1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 #include "qgroup.h" 35 36 #define BTRFS_ROOT_TRANS_TAG 0 37 38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 39 [TRANS_STATE_RUNNING] = 0U, 40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | 41 __TRANS_START), 42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | 43 __TRANS_START | 44 __TRANS_ATTACH), 45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | 46 __TRANS_START | 47 __TRANS_ATTACH | 48 __TRANS_JOIN), 49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | 50 __TRANS_START | 51 __TRANS_ATTACH | 52 __TRANS_JOIN | 53 __TRANS_JOIN_NOLOCK), 54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | 55 __TRANS_START | 56 __TRANS_ATTACH | 57 __TRANS_JOIN | 58 __TRANS_JOIN_NOLOCK), 59 }; 60 61 void btrfs_put_transaction(struct btrfs_transaction *transaction) 62 { 63 WARN_ON(atomic_read(&transaction->use_count) == 0); 64 if (atomic_dec_and_test(&transaction->use_count)) { 65 BUG_ON(!list_empty(&transaction->list)); 66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 67 while (!list_empty(&transaction->pending_chunks)) { 68 struct extent_map *em; 69 70 em = list_first_entry(&transaction->pending_chunks, 71 struct extent_map, list); 72 list_del_init(&em->list); 73 free_extent_map(em); 74 } 75 kmem_cache_free(btrfs_transaction_cachep, transaction); 76 } 77 } 78 79 static noinline void switch_commit_roots(struct btrfs_transaction *trans, 80 struct btrfs_fs_info *fs_info) 81 { 82 struct btrfs_root *root, *tmp; 83 84 down_write(&fs_info->commit_root_sem); 85 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 86 dirty_list) { 87 list_del_init(&root->dirty_list); 88 free_extent_buffer(root->commit_root); 89 root->commit_root = btrfs_root_node(root); 90 if (is_fstree(root->objectid)) 91 btrfs_unpin_free_ino(root); 92 } 93 up_write(&fs_info->commit_root_sem); 94 } 95 96 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 97 unsigned int type) 98 { 99 if (type & TRANS_EXTWRITERS) 100 atomic_inc(&trans->num_extwriters); 101 } 102 103 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 104 unsigned int type) 105 { 106 if (type & TRANS_EXTWRITERS) 107 atomic_dec(&trans->num_extwriters); 108 } 109 110 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 111 unsigned int type) 112 { 113 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 114 } 115 116 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 117 { 118 return atomic_read(&trans->num_extwriters); 119 } 120 121 /* 122 * either allocate a new transaction or hop into the existing one 123 */ 124 static noinline int join_transaction(struct btrfs_root *root, unsigned int type) 125 { 126 struct btrfs_transaction *cur_trans; 127 struct btrfs_fs_info *fs_info = root->fs_info; 128 129 spin_lock(&fs_info->trans_lock); 130 loop: 131 /* The file system has been taken offline. No new transactions. */ 132 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 133 spin_unlock(&fs_info->trans_lock); 134 return -EROFS; 135 } 136 137 cur_trans = fs_info->running_transaction; 138 if (cur_trans) { 139 if (cur_trans->aborted) { 140 spin_unlock(&fs_info->trans_lock); 141 return cur_trans->aborted; 142 } 143 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 144 spin_unlock(&fs_info->trans_lock); 145 return -EBUSY; 146 } 147 atomic_inc(&cur_trans->use_count); 148 atomic_inc(&cur_trans->num_writers); 149 extwriter_counter_inc(cur_trans, type); 150 spin_unlock(&fs_info->trans_lock); 151 return 0; 152 } 153 spin_unlock(&fs_info->trans_lock); 154 155 /* 156 * If we are ATTACH, we just want to catch the current transaction, 157 * and commit it. If there is no transaction, just return ENOENT. 158 */ 159 if (type == TRANS_ATTACH) 160 return -ENOENT; 161 162 /* 163 * JOIN_NOLOCK only happens during the transaction commit, so 164 * it is impossible that ->running_transaction is NULL 165 */ 166 BUG_ON(type == TRANS_JOIN_NOLOCK); 167 168 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 169 if (!cur_trans) 170 return -ENOMEM; 171 172 spin_lock(&fs_info->trans_lock); 173 if (fs_info->running_transaction) { 174 /* 175 * someone started a transaction after we unlocked. Make sure 176 * to redo the checks above 177 */ 178 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 179 goto loop; 180 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 181 spin_unlock(&fs_info->trans_lock); 182 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 183 return -EROFS; 184 } 185 186 atomic_set(&cur_trans->num_writers, 1); 187 extwriter_counter_init(cur_trans, type); 188 init_waitqueue_head(&cur_trans->writer_wait); 189 init_waitqueue_head(&cur_trans->commit_wait); 190 cur_trans->state = TRANS_STATE_RUNNING; 191 /* 192 * One for this trans handle, one so it will live on until we 193 * commit the transaction. 194 */ 195 atomic_set(&cur_trans->use_count, 2); 196 cur_trans->start_time = get_seconds(); 197 198 cur_trans->delayed_refs.href_root = RB_ROOT; 199 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 200 cur_trans->delayed_refs.num_heads_ready = 0; 201 cur_trans->delayed_refs.num_heads = 0; 202 cur_trans->delayed_refs.flushing = 0; 203 cur_trans->delayed_refs.run_delayed_start = 0; 204 205 /* 206 * although the tree mod log is per file system and not per transaction, 207 * the log must never go across transaction boundaries. 208 */ 209 smp_mb(); 210 if (!list_empty(&fs_info->tree_mod_seq_list)) 211 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when " 212 "creating a fresh transaction\n"); 213 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 214 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when " 215 "creating a fresh transaction\n"); 216 atomic64_set(&fs_info->tree_mod_seq, 0); 217 218 spin_lock_init(&cur_trans->delayed_refs.lock); 219 220 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 221 INIT_LIST_HEAD(&cur_trans->ordered_operations); 222 INIT_LIST_HEAD(&cur_trans->pending_chunks); 223 INIT_LIST_HEAD(&cur_trans->switch_commits); 224 list_add_tail(&cur_trans->list, &fs_info->trans_list); 225 extent_io_tree_init(&cur_trans->dirty_pages, 226 fs_info->btree_inode->i_mapping); 227 fs_info->generation++; 228 cur_trans->transid = fs_info->generation; 229 fs_info->running_transaction = cur_trans; 230 cur_trans->aborted = 0; 231 spin_unlock(&fs_info->trans_lock); 232 233 return 0; 234 } 235 236 /* 237 * this does all the record keeping required to make sure that a reference 238 * counted root is properly recorded in a given transaction. This is required 239 * to make sure the old root from before we joined the transaction is deleted 240 * when the transaction commits 241 */ 242 static int record_root_in_trans(struct btrfs_trans_handle *trans, 243 struct btrfs_root *root) 244 { 245 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 246 root->last_trans < trans->transid) { 247 WARN_ON(root == root->fs_info->extent_root); 248 WARN_ON(root->commit_root != root->node); 249 250 /* 251 * see below for IN_TRANS_SETUP usage rules 252 * we have the reloc mutex held now, so there 253 * is only one writer in this function 254 */ 255 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 256 257 /* make sure readers find IN_TRANS_SETUP before 258 * they find our root->last_trans update 259 */ 260 smp_wmb(); 261 262 spin_lock(&root->fs_info->fs_roots_radix_lock); 263 if (root->last_trans == trans->transid) { 264 spin_unlock(&root->fs_info->fs_roots_radix_lock); 265 return 0; 266 } 267 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 268 (unsigned long)root->root_key.objectid, 269 BTRFS_ROOT_TRANS_TAG); 270 spin_unlock(&root->fs_info->fs_roots_radix_lock); 271 root->last_trans = trans->transid; 272 273 /* this is pretty tricky. We don't want to 274 * take the relocation lock in btrfs_record_root_in_trans 275 * unless we're really doing the first setup for this root in 276 * this transaction. 