btrfs_unpin_free_ino(root); 92 } 93 up_write(&fs_info->commit_root_sem); 94 } 95 96 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 97 unsigned int type) 98 { 99 if (type & TRANS_EXTWRITERS) 100 atomic_inc(&trans->num_extwriters); 101 } 102 103 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 104 unsigned int type) 105 { 106 if (type & TRANS_EXTWRITERS) 107 atomic_dec(&trans->num_extwriters); 108 } 109 110 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 111 unsigned int type) 112 { 113 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 114 } 115 116 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 117 { 118 return atomic_read(&trans->num_extwriters); 119 } 120 121 /* 122 * either allocate a new transaction or hop into the existing one 123 */ 124 static noinline int join_transaction(struct btrfs_root *root, unsigned int type) 125 { 126 struct btrfs_transaction *cur_trans; 127 struct btrfs_fs_info *fs_info = root->fs_info; 128 129 spin_lock(&fs_info->trans_lock); 130 loop: 131 /* The file system has been taken offline. No new transactions. */ 132 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 133 spin_unlock(&fs_info->trans_lock); 134 return -EROFS; 135 } 136 137 cur_trans = fs_info->running_transaction; 138 if (cur_trans) { 139 if (cur_trans->aborted) { 140 spin_unlock(&fs_info->trans_lock); 141 return cur_trans->aborted; 142 } 143 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 144 spin_unlock(&fs_info->trans_lock); 145 return -EBUSY; 146 } 147 atomic_inc(&cur_trans->use_count); 148 atomic_inc(&cur_trans->num_writers); 149 extwriter_counter_inc(cur_trans, type); 150 spin_unlock(&fs_info->trans_lock); 151 return 0; 152 } 153 spin_unlock(&fs_info->trans_lock); 154 155 /* 156 * If we are ATTACH, we just want to catch the current transaction, 157 * and commit it. If there is no transaction, just return ENOENT. 158 */ 159 if (type == TRANS_ATTACH) 160 return -ENOENT; 161 162 /* 163 * JOIN_NOLOCK only happens during the transaction commit, so 164 * it is impossible that ->running_transaction is NULL 165 */ 166 BUG_ON(type == TRANS_JOIN_NOLOCK); 167 168 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 169 if (!cur_trans) 170 return -ENOMEM; 171 172 spin_lock(&fs_info->trans_lock); 173 if (fs_info->running_transaction) { 174 /* 175 * someone started a transaction after we unlocked. Make sure 176 * to redo the checks above 177 */ 178 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 179 goto loop; 180 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 181 spin_unlock(&fs_info->trans_lock); 182 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 183 return -EROFS; 184 } 185 186 atomic_set(&cur_trans->num_writers, 1); 187 extwriter_counter_init(cur_trans, type); 188 init_waitqueue_head(&cur_trans->writer_wait); 189 init_waitqueue_head(&cur_trans->commit_wait); 190 cur_trans->state = TRANS_STATE_RUNNING; 191 /* 192 * One for this trans handle, one so it will live on until we 193 * commit the transaction. 194 */ 195 atomic_set(&cur_trans->use_count, 2); 196 cur_trans->start_time = get_seconds(); 197 198 cur_trans->delayed_refs.href_root = RB_ROOT; 199 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 200 cur_trans->delayed_refs.num_heads_ready = 0; 201 cur_trans->delayed_refs.num_heads = 0; 202 cur_trans->delayed_refs.flushing = 0; 203 cur_trans->delayed_refs.run_delayed_start = 0; 204 205 /* 206 * although the tree mod log is per file system and not per transaction, 207 * the log must never go across transaction boundaries. 208 */ 209 smp_mb(); 210 if (!list_empty(&fs_info->tree_mod_seq_list)) 211 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when " 212 "creating a fresh transaction\n"); 213 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 214 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when " 215 "creating a fresh transaction\n"); 216 atomic64_set(&fs_info->tree_mod_seq, 0); 217 218 spin_lock_init(&cur_trans->delayed_refs.lock); 219 220 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 221 INIT_LIST_HEAD(&cur_trans->pending_chunks); 222 INIT_LIST_HEAD(&cur_trans->switch_commits); 223 list_add_tail(&cur_trans->list, &fs_info->trans_list); 224 extent_io_tree_init(&cur_trans->dirty_pages, 225 fs_info->btree_inode->i_mapping); 226 fs_info->generation++; 227 cur_trans->transid = fs_info->generation; 228 fs_info->running_transaction = cur_trans; 229 cur_trans->aborted = 0; 230 spin_unlock(&fs_info->trans_lock); 231 232 return 0; 233 } 234 235 /* 236 * this does all the record keeping required to make sure that a reference 237 * counted root is properly recorded in a given transaction. This is required 238 * to make sure the old root from before we joined the transaction is deleted 239 * when the transaction commits 240 */ 241 static int record_root_in_trans(struct btrfs_trans_handle *trans, 242 struct btrfs_root *root) 243 { 244 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 245 root->last_trans < trans->transid) { 246 WARN_ON(root == root->fs_info->extent_root); 247 WARN_ON(root->commit_root != root->node); 248 249 /* 250 * see below for IN_TRANS_SETUP usage rules 251 * we have the reloc mutex held now, so there 252 * is only one writer in this function 253 */ 254 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 255 256 /* make sure readers find IN_TRANS_SETUP before 257 * they find our root->last_trans update 258 */ 259 smp_wmb(); 260 261 spin_lock(&root->fs_info->fs_roots_radix_lock); 262 if (root->last_trans == trans->transid) { 263 spin_unlock(&root->fs_info->fs_roots_radix_lock); 264 return 0; 265 } 266 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 267 (unsigned long)root->root_key.objectid, 268 BTRFS_ROOT_TRANS_TAG); 269 spin_unlock(&root->fs_info->fs_roots_radix_lock); 270 root->last_trans = trans->transid; 271 272 /* this is pretty tricky. We don't want to 273 * take the relocation lock in btrfs_record_root_in_trans 274 * unless we're really doing the first setup for this root in 275 * this transaction. 276 * 277 * Normally we'd use root->last_trans as a flag to decide 278 * if we want to take the expensive mutex. 279 * 280 * But, we have to set root->last_trans before we 281 * init the relocation root, otherwise, we trip over warnings 282 * in ctree.c. The solution used here is to flag ourselves 283 * with root IN_TRANS_SETUP. When this is 1, we're still 284 * fixing up the reloc trees and everyone must wait. 285 * 286 * When this is zero, they can trust root->last_trans and fly 287 * through btrfs_record_root_in_trans without having to take the 288 * lock. smp_wmb() makes sure that all the writes above are 289 * done before we pop in the zero below 290 */ 291 btrfs_init_reloc_root(trans, root); 292 smp_mb__before_atomic(); 293 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 294 } 295 return 0; 296 } 297 298 299 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 300 struct btrfs_root *root) 301 { 302 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 303 return 0; 304 305 /* 306 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 307 * and barriers 308 */ 309 smp_rmb(); 310 if (root->last_trans == trans->transid && 311 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 312 return 0; 313 314 mutex_lock(&root->fs_info->reloc_mutex); 315 