xref: /openbmc/linux/fs/btrfs/transaction.c (revision 62e7ca52)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		while (!list_empty(&transaction->pending_chunks)) {
68 			struct extent_map *em;
69 
70 			em = list_first_entry(&transaction->pending_chunks,
71 					      struct extent_map, list);
72 			list_del_init(&em->list);
73 			free_extent_map(em);
74 		}
75 		kmem_cache_free(btrfs_transaction_cachep, transaction);
76 	}
77 }
78 
79 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
80 					 struct btrfs_fs_info *fs_info)
81 {
82 	struct btrfs_root *root, *tmp;
83 
84 	down_write(&fs_info->commit_root_sem);
85 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
86 				 dirty_list) {
87 		list_del_init(&root->dirty_list);
88 		free_extent_buffer(root->commit_root);
89 		root->commit_root = btrfs_root_node(root);
90 		if (is_fstree(root->objectid))
91 			btrfs_unpin_free_ino(root);
92 	}
93 	up_write(&fs_info->commit_root_sem);
94 }
95 
96 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
97 					 unsigned int type)
98 {
99 	if (type & TRANS_EXTWRITERS)
100 		atomic_inc(&trans->num_extwriters);
101 }
102 
103 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
104 					 unsigned int type)
105 {
106 	if (type & TRANS_EXTWRITERS)
107 		atomic_dec(&trans->num_extwriters);
108 }
109 
110 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
111 					  unsigned int type)
112 {
113 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
114 }
115 
116 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
117 {
118 	return atomic_read(&trans->num_extwriters);
119 }
120 
121 /*
122  * either allocate a new transaction or hop into the existing one
123  */
124 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
125 {
126 	struct btrfs_transaction *cur_trans;
127 	struct btrfs_fs_info *fs_info = root->fs_info;
128 
129 	spin_lock(&fs_info->trans_lock);
130 loop:
131 	/* The file system has been taken offline. No new transactions. */
132 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
133 		spin_unlock(&fs_info->trans_lock);
134 		return -EROFS;
135 	}
136 
137 	cur_trans = fs_info->running_transaction;
138 	if (cur_trans) {
139 		if (cur_trans->aborted) {
140 			spin_unlock(&fs_info->trans_lock);
141 			return cur_trans->aborted;
142 		}
143 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
144 			spin_unlock(&fs_info->trans_lock);
145 			return -EBUSY;
146 		}
147 		atomic_inc(&cur_trans->use_count);
148 		atomic_inc(&cur_trans->num_writers);
149 		extwriter_counter_inc(cur_trans, type);
150 		spin_unlock(&fs_info->trans_lock);
151 		return 0;
152 	}
153 	spin_unlock(&fs_info->trans_lock);
154 
155 	/*
156 	 * If we are ATTACH, we just want to catch the current transaction,
157 	 * and commit it. If there is no transaction, just return ENOENT.
158 	 */
159 	if (type == TRANS_ATTACH)
160 		return -ENOENT;
161 
162 	/*
163 	 * JOIN_NOLOCK only happens during the transaction commit, so
164 	 * it is impossible that ->running_transaction is NULL
165 	 */
166 	BUG_ON(type == TRANS_JOIN_NOLOCK);
167 
168 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
169 	if (!cur_trans)
170 		return -ENOMEM;
171 
172 	spin_lock(&fs_info->trans_lock);
173 	if (fs_info->running_transaction) {
174 		/*
175 		 * someone started a transaction after we unlocked.  Make sure
176 		 * to redo the checks above
177 		 */
178 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
179 		goto loop;
180 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
181 		spin_unlock(&fs_info->trans_lock);
182 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
183 		return -EROFS;
184 	}
185 
186 	atomic_set(&cur_trans->num_writers, 1);
187 	extwriter_counter_init(cur_trans, type);
188 	init_waitqueue_head(&cur_trans->writer_wait);
189 	init_waitqueue_head(&cur_trans->commit_wait);
190 	cur_trans->state = TRANS_STATE_RUNNING;
191 	/*
192 	 * One for this trans handle, one so it will live on until we
193 	 * commit the transaction.
194 	 */
195 	atomic_set(&cur_trans->use_count, 2);
196 	cur_trans->start_time = get_seconds();
197 
198 	cur_trans->delayed_refs.href_root = RB_ROOT;
199 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
200 	cur_trans->delayed_refs.num_heads_ready = 0;
201 	cur_trans->delayed_refs.num_heads = 0;
202 	cur_trans->delayed_refs.flushing = 0;
203 	cur_trans->delayed_refs.run_delayed_start = 0;
204 
205 	/*
206 	 * although the tree mod log is per file system and not per transaction,
207 	 * the log must never go across transaction boundaries.
208 	 */
209 	smp_mb();
210 	if (!list_empty(&fs_info->tree_mod_seq_list))
211 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
212 			"creating a fresh transaction\n");
213 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
214 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
215 			"creating a fresh transaction\n");
216 	atomic64_set(&fs_info->tree_mod_seq, 0);
217 
218 	spin_lock_init(&cur_trans->delayed_refs.lock);
219 
220 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
221 	INIT_LIST_HEAD(&cur_trans->ordered_operations);
222 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
223 	INIT_LIST_HEAD(&cur_trans->switch_commits);
224 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
225 	extent_io_tree_init(&cur_trans->dirty_pages,
226 			     fs_info->btree_inode->i_mapping);
227 	fs_info->generation++;
228 	cur_trans->transid = fs_info->generation;
229 	fs_info->running_transaction = cur_trans;
230 	cur_trans->aborted = 0;
231 	spin_unlock(&fs_info->trans_lock);
232 
233 	return 0;
234 }
235 
236 /*
237  * this does all the record keeping required to make sure that a reference
238  * counted root is properly recorded in a given transaction.  This is required
239  * to make sure the old root from before we joined the transaction is deleted
240  * when the transaction commits
241  */
242 static int record_root_in_trans(struct btrfs_trans_handle *trans,
243 			       struct btrfs_root *root)
244 {
245 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
246 	    root->last_trans < trans->transid) {
247 		WARN_ON(root == root->fs_info->extent_root);
248 		WARN_ON(root->commit_root != root->node);
249 
250 		/*
251 		 * see below for IN_TRANS_SETUP usage rules
252 		 * we have the reloc mutex held now, so there
253 		 * is only one writer in this function
254 		 */
255 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
256 
257 		/* make sure readers find IN_TRANS_SETUP before
258 		 * they find our root->last_trans update
259 		 */
260 		smp_wmb();
261 
262 		spin_lock(&root->fs_info->fs_roots_radix_lock);
263 		if (root->last_trans == trans->transid) {
264 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
265 			return 0;
266 		}
267 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
268 			   (unsigned long)root->root_key.objectid,
269 			   BTRFS_ROOT_TRANS_TAG);
270 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
271 		root->last_trans = trans->transid;
272 
273 		/* this is pretty tricky.  We don't want to
274 		 * take the relocation lock in btrfs_record_root_in_trans
275 		 * unless we're really doing the first setup for this root in
276 		 * this transaction.
277 		 *
278 		 * Normally we'd use root->last_trans as a flag to decide
279 		 * if we want to take the expensive mutex.
280 		 *
281 		 * But, we have to set root->last_trans before we
282 		 * init the relocation root, otherwise, we trip over warnings
283 		 * in ctree.c.  The solution used here is to flag ourselves
284 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
285 		 * fixing up the reloc trees and everyone must wait.