277 * 278 * Normally we'd use root->last_trans as a flag to decide 279 * if we want to take the expensive mutex. 280 * 281 * But, we have to set root->last_trans before we 282 * init the relocation root, otherwise, we trip over warnings 283 * in ctree.c. The solution used here is to flag ourselves 284 * with root IN_TRANS_SETUP. When this is 1, we're still 285 * fixing up the reloc trees and everyone must wait. 286 * 287 * When this is zero, they can trust root->last_trans and fly 288 * through btrfs_record_root_in_trans without having to take the 289 * lock. smp_wmb() makes sure that all the writes above are 290 * done before we pop in the zero below 291 */ 292 btrfs_init_reloc_root(trans, root); 293 smp_mb__before_atomic(); 294 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 295 } 296 return 0; 297 } 298 299 300 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 301 struct btrfs_root *root) 302 { 303 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 304 return 0; 305 306 /* 307 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 308 * and barriers 309 */ 310 smp_rmb(); 311 if (root->last_trans == trans->transid && 312 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 313 return 0; 314 315 mutex_lock(&root->fs_info->reloc_mutex); 316 record_root_in_trans(trans, root); 317 mutex_unlock(&root->fs_info->reloc_mutex); 318 319 return 0; 320 } 321 322 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 323 { 324 return (trans->state >= TRANS_STATE_BLOCKED && 325 trans->state < TRANS_STATE_UNBLOCKED && 326 !trans->aborted); 327 } 328 329 /* wait for commit against the current transaction to become unblocked 330 * when this is done, it is safe to start a new transaction, but the current 331 * transaction might not be fully on disk. 332 */ 333 static void wait_current_trans(struct btrfs_root *root) 334 { 335 struct btrfs_transaction *cur_trans; 336 337 spin_lock(&root->fs_info->trans_lock); 338 cur_trans = root->fs_info->running_transaction; 339 if (cur_trans && is_transaction_blocked(cur_trans)) { 340 atomic_inc(&cur_trans->use_count); 341 spin_unlock(&root->fs_info->trans_lock); 342 343 wait_event(root->fs_info->transaction_wait, 344 cur_trans->state >= TRANS_STATE_UNBLOCKED || 345 cur_trans->aborted); 346 btrfs_put_transaction(cur_trans); 347 } else { 348 spin_unlock(&root->fs_info->trans_lock); 349 } 350 } 351 352 static int may_wait_transaction(struct btrfs_root *root, int type) 353 { 354 if (root->fs_info->log_root_recovering) 355 return 0; 356 357 if (type == TRANS_USERSPACE) 358 return 1; 359 360 if (type == TRANS_START && 361 !atomic_read(&root->fs_info->open_ioctl_trans)) 362 return 1; 363 364 return 0; 365 } 366 367 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 368 { 369 if (!root->fs_info->reloc_ctl || 370 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 371 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 372 root->reloc_root) 373 return false; 374 375 return true; 376 } 377 378 static struct btrfs_trans_handle * 379 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type, 380 enum btrfs_reserve_flush_enum flush) 381 { 382 struct btrfs_trans_handle *h; 383 struct btrfs_transaction *cur_trans; 384 u64 num_bytes = 0; 385 u64 qgroup_reserved = 0; 386 bool reloc_reserved = false; 387 int ret; 388 389 /* Send isn't supposed to start transactions. */ 390 ASSERT(current->journal_info != (void *)BTRFS_SEND_TRANS_STUB); 391 392 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 393 return ERR_PTR(-EROFS); 394 395 if (current->journal_info) { 396 WARN_ON(type & TRANS_EXTWRITERS); 397 h = current->journal_info; 398 h->use_count++; 399 WARN_ON(h->use_count > 2); 400 h->orig_rsv = h->block_rsv; 401 h->block_rsv = NULL; 402 goto got_it; 403 } 404 405 /* 406 * Do the reservation before we join the transaction so we can do all 407 * the appropriate flushing if need be. 408 */ 409 if (num_items > 0 && root != root->fs_info->chunk_root) { 410 if (root->fs_info->quota_enabled && 411 is_fstree(root->root_key.objectid)) { 412 qgroup_reserved = num_items * root->leafsize; 413 ret = btrfs_qgroup_reserve(root, qgroup_reserved); 414 if (ret) 415 return ERR_PTR(ret); 416 } 417 418 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 419 /* 420 * Do the reservation for the relocation root creation 421 */ 422 if (unlikely(need_reserve_reloc_root(root))) { 423 num_bytes += root->nodesize; 424 reloc_reserved = true; 425 } 426 427 ret = btrfs_block_rsv_add(root, 428 &root->fs_info->trans_block_rsv, 429 num_bytes, flush); 430 if (ret) 431 goto reserve_fail; 432 } 433 again: 434 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 435 if (!h) { 436 ret = -ENOMEM; 437 goto alloc_fail; 438 } 439 440 /* 441 * If we are JOIN_NOLOCK we're already committing a transaction and 442 * waiting on this guy, so we don't need to do the sb_start_intwrite 443 * because we're already holding a ref. We need this because we could 444 * have raced in and did an fsync() on a file which can kick a commit 445 * and then we deadlock with somebody doing a freeze. 446 * 447 * If we are ATTACH, it means we just want to catch the current 448 * transaction and commit it, so we needn't do sb_start_intwrite(). 