record_root_in_trans(trans, root); 316 mutex_unlock(&root->fs_info->reloc_mutex); 317 318 return 0; 319 } 320 321 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 322 { 323 return (trans->state >= TRANS_STATE_BLOCKED && 324 trans->state < TRANS_STATE_UNBLOCKED && 325 !trans->aborted); 326 } 327 328 /* wait for commit against the current transaction to become unblocked 329 * when this is done, it is safe to start a new transaction, but the current 330 * transaction might not be fully on disk. 331 */ 332 static void wait_current_trans(struct btrfs_root *root) 333 { 334 struct btrfs_transaction *cur_trans; 335 336 spin_lock(&root->fs_info->trans_lock); 337 cur_trans = root->fs_info->running_transaction; 338 if (cur_trans && is_transaction_blocked(cur_trans)) { 339 atomic_inc(&cur_trans->use_count); 340 spin_unlock(&root->fs_info->trans_lock); 341 342 wait_event(root->fs_info->transaction_wait, 343 cur_trans->state >= TRANS_STATE_UNBLOCKED || 344 cur_trans->aborted); 345 btrfs_put_transaction(cur_trans); 346 } else { 347 spin_unlock(&root->fs_info->trans_lock); 348 } 349 } 350 351 static int may_wait_transaction(struct btrfs_root *root, int type) 352 { 353 if (root->fs_info->log_root_recovering) 354 return 0; 355 356 if (type == TRANS_USERSPACE) 357 return 1; 358 359 if (type == TRANS_START && 360 !atomic_read(&root->fs_info->open_ioctl_trans)) 361 return 1; 362 363 return 0; 364 } 365 366 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 367 { 368 if (!root->fs_info->reloc_ctl || 369 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 370 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 371 root->reloc_root) 372 return false; 373 374 return true; 375 } 376 377 static struct btrfs_trans_handle * 378 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type, 379 enum btrfs_reserve_flush_enum flush) 380 { 381 struct btrfs_trans_handle *h; 382 struct btrfs_transaction *cur_trans; 383 u64 num_bytes = 0; 384 u64 qgroup_reserved = 0; 385 bool reloc_reserved = false; 386 int ret; 387 388 /* Send isn't supposed to start transactions. */ 389 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 390 391 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 392 return ERR_PTR(-EROFS); 393 394 if (current->journal_info) { 395 WARN_ON(type & TRANS_EXTWRITERS); 396 h = current->journal_info; 397 h->use_count++; 398 WARN_ON(h->use_count > 2); 399 h->orig_rsv = h->block_rsv; 400 h->block_rsv = NULL; 401 goto got_it; 402 } 403 404 /* 405 * Do the reservation before we join the transaction so we can do all 406 * the appropriate flushing if need be. 407 */ 408 if (num_items > 0 && root != root->fs_info->chunk_root) { 409 if (root->fs_info->quota_enabled && 410 is_fstree(root->root_key.objectid)) { 411 qgroup_reserved = num_items * root->nodesize; 412 ret = btrfs_qgroup_reserve(root, qgroup_reserved); 413 if (ret) 414 return ERR_PTR(ret); 415 } 416 417 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 418 /* 419 * Do the reservation for the relocation root creation 420 */ 421 if (need_reserve_reloc_root(root)) { 422 num_bytes += root->nodesize; 423 reloc_reserved = true; 424 } 425 426 ret = btrfs_block_rsv_add(root, 427 &root->fs_info->trans_block_rsv, 428 num_bytes, flush); 429 if (ret) 430 goto reserve_fail; 431 } 432 again: 433 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 434 if (!h) { 435 ret = -ENOMEM; 436 goto alloc_fail; 437 } 438 439 /* 440 * If we are JOIN_NOLOCK we're already committing a transaction and 441 * waiting on this guy, so we don't need to do the sb_start_intwrite 442 * because we're already holding a ref. We need this because we could 443 * have raced in and did an fsync() on a file which can kick a commit 444 * and then we deadlock with somebody doing a freeze. 445 * 446 * If we are ATTACH, it means we just want to catch the current 447 * transaction and commit it, so we needn't do sb_start_intwrite(). 448 */ 449 if (type & __TRANS_FREEZABLE) 450 sb_start_intwrite(root->fs_info->sb); 451 452 if (may_wait_transaction(root, type)) 453 wait_current_trans(root); 454 455 do { 456 ret = join_transaction(root, type); 457 if (ret == -EBUSY) { 458 wait_current_trans(root); 459 if (unlikely(type == TRANS_ATTACH)) 460 ret = -ENOENT; 461 } 462 } while (ret == -EBUSY); 463 464 if (ret < 0) { 465 /* We must get the transaction if we are JOIN_NOLOCK. */ 466 BUG_ON(type == TRANS_JOIN_NOLOCK); 467 goto join_fail; 468 } 469 470 cur_trans = root->fs_info->running_transaction; 471 472 h->transid = cur_trans->transid; 473 h->transaction = cur_trans; 474 h->blocks_used = 0; 475 h->bytes_reserved = 0; 476 h->root = root; 477 h->delayed_ref_updates = 0; 478 h->use_count = 1; 479 h->adding_csums = 0; 480 h->block_rsv = NULL; 481 h->orig_rsv = NULL; 482 h->aborted = 0; 483 h->qgroup_reserved = 0; 484 h->delayed_ref_elem.seq = 0; 485 h->type = type; 486 h->allocating_chunk = false; 487 h->reloc_reserved = false; 488 h->sync = false; 489 INIT_LIST_HEAD(&h->qgroup_ref_list); 490 INIT_LIST_HEAD(&h->new_bgs); 491 492 smp_mb(); 493 if (cur_trans->state >= TRANS_STATE_BLOCKED && 494 may_wait_transaction(root, type)) { 495 current->journal_info = h; 496 btrfs_commit_transaction(h, root); 497 goto again; 498 } 499 500 if (num_bytes) { 501 trace_btrfs_space_reservation(root->fs_info, "transaction", 502 h->transid, num_bytes, 1); 503 h->block_rsv = &root->fs_info->trans_block_rsv; 504 h->bytes_reserved = num_bytes; 505 h->reloc_reserved = reloc_reserved; 506 } 507 h->qgroup_reserved = qgroup_reserved; 508 509 got_it: 510 btrfs_record_root_in_trans(h, root); 511 512 if (!current->journal_info && type != TRANS_USERSPACE) 513 current->journal_info = h; 514 return h; 515 516 join_fail: 517 if (type & __TRANS_FREEZABLE) 518 sb_end_intwrite(root->fs_info->sb); 519 kmem_cache_free(btrfs_trans_handle_cachep, h); 520 alloc_fail: 521 if (num_bytes) 522 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 523 num_bytes); 524 reserve_fail: 525 if (qgroup_reserved) 526 btrfs_qgroup_free(root, qgroup_reserved); 527 return ERR_PTR(ret); 528 } 529 530 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 531 int num_items) 532 { 533 return start_transaction(root, num_items, TRANS_START, 534 BTRFS_RESERVE_FLUSH_ALL); 535 } 536 537 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 538 struct btrfs_root *root, int num_items) 539 { 540 return start_transaction(root, num_items, TRANS_START, 541 BTRFS_RESERVE_FLUSH_LIMIT); 542 } 543 544 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 545 { 546 return start_transaction(root, 0, TRANS_JOIN, 0); 547 } 548 549 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 550 { 551 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 552 } 553 554 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 555 { 556 return start_transaction(root, 0, TRANS_USERSPACE, 0); 557 } 558 559 /* 560 * btrfs_attach_transaction() - catch the running transaction 561 * 562 * It is used when we want to commit the current the transaction, but 563 * don't want to start a new one. 564 * 565 * Note: If this function return -ENOENT, it just means there is no 566 * running transaction. But it is possible that the inactive transaction 567 * is still in the memory, not fully on disk. If you hope there is no 568 * inactive transaction in the fs when -ENOENT is returned, you should 569 * invoke 570 * btrfs_attach_transaction_barrier() 571 */ 572 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 573 { 574 return start_transaction(root, 0, TRANS_ATTACH, 0); 575 } 576 577 /* 578 * btrfs_attach_transaction_barrier() - catch the running transaction 579 * 580 * It is similar to the above function, the differentia is this one 581 * will wait for all the inactive transactions until they fully 582 * complete. 