286 		 *
287 		 * When this is zero, they can trust root->last_trans and fly
288 		 * through btrfs_record_root_in_trans without having to take the
289 		 * lock.  smp_wmb() makes sure that all the writes above are
290 		 * done before we pop in the zero below
291 		 */
292 		btrfs_init_reloc_root(trans, root);
293 		smp_mb__before_atomic();
294 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
295 	}
296 	return 0;
297 }
298 
299 
300 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
301 			       struct btrfs_root *root)
302 {
303 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
304 		return 0;
305 
306 	/*
307 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
308 	 * and barriers
309 	 */
310 	smp_rmb();
311 	if (root->last_trans == trans->transid &&
312 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
313 		return 0;
314 
315 	mutex_lock(&root->fs_info->reloc_mutex);
316 	record_root_in_trans(trans, root);
317 	mutex_unlock(&root->fs_info->reloc_mutex);
318 
319 	return 0;
320 }
321 
322 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
323 {
324 	return (trans->state >= TRANS_STATE_BLOCKED &&
325 		trans->state < TRANS_STATE_UNBLOCKED &&
326 		!trans->aborted);
327 }
328 
329 /* wait for commit against the current transaction to become unblocked
330  * when this is done, it is safe to start a new transaction, but the current
331  * transaction might not be fully on disk.
332  */
333 static void wait_current_trans(struct btrfs_root *root)
334 {
335 	struct btrfs_transaction *cur_trans;
336 
337 	spin_lock(&root->fs_info->trans_lock);
338 	cur_trans = root->fs_info->running_transaction;
339 	if (cur_trans && is_transaction_blocked(cur_trans)) {
340 		atomic_inc(&cur_trans->use_count);
341 		spin_unlock(&root->fs_info->trans_lock);
342 
343 		wait_event(root->fs_info->transaction_wait,
344 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
345 			   cur_trans->aborted);
346 		btrfs_put_transaction(cur_trans);
347 	} else {
348 		spin_unlock(&root->fs_info->trans_lock);
349 	}
350 }
351 
352 static int may_wait_transaction(struct btrfs_root *root, int type)
353 {
354 	if (root->fs_info->log_root_recovering)
355 		return 0;
356 
357 	if (type == TRANS_USERSPACE)
358 		return 1;
359 
360 	if (type == TRANS_START &&
361 	    !atomic_read(&root->fs_info->open_ioctl_trans))
362 		return 1;
363 
364 	return 0;
365 }
366 
367 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
368 {
369 	if (!root->fs_info->reloc_ctl ||
370 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
371 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
372 	    root->reloc_root)
373 		return false;
374 
375 	return true;
376 }
377 
378 static struct btrfs_trans_handle *
379 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
380 		  enum btrfs_reserve_flush_enum flush)
381 {
382 	struct btrfs_trans_handle *h;
383 	struct btrfs_transaction *cur_trans;
384 	u64 num_bytes = 0;
385 	u64 qgroup_reserved = 0;
386 	bool reloc_reserved = false;
387 	int ret;
388 
389 	/* Send isn't supposed to start transactions. */
390 	ASSERT(current->journal_info != (void *)BTRFS_SEND_TRANS_STUB);
391 
392 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
393 		return ERR_PTR(-EROFS);
394 
395 	if (current->journal_info) {
396 		WARN_ON(type & TRANS_EXTWRITERS);
397 		h = current->journal_info;
398 		h->use_count++;
399 		WARN_ON(h->use_count > 2);
400 		h->orig_rsv = h->block_rsv;
401 		h->block_rsv = NULL;
402 		goto got_it;
403 	}
404 
405 	/*
406 	 * Do the reservation before we join the transaction so we can do all
407 	 * the appropriate flushing if need be.
408 	 */
409 	if (num_items > 0 && root != root->fs_info->chunk_root) {
410 		if (root->fs_info->quota_enabled &&
411 		    is_fstree(root->root_key.objectid)) {
412 			qgroup_reserved = num_items * root->leafsize;
413 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
414 			if (ret)
415 				return ERR_PTR(ret);
416 		}
417 
418 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
419 		/*
420 		 * Do the reservation for the relocation root creation
421 		 */
422 		if (unlikely(need_reserve_reloc_root(root))) {
423 			num_bytes += root->nodesize;
424 			reloc_reserved = true;
425 		}
426 
427 		ret = btrfs_block_rsv_add(root,
428 					  &root->fs_info->trans_block_rsv,
429 					  num_bytes, flush);
430 		if (ret)
431 			goto reserve_fail;
432 	}
433 again:
434 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
435 	if (!h) {
436 		ret = -ENOMEM;
437 		goto alloc_fail;
438 	}
439 
440 	/*
441 	 * If we are JOIN_NOLOCK we're already committing a transaction and
442 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
443 	 * because we're already holding a ref.  We need this because we could
444 	 * have raced in and did an fsync() on a file which can kick a commit
445 	 * and then we deadlock with somebody doing a freeze.
446 	 *
447 	 * If we are ATTACH, it means we just want to catch the current
448 	 * transaction and commit it, so we needn't do sb_start_intwrite().
449 	 */
450 	if (type & __TRANS_FREEZABLE)
451 		sb_start_intwrite(root->fs_info->sb);
452 
453 	if (may_wait_transaction(root, type))
454 		wait_current_trans(root);
455 
456 	do {
457 		ret = join_transaction(root, type);
458 		if (ret == -EBUSY) {
459 			wait_current_trans(root);
460 			if (unlikely(type == TRANS_ATTACH))
461 				ret = -ENOENT;
462 		}
463 	} while (ret == -EBUSY);
464 
465 	if (ret < 0) {
466 		/* We must get the transaction if we are JOIN_NOLOCK. */
467 		BUG_ON(type == TRANS_JOIN_NOLOCK);
468 		goto join_fail;
469 	}
470 
471 	cur_trans = root->fs_info->running_transaction;
472 
473 	h->transid = cur_trans->transid;
474 	h->transaction = cur_trans;
475 	h->blocks_used = 0;
476 	h->bytes_reserved = 0;
477 	h->root = root;
478 	h->delayed_ref_updates = 0;
479 	h->use_count = 1;
480 	h->adding_csums = 0;
481 	h->block_rsv = NULL;
482 	h->orig_rsv = NULL;
483 	h->aborted = 0;
484 	h->qgroup_reserved = 0;
485 	h->delayed_ref_elem.seq = 0;
486 	h->type = type;
487 	h->allocating_chunk = false;
488 	h->reloc_reserved = false;
489 	h->sync = false;
490 	INIT_LIST_HEAD(&h->qgroup_ref_list);
491 	INIT_LIST_HEAD(&h->new_bgs);
492 
493 	smp_mb();
494 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
495 	    may_wait_transaction(root, type)) {
496 		current->journal_info = h;
497 		btrfs_commit_transaction(h, root);
498 		goto again;
499 	}
500 
501 	if (num_bytes) {
502 		trace_btrfs_space_reservation(root->fs_info, "transaction",
503 					      h->transid, num_bytes, 1);
504 		h->block_rsv = &root->fs_info->trans_block_rsv;
505 		h->bytes_reserved = num_bytes;
506 		h->reloc_reserved = reloc_reserved;
507 	}
508 	h->qgroup_reserved = qgroup_reserved;
509 
510 got_it:
511 	btrfs_record_root_in_trans(h, root);
512 
513 	if (!current->journal_info && type != TRANS_USERSPACE)
514 		current->journal_info = h;
515 	return h;
516 
517 join_fail:
518 	if (type & __TRANS_FREEZABLE)
519 		sb_end_intwrite(root->fs_info->sb);
520 	kmem_cache_free(btrfs_trans_handle_cachep, h);
521 alloc_fail:
522 	if (num_bytes)
523 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
524 					num_bytes);
525 reserve_fail:
526 	if (qgroup_reserved)
527 		btrfs_qgroup_free(root, qgroup_reserved);
528 	return ERR_PTR(ret);
529 }
530 
531 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
532 						   int num_items)
533 {
534 	return start_transaction(root, num_items, TRANS_START,
535 				 BTRFS_RESERVE_FLUSH_ALL);
536 }
537 
538 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
539 					struct btrfs_root *root, int num_items)
540 {
541 	return start_transaction(root, num_items, TRANS_START,
542 				 BTRFS_RESERVE_FLUSH_LIMIT);
543 }
544 
545 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
546 {
547 	return start_transaction(root, 0, TRANS_JOIN, 0);
548 }
549 
550 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
551 {
552 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
553 }
554 
555 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
556 {
557 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
558 }
559 
560 /*
561  * btrfs_attach_transaction() - catch the running transaction
562  *
563  * It is used when we want to commit the current the transaction, but
564  * don't want to start a new one.