449 */ 450 if (type & __TRANS_FREEZABLE) 451 sb_start_intwrite(root->fs_info->sb); 452 453 if (may_wait_transaction(root, type)) 454 wait_current_trans(root); 455 456 do { 457 ret = join_transaction(root, type); 458 if (ret == -EBUSY) { 459 wait_current_trans(root); 460 if (unlikely(type == TRANS_ATTACH)) 461 ret = -ENOENT; 462 } 463 } while (ret == -EBUSY); 464 465 if (ret < 0) { 466 /* We must get the transaction if we are JOIN_NOLOCK. */ 467 BUG_ON(type == TRANS_JOIN_NOLOCK); 468 goto join_fail; 469 } 470 471 cur_trans = root->fs_info->running_transaction; 472 473 h->transid = cur_trans->transid; 474 h->transaction = cur_trans; 475 h->blocks_used = 0; 476 h->bytes_reserved = 0; 477 h->root = root; 478 h->delayed_ref_updates = 0; 479 h->use_count = 1; 480 h->adding_csums = 0; 481 h->block_rsv = NULL; 482 h->orig_rsv = NULL; 483 h->aborted = 0; 484 h->qgroup_reserved = 0; 485 h->delayed_ref_elem.seq = 0; 486 h->type = type; 487 h->allocating_chunk = false; 488 h->reloc_reserved = false; 489 h->sync = false; 490 INIT_LIST_HEAD(&h->qgroup_ref_list); 491 INIT_LIST_HEAD(&h->new_bgs); 492 493 smp_mb(); 494 if (cur_trans->state >= TRANS_STATE_BLOCKED && 495 may_wait_transaction(root, type)) { 496 current->journal_info = h; 497 btrfs_commit_transaction(h, root); 498 goto again; 499 } 500 501 if (num_bytes) { 502 trace_btrfs_space_reservation(root->fs_info, "transaction", 503 h->transid, num_bytes, 1); 504 h->block_rsv = &root->fs_info->trans_block_rsv; 505 h->bytes_reserved = num_bytes; 506 h->reloc_reserved = reloc_reserved; 507 } 508 h->qgroup_reserved = qgroup_reserved; 509 510 got_it: 511 btrfs_record_root_in_trans(h, root); 512 513 if (!current->journal_info && type != TRANS_USERSPACE) 514 current->journal_info = h; 515 return h; 516 517 join_fail: 518 if (type & __TRANS_FREEZABLE) 519 sb_end_intwrite(root->fs_info->sb); 520 kmem_cache_free(btrfs_trans_handle_cachep, h); 521 alloc_fail: 522 if (num_bytes) 523 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 524 num_bytes); 525 reserve_fail: 526 if (qgroup_reserved) 527 btrfs_qgroup_free(root, qgroup_reserved); 528 return ERR_PTR(ret); 529 } 530 531 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 532 int num_items) 533 { 534 return start_transaction(root, num_items, TRANS_START, 535 BTRFS_RESERVE_FLUSH_ALL); 536 } 537 538 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 539 struct btrfs_root *root, int num_items) 540 { 541 return start_transaction(root, num_items, TRANS_START, 542 BTRFS_RESERVE_FLUSH_LIMIT); 543 } 544 545 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 546 { 547 return start_transaction(root, 0, TRANS_JOIN, 0); 548 } 549 550 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 551 { 552 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 553 } 554 555 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 556 { 557 return start_transaction(root, 0, TRANS_USERSPACE, 0); 558 } 559 560 /* 561 * btrfs_attach_transaction() - catch the running transaction 562 * 563 * It is used when we want to commit the current the transaction, but 564 * don't want to start a new one. 565 * 566 * Note: If this function return -ENOENT, it just means there is no 567 * running transaction. But it is possible that the inactive transaction 568 * is still in the memory, not fully on disk. If you hope there is no 569 * inactive transaction in the fs when -ENOENT is returned, you should 570 * invoke 571 * btrfs_attach_transaction_barrier() 572 */ 573 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 574 { 575 return start_transaction(root, 0, TRANS_ATTACH, 0); 576 } 577 578 /* 579 * btrfs_attach_transaction_barrier() - catch the running transaction 580 * 581 * It is similar to the above function, the differentia is this one 582 * will wait for all the inactive transactions until they fully 583 * complete. 584 */ 585 struct btrfs_trans_handle * 586 btrfs_attach_transaction_barrier(struct btrfs_root *root) 587 { 588 struct btrfs_trans_handle *trans; 589 590 trans = start_transaction(root, 0, TRANS_ATTACH, 0); 591 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 592 btrfs_wait_for_commit(root, 0); 593 594 return trans; 595 } 596 597 /* wait for a transaction commit to be fully complete */ 598 static noinline void wait_for_commit(struct btrfs_root *root, 599 struct btrfs_transaction *commit) 600 { 601 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 602 } 603 604 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 605 { 606 struct btrfs_transaction *cur_trans = NULL, *t; 607 int ret = 0; 608 609 if (transid) { 610 if (transid <= root->fs_info->last_trans_committed) 611 goto out; 612 613 ret = -EINVAL; 614 /* find specified transaction */ 615 spin_lock(&root->fs_info->trans_lock); 616 list_for_each_entry(t, &root->fs_info->trans_list, list) { 617 if (t->transid == transid) { 618 cur_trans = t; 619 atomic_inc(&cur_trans->use_count); 620 ret = 0; 621 break; 622 } 623 if (t->transid > transid) { 624 ret = 0; 625 break; 626 } 627 } 628 spin_unlock(&root->fs_info->trans_lock); 629 /* The specified transaction doesn't exist */ 630 if (!cur_trans) 631 goto out; 632 } else { 633 /* find newest transaction that is committing | committed */ 634 spin_lock(&root->fs_info->trans_lock); 635 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 636 list) { 637 if (t->state >= TRANS_STATE_COMMIT_START) { 638 if (t->state == TRANS_STATE_COMPLETED) 639 break; 640 cur_trans = t; 641 atomic_inc(&cur_trans->use_count); 642 break; 643 } 644 } 645 spin_unlock(&root->fs_info->trans_lock); 646 if (!cur_trans) 647 goto out; /* nothing committing|committed */ 648 } 649 650 wait_for_commit(root, cur_trans); 651 btrfs_put_transaction(cur_trans); 652 out: 653 return ret; 654 } 655 656 void btrfs_throttle(struct btrfs_root *root) 657 { 658 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 659 wait_current_trans(root); 660 } 661 662 static int should_end_transaction(struct btrfs_trans_handle *trans, 663 struct btrfs_root *root) 664 { 665 if (root->fs_info->global_block_rsv.space_info->full && 666 btrfs_check_space_for_delayed_refs(trans, root)) 667 return 1; 668 669 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 670 } 671 672 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 673 struct btrfs_root *root) 674 { 675 struct btrfs_transaction *cur_trans = trans->transaction; 676 int updates; 677 int err; 678 679 smp_mb(); 680 if (cur_trans->state >= TRANS_STATE_BLOCKED || 681 cur_trans->delayed_refs.flushing) 682 return 1; 683 684 updates = trans->delayed_ref_updates; 685 trans->delayed_ref_updates = 0; 686 if (updates) { 687 err = btrfs_run_delayed_refs(trans, root, updates); 688 if (err) /* Error code will also eval true */ 689 return err; 690 } 691 692 return should_end_transaction(trans, root); 693 } 694 695 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 696 struct btrfs_root *root, int throttle) 697 { 698 struct btrfs_transaction *cur_trans = trans->transaction; 699 struct btrfs_fs_info *info = root->fs_info; 700 unsigned long cur = trans->delayed_ref_updates; 701 int lock = (trans->type != TRANS_JOIN_NOLOCK); 702 int err = 0; 703 int must_run_delayed_refs = 0; 704 705 if (trans->use_count > 1) { 706 trans->use_count--; 707 trans->block_rsv = trans->orig_rsv; 708 return 0; 709 } 710 711 btrfs_trans_release_metadata(trans, root); 712 trans->block_rsv = NULL; 713 714 if (!list_empty(&trans->new_bgs)) 715 btrfs_create_pending_block_groups(trans, root); 716 717 trans->delayed_ref_updates = 0; 718 if (!trans->sync) { 719 must_run_delayed_refs = 720 btrfs_should_throttle_delayed_refs(trans, root); 721 cur = max_t(unsigned long, cur, 32); 722 723 /* 724 * don't make the caller wait if they are from a NOLOCK 725 * or ATTACH transaction, it will deadlock with commit 726 */ 727 if (must_run_delayed_refs == 1 && 728 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 729 must_run_delayed_refs = 2; 730 } 731 732 if (trans->qgroup_reserved) { 733 /* 734 * the same root has to be passed here between start_transaction 735 * and end_transaction. Subvolume quota depends on this. 736 */ 737 btrfs_qgroup_free(trans->root, trans->qgroup_reserved); 738 trans->qgroup_reserved = 0; 739 } 740 741 btrfs_trans_release_metadata(trans, root); 742 trans->block_rsv = NULL; 743 744 if (!list_empty(&trans->new_bgs)) 745 btrfs_create_pending_block_groups(trans, root); 746 747 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 748 should_end_transaction(trans, root) && 749 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 750 spin_lock(&info->trans_lock); 751 if (cur_trans->state == TRANS_STATE_RUNNING) 752 cur_trans->state = TRANS_STATE_BLOCKED; 753 spin_unlock(&info->trans_lock); 754 } 755 756 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 757 if (throttle) 758 return btrfs_commit_transaction(trans, root); 759 else 760 wake_up_process(info->transaction_kthread); 761 } 762 763 if (trans->type & __TRANS_FREEZABLE) 764 sb_end_intwrite(root->fs_info->sb); 765 766 WARN_ON(cur_trans != info->running_transaction); 767 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 768 atomic_dec(&cur_trans->num_writers); 769 extwriter_counter_dec(cur_trans, trans->type); 770 771 smp_mb(); 772 if (waitqueue_active(&cur_trans->writer_wait)) 773 wake_up(&cur_trans->writer_wait); 774 btrfs_put_transaction(cur_trans); 775 776 if (current->journal_info == trans) 777 current->journal_info = NULL; 778 779 if (throttle) 780 btrfs_run_delayed_iputs(root); 781 782 if (trans->aborted || 783 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 784 wake_up_process(info->transaction_kthread); 785 err = -EIO; 786 } 787 assert_qgroups_uptodate(trans); 788 789 kmem_cache_free(btrfs_trans_handle_cachep, trans); 790 if (must_run_delayed_refs) { 791 btrfs_async_run_delayed_refs(root, cur, 792 must_run_delayed_refs == 1); 793 } 794 return err; 795 } 796 797 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 798 struct btrfs_root *root) 799 { 800 return __btrfs_end_transaction(trans, root, 0); 801 } 802 803 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 804 struct btrfs_root *root) 805 { 806 return __btrfs_end_transaction(trans, root, 1); 807 } 808 809 /* 810 * when btree blocks are allocated, they have some corresponding bits set for 811 * them in one of two extent_io trees. This is used to make sure all of 812 * those extents are sent to disk but does not wait on them 813 */ 814 int btrfs_write_marked_extents(struct btrfs_root *root, 815 struct extent_io_tree *dirty_pages, int mark) 816 { 817 int err = 0; 818 int werr = 0; 819 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 820 struct extent_state *cached_state = NULL; 821 u64 start = 0; 822 u64 end; 823 824 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 825 mark, &cached_state)) { 826 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 827 mark, &cached_state, GFP_NOFS); 828 cached_state = NULL; 829 err = filemap_fdatawrite_range(mapping, start, end); 830 if (err) 831 werr = err; 832 cond_resched(); 833 start = end + 1; 834 } 835 if (err) 836 werr = err; 837 return werr; 838 } 839 840 /* 841 * when btree blocks are allocated, they have some corresponding bits set for 842 * them in one of two extent_io trees. This is used to make sure all of 843 * those extents are on disk for transaction or log commit. We wait 844 * on all the pages and clear them from the dirty pages state tree 845 */ 846 int btrfs_wait_marked_extents(struct btrfs_root *root, 847 struct extent_io_tree *dirty_pages, int mark) 848 { 849 int err = 0; 850 int werr = 0; 851 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 852 struct extent_state *cached_state = NULL; 853 u64 start = 0; 854 u64 end; 855 856 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 857 EXTENT_NEED_WAIT, &cached_state)) { 858 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 859 0, 0, &cached_state, GFP_NOFS); 860 err = filemap_fdatawait_range(mapping, start, end); 861 if (err) 862 werr = err; 863 cond_resched(); 864 start = end + 1; 865 } 866 if (err) 867 werr = err; 868 return werr; 869 } 870 871 /* 872 * when btree blocks are allocated, they have some corresponding bits set for 873 * them in one of two extent_io trees. This is used to make sure all of 874 * those extents are on disk for transaction or log commit 875 */ 876 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 877 struct extent_io_tree *dirty_pages, int mark) 878 { 879 int ret; 880 int ret2; 881 struct blk_plug plug; 882 883 blk_start_plug(&plug); 884 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 885 blk_finish_plug(&plug); 886 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 887 888 if (ret) 889 return ret; 890 if (ret2) 891 return ret2; 892 return 0; 893 } 894 895 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 896 struct btrfs_root *root) 897 { 898 if (!trans || !trans->transaction) { 899 struct inode *btree_inode; 900 btree_inode = root->fs_info->btree_inode; 901 return filemap_write_and_wait(btree_inode->i_mapping); 902 } 903 return btrfs_write_and_wait_marked_extents(root, 904 &trans->transaction->dirty_pages, 905 EXTENT_DIRTY); 906 } 907 908 /* 909 * this is used to update the root pointer in the tree of tree roots. 910 * 911 * But, in the case of the extent allocation tree, updating the root 912 * pointer may allocate blocks which may change the root of the extent 913 * allocation tree. 914 * 915 * So, this loops and repeats and makes sure the cowonly root didn't 916 * change while the root pointer was being updated in the metadata. 