583 */ 584 struct btrfs_trans_handle * 585 btrfs_attach_transaction_barrier(struct btrfs_root *root) 586 { 587 struct btrfs_trans_handle *trans; 588 589 trans = start_transaction(root, 0, TRANS_ATTACH, 0); 590 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 591 btrfs_wait_for_commit(root, 0); 592 593 return trans; 594 } 595 596 /* wait for a transaction commit to be fully complete */ 597 static noinline void wait_for_commit(struct btrfs_root *root, 598 struct btrfs_transaction *commit) 599 { 600 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 601 } 602 603 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 604 { 605 struct btrfs_transaction *cur_trans = NULL, *t; 606 int ret = 0; 607 608 if (transid) { 609 if (transid <= root->fs_info->last_trans_committed) 610 goto out; 611 612 /* find specified transaction */ 613 spin_lock(&root->fs_info->trans_lock); 614 list_for_each_entry(t, &root->fs_info->trans_list, list) { 615 if (t->transid == transid) { 616 cur_trans = t; 617 atomic_inc(&cur_trans->use_count); 618 ret = 0; 619 break; 620 } 621 if (t->transid > transid) { 622 ret = 0; 623 break; 624 } 625 } 626 spin_unlock(&root->fs_info->trans_lock); 627 628 /* 629 * The specified transaction doesn't exist, or we 630 * raced with btrfs_commit_transaction 631 */ 632 if (!cur_trans) { 633 if (transid > root->fs_info->last_trans_committed) 634 ret = -EINVAL; 635 goto out; 636 } 637 } else { 638 /* find newest transaction that is committing | committed */ 639 spin_lock(&root->fs_info->trans_lock); 640 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 641 list) { 642 if (t->state >= TRANS_STATE_COMMIT_START) { 643 if (t->state == TRANS_STATE_COMPLETED) 644 break; 645 cur_trans = t; 646 atomic_inc(&cur_trans->use_count); 647 break; 648 } 649 } 650 spin_unlock(&root->fs_info->trans_lock); 651 if (!cur_trans) 652 goto out; /* nothing committing|committed */ 653 } 654 655 wait_for_commit(root, cur_trans); 656 btrfs_put_transaction(cur_trans); 657 out: 658 return ret; 659 } 660 661 void btrfs_throttle(struct btrfs_root *root) 662 { 663 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 664 wait_current_trans(root); 665 } 666 667 static int should_end_transaction(struct btrfs_trans_handle *trans, 668 struct btrfs_root *root) 669 { 670 if (root->fs_info->global_block_rsv.space_info->full && 671 btrfs_check_space_for_delayed_refs(trans, root)) 672 return 1; 673 674 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 675 } 676 677 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 678 struct btrfs_root *root) 679 { 680 struct btrfs_transaction *cur_trans = trans->transaction; 681 int updates; 682 int err; 683 684 smp_mb(); 685 if (cur_trans->state >= TRANS_STATE_BLOCKED || 686 cur_trans->delayed_refs.flushing) 687 return 1; 688 689 updates = trans->delayed_ref_updates; 690 trans->delayed_ref_updates = 0; 691 if (updates) { 692 err = btrfs_run_delayed_refs(trans, root, updates); 693 if (err) /* Error code will also eval true */ 694 return err; 695 } 696 697 return should_end_transaction(trans, root); 698 } 699 700 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 701 struct btrfs_root *root, int throttle) 702 { 703 struct btrfs_transaction *cur_trans = trans->transaction; 704 struct btrfs_fs_info *info = root->fs_info; 705 unsigned long cur = trans->delayed_ref_updates; 706 int lock = (trans->type != TRANS_JOIN_NOLOCK); 707 int err = 0; 708 int must_run_delayed_refs = 0; 709 710 if (trans->use_count > 1) { 711 trans->use_count--; 712 trans->block_rsv = trans->orig_rsv; 713 return 0; 714 } 715 716 btrfs_trans_release_metadata(trans, root); 717 trans->block_rsv = NULL; 718 719 if (!list_empty(&trans->new_bgs)) 720 btrfs_create_pending_block_groups(trans, root); 721 722 trans->delayed_ref_updates = 0; 723 if (!trans->sync) { 724 must_run_delayed_refs = 725 btrfs_should_throttle_delayed_refs(trans, root); 726 cur = max_t(unsigned long, cur, 32); 727 728 /* 729 * don't make the caller wait if they are from a NOLOCK 730 * or ATTACH transaction, it will deadlock with commit 731 */ 732 if (must_run_delayed_refs == 1 && 733 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 734 must_run_delayed_refs = 2; 735 } 736 737 if (trans->qgroup_reserved) { 738 /* 739 * the same root has to be passed here between start_transaction 740 * and end_transaction. Subvolume quota depends on this. 741 */ 742 btrfs_qgroup_free(trans->root, trans->qgroup_reserved); 743 trans->qgroup_reserved = 0; 744 } 745 746 btrfs_trans_release_metadata(trans, root); 747 trans->block_rsv = NULL; 748 749 if (!list_empty(&trans->new_bgs)) 750 btrfs_create_pending_block_groups(trans, root); 751 752 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 753 should_end_transaction(trans, root) && 754 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 755 spin_lock(&info->trans_lock); 756 if (cur_trans->state == TRANS_STATE_RUNNING) 757 cur_trans->state = TRANS_STATE_BLOCKED; 758 spin_unlock(&info->trans_lock); 759 } 760 761 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 762 if (throttle) 763 return btrfs_commit_transaction(trans, root); 764 else 765 wake_up_process(info->transaction_kthread); 766 } 767 768 if (trans->type & __TRANS_FREEZABLE) 769 sb_end_intwrite(root->fs_info->sb); 770 771 WARN_ON(cur_trans != info->running_transaction); 772 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 773 atomic_dec(&cur_trans->num_writers); 774 extwriter_counter_dec(cur_trans, trans->type); 775 776 smp_mb(); 777 if (waitqueue_active(&cur_trans->writer_wait)) 778 wake_up(&cur_trans->writer_wait); 779 btrfs_put_transaction(cur_trans); 780 781 if (current->journal_info == trans) 782 current->journal_info = NULL; 783 784 if (throttle) 785 btrfs_run_delayed_iputs(root); 786 787 if (trans->aborted || 788 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 789 wake_up_process(info->transaction_kthread); 790 err = -EIO; 791 } 792 assert_qgroups_uptodate(trans); 793 794 kmem_cache_free(btrfs_trans_handle_cachep, trans); 795 if (must_run_delayed_refs) { 796 btrfs_async_run_delayed_refs(root, cur, 797 must_run_delayed_refs == 1); 798 } 799 return err; 800 } 801 802 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 803 struct btrfs_root *root) 804 { 805 return __btrfs_end_transaction(trans, root, 0); 806 } 807 808 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 809 struct btrfs_root *root) 810 { 811 return __btrfs_end_transaction(trans, root, 1); 812 } 813 814 /* 815 * when btree blocks are allocated, they have some corresponding bits set for 816 * them in one of two extent_io trees. This is used to make sure all of 817 * those extents are sent to disk but does not wait on them 818 */ 819 int btrfs_write_marked_extents(struct btrfs_root *root, 820 struct extent_io_tree *dirty_pages, int mark) 821 { 822 int err = 0; 823 