565  *
566  * Note: If this function return -ENOENT, it just means there is no
567  * running transaction. But it is possible that the inactive transaction
568  * is still in the memory, not fully on disk. If you hope there is no
569  * inactive transaction in the fs when -ENOENT is returned, you should
570  * invoke
571  *     btrfs_attach_transaction_barrier()
572  */
573 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
574 {
575 	return start_transaction(root, 0, TRANS_ATTACH, 0);
576 }
577 
578 /*
579  * btrfs_attach_transaction_barrier() - catch the running transaction
580  *
581  * It is similar to the above function, the differentia is this one
582  * will wait for all the inactive transactions until they fully
583  * complete.
584  */
585 struct btrfs_trans_handle *
586 btrfs_attach_transaction_barrier(struct btrfs_root *root)
587 {
588 	struct btrfs_trans_handle *trans;
589 
590 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
591 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
592 		btrfs_wait_for_commit(root, 0);
593 
594 	return trans;
595 }
596 
597 /* wait for a transaction commit to be fully complete */
598 static noinline void wait_for_commit(struct btrfs_root *root,
599 				    struct btrfs_transaction *commit)
600 {
601 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
602 }
603 
604 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
605 {
606 	struct btrfs_transaction *cur_trans = NULL, *t;
607 	int ret = 0;
608 
609 	if (transid) {
610 		if (transid <= root->fs_info->last_trans_committed)
611 			goto out;
612 
613 		ret = -EINVAL;
614 		/* find specified transaction */
615 		spin_lock(&root->fs_info->trans_lock);
616 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
617 			if (t->transid == transid) {
618 				cur_trans = t;
619 				atomic_inc(&cur_trans->use_count);
620 				ret = 0;
621 				break;
622 			}
623 			if (t->transid > transid) {
624 				ret = 0;
625 				break;
626 			}
627 		}
628 		spin_unlock(&root->fs_info->trans_lock);
629 		/* The specified transaction doesn't exist */
630 		if (!cur_trans)
631 			goto out;
632 	} else {
633 		/* find newest transaction that is committing | committed */
634 		spin_lock(&root->fs_info->trans_lock);
635 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
636 					    list) {
637 			if (t->state >= TRANS_STATE_COMMIT_START) {
638 				if (t->state == TRANS_STATE_COMPLETED)
639 					break;
640 				cur_trans = t;
641 				atomic_inc(&cur_trans->use_count);
642 				break;
643 			}
644 		}
645 		spin_unlock(&root->fs_info->trans_lock);
646 		if (!cur_trans)
647 			goto out;  /* nothing committing|committed */
648 	}
649 
650 	wait_for_commit(root, cur_trans);
651 	btrfs_put_transaction(cur_trans);
652 out:
653 	return ret;
654 }
655 
656 void btrfs_throttle(struct btrfs_root *root)
657 {
658 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
659 		wait_current_trans(root);
660 }
661 
662 static int should_end_transaction(struct btrfs_trans_handle *trans,
663 				  struct btrfs_root *root)
664 {
665 	if (root->fs_info->global_block_rsv.space_info->full &&
666 	    btrfs_check_space_for_delayed_refs(trans, root))
667 		return 1;
668 
669 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
670 }
671 
672 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
673 				 struct btrfs_root *root)
674 {
675 	struct btrfs_transaction *cur_trans = trans->transaction;
676 	int updates;
677 	int err;
678 
679 	smp_mb();
680 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
681 	    cur_trans->delayed_refs.flushing)
682 		return 1;
683 
684 	updates = trans->delayed_ref_updates;
685 	trans->delayed_ref_updates = 0;
686 	if (updates) {
687 		err = btrfs_run_delayed_refs(trans, root, updates);
688 		if (err) /* Error code will also eval true */
689 			return err;
690 	}
691 
692 	return should_end_transaction(trans, root);
693 }
694 
695 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
696 			  struct btrfs_root *root, int throttle)
697 {
698 	struct btrfs_transaction *cur_trans = trans->transaction;
699 	struct btrfs_fs_info *info = root->fs_info;
700 	unsigned long cur = trans->delayed_ref_updates;
701 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
702 	int err = 0;
703 	int must_run_delayed_refs = 0;
704 
705 	if (trans->use_count > 1) {
706 		trans->use_count--;
707 		trans->block_rsv = trans->orig_rsv;
708 		return 0;
709 	}
710 
711 	btrfs_trans_release_metadata(trans, root);
712 	trans->block_rsv = NULL;
713 
714 	if (!list_empty(&trans->new_bgs))
715 		btrfs_create_pending_block_groups(trans, root);
716 
717 	trans->delayed_ref_updates = 0;
718 	if (!trans->sync) {
719 		must_run_delayed_refs =
720 			btrfs_should_throttle_delayed_refs(trans, root);
721 		cur = max_t(unsigned long, cur, 32);
722 
723 		/*
724 		 * don't make the caller wait if they are from a NOLOCK
725 		 * or ATTACH transaction, it will deadlock with commit
726 		 */
727 		if (must_run_delayed_refs == 1 &&
728 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
729 			must_run_delayed_refs = 2;
730 	}
731 
732 	if (trans->qgroup_reserved) {
733 		/*
734 		 * the same root has to be passed here between start_transaction
735 		 * and end_transaction. Subvolume quota depends on this.
736 		 */
737 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
738 		trans->qgroup_reserved = 0;
739 	}
740 
741 	btrfs_trans_release_metadata(trans, root);
742 	trans->block_rsv = NULL;
743 
744 	if (!list_empty(&trans->new_bgs))
745 		btrfs_create_pending_block_groups(trans, root);
746 
747 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
748 	    should_end_transaction(trans, root) &&
749 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
750 		spin_lock(&info->trans_lock);
751 		if (cur_trans->state == TRANS_STATE_RUNNING)
752 			cur_trans->state = TRANS_STATE_BLOCKED;
753 		spin_unlock(&info->trans_lock);
754 	}
755 
756 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
757 		if (throttle)
758 			return btrfs_commit_transaction(trans, root);
759 		else
760 			wake_up_process(info->transaction_kthread);
761 	}
762 
763 	if (trans->type & __TRANS_FREEZABLE)
764 		sb_end_intwrite(root->fs_info->sb);
765 
766 	WARN_ON(cur_trans != info->running_transaction);
767 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
768 	atomic_dec(&cur_trans->num_writers);
769 	extwriter_counter_dec(cur_trans, trans->type);
770 
771 	smp_mb();
772 	if (waitqueue_active(&cur_trans->writer_wait))
773 		wake_up(&cur_trans->writer_wait);
774 	btrfs_put_transaction(cur_trans);
775 
776 	if (current->journal_info == trans)
777 		current->journal_info = NULL;
778 
779 	if (throttle)
780 		btrfs_run_delayed_iputs(root);
781 
782 	if (trans->aborted ||
783 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
784 		wake_up_process(info->transaction_kthread);
785 		err = -EIO;
786 	}
787 	assert_qgroups_uptodate(trans);
788 
789 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
790 	if (must_run_delayed_refs) {
791 		btrfs_async_run_delayed_refs(root, cur,
792 					     must_run_delayed_refs == 1);
793 	}
794 	return err;
795 }
796 
797 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
798 			  struct btrfs_root *root)
799 {
800 	return __btrfs_end_transaction(trans, root, 0);
801 }
802 
803 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
804 				   struct btrfs_root *root)
805 {
806 	return __btrfs_end_transaction(trans, root, 1);
807 }
808 
809 /*
810  * when btree blocks are allocated, they have some corresponding bits set for
811  * them in one of two extent_io trees.  This is used to make sure all of
812  * those extents are sent to disk but does not wait on them
813  */
814 int btrfs_write_marked_extents(struct btrfs_root *root,
815 			       struct extent_io_tree *dirty_pages, int mark)
816 {
817 	int err = 0;
818 	int werr = 0;
819 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
820 	struct extent_state *cached_state = NULL;
821 	u64 start = 0;
822 	u64 end;
823 
824 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