917 */ 918 static int update_cowonly_root(struct btrfs_trans_handle *trans, 919 struct btrfs_root *root) 920 { 921 int ret; 922 u64 old_root_bytenr; 923 u64 old_root_used; 924 struct btrfs_root *tree_root = root->fs_info->tree_root; 925 926 old_root_used = btrfs_root_used(&root->root_item); 927 btrfs_write_dirty_block_groups(trans, root); 928 929 while (1) { 930 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 931 if (old_root_bytenr == root->node->start && 932 old_root_used == btrfs_root_used(&root->root_item)) 933 break; 934 935 btrfs_set_root_node(&root->root_item, root->node); 936 ret = btrfs_update_root(trans, tree_root, 937 &root->root_key, 938 &root->root_item); 939 if (ret) 940 return ret; 941 942 old_root_used = btrfs_root_used(&root->root_item); 943 ret = btrfs_write_dirty_block_groups(trans, root); 944 if (ret) 945 return ret; 946 } 947 948 return 0; 949 } 950 951 /* 952 * update all the cowonly tree roots on disk 953 * 954 * The error handling in this function may not be obvious. Any of the 955 * failures will cause the file system to go offline. We still need 956 * to clean up the delayed refs. 957 */ 958 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 959 struct btrfs_root *root) 960 { 961 struct btrfs_fs_info *fs_info = root->fs_info; 962 struct list_head *next; 963 struct extent_buffer *eb; 964 int ret; 965 966 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 967 if (ret) 968 return ret; 969 970 eb = btrfs_lock_root_node(fs_info->tree_root); 971 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 972 0, &eb); 973 btrfs_tree_unlock(eb); 974 free_extent_buffer(eb); 975 976 if (ret) 977 return ret; 978 979 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 980 if (ret) 981 return ret; 982 983 ret = btrfs_run_dev_stats(trans, root->fs_info); 984 if (ret) 985 return ret; 986 ret = btrfs_run_dev_replace(trans, root->fs_info); 987 if (ret) 988 return ret; 989 ret = btrfs_run_qgroups(trans, root->fs_info); 990 if (ret) 991 return ret; 992 993 /* run_qgroups might have added some more refs */ 994 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 995 if (ret) 996 return ret; 997 998 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 999 next = fs_info->dirty_cowonly_roots.next; 1000 list_del_init(next); 1001 root = list_entry(next, struct btrfs_root, dirty_list); 1002 1003 if (root != fs_info->extent_root) 1004 list_add_tail(&root->dirty_list, 1005 &trans->transaction->switch_commits); 1006 ret = update_cowonly_root(trans, root); 1007 if (ret) 1008 return ret; 1009 } 1010 1011 list_add_tail(&fs_info->extent_root->dirty_list, 1012 &trans->transaction->switch_commits); 1013 btrfs_after_dev_replace_commit(fs_info); 1014 1015 return 0; 1016 } 1017 1018 /* 1019 * dead roots are old snapshots that need to be deleted. This allocates 1020 * a dirty root struct and adds it into the list of dead roots that need to 1021 * be deleted 1022 */ 1023 void btrfs_add_dead_root(struct btrfs_root *root) 1024 { 1025 spin_lock(&root->fs_info->trans_lock); 1026 if (list_empty(&root->root_list)) 1027 list_add_tail(&root->root_list, &root->fs_info->dead_roots); 1028 spin_unlock(&root->fs_info->trans_lock); 1029 } 1030 1031 /* 1032 * update all the cowonly tree roots on disk 1033 */ 1034 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 1035 struct btrfs_root *root) 1036 { 1037 struct btrfs_root *gang[8]; 1038 struct btrfs_fs_info *fs_info = root->fs_info; 1039 int i; 1040 int ret; 1041 int err = 0; 1042 1043 spin_lock(&fs_info->fs_roots_radix_lock); 1044 while (1) { 1045 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1046 (void **)gang, 0, 1047 ARRAY_SIZE(gang), 1048 BTRFS_ROOT_TRANS_TAG); 1049 if (ret == 0) 1050 break; 1051 for (i = 0; i < ret; i++) { 1052 root = gang[i]; 1053 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1054 (unsigned long)root->root_key.objectid, 1055 BTRFS_ROOT_TRANS_TAG); 1056 spin_unlock(&fs_info->fs_roots_radix_lock); 1057 1058 btrfs_free_log(trans, root); 1059 btrfs_update_reloc_root(trans, root); 1060 btrfs_orphan_commit_root(trans, root); 1061 1062 btrfs_save_ino_cache(root, trans); 1063 1064 /* see comments in should_cow_block() */ 1065 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1066 smp_mb__after_atomic(); 1067 1068 if (root->commit_root != root->node) { 1069 list_add_tail(&root->dirty_list, 1070 &trans->transaction->switch_commits); 1071 btrfs_set_root_node(&root->root_item, 1072 root->node); 1073 } 1074 1075 err = btrfs_update_root(trans, fs_info->tree_root, 1076 &root->root_key, 1077 &root->root_item); 1078 spin_lock(&fs_info->fs_roots_radix_lock); 1079 if (err) 1080 break; 1081 } 1082 } 1083 spin_unlock(&fs_info->fs_roots_radix_lock); 1084 return err; 1085 } 1086 1087 /* 1088 * defrag a given btree. 1089 * Every leaf in the btree is read and defragged. 1090 */ 1091 int btrfs_defrag_root(struct btrfs_root *root) 1092 { 1093 struct btrfs_fs_info *info = root->fs_info; 1094 struct btrfs_trans_handle *trans; 1095 int ret; 1096 1097 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1098 return 0; 1099 1100 while (1) { 1101 trans = btrfs_start_transaction(root, 0); 1102 if (IS_ERR(trans)) 1103 return PTR_ERR(trans); 1104 1105 ret = btrfs_defrag_leaves(trans, root); 1106 1107 btrfs_end_transaction(trans, root); 1108 btrfs_btree_balance_dirty(info->tree_root); 1109 cond_resched(); 1110 1111 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 1112 break; 1113 1114 if (btrfs_defrag_cancelled(root->fs_info)) { 1115 pr_debug("BTRFS: defrag_root cancelled\n"); 1116 ret = -EAGAIN; 1117 break; 1118 } 1119 } 1120 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1121 return ret; 1122 } 1123 1124 /* 1125 * new snapshots need to be created at a very specific time in the 1126 * transaction commit. This does the actual creation. 1127 * 1128 * Note: 1129 * If the error which may affect the commitment of the current transaction 1130 * happens, we should return the error number. If the error which just affect 1131 * the creation of the pending snapshots, just return 0. 1132 */ 1133 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1134 struct btrfs_fs_info *fs_info, 1135 struct btrfs_pending_snapshot *pending) 1136 { 1137 struct btrfs_key key; 1138 struct btrfs_root_item *new_root_item; 1139 struct btrfs_root *tree_root = fs_info->tree_root; 1140 struct btrfs_root *root = pending->root; 1141 struct btrfs_root *parent_root; 1142 struct btrfs_block_rsv *rsv; 1143 struct inode *parent_inode; 1144 struct btrfs_path *path; 1145 struct btrfs_dir_item *dir_item; 1146 struct dentry *dentry; 1147 struct extent_buffer *tmp; 1148 struct extent_buffer *old; 1149 struct timespec cur_time = CURRENT_TIME; 1150 int ret = 0; 1151 u64 to_reserve = 0; 1152 u64 index = 0; 1153 u64 objectid; 1154 u64 root_flags; 1155 uuid_le new_uuid; 1156 1157 path = btrfs_alloc_path(); 1158 if (!path) { 1159 pending->error = -ENOMEM; 1160 return 0; 1161 } 1162 1163 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1164 if (!new_root_item) { 1165 pending->error = -ENOMEM; 1166 goto root_item_alloc_fail; 1167 } 1168 1169 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1170 if (pending->error) 1171 goto no_free_objectid; 1172 1173 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); 1174 1175 if (to_reserve > 0) { 1176 pending->error = btrfs_block_rsv_add(root, 1177 &pending->block_rsv, 1178 to_reserve, 1179 BTRFS_RESERVE_NO_FLUSH); 1180 if (pending->error) 1181 goto no_free_objectid; 1182 } 1183 1184 key.objectid = objectid; 1185 key.offset = (u64)-1; 1186 key.type = BTRFS_ROOT_ITEM_KEY; 1187 1188 rsv = trans->block_rsv; 1189 trans->block_rsv = &pending->block_rsv; 1190 trans->bytes_reserved = trans->block_rsv->reserved; 1191 1192 dentry = pending->dentry; 