int werr = 0; 824 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 825 struct extent_state *cached_state = NULL; 826 u64 start = 0; 827 u64 end; 828 829 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 830 mark, &cached_state)) { 831 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 832 mark, &cached_state, GFP_NOFS); 833 cached_state = NULL; 834 err = filemap_fdatawrite_range(mapping, start, end); 835 if (err) 836 werr = err; 837 cond_resched(); 838 start = end + 1; 839 } 840 if (err) 841 werr = err; 842 return werr; 843 } 844 845 /* 846 * when btree blocks are allocated, they have some corresponding bits set for 847 * them in one of two extent_io trees. This is used to make sure all of 848 * those extents are on disk for transaction or log commit. We wait 849 * on all the pages and clear them from the dirty pages state tree 850 */ 851 int btrfs_wait_marked_extents(struct btrfs_root *root, 852 struct extent_io_tree *dirty_pages, int mark) 853 { 854 int err = 0; 855 int werr = 0; 856 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 857 struct extent_state *cached_state = NULL; 858 u64 start = 0; 859 u64 end; 860 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 861 bool errors = false; 862 863 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 864 EXTENT_NEED_WAIT, &cached_state)) { 865 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 866 0, 0, &cached_state, GFP_NOFS); 867 err = filemap_fdatawait_range(mapping, start, end); 868 if (err) 869 werr = err; 870 cond_resched(); 871 start = end + 1; 872 } 873 if (err) 874 werr = err; 875 876 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 877 if ((mark & EXTENT_DIRTY) && 878 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, 879 &btree_ino->runtime_flags)) 880 errors = true; 881 882 if ((mark & EXTENT_NEW) && 883 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, 884 &btree_ino->runtime_flags)) 885 errors = true; 886 } else { 887 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR, 888 &btree_ino->runtime_flags)) 889 errors = true; 890 } 891 892 if (errors && !werr) 893 werr = -EIO; 894 895 return werr; 896 } 897 898 /* 899 * when btree blocks are allocated, they have some corresponding bits set for 900 * them in one of two extent_io trees. This is used to make sure all of 901 * those extents are on disk for transaction or log commit 902 */ 903 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 904 struct extent_io_tree *dirty_pages, int mark) 905 { 906 int ret; 907 int ret2; 908 struct blk_plug plug; 909 910 blk_start_plug(&plug); 911 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 912 blk_finish_plug(&plug); 913 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 914 915 if (ret) 916 return ret; 917 if (ret2) 918 return ret2; 919 return 0; 920 } 921 922 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 923 struct btrfs_root *root) 924 { 925 if (!trans || !trans->transaction) { 926 struct inode *btree_inode; 927 btree_inode = root->fs_info->btree_inode; 928 return filemap_write_and_wait(btree_inode->i_mapping); 929 } 930 return btrfs_write_and_wait_marked_extents(root, 931 &trans->transaction->dirty_pages, 932 EXTENT_DIRTY); 933 } 934 935 /* 936 * this is used to update the root pointer in the tree of tree roots. 937 * 938 * But, in the case of the extent allocation tree, updating the root 939 * pointer may allocate blocks which may change the root of the extent 940 * allocation tree. 941 * 942 * So, this loops and repeats and makes sure the cowonly root didn't 943 * change while the root pointer was being updated in the metadata. 944 */ 945 static int update_cowonly_root(struct btrfs_trans_handle *trans, 946 struct btrfs_root *root) 947 { 948 int ret; 949 u64 old_root_bytenr; 950 u64 old_root_used; 951 struct btrfs_root *tree_root = root->fs_info->tree_root; 952 953 old_root_used = btrfs_root_used(&root->root_item); 954 btrfs_write_dirty_block_groups(trans, root); 955 956 while (1) { 957 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 958 if (old_root_bytenr == root->node->start && 959 old_root_used == btrfs_root_used(&root->root_item)) 960 break; 961 962 btrfs_set_root_node(&root->root_item, root->node); 963 ret = btrfs_update_root(trans, tree_root, 964 &root->root_key, 965 &root->root_item); 966 if (ret) 967 return ret; 968 969 old_root_used = btrfs_root_used(&root->root_item); 970 ret = btrfs_write_dirty_block_groups(trans, root); 971 if (ret) 972 return ret; 973 } 974 975 return 0; 976 } 977 978 /* 979 * update all the cowonly tree roots on disk 980 * 981 * The error handling in this function may not be obvious. Any of the 982 * failures will cause the file system to go offline. We still need 983 * to clean up the delayed refs. 984 */ 985 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 986 struct btrfs_root *root) 987 { 988 struct btrfs_fs_info *fs_info = root->fs_info; 989 struct list_head *next; 990 struct extent_buffer *eb; 991 int ret; 992 993 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 994 if (ret) 995 return ret; 996 997 eb = btrfs_lock_root_node(fs_info->tree_root); 998 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 999 0, &eb); 1000 btrfs_tree_unlock(eb); 1001 free_extent_buffer(eb); 1002 1003 if (ret) 1004 return ret; 1005 1006 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1007 if (ret) 1008 return ret; 1009 1010 ret = btrfs_run_dev_stats(trans, root->fs_info); 1011 if (ret) 1012 return ret; 1013 ret = btrfs_run_dev_replace(trans, root->fs_info); 1014 if (ret) 1015 return ret; 1016 ret = btrfs_run_qgroups(trans, root->fs_info); 1017 if (ret) 1018 return ret; 1019 1020 /* run_qgroups might have added some more refs */ 1021 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1022 if (ret) 1023 return ret; 1024 1025 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1026 next = fs_info->dirty_cowonly_roots.next; 1027 list_del_init(next); 1028 root = list_entry(next, struct btrfs_root, dirty_list); 1029 1030 if (root != fs_info->extent_root) 1031 list_add_tail(&root->dirty_list, 1032 &trans->transaction->switch_commits); 1033 ret = update_cowonly_root(trans, root); 1034 if (ret) 1035 return ret; 1036 } 1037 1038 list_add_tail(&fs_info->extent_root->dirty_list, 1039 &trans->transaction->switch_commits); 1040 btrfs_after_dev_replace_commit(fs_info); 1041 1042 return 0; 1043 } 1044 1045 /* 1046 * dead roots are old snapshots that need to be deleted. This allocates 1047 * a dirty root struct and adds it into the list of dead roots that need to 1048 * be deleted 1049 */ 1050 void btrfs_add_dead_root(struct btrfs_root *root) 1051 { 1052 spin_lock(&root->fs_info->trans_lock); 1053 if (list_empty(&root->root_list)) 1054 list_add_tail(&root->root_list, &root->fs_info->dead_roots); 1055 spin_unlock(&root->fs_info->trans_lock); 1056 } 1057 1058 /* 1059 * update all the cowonly tree roots on disk 1060 */ 1061 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 1062 struct btrfs_root *root) 1063 { 1064 struct btrfs_root *gang[8]; 1065 struct btrfs_fs_info *fs_info = root->fs_info; 1066 int i; 1067 int ret; 1068 int err = 0; 1069 1070 spin_lock(&fs_info->fs_roots_radix_lock); 1071 while (1) { 1072 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1073 (void **)gang, 0, 1074 ARRAY_SIZE(gang), 1075 