825 				      mark, &cached_state)) {
826 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
827 				   mark, &cached_state, GFP_NOFS);
828 		cached_state = NULL;
829 		err = filemap_fdatawrite_range(mapping, start, end);
830 		if (err)
831 			werr = err;
832 		cond_resched();
833 		start = end + 1;
834 	}
835 	if (err)
836 		werr = err;
837 	return werr;
838 }
839 
840 /*
841  * when btree blocks are allocated, they have some corresponding bits set for
842  * them in one of two extent_io trees.  This is used to make sure all of
843  * those extents are on disk for transaction or log commit.  We wait
844  * on all the pages and clear them from the dirty pages state tree
845  */
846 int btrfs_wait_marked_extents(struct btrfs_root *root,
847 			      struct extent_io_tree *dirty_pages, int mark)
848 {
849 	int err = 0;
850 	int werr = 0;
851 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
852 	struct extent_state *cached_state = NULL;
853 	u64 start = 0;
854 	u64 end;
855 
856 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
857 				      EXTENT_NEED_WAIT, &cached_state)) {
858 		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
859 				 0, 0, &cached_state, GFP_NOFS);
860 		err = filemap_fdatawait_range(mapping, start, end);
861 		if (err)
862 			werr = err;
863 		cond_resched();
864 		start = end + 1;
865 	}
866 	if (err)
867 		werr = err;
868 	return werr;
869 }
870 
871 /*
872  * when btree blocks are allocated, they have some corresponding bits set for
873  * them in one of two extent_io trees.  This is used to make sure all of
874  * those extents are on disk for transaction or log commit
875  */
876 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
877 				struct extent_io_tree *dirty_pages, int mark)
878 {
879 	int ret;
880 	int ret2;
881 	struct blk_plug plug;
882 
883 	blk_start_plug(&plug);
884 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
885 	blk_finish_plug(&plug);
886 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
887 
888 	if (ret)
889 		return ret;
890 	if (ret2)
891 		return ret2;
892 	return 0;
893 }
894 
895 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
896 				     struct btrfs_root *root)
897 {
898 	if (!trans || !trans->transaction) {
899 		struct inode *btree_inode;
900 		btree_inode = root->fs_info->btree_inode;
901 		return filemap_write_and_wait(btree_inode->i_mapping);
902 	}
903 	return btrfs_write_and_wait_marked_extents(root,
904 					   &trans->transaction->dirty_pages,
905 					   EXTENT_DIRTY);
906 }
907 
908 /*
909  * this is used to update the root pointer in the tree of tree roots.
910  *
911  * But, in the case of the extent allocation tree, updating the root
912  * pointer may allocate blocks which may change the root of the extent
913  * allocation tree.
914  *
915  * So, this loops and repeats and makes sure the cowonly root didn't
916  * change while the root pointer was being updated in the metadata.
917  */
918 static int update_cowonly_root(struct btrfs_trans_handle *trans,
919 			       struct btrfs_root *root)
920 {
921 	int ret;
922 	u64 old_root_bytenr;
923 	u64 old_root_used;
924 	struct btrfs_root *tree_root = root->fs_info->tree_root;
925 
926 	old_root_used = btrfs_root_used(&root->root_item);
927 	btrfs_write_dirty_block_groups(trans, root);
928 
929 	while (1) {
930 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
931 		if (old_root_bytenr == root->node->start &&
932 		    old_root_used == btrfs_root_used(&root->root_item))
933 			break;
934 
935 		btrfs_set_root_node(&root->root_item, root->node);
936 		ret = btrfs_update_root(trans, tree_root,
937 					&root->root_key,
938 					&root->root_item);
939 		if (ret)
940 			return ret;
941 
942 		old_root_used = btrfs_root_used(&root->root_item);
943 		ret = btrfs_write_dirty_block_groups(trans, root);
944 		if (ret)
945 			return ret;
946 	}
947 
948 	return 0;
949 }
950 
951 /*
952  * update all the cowonly tree roots on disk
953  *
954  * The error handling in this function may not be obvious. Any of the
955  * failures will cause the file system to go offline. We still need
956  * to clean up the delayed refs.
957  */
958 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
959 					 struct btrfs_root *root)
960 {
961 	struct btrfs_fs_info *fs_info = root->fs_info;
962 	struct list_head *next;
963 	struct extent_buffer *eb;
964 	int ret;
965 
966 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
967 	if (ret)
968 		return ret;
969 
970 	eb = btrfs_lock_root_node(fs_info->tree_root);
971 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
972 			      0, &eb);
973 	btrfs_tree_unlock(eb);
974 	free_extent_buffer(eb);
975 
976 	if (ret)
977 		return ret;
978 
979 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
980 	if (ret)
981 		return ret;
982 
983 	ret = btrfs_run_dev_stats(trans, root->fs_info);
984 	if (ret)
985 		return ret;
986 	ret = btrfs_run_dev_replace(trans, root->fs_info);
987 	if (ret)
988 		return ret;
989 	ret = btrfs_run_qgroups(trans, root->fs_info);
990 	if (ret)
991 		return ret;
992 
993 	/* run_qgroups might have added some more refs */
994 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
995 	if (ret)
996 		return ret;
997 
998 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
999 		next = fs_info->dirty_cowonly_roots.next;
1000 		list_del_init(next);
1001 		root = list_entry(next, struct btrfs_root, dirty_list);
1002 
1003 		if (root != fs_info->extent_root)
1004 			list_add_tail(&root->dirty_list,
1005 				      &trans->transaction->switch_commits);
1006 		ret = update_cowonly_root(trans, root);
1007 		if (ret)
1008 			return ret;
1009 	}
1010 
1011 	list_add_tail(&fs_info->extent_root->dirty_list,
1012 		      &trans->transaction->switch_commits);
1013 	btrfs_after_dev_replace_commit(fs_info);
1014 
1015 	return 0;
1016 }
1017 
1018 /*
1019  * dead roots are old snapshots that need to be deleted.  This allocates
1020  * a dirty root struct and adds it into the list of dead roots that need to
1021  * be deleted
1022  */
1023 void btrfs_add_dead_root(struct btrfs_root *root)
1024 {
1025 	spin_lock(&root->fs_info->trans_lock);
1026 	if (list_empty(&root->root_list))
1027 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1028 	spin_unlock(&root->fs_info->trans_lock);
1029 }
1030 
1031 /*
1032  * update all the cowonly tree roots on disk
1033  */
1034 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1035 				    struct btrfs_root *root)
1036 {
1037 	struct btrfs_root *gang[8];
1038 	struct btrfs_fs_info *fs_info = root->fs_info;
1039 	int i;
1040 	int ret;
1041 	int err = 0;
1042 
1043 	spin_lock(&fs_info->fs_roots_radix_lock);
1044 	while (1) {
1045 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1046 						 (void **)gang, 0,
1047 						 ARRAY_SIZE(gang),
1048 						 BTRFS_ROOT_TRANS_TAG);
1049 		if (ret == 0)
1050 			break;
1051 		for (i = 0; i < ret; i++) {
1052 			root = gang[i];
1053 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1054 					(unsigned long)root->root_key.objectid,
1055 					BTRFS_ROOT_TRANS_TAG);
1056 			spin_unlock(&fs_info->fs_roots_radix_lock);
1057 
1058 			btrfs_free_log(trans, root);
1059 			btrfs_update_reloc_root(trans, root);
1060 			btrfs_orphan_commit_root(trans, root);
1061 
1062 			btrfs_save_ino_cache(root, trans);
1063 
1064 			/* see comments in should_cow_block() */
1065 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1066 			smp_mb__after_atomic();
1067 
1068 			if (root->commit_root != root->node) {
1069 				list_add_tail(&root->dirty_list,
1070 					&trans->transaction->switch_commits);
1071 				btrfs_set_root_node(&root->root_item,
1072 						    root->node);
1073 			}
1074 
1075 			err = btrfs_update_root(trans, fs_info->tree_root,
1076 						&root->root_key,
1077 						&root->root_item);
1078 			spin_lock(&fs_info->fs_roots_radix_lock);
1079 			if (err)
1080 				break;
1081 		}
1082 	}
1083 	spin_unlock(&fs_info->fs_roots_radix_lock);
1084 	return err;
1085 }
1086 
1087 /*
1088  * defrag a given btree.