1193 parent_inode = pending->dir; 1194 parent_root = BTRFS_I(parent_inode)->root; 1195 record_root_in_trans(trans, parent_root); 1196 1197 /* 1198 * insert the directory item 1199 */ 1200 ret = btrfs_set_inode_index(parent_inode, &index); 1201 BUG_ON(ret); /* -ENOMEM */ 1202 1203 /* check if there is a file/dir which has the same name. */ 1204 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1205 btrfs_ino(parent_inode), 1206 dentry->d_name.name, 1207 dentry->d_name.len, 0); 1208 if (dir_item != NULL && !IS_ERR(dir_item)) { 1209 pending->error = -EEXIST; 1210 goto dir_item_existed; 1211 } else if (IS_ERR(dir_item)) { 1212 ret = PTR_ERR(dir_item); 1213 btrfs_abort_transaction(trans, root, ret); 1214 goto fail; 1215 } 1216 btrfs_release_path(path); 1217 1218 /* 1219 * pull in the delayed directory update 1220 * and the delayed inode item 1221 * otherwise we corrupt the FS during 1222 * snapshot 1223 */ 1224 ret = btrfs_run_delayed_items(trans, root); 1225 if (ret) { /* Transaction aborted */ 1226 btrfs_abort_transaction(trans, root, ret); 1227 goto fail; 1228 } 1229 1230 record_root_in_trans(trans, root); 1231 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1232 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1233 btrfs_check_and_init_root_item(new_root_item); 1234 1235 root_flags = btrfs_root_flags(new_root_item); 1236 if (pending->readonly) 1237 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1238 else 1239 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1240 btrfs_set_root_flags(new_root_item, root_flags); 1241 1242 btrfs_set_root_generation_v2(new_root_item, 1243 trans->transid); 1244 uuid_le_gen(&new_uuid); 1245 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1246 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1247 BTRFS_UUID_SIZE); 1248 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1249 memset(new_root_item->received_uuid, 0, 1250 sizeof(new_root_item->received_uuid)); 1251 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1252 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1253 btrfs_set_root_stransid(new_root_item, 0); 1254 btrfs_set_root_rtransid(new_root_item, 0); 1255 } 1256 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1257 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1258 btrfs_set_root_otransid(new_root_item, trans->transid); 1259 1260 old = btrfs_lock_root_node(root); 1261 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1262 if (ret) { 1263 btrfs_tree_unlock(old); 1264 free_extent_buffer(old); 1265 btrfs_abort_transaction(trans, root, ret); 1266 goto fail; 1267 } 1268 1269 btrfs_set_lock_blocking(old); 1270 1271 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1272 /* clean up in any case */ 1273 btrfs_tree_unlock(old); 1274 free_extent_buffer(old); 1275 if (ret) { 1276 btrfs_abort_transaction(trans, root, ret); 1277 goto fail; 1278 } 1279 1280 /* 1281 * We need to flush delayed refs in order to make sure all of our quota 1282 * operations have been done before we call btrfs_qgroup_inherit. 1283 */ 1284 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1285 if (ret) { 1286 btrfs_abort_transaction(trans, root, ret); 1287 goto fail; 1288 } 1289 1290 ret = btrfs_qgroup_inherit(trans, fs_info, 1291 root->root_key.objectid, 1292 objectid, pending->inherit); 1293 if (ret) { 1294 btrfs_abort_transaction(trans, root, ret); 1295 goto fail; 1296 } 1297 1298 /* see comments in should_cow_block() */ 1299 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1300 smp_wmb(); 1301 1302 btrfs_set_root_node(new_root_item, tmp); 1303 /* record when the snapshot was created in key.offset */ 1304 key.offset = trans->transid; 1305 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1306 btrfs_tree_unlock(tmp); 1307 free_extent_buffer(tmp); 1308 if (ret) { 1309 btrfs_abort_transaction(trans, root, ret); 1310 goto fail; 1311 } 1312 1313 /* 1314 * insert root back/forward references 1315 */ 1316 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1317 parent_root->root_key.objectid, 1318 btrfs_ino(parent_inode), index, 1319 dentry->d_name.name, dentry->d_name.len); 1320 if (ret) { 1321 btrfs_abort_transaction(trans, root, ret); 1322 goto fail; 1323 } 1324 1325 key.offset = (u64)-1; 1326 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1327 if (IS_ERR(pending->snap)) { 1328 ret = PTR_ERR(pending->snap); 1329 btrfs_abort_transaction(trans, root, ret); 1330 goto fail; 1331 } 1332 1333 ret = btrfs_reloc_post_snapshot(trans, pending); 1334 if (ret) { 1335 btrfs_abort_transaction(trans, root, ret); 1336 goto fail; 1337 } 1338 1339 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1340 if (ret) { 1341 btrfs_abort_transaction(trans, root, ret); 1342 goto fail; 1343 } 1344 1345 ret = btrfs_insert_dir_item(trans, parent_root, 1346 dentry->d_name.name, dentry->d_name.len, 1347 parent_inode, &key, 1348 BTRFS_FT_DIR, index); 1349 /* We have check then name at the beginning, so it is impossible. */ 1350 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1351 if (ret) { 1352 btrfs_abort_transaction(trans, root, ret); 1353 goto fail; 1354 } 1355 1356 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1357 dentry->d_name.len * 2); 1358 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1359 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1360 if (ret) { 1361 btrfs_abort_transaction(trans, root, ret); 1362 goto fail; 1363 } 1364 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b, 1365 BTRFS_UUID_KEY_SUBVOL, objectid); 1366 if (ret) { 1367 btrfs_abort_transaction(trans, root, ret); 1368 goto fail; 1369 } 1370 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1371 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 1372 new_root_item->received_uuid, 1373 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1374 objectid); 1375 if (ret && ret != -EEXIST) { 1376 btrfs_abort_transaction(trans, root, ret); 1377 goto fail; 1378 } 1379 } 1380 fail: 1381 pending->error = ret; 1382 dir_item_existed: 1383 trans->block_rsv = rsv; 1384 trans->bytes_reserved = 0; 1385 no_free_objectid: 1386 kfree(new_root_item); 1387 root_item_alloc_fail: 1388 btrfs_free_path(path); 1389 return ret; 1390 } 1391 1392 /* 1393 * create all the snapshots we've scheduled for creation 1394 */ 1395 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1396 struct btrfs_fs_info *fs_info) 1397 { 1398 struct btrfs_pending_snapshot *pending, *next; 1399 struct list_head *head = &trans->transaction->pending_snapshots; 1400 int ret = 0; 1401 1402 list_for_each_entry_safe(pending, next, head, list) { 1403 list_del(&pending->list); 1404 ret = create_pending_snapshot(trans, fs_info, pending); 1405 if (ret) 1406 break; 1407 } 1408 return ret; 1409 } 1410 1411 static void update_super_roots(struct btrfs_root *root) 1412 { 1413 struct btrfs_root_item *root_item; 1414 struct btrfs_super_block *super; 1415 