BTRFS_ROOT_TRANS_TAG); 1076 if (ret == 0) 1077 break; 1078 for (i = 0; i < ret; i++) { 1079 root = gang[i]; 1080 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1081 (unsigned long)root->root_key.objectid, 1082 BTRFS_ROOT_TRANS_TAG); 1083 spin_unlock(&fs_info->fs_roots_radix_lock); 1084 1085 btrfs_free_log(trans, root); 1086 btrfs_update_reloc_root(trans, root); 1087 btrfs_orphan_commit_root(trans, root); 1088 1089 btrfs_save_ino_cache(root, trans); 1090 1091 /* see comments in should_cow_block() */ 1092 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1093 smp_mb__after_atomic(); 1094 1095 if (root->commit_root != root->node) { 1096 list_add_tail(&root->dirty_list, 1097 &trans->transaction->switch_commits); 1098 btrfs_set_root_node(&root->root_item, 1099 root->node); 1100 } 1101 1102 err = btrfs_update_root(trans, fs_info->tree_root, 1103 &root->root_key, 1104 &root->root_item); 1105 spin_lock(&fs_info->fs_roots_radix_lock); 1106 if (err) 1107 break; 1108 } 1109 } 1110 spin_unlock(&fs_info->fs_roots_radix_lock); 1111 return err; 1112 } 1113 1114 /* 1115 * defrag a given btree. 1116 * Every leaf in the btree is read and defragged. 1117 */ 1118 int btrfs_defrag_root(struct btrfs_root *root) 1119 { 1120 struct btrfs_fs_info *info = root->fs_info; 1121 struct btrfs_trans_handle *trans; 1122 int ret; 1123 1124 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1125 return 0; 1126 1127 while (1) { 1128 trans = btrfs_start_transaction(root, 0); 1129 if (IS_ERR(trans)) 1130 return PTR_ERR(trans); 1131 1132 ret = btrfs_defrag_leaves(trans, root); 1133 1134 btrfs_end_transaction(trans, root); 1135 btrfs_btree_balance_dirty(info->tree_root); 1136 cond_resched(); 1137 1138 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 1139 break; 1140 1141 if (btrfs_defrag_cancelled(root->fs_info)) { 1142 pr_debug("BTRFS: defrag_root cancelled\n"); 1143 ret = -EAGAIN; 1144 break; 1145 } 1146 } 1147 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1148 return ret; 1149 } 1150 1151 /* 1152 * new snapshots need to be created at a very specific time in the 1153 * transaction commit. This does the actual creation. 1154 * 1155 * Note: 1156 * If the error which may affect the commitment of the current transaction 1157 * happens, we should return the error number. If the error which just affect 1158 * the creation of the pending snapshots, just return 0. 1159 */ 1160 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1161 struct btrfs_fs_info *fs_info, 1162 struct btrfs_pending_snapshot *pending) 1163 { 1164 struct btrfs_key key; 1165 struct btrfs_root_item *new_root_item; 1166 struct btrfs_root *tree_root = fs_info->tree_root; 1167 struct btrfs_root *root = pending->root; 1168 struct btrfs_root *parent_root; 1169 struct btrfs_block_rsv *rsv; 1170 struct inode *parent_inode; 1171 struct btrfs_path *path; 1172 struct btrfs_dir_item *dir_item; 1173 struct dentry *dentry; 1174 struct extent_buffer *tmp; 1175 struct extent_buffer *old; 1176 struct timespec cur_time = CURRENT_TIME; 1177 int ret = 0; 1178 u64 to_reserve = 0; 1179 u64 index = 0; 1180 u64 objectid; 1181 u64 root_flags; 1182 uuid_le new_uuid; 1183 1184 path = btrfs_alloc_path(); 1185 if (!path) { 1186 pending->error = -ENOMEM; 1187 return 0; 1188 } 1189 1190 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1191 if (!new_root_item) { 1192 pending->error = -ENOMEM; 1193 goto root_item_alloc_fail; 1194 } 1195 1196 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1197 if (pending->error) 1198 goto no_free_objectid; 1199 1200 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); 1201 1202 if (to_reserve > 0) { 1203 pending->error = btrfs_block_rsv_add(root, 1204 &pending->block_rsv, 1205 to_reserve, 1206 BTRFS_RESERVE_NO_FLUSH); 1207 if (pending->error) 1208 goto no_free_objectid; 1209 } 1210 1211 key.objectid = objectid; 1212 key.offset = (u64)-1; 1213 key.type = BTRFS_ROOT_ITEM_KEY; 1214 1215 rsv = trans->block_rsv; 1216 trans->block_rsv = &pending->block_rsv; 1217 trans->bytes_reserved = trans->block_rsv->reserved; 1218 1219 dentry = pending->dentry; 1220 parent_inode = pending->dir; 1221 parent_root = BTRFS_I(parent_inode)->root; 1222 record_root_in_trans(trans, parent_root); 1223 1224 /* 1225 * insert the directory item 1226 */ 1227 ret = btrfs_set_inode_index(parent_inode, &index); 1228 BUG_ON(ret); /* -ENOMEM */ 1229 1230 /* check if there is a file/dir which has the same name. */ 1231 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1232 btrfs_ino(parent_inode), 1233 dentry->d_name.name, 1234 dentry->d_name.len, 0); 1235 if (dir_item != NULL && !IS_ERR(dir_item)) { 1236 pending->error = -EEXIST; 1237 goto dir_item_existed; 1238 } else if (IS_ERR(dir_item)) { 1239 ret = PTR_ERR(dir_item); 1240 btrfs_abort_transaction(trans, root, ret); 1241 goto fail; 1242 } 1243 btrfs_release_path(path); 1244 1245 /* 1246 * pull in the delayed directory update 1247 * and the delayed inode item 1248 * otherwise we corrupt the FS during 1249 * snapshot 1250 */ 1251 ret = btrfs_run_delayed_items(trans, root); 1252 if (ret) { /* Transaction aborted */ 1253 btrfs_abort_transaction(trans, root, ret); 1254 goto fail; 1255 } 1256 1257 record_root_in_trans(trans, root); 1258 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1259 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1260 btrfs_check_and_init_root_item(new_root_item); 1261 1262 root_flags = btrfs_root_flags(new_root_item); 1263 if (pending->readonly) 1264 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1265 else 1266 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1267 btrfs_set_root_flags(new_root_item, root_flags); 1268 1269 btrfs_set_root_generation_v2(new_root_item, 1270 trans->transid); 1271 uuid_le_gen(&new_uuid); 1272 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1273 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1274 BTRFS_UUID_SIZE); 1275 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1276 memset(new_root_item->received_uuid, 0, 1277 sizeof(new_root_item->received_uuid)); 1278 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1279 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1280 btrfs_set_root_stransid(new_root_item, 0); 1281 btrfs_set_root_rtransid(new_root_item, 0); 1282 } 1283 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1284 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1285 btrfs_set_root_otransid(new_root_item, trans->transid); 1286 1287 old = btrfs_lock_root_node(root); 1288 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1289 if (ret) { 1290 btrfs_tree_unlock(old); 1291 free_extent_buffer(old); 1292 btrfs_abort_transaction(trans, root, ret); 1293 goto fail; 1294 } 1295 1296 btrfs_set_lock_blocking(old); 1297 1298 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1299 /* clean up in any case */ 1300 btrfs_tree_unlock(old); 1301 free_extent_buffer(old); 1302 if (ret) { 1303 btrfs_abort_transaction(trans, root, ret); 1304 goto fail; 1305 } 1306 1307 /* 1308 * We need to flush delayed refs in order to make sure all of our quota 1309 * operations have been done before we call btrfs_qgroup_inherit. 