1089  * Every leaf in the btree is read and defragged.
1090  */
1091 int btrfs_defrag_root(struct btrfs_root *root)
1092 {
1093 	struct btrfs_fs_info *info = root->fs_info;
1094 	struct btrfs_trans_handle *trans;
1095 	int ret;
1096 
1097 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1098 		return 0;
1099 
1100 	while (1) {
1101 		trans = btrfs_start_transaction(root, 0);
1102 		if (IS_ERR(trans))
1103 			return PTR_ERR(trans);
1104 
1105 		ret = btrfs_defrag_leaves(trans, root);
1106 
1107 		btrfs_end_transaction(trans, root);
1108 		btrfs_btree_balance_dirty(info->tree_root);
1109 		cond_resched();
1110 
1111 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1112 			break;
1113 
1114 		if (btrfs_defrag_cancelled(root->fs_info)) {
1115 			pr_debug("BTRFS: defrag_root cancelled\n");
1116 			ret = -EAGAIN;
1117 			break;
1118 		}
1119 	}
1120 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1121 	return ret;
1122 }
1123 
1124 /*
1125  * new snapshots need to be created at a very specific time in the
1126  * transaction commit.  This does the actual creation.
1127  *
1128  * Note:
1129  * If the error which may affect the commitment of the current transaction
1130  * happens, we should return the error number. If the error which just affect
1131  * the creation of the pending snapshots, just return 0.
1132  */
1133 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1134 				   struct btrfs_fs_info *fs_info,
1135 				   struct btrfs_pending_snapshot *pending)
1136 {
1137 	struct btrfs_key key;
1138 	struct btrfs_root_item *new_root_item;
1139 	struct btrfs_root *tree_root = fs_info->tree_root;
1140 	struct btrfs_root *root = pending->root;
1141 	struct btrfs_root *parent_root;
1142 	struct btrfs_block_rsv *rsv;
1143 	struct inode *parent_inode;
1144 	struct btrfs_path *path;
1145 	struct btrfs_dir_item *dir_item;
1146 	struct dentry *dentry;
1147 	struct extent_buffer *tmp;
1148 	struct extent_buffer *old;
1149 	struct timespec cur_time = CURRENT_TIME;
1150 	int ret = 0;
1151 	u64 to_reserve = 0;
1152 	u64 index = 0;
1153 	u64 objectid;
1154 	u64 root_flags;
1155 	uuid_le new_uuid;
1156 
1157 	path = btrfs_alloc_path();
1158 	if (!path) {
1159 		pending->error = -ENOMEM;
1160 		return 0;
1161 	}
1162 
1163 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1164 	if (!new_root_item) {
1165 		pending->error = -ENOMEM;
1166 		goto root_item_alloc_fail;
1167 	}
1168 
1169 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1170 	if (pending->error)
1171 		goto no_free_objectid;
1172 
1173 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1174 
1175 	if (to_reserve > 0) {
1176 		pending->error = btrfs_block_rsv_add(root,
1177 						     &pending->block_rsv,
1178 						     to_reserve,
1179 						     BTRFS_RESERVE_NO_FLUSH);
1180 		if (pending->error)
1181 			goto no_free_objectid;
1182 	}
1183 
1184 	key.objectid = objectid;
1185 	key.offset = (u64)-1;
1186 	key.type = BTRFS_ROOT_ITEM_KEY;
1187 
1188 	rsv = trans->block_rsv;
1189 	trans->block_rsv = &pending->block_rsv;
1190 	trans->bytes_reserved = trans->block_rsv->reserved;
1191 
1192 	dentry = pending->dentry;
1193 	parent_inode = pending->dir;
1194 	parent_root = BTRFS_I(parent_inode)->root;
1195 	record_root_in_trans(trans, parent_root);
1196 
1197 	/*
1198 	 * insert the directory item
1199 	 */
1200 	ret = btrfs_set_inode_index(parent_inode, &index);
1201 	BUG_ON(ret); /* -ENOMEM */
1202 
1203 	/* check if there is a file/dir which has the same name. */
1204 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1205 					 btrfs_ino(parent_inode),
1206 					 dentry->d_name.name,
1207 					 dentry->d_name.len, 0);
1208 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1209 		pending->error = -EEXIST;
1210 		goto dir_item_existed;
1211 	} else if (IS_ERR(dir_item)) {
1212 		ret = PTR_ERR(dir_item);
1213 		btrfs_abort_transaction(trans, root, ret);
1214 		goto fail;
1215 	}
1216 	btrfs_release_path(path);
1217 
1218 	/*
1219 	 * pull in the delayed directory update
1220 	 * and the delayed inode item
1221 	 * otherwise we corrupt the FS during
1222 	 * snapshot
1223 	 */
1224 	ret = btrfs_run_delayed_items(trans, root);
1225 	if (ret) {	/* Transaction aborted */
1226 		btrfs_abort_transaction(trans, root, ret);
1227 		goto fail;
1228 	}
1229 
1230 	record_root_in_trans(trans, root);
1231 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1232 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1233 	btrfs_check_and_init_root_item(new_root_item);
1234 
1235 	root_flags = btrfs_root_flags(new_root_item);
1236 	if (pending->readonly)
1237 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1238 	else
1239 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1240 	btrfs_set_root_flags(new_root_item, root_flags);
1241 
1242 	btrfs_set_root_generation_v2(new_root_item,
1243 			trans->transid);
1244 	uuid_le_gen(&new_uuid);
1245 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1246 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1247 			BTRFS_UUID_SIZE);
1248 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1249 		memset(new_root_item->received_uuid, 0,
1250 		       sizeof(new_root_item->received_uuid));
1251 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1252 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1253 		btrfs_set_root_stransid(new_root_item, 0);
1254 		btrfs_set_root_rtransid(new_root_item, 0);
1255 	}
1256 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1257 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1258 	btrfs_set_root_otransid(new_root_item, trans->transid);
1259 
1260 	old = btrfs_lock_root_node(root);
1261 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1262 	if (ret) {
1263 		btrfs_tree_unlock(old);
1264 		free_extent_buffer(old);
1265 		btrfs_abort_transaction(trans, root, ret);
1266 		goto fail;
1267 	}
1268 
1269 	btrfs_set_lock_blocking(old);
1270 
1271 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1272 	/* clean up in any case */
1273 	btrfs_tree_unlock(old);
1274 	free_extent_buffer(old);
1275 	if (ret) {
1276 		btrfs_abort_transaction(trans, root, ret);
1277 		goto fail;
1278 	}
1279 
1280 	/*
1281 	 * We need to flush delayed refs in order to make sure all of our quota
1282 	 * operations have been done before we call btrfs_qgroup_inherit.