1416 super = root->fs_info->super_copy; 1417 1418 root_item = &root->fs_info->chunk_root->root_item; 1419 super->chunk_root = root_item->bytenr; 1420 super->chunk_root_generation = root_item->generation; 1421 super->chunk_root_level = root_item->level; 1422 1423 root_item = &root->fs_info->tree_root->root_item; 1424 super->root = root_item->bytenr; 1425 super->generation = root_item->generation; 1426 super->root_level = root_item->level; 1427 if (btrfs_test_opt(root, SPACE_CACHE)) 1428 super->cache_generation = root_item->generation; 1429 if (root->fs_info->update_uuid_tree_gen) 1430 super->uuid_tree_generation = root_item->generation; 1431 } 1432 1433 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1434 { 1435 struct btrfs_transaction *trans; 1436 int ret = 0; 1437 1438 spin_lock(&info->trans_lock); 1439 trans = info->running_transaction; 1440 if (trans) 1441 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1442 spin_unlock(&info->trans_lock); 1443 return ret; 1444 } 1445 1446 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1447 { 1448 struct btrfs_transaction *trans; 1449 int ret = 0; 1450 1451 spin_lock(&info->trans_lock); 1452 trans = info->running_transaction; 1453 if (trans) 1454 ret = is_transaction_blocked(trans); 1455 spin_unlock(&info->trans_lock); 1456 return ret; 1457 } 1458 1459 /* 1460 * wait for the current transaction commit to start and block subsequent 1461 * transaction joins 1462 */ 1463 static void wait_current_trans_commit_start(struct btrfs_root *root, 1464 struct btrfs_transaction *trans) 1465 { 1466 wait_event(root->fs_info->transaction_blocked_wait, 1467 trans->state >= TRANS_STATE_COMMIT_START || 1468 trans->aborted); 1469 } 1470 1471 /* 1472 * wait for the current transaction to start and then become unblocked. 1473 * caller holds ref. 1474 */ 1475 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1476 struct btrfs_transaction *trans) 1477 { 1478 wait_event(root->fs_info->transaction_wait, 1479 trans->state >= TRANS_STATE_UNBLOCKED || 1480 trans->aborted); 1481 } 1482 1483 /* 1484 * commit transactions asynchronously. once btrfs_commit_transaction_async 1485 * returns, any subsequent transaction will not be allowed to join. 1486 */ 1487 struct btrfs_async_commit { 1488 struct btrfs_trans_handle *newtrans; 1489 struct btrfs_root *root; 1490 struct work_struct work; 1491 }; 1492 1493 static void do_async_commit(struct work_struct *work) 1494 { 1495 struct btrfs_async_commit *ac = 1496 container_of(work, struct btrfs_async_commit, work); 1497 1498 /* 1499 * We've got freeze protection passed with the transaction. 1500 * Tell lockdep about it. 1501 */ 1502 if (ac->newtrans->type & __TRANS_FREEZABLE) 1503 rwsem_acquire_read( 1504 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1505 0, 1, _THIS_IP_); 1506 1507 current->journal_info = ac->newtrans; 1508 1509 btrfs_commit_transaction(ac->newtrans, ac->root); 1510 kfree(ac); 1511 } 1512 1513 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1514 struct btrfs_root *root, 1515 int wait_for_unblock) 1516 { 1517 struct btrfs_async_commit *ac; 1518 struct btrfs_transaction *cur_trans; 1519 1520 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1521 if (!ac) 1522 return -ENOMEM; 1523 1524 INIT_WORK(&ac->work, do_async_commit); 1525 ac->root = root; 1526 ac->newtrans = btrfs_join_transaction(root); 1527 if (IS_ERR(ac->newtrans)) { 1528 int err = PTR_ERR(ac->newtrans); 1529 kfree(ac); 1530 return err; 1531 } 1532 1533 /* take transaction reference */ 1534 cur_trans = trans->transaction; 1535 atomic_inc(&cur_trans->use_count); 1536 1537 btrfs_end_transaction(trans, root); 1538 1539 /* 1540 * Tell lockdep we've released the freeze rwsem, since the 1541 * async commit thread will be the one to unlock it. 1542 */ 1543 if (ac->newtrans->type & __TRANS_FREEZABLE) 1544 rwsem_release( 1545 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1546 1, _THIS_IP_); 1547 1548 schedule_work(&ac->work); 1549 1550 /* wait for transaction to start and unblock */ 1551 if (wait_for_unblock) 1552 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1553 else 1554 wait_current_trans_commit_start(root, cur_trans); 1555 1556 if (current->journal_info == trans) 1557 current->journal_info = NULL; 1558 1559 btrfs_put_transaction(cur_trans); 1560 return 0; 1561 } 1562 1563 1564 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1565 struct btrfs_root *root, int err) 1566 { 1567 struct btrfs_transaction *cur_trans = trans->transaction; 1568 DEFINE_WAIT(wait); 1569 1570 WARN_ON(trans->use_count > 1); 1571 1572 btrfs_abort_transaction(trans, root, err); 1573 1574 spin_lock(&root->fs_info->trans_lock); 1575 1576 /* 1577 * If the transaction is removed from the list, it means this 1578 * transaction has been committed successfully, so it is impossible 1579 * to call the cleanup function. 1580 */ 1581 BUG_ON(list_empty(&cur_trans->list)); 1582 1583 list_del_init(&cur_trans->list); 1584 if (cur_trans == root->fs_info->running_transaction) { 1585 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1586 spin_unlock(&root->fs_info->trans_lock); 1587 wait_event(cur_trans->writer_wait, 1588 atomic_read(&cur_trans->num_writers) == 1); 1589 1590 spin_lock(&root->fs_info->trans_lock); 1591 } 1592 spin_unlock(&root->fs_info->trans_lock); 1593 1594 btrfs_cleanup_one_transaction(trans->transaction, root); 1595 1596 spin_lock(&root->fs_info->trans_lock); 1597 if (cur_trans == root->fs_info->running_transaction) 1598 root->fs_info->running_transaction = NULL; 1599 spin_unlock(&root->fs_info->trans_lock); 1600 1601 if (trans->type & __TRANS_FREEZABLE) 1602 sb_end_intwrite(root->fs_info->sb); 1603 btrfs_put_transaction(cur_trans); 1604 btrfs_put_transaction(cur_trans); 1605 1606 trace_btrfs_transaction_commit(root); 1607 1608 if (current->journal_info == trans) 1609 current->journal_info = NULL; 1610 btrfs_scrub_cancel(root->fs_info); 1611 1612 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1613 } 1614 1615 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans, 1616 struct btrfs_root *root) 1617 { 1618 int ret; 1619 1620 ret = btrfs_run_delayed_items(trans, root); 1621 if (ret) 1622 return ret; 1623 1624 /* 1625 * rename don't use btrfs_join_transaction, so, once we 1626 * set the transaction to blocked above, we aren't going 1627 * to get any new ordered operations. We can safely run 1628 * it here and no for sure that nothing new will be added 1629 * to the list 1630 */ 1631 ret = btrfs_run_ordered_operations(trans, root, 1); 1632 1633 return ret; 1634 } 1635 1636 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1637 { 1638 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1639 return btrfs_start_delalloc_roots(fs_info, 1, -1); 1640 return 0; 1641 } 1642 1643 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1644 { 1645 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1646 