1310 */ 1311 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1312 if (ret) { 1313 btrfs_abort_transaction(trans, root, ret); 1314 goto fail; 1315 } 1316 1317 ret = btrfs_qgroup_inherit(trans, fs_info, 1318 root->root_key.objectid, 1319 objectid, pending->inherit); 1320 if (ret) { 1321 btrfs_abort_transaction(trans, root, ret); 1322 goto fail; 1323 } 1324 1325 /* see comments in should_cow_block() */ 1326 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1327 smp_wmb(); 1328 1329 btrfs_set_root_node(new_root_item, tmp); 1330 /* record when the snapshot was created in key.offset */ 1331 key.offset = trans->transid; 1332 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1333 btrfs_tree_unlock(tmp); 1334 free_extent_buffer(tmp); 1335 if (ret) { 1336 btrfs_abort_transaction(trans, root, ret); 1337 goto fail; 1338 } 1339 1340 /* 1341 * insert root back/forward references 1342 */ 1343 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1344 parent_root->root_key.objectid, 1345 btrfs_ino(parent_inode), index, 1346 dentry->d_name.name, dentry->d_name.len); 1347 if (ret) { 1348 btrfs_abort_transaction(trans, root, ret); 1349 goto fail; 1350 } 1351 1352 key.offset = (u64)-1; 1353 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1354 if (IS_ERR(pending->snap)) { 1355 ret = PTR_ERR(pending->snap); 1356 btrfs_abort_transaction(trans, root, ret); 1357 goto fail; 1358 } 1359 1360 ret = btrfs_reloc_post_snapshot(trans, pending); 1361 if (ret) { 1362 btrfs_abort_transaction(trans, root, ret); 1363 goto fail; 1364 } 1365 1366 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1367 if (ret) { 1368 btrfs_abort_transaction(trans, root, ret); 1369 goto fail; 1370 } 1371 1372 ret = btrfs_insert_dir_item(trans, parent_root, 1373 dentry->d_name.name, dentry->d_name.len, 1374 parent_inode, &key, 1375 BTRFS_FT_DIR, index); 1376 /* We have check then name at the beginning, so it is impossible. */ 1377 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1378 if (ret) { 1379 btrfs_abort_transaction(trans, root, ret); 1380 goto fail; 1381 } 1382 1383 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1384 dentry->d_name.len * 2); 1385 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1386 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1387 if (ret) { 1388 btrfs_abort_transaction(trans, root, ret); 1389 goto fail; 1390 } 1391 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b, 1392 BTRFS_UUID_KEY_SUBVOL, objectid); 1393 if (ret) { 1394 btrfs_abort_transaction(trans, root, ret); 1395 goto fail; 1396 } 1397 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1398 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 1399 new_root_item->received_uuid, 1400 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1401 objectid); 1402 if (ret && ret != -EEXIST) { 1403 btrfs_abort_transaction(trans, root, ret); 1404 goto fail; 1405 } 1406 } 1407 fail: 1408 pending->error = ret; 1409 dir_item_existed: 1410 trans->block_rsv = rsv; 1411 trans->bytes_reserved = 0; 1412 no_free_objectid: 1413 kfree(new_root_item); 1414 root_item_alloc_fail: 1415 btrfs_free_path(path); 1416 return ret; 1417 } 1418 1419 /* 1420 * create all the snapshots we've scheduled for creation 1421 */ 1422 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1423 struct btrfs_fs_info *fs_info) 1424 { 1425 struct btrfs_pending_snapshot *pending, *next; 1426 struct list_head *head = &trans->transaction->pending_snapshots; 1427 int ret = 0; 1428 1429 list_for_each_entry_safe(pending, next, head, list) { 1430 list_del(&pending->list); 1431 ret = create_pending_snapshot(trans, fs_info, pending); 1432 if (ret) 1433 break; 1434 } 1435 return ret; 1436 } 1437 1438 static void update_super_roots(struct btrfs_root *root) 1439 { 1440 struct btrfs_root_item *root_item; 1441 struct btrfs_super_block *super; 1442 1443 super = root->fs_info->super_copy; 1444 1445 root_item = &root->fs_info->chunk_root->root_item; 1446 super->chunk_root = root_item->bytenr; 1447 super->chunk_root_generation = root_item->generation; 1448 super->chunk_root_level = root_item->level; 1449 1450 root_item = &root->fs_info->tree_root->root_item; 1451 super->root = root_item->bytenr; 1452 super->generation = root_item->generation; 1453 super->root_level = root_item->level; 1454 if (btrfs_test_opt(root, SPACE_CACHE)) 1455 super->cache_generation = root_item->generation; 1456 if (root->fs_info->update_uuid_tree_gen) 1457 super->uuid_tree_generation = root_item->generation; 1458 } 1459 1460 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1461 { 1462 struct btrfs_transaction *trans; 1463 int ret = 0; 1464 1465 spin_lock(&info->trans_lock); 1466 trans = info->running_transaction; 1467 if (trans) 1468 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1469 spin_unlock(&info->trans_lock); 1470 return ret; 1471 } 1472 1473 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1474 { 1475 struct btrfs_transaction *trans; 1476 int ret = 0; 1477 1478 spin_lock(&info->trans_lock); 1479 trans = info->running_transaction; 1480 if (trans) 1481 ret = is_transaction_blocked(trans); 1482 spin_unlock(&info->trans_lock); 1483 return ret; 1484 } 1485 1486 /* 1487 * wait for the current transaction commit to start and block subsequent 1488 * transaction joins 1489 */ 1490 static void wait_current_trans_commit_start(struct btrfs_root *root, 1491 struct btrfs_transaction *trans) 1492 { 1493 wait_event(root->fs_info->transaction_blocked_wait, 1494 trans->state >= TRANS_STATE_COMMIT_START || 1495 trans->aborted); 1496 } 1497 1498 /* 1499 * wait for the current transaction to start and then become unblocked. 1500 * caller holds ref. 1501 */ 1502 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1503 struct btrfs_transaction *trans) 1504 { 1505 wait_event(root->fs_info->transaction_wait, 1506 trans->state >= TRANS_STATE_UNBLOCKED || 1507 trans->aborted); 1508 } 1509 1510 /* 1511 * commit transactions asynchronously. once btrfs_commit_transaction_async 1512 * returns, any subsequent transaction will not be allowed to join. 1513 */ 1514 struct btrfs_async_commit { 1515 struct btrfs_trans_handle *newtrans; 1516 struct btrfs_root *root; 1517 struct work_struct work; 1518 }; 1519 1520 static void do_async_commit(struct work_struct *work) 1521 { 1522 struct btrfs_async_commit *ac = 1523 container_of(work, struct btrfs_async_commit, work); 1524 1525 /* 1526 * We've got freeze protection passed with the transaction. 