1283 	 */
1284 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1285 	if (ret) {
1286 		btrfs_abort_transaction(trans, root, ret);
1287 		goto fail;
1288 	}
1289 
1290 	ret = btrfs_qgroup_inherit(trans, fs_info,
1291 				   root->root_key.objectid,
1292 				   objectid, pending->inherit);
1293 	if (ret) {
1294 		btrfs_abort_transaction(trans, root, ret);
1295 		goto fail;
1296 	}
1297 
1298 	/* see comments in should_cow_block() */
1299 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1300 	smp_wmb();
1301 
1302 	btrfs_set_root_node(new_root_item, tmp);
1303 	/* record when the snapshot was created in key.offset */
1304 	key.offset = trans->transid;
1305 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1306 	btrfs_tree_unlock(tmp);
1307 	free_extent_buffer(tmp);
1308 	if (ret) {
1309 		btrfs_abort_transaction(trans, root, ret);
1310 		goto fail;
1311 	}
1312 
1313 	/*
1314 	 * insert root back/forward references
1315 	 */
1316 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1317 				 parent_root->root_key.objectid,
1318 				 btrfs_ino(parent_inode), index,
1319 				 dentry->d_name.name, dentry->d_name.len);
1320 	if (ret) {
1321 		btrfs_abort_transaction(trans, root, ret);
1322 		goto fail;
1323 	}
1324 
1325 	key.offset = (u64)-1;
1326 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1327 	if (IS_ERR(pending->snap)) {
1328 		ret = PTR_ERR(pending->snap);
1329 		btrfs_abort_transaction(trans, root, ret);
1330 		goto fail;
1331 	}
1332 
1333 	ret = btrfs_reloc_post_snapshot(trans, pending);
1334 	if (ret) {
1335 		btrfs_abort_transaction(trans, root, ret);
1336 		goto fail;
1337 	}
1338 
1339 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1340 	if (ret) {
1341 		btrfs_abort_transaction(trans, root, ret);
1342 		goto fail;
1343 	}
1344 
1345 	ret = btrfs_insert_dir_item(trans, parent_root,
1346 				    dentry->d_name.name, dentry->d_name.len,
1347 				    parent_inode, &key,
1348 				    BTRFS_FT_DIR, index);
1349 	/* We have check then name at the beginning, so it is impossible. */
1350 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1351 	if (ret) {
1352 		btrfs_abort_transaction(trans, root, ret);
1353 		goto fail;
1354 	}
1355 
1356 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1357 					 dentry->d_name.len * 2);
1358 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1359 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1360 	if (ret) {
1361 		btrfs_abort_transaction(trans, root, ret);
1362 		goto fail;
1363 	}
1364 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1365 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1366 	if (ret) {
1367 		btrfs_abort_transaction(trans, root, ret);
1368 		goto fail;
1369 	}
1370 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1371 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1372 					  new_root_item->received_uuid,
1373 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1374 					  objectid);
1375 		if (ret && ret != -EEXIST) {
1376 			btrfs_abort_transaction(trans, root, ret);
1377 			goto fail;
1378 		}
1379 	}
1380 fail:
1381 	pending->error = ret;
1382 dir_item_existed:
1383 	trans->block_rsv = rsv;
1384 	trans->bytes_reserved = 0;
1385 no_free_objectid:
1386 	kfree(new_root_item);
1387 root_item_alloc_fail:
1388 	btrfs_free_path(path);
1389 	return ret;
1390 }
1391 
1392 /*
1393  * create all the snapshots we've scheduled for creation
1394  */
1395 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1396 					     struct btrfs_fs_info *fs_info)
1397 {
1398 	struct btrfs_pending_snapshot *pending, *next;
1399 	struct list_head *head = &trans->transaction->pending_snapshots;
1400 	int ret = 0;
1401 
1402 	list_for_each_entry_safe(pending, next, head, list) {
1403 		list_del(&pending->list);
1404 		ret = create_pending_snapshot(trans, fs_info, pending);
1405 		if (ret)
1406 			break;
1407 	}
1408 	return ret;
1409 }
1410 
1411 static void update_super_roots(struct btrfs_root *root)
1412 {
1413 	struct btrfs_root_item *root_item;
1414 	struct btrfs_super_block *super;
1415 
1416 	super = root->fs_info->super_copy;
1417 
1418 	root_item = &root->fs_info->chunk_root->root_item;
1419 	super->chunk_root = root_item->bytenr;
1420 	super->chunk_root_generation = root_item->generation;
1421 	super->chunk_root_level = root_item->level;
1422 
1423 	root_item = &root->fs_info->tree_root->root_item;
1424 	super->root = root_item->bytenr;
1425 	super->generation = root_item->generation;
1426 	super->root_level = root_item->level;
1427 	if (btrfs_test_opt(root, SPACE_CACHE))
1428 		super->cache_generation = root_item->generation;
1429 	if (root->fs_info->update_uuid_tree_gen)
1430 		super->uuid_tree_generation = root_item->generation;
1431 }
1432 
1433 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1434 {
1435 	struct btrfs_transaction *trans;
1436 	int ret = 0;
1437 
1438 	spin_lock(&info->trans_lock);
1439 	trans = info->running_transaction;
1440 	if (trans)
1441 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1442 	spin_unlock(&info->trans_lock);
1443 	return ret;
1444 }
1445 
1446 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1447 {
1448 	struct btrfs_transaction *trans;
1449 	int ret = 0;
1450 
1451 	spin_lock(&info->trans_lock);
1452 	trans = info->running_transaction;
1453 	if (trans)
1454 		ret = is_transaction_blocked(trans);
1455 	spin_unlock(&info->trans_lock);
1456 	return ret;
1457 }
1458 
1459 /*
1460  * wait for the current transaction commit to start and block subsequent
1461  * transaction joins
1462  */
1463 static void wait_current_trans_commit_start(struct btrfs_root *root,
1464 					    struct btrfs_transaction *trans)
1465 {
1466 	wait_event(root->fs_info->transaction_blocked_wait,
1467 		   trans->state >= TRANS_STATE_COMMIT_START ||
1468 		   trans->aborted);
1469 }
1470 
1471 /*
1472  * wait for the current transaction to start and then become unblocked.
1473  * caller holds ref.
1474  */
1475 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1476 					 struct btrfs_transaction *trans)
1477 {
1478 	wait_event(root->fs_info->transaction_wait,
1479 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1480 		   trans->aborted);
1481 }
1482 
1483 /*
1484  * commit transactions asynchronously. once btrfs_commit_transaction_async
1485  * returns, any subsequent transaction will not be allowed to join.
1486  */
1487 struct btrfs_async_commit {
1488 	struct btrfs_trans_handle *newtrans;
1489 	struct btrfs_root *root;
1490 	struct work_struct work;
1491 };
1492 
1493 static void do_async_commit(struct work_struct *work)
1494 {
1495 	struct btrfs_async_commit *ac =
1496 		container_of(work, struct btrfs_async_commit, work);
1497 
1498 	/*
1499 	 * We've got freeze protection passed with the transaction.
1500 	 * Tell lockdep about it.
1501 	 */
1502 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1503 		rwsem_acquire_read(
1504 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1505 		     0, 1, _THIS_IP_);
1506 
1507 	current->journal_info = ac->newtrans;
1508 
1509 	btrfs_commit_transaction(ac->newtrans, ac->root);
1510 	kfree(ac);
1511 }
1512 
1513 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1514 				   struct btrfs_root *root,
1515 				   int wait_for_unblock)
1516 {
1517 	struct btrfs_async_commit *ac;
1518 	struct btrfs_transaction *cur_trans;
1519 
1520 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1521 	if (!ac)
1522 		return -ENOMEM;
1523 
1524 	INIT_WORK(&ac->work, do_async_commit);
1525 	ac->root = root;
1526 	ac->newtrans = btrfs_join_transaction(root);
1527 	if (IS_ERR(ac->newtrans)) {
1528 		int err = PTR_ERR(ac->newtrans);
1529 		kfree(ac);
1530 		return err;
1531 	}
1532 
1533 	/* take transaction reference */
1534 	cur_trans = trans->transaction;
1535 	atomic_inc(&cur_trans->use_count);
1536 
1537 	btrfs_end_transaction(trans, root);
1538 
1539 	/*
1540 	 * Tell lockdep we've released the freeze rwsem, since the
1541 	 * async commit thread will be the one to unlock it.
1542 	 */
1543 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1544 		rwsem_release(
1545 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1546 			1, _THIS_IP_);
1547 
1548 	schedule_work(&ac->work);
1549 
1550 	/* wait for transaction to start and unblock */
1551 	if (wait_for_unblock)
1552 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1553 	else
1554 		wait_current_trans_commit_start(root, cur_trans);
1555 
1556 	if (current->journal_info == trans)
1557 		current->journal_info = NULL;
1558 
1559 	btrfs_put_transaction(cur_trans);
1560 	return 0;
1561 }
1562 
1563 
1564 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1565 				struct btrfs_root *root, int err)
1566 {
1567 	struct btrfs_transaction *cur_trans = trans->transaction;
1568 	DEFINE_WAIT(wait);
1569 
1570 	WARN_ON(trans->use_count > 1);
1571 
1572 	btrfs_abort_transaction(trans, root, err);
1573 
1574 	spin_lock(&root->fs_info->trans_lock);
1575 
1576 	/*
1577 	 * If the transaction is removed from the list, it means this
1578 	 * transaction has been committed successfully, so it is impossible
1579 	 * to call the cleanup function.
1580 	 */
1581 	BUG_ON(list_empty(&cur_trans->list));
1582 
1583 	list_del_init(&cur_trans->list);
1584 	if (cur_trans == root->fs_info->running_transaction) {
1585 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1586 		spin_unlock(&root->fs_info->trans_lock);
1587 		wait_event(cur_trans->writer_wait,
1588 			   atomic_read(&cur_trans->num_writers) == 1);
1589 
1590 		spin_lock(&root->fs_info->trans_lock);
1591 	}
1592 	spin_unlock(&root->fs_info->trans_lock);
1593 
1594 	btrfs_cleanup_one_transaction(trans->transaction, root);
1595 
1596 	spin_lock(&root->fs_info->trans_lock);
1597 	if (cur_trans == root->fs_info->running_transaction)
1598 		root->fs_info->running_transaction = NULL;
1599 	spin_unlock(&root->fs_info->trans_lock);
1600 
1601 	if (trans->type & __TRANS_FREEZABLE)
1602 		sb_end_intwrite(root->fs_info->sb);
1603 	btrfs_put_transaction(cur_trans);
1604 	btrfs_put_transaction(cur_trans);
1605 
1606 	trace_btrfs_transaction_commit(root);
1607 
1608 	if (current->journal_info == trans)
1609 		current->journal_info = NULL;
1610 	btrfs_scrub_cancel(root->fs_info);
1611 
1612 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1613 }
1614 
1615 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1616 					  struct btrfs_root *root)
1617 {
1618 	int ret;
1619 
1620 	ret = btrfs_run_delayed_items(trans, root);
1621 	if (ret)
1622 		return ret;
1623 
1624 	/*
1625 	 * rename don't use btrfs_join_transaction, so, once we
1626 	 * set the transaction to blocked above, we aren't going
1627 	 * to get any new ordered operations.  We can safely run
1628 	 * it here and no for sure that nothing new will be added
1629 	 * to the list
1630 	 */
1631 	ret = btrfs_run_ordered_operations(trans, root, 1);
1632 
1633 	return ret;
1634 }
1635 
1636 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1637 {
1638 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1639 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1640 	return 0;
1641 }
1642 
1643 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1644 {
1645 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1646 		btrfs_wait_ordered_roots(fs_info, -1);
1647 }
1648 
1649 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1650 			     struct btrfs_root *root)
1651 {
1652 	struct btrfs_transaction *cur_trans = trans->transaction;
1653 	struct btrfs_transaction *prev_trans = NULL;
1654 	int ret;
1655 
1656 	ret = btrfs_run_ordered_operations(trans, root, 0);
1657 	if (ret) {
1658 		btrfs_abort_transaction(trans, root, ret);
1659 		btrfs_end_transaction(trans, root);
1660 		return ret;
1661 	}
1662 
1663 	/* Stop the commit early if ->aborted is set */
1664 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1665 		ret = cur_trans->aborted;
1666 		btrfs_end_transaction(trans, root);
1667 		return ret;
1668 	}
1669 
1670 	/* make a pass through all the delayed refs we have so far
1671 	 * any runnings procs may add more while we are here
1672 	 */
1673 	ret = btrfs_run_delayed_refs(trans, root, 0);
1674 	if (ret) {
1675 		btrfs_end_transaction(trans, root);
1676 		return ret;
1677 	}
1678 
1679 	btrfs_trans_release_metadata(trans, root);
1680 	trans->block_rsv = NULL;
1681 	if (trans->qgroup_reserved) {
1682 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1683 		trans->qgroup_reserved = 0;
1684 	}
1685 
1686 	cur_trans = trans->transaction;
1687 
1688 	/*
1689 	 * set the flushing flag so procs in this transaction have to
1690 	 * start sending their work down.
1691 	 */
1692 	cur_trans->delayed_refs.flushing = 1;
1693 	smp_wmb();
1694 
1695 	if (!list_empty(&trans->new_bgs))
1696 		btrfs_create_pending_block_groups(trans, root);
1697 
1698 	ret = btrfs_run_delayed_refs(trans, root, 0);
1699 	if (ret) {
1700 		btrfs_end_transaction(trans, root);
1701 		return ret;
1702 	}
1703 
1704 	spin_lock(&root->fs_info->trans_lock);
1705 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1706 		spin_unlock(&root->fs_info->trans_lock);
1707 		atomic_inc(&cur_trans->use_count);
1708 		ret = btrfs_end_transaction(trans, root);
1709 
1710 		wait_for_commit(root, cur_trans);
1711 
1712 		btrfs_put_transaction(cur_trans);
1713 
1714 		return ret;
1715 	}
1716 
1717 	cur_trans->state = TRANS_STATE_COMMIT_START;
1718 	wake_up(&root->fs_info->transaction_blocked_wait);
1719 
1720 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1721 		prev_trans = list_entry(cur_trans->list.prev,
1722 					struct btrfs_transaction, list);
1723 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1724 			atomic_inc(&prev_trans->use_count);
1725 			spin_unlock(&root->fs_info->trans_lock);
1726 
1727 			wait_for_commit(root, prev_trans);
1728 
1729 			btrfs_put_transaction(prev_trans);
1730 		} else {
1731 			spin_unlock(&root->fs_info->trans_lock);
1732 		}
1733 	} else {
1734 		spin_unlock(&root->fs_info->trans_lock);
1735 	}
1736 
1737 	extwriter_counter_dec(cur_trans, trans->type);
1738 
1739 	ret = btrfs_start_delalloc_flush(root->fs_info);
1740 	if (ret)
1741 		goto cleanup_transaction;
1742 
1743 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1744 	if (ret)
1745 		goto cleanup_transaction;
1746 
1747 	wait_event(cur_trans->writer_wait,
1748 		   extwriter_counter_read(cur_trans) == 0);
1749 
1750 	/* some pending stuffs might be added after the previous flush. */
1751 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1752 	if (ret)
1753 		goto cleanup_transaction;
1754 
1755 	btrfs_wait_delalloc_flush(root->fs_info);
1756 
1757 	btrfs_scrub_pause(root);
1758 	/*
1759 	 * Ok now we need to make sure to block out any other joins while we
1760 	 * commit the transaction.  We could have started a join before setting
1761 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1762 	 */
1763 	spin_lock(&root->fs_info->trans_lock);
1764 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1765 	spin_unlock(&root->fs_info->trans_lock);
1766 	wait_event(cur_trans->writer_wait,
1767 		   atomic_read(&cur_trans->num_writers) == 1);
1768 
1769 	/* ->aborted might be set after the previous check, so check it */
1770 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1771 		ret = cur_trans->aborted;
1772 		goto scrub_continue;
1773 	}
1774 	/*
1775 	 * the reloc mutex makes sure that we stop
1776 	 * the balancing code from coming in and moving
1777 	 * extents around in the middle of the commit
1778 	 */
1779 	mutex_lock(&root->fs_info->reloc_mutex);
1780 
1781 	/*
1782 	 * We needn't worry about the delayed items because we will
1783 	 * deal with them in create_pending_snapshot(), which is the
1784 	 * core function of the snapshot creation.
1785 	 */
1786 	ret = create_pending_snapshots(trans, root->fs_info);
1787 	if (ret) {
1788 		mutex_unlock(&root->fs_info->reloc_mutex);
1789 		goto scrub_continue;
1790 	}
1791 
1792 	/*
1793 	 * We insert the dir indexes of the snapshots and update the inode
1794 	 * of the snapshots' parents after the snapshot creation, so there
1795 	 * are some delayed items which are not dealt with. Now deal with
1796 	 * them.