1527 * Tell lockdep about it. 1528 */ 1529 if (ac->newtrans->type & __TRANS_FREEZABLE) 1530 rwsem_acquire_read( 1531 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1532 0, 1, _THIS_IP_); 1533 1534 current->journal_info = ac->newtrans; 1535 1536 btrfs_commit_transaction(ac->newtrans, ac->root); 1537 kfree(ac); 1538 } 1539 1540 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1541 struct btrfs_root *root, 1542 int wait_for_unblock) 1543 { 1544 struct btrfs_async_commit *ac; 1545 struct btrfs_transaction *cur_trans; 1546 1547 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1548 if (!ac) 1549 return -ENOMEM; 1550 1551 INIT_WORK(&ac->work, do_async_commit); 1552 ac->root = root; 1553 ac->newtrans = btrfs_join_transaction(root); 1554 if (IS_ERR(ac->newtrans)) { 1555 int err = PTR_ERR(ac->newtrans); 1556 kfree(ac); 1557 return err; 1558 } 1559 1560 /* take transaction reference */ 1561 cur_trans = trans->transaction; 1562 atomic_inc(&cur_trans->use_count); 1563 1564 btrfs_end_transaction(trans, root); 1565 1566 /* 1567 * Tell lockdep we've released the freeze rwsem, since the 1568 * async commit thread will be the one to unlock it. 1569 */ 1570 if (ac->newtrans->type & __TRANS_FREEZABLE) 1571 rwsem_release( 1572 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1573 1, _THIS_IP_); 1574 1575 schedule_work(&ac->work); 1576 1577 /* wait for transaction to start and unblock */ 1578 if (wait_for_unblock) 1579 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1580 else 1581 wait_current_trans_commit_start(root, cur_trans); 1582 1583 if (current->journal_info == trans) 1584 current->journal_info = NULL; 1585 1586 btrfs_put_transaction(cur_trans); 1587 return 0; 1588 } 1589 1590 1591 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1592 struct btrfs_root *root, int err) 1593 { 1594 struct btrfs_transaction *cur_trans = trans->transaction; 1595 DEFINE_WAIT(wait); 1596 1597 WARN_ON(trans->use_count > 1); 1598 1599 btrfs_abort_transaction(trans, root, err); 1600 1601 spin_lock(&root->fs_info->trans_lock); 1602 1603 /* 1604 * If the transaction is removed from the list, it means this 1605 * transaction has been committed successfully, so it is impossible 1606 * to call the cleanup function. 1607 */ 1608 BUG_ON(list_empty(&cur_trans->list)); 1609 1610 list_del_init(&cur_trans->list); 1611 if (cur_trans == root->fs_info->running_transaction) { 1612 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1613 spin_unlock(&root->fs_info->trans_lock); 1614 wait_event(cur_trans->writer_wait, 1615 atomic_read(&cur_trans->num_writers) == 1); 1616 1617 spin_lock(&root->fs_info->trans_lock); 1618 } 1619 spin_unlock(&root->fs_info->trans_lock); 1620 1621 btrfs_cleanup_one_transaction(trans->transaction, root); 1622 1623 spin_lock(&root->fs_info->trans_lock); 1624 if (cur_trans == root->fs_info->running_transaction) 1625 root->fs_info->running_transaction = NULL; 1626 spin_unlock(&root->fs_info->trans_lock); 1627 1628 if (trans->type & __TRANS_FREEZABLE) 1629 sb_end_intwrite(root->fs_info->sb); 1630 btrfs_put_transaction(cur_trans); 1631 btrfs_put_transaction(cur_trans); 1632 1633 trace_btrfs_transaction_commit(root); 1634 1635 if (current->journal_info == trans) 1636 current->journal_info = NULL; 1637 btrfs_scrub_cancel(root->fs_info); 1638 1639 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1640 } 1641 1642 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1643 { 1644 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1645 return btrfs_start_delalloc_roots(fs_info, 1, -1); 1646 return 0; 1647 } 1648 1649 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1650 { 1651 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1652 btrfs_wait_ordered_roots(fs_info, -1); 1653 } 1654 1655 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1656 struct btrfs_root *root) 1657 { 1658 struct btrfs_transaction *cur_trans = trans->transaction; 1659 struct btrfs_transaction *prev_trans = NULL; 1660 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 1661 int ret; 1662 1663 /* Stop the commit early if ->aborted is set */ 1664 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1665 ret = cur_trans->aborted; 1666 btrfs_end_transaction(trans, root); 1667 return ret; 1668 } 1669 1670 /* make a pass through all the delayed refs we have so far 1671 * any runnings procs may add more while we are here 1672 */ 1673 ret = btrfs_run_delayed_refs(trans, root, 0); 1674 if (ret) { 1675 btrfs_end_transaction(trans, root); 1676 return ret; 1677 } 1678 1679 btrfs_trans_release_metadata(trans, root); 1680 trans->block_rsv = NULL; 1681 if (trans->qgroup_reserved) { 1682 btrfs_qgroup_free(root, trans->qgroup_reserved); 1683 trans->qgroup_reserved = 0; 1684 } 1685 1686 cur_trans = trans->transaction; 1687 1688 /* 1689 * set the flushing flag so procs in this transaction have to 1690 * start sending their work down. 1691 */ 1692 cur_trans->delayed_refs.flushing = 1; 1693 smp_wmb(); 1694 1695 if (!list_empty(&trans->new_bgs)) 1696 btrfs_create_pending_block_groups(trans, root); 1697 1698 ret = btrfs_run_delayed_refs(trans, root, 0); 1699 if (ret) { 1700 btrfs_end_transaction(trans, root); 1701 return ret; 1702 } 1703 1704 spin_lock(&root->fs_info->trans_lock); 1705 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1706 spin_unlock(&root->fs_info->trans_lock); 1707 atomic_inc(&cur_trans->use_count); 1708 ret = btrfs_end_transaction(trans, root); 1709 1710 wait_for_commit(root, cur_trans); 1711 1712 btrfs_put_transaction(cur_trans); 1713 1714 return ret; 1715 } 1716 1717 cur_trans->state = TRANS_STATE_COMMIT_START; 1718 wake_up(&root->fs_info->transaction_blocked_wait); 1719 1720 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1721 prev_trans = list_entry(cur_trans->list.prev, 1722 struct btrfs_transaction, list); 1723 if (prev_trans->state != TRANS_STATE_COMPLETED) { 1724 atomic_inc(&prev_trans->use_count); 1725 spin_unlock(&root->fs_info->trans_lock); 1726 1727 wait_for_commit(root, prev_trans); 1728 1729 btrfs_put_transaction(prev_trans); 1730 } else { 1731 spin_unlock(&root->fs_info->trans_lock); 1732 } 1733 } else { 1734 spin_unlock(&root->fs_info->trans_lock); 1735 } 1736 1737 extwriter_counter_dec(cur_trans, trans->type); 1738 1739 ret = btrfs_start_delalloc_flush(root->fs_info); 1740 if (ret) 1741 goto cleanup_transaction; 1742 1743 ret = btrfs_run_delayed_items(trans, root); 1744 if (ret) 1745 goto cleanup_transaction; 1746 1747 wait_event(cur_trans->writer_wait, 1748 extwriter_counter_read(cur_trans) == 0); 1749 1750 /* some pending stuffs might be added after the previous flush. */ 1751 ret = btrfs_run_delayed_items(trans, root); 1752 if (ret) 1753 goto cleanup_transaction; 1754 1755 btrfs_wait_delalloc_flush(root->fs_info); 1756 1757 btrfs_scrub_pause(root); 1758 /* 1759 * Ok now we need to make sure to block out any other joins while we 1760 * commit the transaction. We could have started a join before setting 1761 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 1762 */ 1763 spin_lock(&root->fs_info->trans_lock); 1764 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1765 spin_unlock(&root->fs_info->trans_lock); 1766 wait_event(cur_trans->writer_wait, 1767 atomic_read(&cur_trans->num_writers) == 1); 1768 1769 /* ->aborted might be set after the previous check, so check it */ 1770 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1771 ret = cur_trans->aborted; 1772 goto scrub_continue; 1773 } 1774 /* 1775 * the reloc mutex makes sure that we stop 1776 * the balancing code from coming in and moving 1777 * extents around in the middle of the commit 1778 */ 1779 mutex_lock(&root->fs_info->reloc_mutex); 1780 1781 /* 1782 * We needn't worry about the delayed items because we will 1783 * deal with them in create_pending_snapshot(), which is the 1784 * core function of the snapshot creation. 1785 */ 1786 ret = create_pending_snapshots(trans, root->fs_info); 1787 if (ret) { 1788 mutex_unlock(&root->fs_info->reloc_mutex); 1789 goto scrub_continue; 1790 } 1791 1792 /* 1793 * We insert the dir indexes of the snapshots and update the inode 1794 * of the snapshots' parents after the snapshot creation, so there 1795 * are some delayed items which are not dealt with. Now deal with 1796 * them. 1797 * 1798 * We needn't worry that this operation will corrupt the snapshots, 1799 * because all the tree which are snapshoted will be forced to COW 1800 * the nodes and leaves. 