1797 	 *
1798 	 * We needn't worry that this operation will corrupt the snapshots,
1799 	 * because all the tree which are snapshoted will be forced to COW
1800 	 * the nodes and leaves.
1801 	 */
1802 	ret = btrfs_run_delayed_items(trans, root);
1803 	if (ret) {
1804 		mutex_unlock(&root->fs_info->reloc_mutex);
1805 		goto scrub_continue;
1806 	}
1807 
1808 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1809 	if (ret) {
1810 		mutex_unlock(&root->fs_info->reloc_mutex);
1811 		goto scrub_continue;
1812 	}
1813 
1814 	/*
1815 	 * make sure none of the code above managed to slip in a
1816 	 * delayed item
1817 	 */
1818 	btrfs_assert_delayed_root_empty(root);
1819 
1820 	WARN_ON(cur_trans != trans->transaction);
1821 
1822 	/* btrfs_commit_tree_roots is responsible for getting the
1823 	 * various roots consistent with each other.  Every pointer
1824 	 * in the tree of tree roots has to point to the most up to date
1825 	 * root for every subvolume and other tree.  So, we have to keep
1826 	 * the tree logging code from jumping in and changing any
1827 	 * of the trees.
1828 	 *
1829 	 * At this point in the commit, there can't be any tree-log
1830 	 * writers, but a little lower down we drop the trans mutex
1831 	 * and let new people in.  By holding the tree_log_mutex
1832 	 * from now until after the super is written, we avoid races
1833 	 * with the tree-log code.
1834 	 */
1835 	mutex_lock(&root->fs_info->tree_log_mutex);
1836 
1837 	ret = commit_fs_roots(trans, root);
1838 	if (ret) {
1839 		mutex_unlock(&root->fs_info->tree_log_mutex);
1840 		mutex_unlock(&root->fs_info->reloc_mutex);
1841 		goto scrub_continue;
1842 	}
1843 
1844 	/*
1845 	 * Since the transaction is done, we should set the inode map cache flag
1846 	 * before any other comming transaction.
1847 	 */
1848 	if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1849 		btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1850 	else
1851 		btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1852 
1853 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1854 	 * safe to free the root of tree log roots
1855 	 */
1856 	btrfs_free_log_root_tree(trans, root->fs_info);
1857 
1858 	ret = commit_cowonly_roots(trans, root);
1859 	if (ret) {
1860 		mutex_unlock(&root->fs_info->tree_log_mutex);
1861 		mutex_unlock(&root->fs_info->reloc_mutex);
1862 		goto scrub_continue;
1863 	}
1864 
1865 	/*
1866 	 * The tasks which save the space cache and inode cache may also
1867 	 * update ->aborted, check it.
1868 	 */
1869 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1870 		ret = cur_trans->aborted;
1871 		mutex_unlock(&root->fs_info->tree_log_mutex);
1872 		mutex_unlock(&root->fs_info->reloc_mutex);
1873 		goto scrub_continue;
1874 	}
1875 
1876 	btrfs_prepare_extent_commit(trans, root);
1877 
1878 	cur_trans = root->fs_info->running_transaction;
1879 
1880 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1881 			    root->fs_info->tree_root->node);
1882 	list_add_tail(&root->fs_info->tree_root->dirty_list,
1883 		      &cur_trans->switch_commits);
1884 
1885 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1886 			    root->fs_info->chunk_root->node);
1887 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
1888 		      &cur_trans->switch_commits);
1889 
1890 	switch_commit_roots(cur_trans, root->fs_info);
1891 
1892 	assert_qgroups_uptodate(trans);
1893 	update_super_roots(root);
1894 
1895 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1896 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1897 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1898 	       sizeof(*root->fs_info->super_copy));
1899 
1900 	spin_lock(&root->fs_info->trans_lock);
1901 	cur_trans->state = TRANS_STATE_UNBLOCKED;
1902 	root->fs_info->running_transaction = NULL;
1903 	spin_unlock(&root->fs_info->trans_lock);
1904 	mutex_unlock(&root->fs_info->reloc_mutex);
1905 
1906 	wake_up(&root->fs_info->transaction_wait);
1907 
1908 	ret = btrfs_write_and_wait_transaction(trans, root);
1909 	if (ret) {
1910 		btrfs_error(root->fs_info, ret,
1911 			    "Error while writing out transaction");
1912 		mutex_unlock(&root->fs_info->tree_log_mutex);
1913 		goto scrub_continue;
1914 	}
1915 
1916 	ret = write_ctree_super(trans, root, 0);
1917 	if (ret) {
1918 		mutex_unlock(&root->fs_info->tree_log_mutex);
1919 		goto scrub_continue;
1920 	}
1921 
1922 	/*
1923 	 * the super is written, we can safely allow the tree-loggers
1924 	 * to go about their business
1925 	 */
1926 	mutex_unlock(&root->fs_info->tree_log_mutex);
1927 
1928 	btrfs_finish_extent_commit(trans, root);
1929 
1930 	root->fs_info->last_trans_committed = cur_trans->transid;
1931 	/*
1932 	 * We needn't acquire the lock here because there is no other task
1933 	 * which can change it.
1934 	 */
1935 	cur_trans->state = TRANS_STATE_COMPLETED;
1936 	wake_up(&cur_trans->commit_wait);
1937 
1938 	spin_lock(&root->fs_info->trans_lock);
1939 	list_del_init(&cur_trans->list);
1940 	spin_unlock(&root->fs_info->trans_lock);
1941 
1942 	btrfs_put_transaction(cur_trans);
1943 	btrfs_put_transaction(cur_trans);
1944 
1945 	if (trans->type & __TRANS_FREEZABLE)
1946 		sb_end_intwrite(root->fs_info->sb);
1947 
1948 	trace_btrfs_transaction_commit(root);
1949 
1950 	btrfs_scrub_continue(root);
1951 
1952 	if (current->journal_info == trans)
1953 		current->journal_info = NULL;
1954 
1955 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1956 
1957 	if (current != root->fs_info->transaction_kthread)
1958 		btrfs_run_delayed_iputs(root);
1959 
1960 	return ret;
1961 
1962 scrub_continue:
1963 	btrfs_scrub_continue(root);
1964 cleanup_transaction:
1965 	btrfs_trans_release_metadata(trans, root);
1966 	trans->block_rsv = NULL;
1967 	if (trans->qgroup_reserved) {
1968 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1969 		trans->qgroup_reserved = 0;
1970 	}
1971 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1972 	if (current->journal_info == trans)
1973 		current->journal_info = NULL;
1974 	cleanup_transaction(trans, root, ret);
1975 
1976 	return ret;
1977 }
1978 
1979 /*
1980  * return < 0 if error
1981  * 0 if there are no more dead_roots at the time of call
1982  * 1 there are more to be processed, call me again
1983  *
1984  * The return value indicates there are certainly more snapshots to delete, but
1985  * if there comes a new one during processing, it may return 0. We don't mind,
1986  * because btrfs_commit_super will poke cleaner thread and it will process it a
1987  * few seconds later.
1988  */
1989 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1990 {
1991 	int ret;
1992 	struct btrfs_fs_info *fs_info = root->fs_info;
1993 
1994 	spin_lock(&fs_info->trans_lock);
1995 	if (list_empty(&fs_info->dead_roots)) {
1996 		spin_unlock(&fs_info->trans_lock);
1997 		return 0;
1998 	}
1999 	root = list_first_entry(&fs_info->dead_roots,
2000 			struct btrfs_root, root_list);
2001 	list_del_init(&root->root_list);
2002 	spin_unlock(&fs_info->trans_lock);
2003 
2004 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2005 
2006 	btrfs_kill_all_delayed_nodes(root);
2007 
2008 	if (btrfs_header_backref_rev(root->node) <
2009 			BTRFS_MIXED_BACKREF_REV)
2010 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2011 	else
2012 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2013 	/*
2014 	 * If we encounter a transaction abort during snapshot cleaning, we
2015 	 * don't want to crash here
2016 	 */
2017 	return (ret < 0) ? 0 : 1;
2018 }
2019