1801 */ 1802 ret = btrfs_run_delayed_items(trans, root); 1803 if (ret) { 1804 mutex_unlock(&root->fs_info->reloc_mutex); 1805 goto scrub_continue; 1806 } 1807 1808 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1809 if (ret) { 1810 mutex_unlock(&root->fs_info->reloc_mutex); 1811 goto scrub_continue; 1812 } 1813 1814 /* 1815 * make sure none of the code above managed to slip in a 1816 * delayed item 1817 */ 1818 btrfs_assert_delayed_root_empty(root); 1819 1820 WARN_ON(cur_trans != trans->transaction); 1821 1822 /* btrfs_commit_tree_roots is responsible for getting the 1823 * various roots consistent with each other. Every pointer 1824 * in the tree of tree roots has to point to the most up to date 1825 * root for every subvolume and other tree. So, we have to keep 1826 * the tree logging code from jumping in and changing any 1827 * of the trees. 1828 * 1829 * At this point in the commit, there can't be any tree-log 1830 * writers, but a little lower down we drop the trans mutex 1831 * and let new people in. By holding the tree_log_mutex 1832 * from now until after the super is written, we avoid races 1833 * with the tree-log code. 1834 */ 1835 mutex_lock(&root->fs_info->tree_log_mutex); 1836 1837 ret = commit_fs_roots(trans, root); 1838 if (ret) { 1839 mutex_unlock(&root->fs_info->tree_log_mutex); 1840 mutex_unlock(&root->fs_info->reloc_mutex); 1841 goto scrub_continue; 1842 } 1843 1844 /* 1845 * Since the transaction is done, we should set the inode map cache flag 1846 * before any other comming transaction. 1847 */ 1848 if (btrfs_test_opt(root, CHANGE_INODE_CACHE)) 1849 btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE); 1850 else 1851 btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE); 1852 1853 /* commit_fs_roots gets rid of all the tree log roots, it is now 1854 * safe to free the root of tree log roots 1855 */ 1856 btrfs_free_log_root_tree(trans, root->fs_info); 1857 1858 ret = commit_cowonly_roots(trans, root); 1859 if (ret) { 1860 mutex_unlock(&root->fs_info->tree_log_mutex); 1861 mutex_unlock(&root->fs_info->reloc_mutex); 1862 goto scrub_continue; 1863 } 1864 1865 /* 1866 * The tasks which save the space cache and inode cache may also 1867 * update ->aborted, check it. 1868 */ 1869 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1870 ret = cur_trans->aborted; 1871 mutex_unlock(&root->fs_info->tree_log_mutex); 1872 mutex_unlock(&root->fs_info->reloc_mutex); 1873 goto scrub_continue; 1874 } 1875 1876 btrfs_prepare_extent_commit(trans, root); 1877 1878 cur_trans = root->fs_info->running_transaction; 1879 1880 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1881 root->fs_info->tree_root->node); 1882 list_add_tail(&root->fs_info->tree_root->dirty_list, 1883 &cur_trans->switch_commits); 1884 1885 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1886 root->fs_info->chunk_root->node); 1887 list_add_tail(&root->fs_info->chunk_root->dirty_list, 1888 &cur_trans->switch_commits); 1889 1890 switch_commit_roots(cur_trans, root->fs_info); 1891 1892 assert_qgroups_uptodate(trans); 1893 update_super_roots(root); 1894 1895 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 1896 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 1897 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 1898 sizeof(*root->fs_info->super_copy)); 1899 1900 btrfs_update_commit_device_size(root->fs_info); 1901 btrfs_update_commit_device_bytes_used(root, cur_trans); 1902 1903 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 1904 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 1905 1906 spin_lock(&root->fs_info->trans_lock); 1907 cur_trans->state = TRANS_STATE_UNBLOCKED; 1908 root->fs_info->running_transaction = NULL; 1909 spin_unlock(&root->fs_info->trans_lock); 1910 mutex_unlock(&root->fs_info->reloc_mutex); 1911 1912 wake_up(&root->fs_info->transaction_wait); 1913 1914 ret = btrfs_write_and_wait_transaction(trans, root); 1915 if (ret) { 1916 btrfs_error(root->fs_info, ret, 1917 "Error while writing out transaction"); 1918 mutex_unlock(&root->fs_info->tree_log_mutex); 1919 goto scrub_continue; 1920 } 1921 1922 ret = write_ctree_super(trans, root, 0); 1923 if (ret) { 1924 mutex_unlock(&root->fs_info->tree_log_mutex); 1925 goto scrub_continue; 1926 } 1927 1928 /* 1929 * the super is written, we can safely allow the tree-loggers 1930 * to go about their business 1931 */ 1932 mutex_unlock(&root->fs_info->tree_log_mutex); 1933 1934 btrfs_finish_extent_commit(trans, root); 1935 1936 root->fs_info->last_trans_committed = cur_trans->transid; 1937 /* 1938 * We needn't acquire the lock here because there is no other task 1939 * which can change it. 1940 */ 1941 cur_trans->state = TRANS_STATE_COMPLETED; 1942 wake_up(&cur_trans->commit_wait); 1943 1944 spin_lock(&root->fs_info->trans_lock); 1945 list_del_init(&cur_trans->list); 1946 spin_unlock(&root->fs_info->trans_lock); 1947 1948 btrfs_put_transaction(cur_trans); 1949 btrfs_put_transaction(cur_trans); 1950 1951 if (trans->type & __TRANS_FREEZABLE) 1952 sb_end_intwrite(root->fs_info->sb); 1953 1954 trace_btrfs_transaction_commit(root); 1955 1956 btrfs_scrub_continue(root); 1957 1958 if (current->journal_info == trans) 1959 current->journal_info = NULL; 1960 1961 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1962 1963 if (current != root->fs_info->transaction_kthread) 1964 btrfs_run_delayed_iputs(root); 1965 1966 return ret; 1967 1968 scrub_continue: 1969 btrfs_scrub_continue(root); 1970 cleanup_transaction: 1971 btrfs_trans_release_metadata(trans, root); 1972 trans->block_rsv = NULL; 1973 if (trans->qgroup_reserved) { 1974 btrfs_qgroup_free(root, trans->qgroup_reserved); 1975 trans->qgroup_reserved = 0; 1976 } 1977 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction."); 1978 if (current->journal_info == trans) 1979 current->journal_info = NULL; 1980 cleanup_transaction(trans, root, ret); 1981 1982 return ret; 1983 } 1984 1985 /* 1986 * return < 0 if error 1987 * 0 if there are no more dead_roots at the time of call 1988 * 1 there are more to be processed, call me again 1989 * 1990 * The return value indicates there are certainly more snapshots to delete, but 1991 * if there comes a new one during processing, it may return 0. We don't mind, 1992 * because btrfs_commit_super will poke cleaner thread and it will process it a 1993 * few seconds later. 1994 */ 1995 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 1996 { 1997 int ret; 1998 struct btrfs_fs_info *fs_info = root->fs_info; 1999 2000 spin_lock(&fs_info->trans_lock); 2001 if (list_empty(&fs_info->dead_roots)) { 2002 spin_unlock(&fs_info->trans_lock); 2003 return 0; 2004 } 2005 root = list_first_entry(&fs_info->dead_roots, 2006 struct btrfs_root, root_list); 2007 list_del_init(&root->root_list); 2008 spin_unlock(&fs_info->trans_lock); 2009 2010 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid); 2011 2012 btrfs_kill_all_delayed_nodes(root); 2013 2014 if (btrfs_header_backref_rev(root->node) < 2015 BTRFS_MIXED_BACKREF_REV) 2016 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2017 else 2018 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2019 2020 return (ret < 0) ? 0 : 1; 2021 } 2022