btrfs_wait_ordered_roots(fs_info, -1); 1647 } 1648 1649 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1650 struct btrfs_root *root) 1651 { 1652 struct btrfs_transaction *cur_trans = trans->transaction; 1653 struct btrfs_transaction *prev_trans = NULL; 1654 int ret; 1655 1656 ret = btrfs_run_ordered_operations(trans, root, 0); 1657 if (ret) { 1658 btrfs_abort_transaction(trans, root, ret); 1659 btrfs_end_transaction(trans, root); 1660 return ret; 1661 } 1662 1663 /* Stop the commit early if ->aborted is set */ 1664 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1665 ret = cur_trans->aborted; 1666 btrfs_end_transaction(trans, root); 1667 return ret; 1668 } 1669 1670 /* make a pass through all the delayed refs we have so far 1671 * any runnings procs may add more while we are here 1672 */ 1673 ret = btrfs_run_delayed_refs(trans, root, 0); 1674 if (ret) { 1675 btrfs_end_transaction(trans, root); 1676 return ret; 1677 } 1678 1679 btrfs_trans_release_metadata(trans, root); 1680 trans->block_rsv = NULL; 1681 if (trans->qgroup_reserved) { 1682 btrfs_qgroup_free(root, trans->qgroup_reserved); 1683 trans->qgroup_reserved = 0; 1684 } 1685 1686 cur_trans = trans->transaction; 1687 1688 /* 1689 * set the flushing flag so procs in this transaction have to 1690 * start sending their work down. 1691 */ 1692 cur_trans->delayed_refs.flushing = 1; 1693 smp_wmb(); 1694 1695 if (!list_empty(&trans->new_bgs)) 1696 btrfs_create_pending_block_groups(trans, root); 1697 1698 ret = btrfs_run_delayed_refs(trans, root, 0); 1699 if (ret) { 1700 btrfs_end_transaction(trans, root); 1701 return ret; 1702 } 1703 1704 spin_lock(&root->fs_info->trans_lock); 1705 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1706 spin_unlock(&root->fs_info->trans_lock); 1707 atomic_inc(&cur_trans->use_count); 1708 ret = btrfs_end_transaction(trans, root); 1709 1710 wait_for_commit(root, cur_trans); 1711 1712 btrfs_put_transaction(cur_trans); 1713 1714 return ret; 1715 } 1716 1717 cur_trans->state = TRANS_STATE_COMMIT_START; 1718 wake_up(&root->fs_info->transaction_blocked_wait); 1719 1720 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1721 prev_trans = list_entry(cur_trans->list.prev, 1722 struct btrfs_transaction, list); 1723 if (prev_trans->state != TRANS_STATE_COMPLETED) { 1724 atomic_inc(&prev_trans->use_count); 1725 spin_unlock(&root->fs_info->trans_lock); 1726 1727 wait_for_commit(root, prev_trans); 1728 1729 btrfs_put_transaction(prev_trans); 1730 } else { 1731 spin_unlock(&root->fs_info->trans_lock); 1732 } 1733 } else { 1734 spin_unlock(&root->fs_info->trans_lock); 1735 } 1736 1737 extwriter_counter_dec(cur_trans, trans->type); 1738 1739 ret = btrfs_start_delalloc_flush(root->fs_info); 1740 if (ret) 1741 goto cleanup_transaction; 1742 1743 ret = btrfs_flush_all_pending_stuffs(trans, root); 1744 if (ret) 1745 goto cleanup_transaction; 1746 1747 wait_event(cur_trans->writer_wait, 1748 extwriter_counter_read(cur_trans) == 0); 1749 1750 /* some pending stuffs might be added after the previous flush. */ 1751 ret = btrfs_flush_all_pending_stuffs(trans, root); 1752 if (ret) 1753 goto cleanup_transaction; 1754 1755 btrfs_wait_delalloc_flush(root->fs_info); 1756 1757 btrfs_scrub_pause(root); 1758 /* 1759 * Ok now we need to make sure to block out any other joins while we 1760 * commit the transaction. We could have started a join before setting 1761 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 1762 */ 1763 spin_lock(&root->fs_info->trans_lock); 1764 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1765 spin_unlock(&root->fs_info->trans_lock); 1766 wait_event(cur_trans->writer_wait, 1767 atomic_read(&cur_trans->num_writers) == 1); 1768 1769 /* ->aborted might be set after the previous check, so check it */ 1770 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1771 ret = cur_trans->aborted; 1772 goto scrub_continue; 1773 } 1774 /* 1775 * the reloc mutex makes sure that we stop 1776 * the balancing code from coming in and moving 1777 * extents around in the middle of the commit 1778 */ 1779 mutex_lock(&root->fs_info->reloc_mutex); 1780 1781 /* 1782 * We needn't worry about the delayed items because we will 1783 * deal with them in create_pending_snapshot(), which is the 1784 * core function of the snapshot creation. 1785 */ 1786 ret = create_pending_snapshots(trans, root->fs_info); 1787 if (ret) { 1788 mutex_unlock(&root->fs_info->reloc_mutex); 1789 goto scrub_continue; 1790 } 1791 1792 /* 1793 * We insert the dir indexes of the snapshots and update the inode 1794 * of the snapshots' parents after the snapshot creation, so there 1795 * are some delayed items which are not dealt with. Now deal with 1796 * them. 1797 * 1798 * We needn't worry that this operation will corrupt the snapshots, 1799 * because all the tree which are snapshoted will be forced to COW 1800 * the nodes and leaves. 1801 */ 1802 ret = btrfs_run_delayed_items(trans, root); 1803 if (ret) { 1804 mutex_unlock(&root->fs_info->reloc_mutex); 1805 goto scrub_continue; 1806 } 1807 1808 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1809 if (ret) { 1810 mutex_unlock(&root->fs_info->reloc_mutex); 1811 goto scrub_continue; 1812 } 1813 1814 /* 1815 * make sure none of the code above managed to slip in a 1816 * delayed item 1817 */ 1818 btrfs_assert_delayed_root_empty(root); 1819 1820 WARN_ON(cur_trans != trans->transaction); 1821 1822 /* btrfs_commit_tree_roots is responsible for getting the 1823 * various roots consistent with each other. Every pointer 1824 * in the tree of tree roots has to point to the most up to date 1825 * root for every subvolume and other tree. So, we have to keep 1826 * the tree logging code from jumping in and changing any 1827 * of the trees. 1828 * 1829 * At this point in the commit, there can't be any tree-log 1830 * writers, but a little lower down we drop the trans mutex 1831 * and let new people in. By holding the tree_log_mutex 1832 * from now until after the super is written, we avoid races 1833 * with the tree-log code. 1834 */ 1835 mutex_lock(&root->fs_info->tree_log_mutex); 1836 1837 ret = commit_fs_roots(trans, root); 1838 if (ret) { 1839 mutex_unlock(&root->fs_info->tree_log_mutex); 1840 mutex_unlock(&root->fs_info->reloc_mutex); 1841 goto scrub_continue; 1842 } 1843 1844 /* 1845 * Since the transaction is done, we should set the inode map cache flag 1846 * before any other comming transaction. 1847 */ 1848 if (btrfs_test_opt(root, CHANGE_INODE_CACHE)) 1849 btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE); 1850 else 1851 btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE); 1852 1853 /* commit_fs_roots gets rid of all the tree log roots, it is now 1854 * safe to free the root of tree log roots 1855 */ 1856 btrfs_free_log_root_tree(trans, root->fs_info); 1857 1858 ret = commit_cowonly_roots(trans, root); 1859 if (ret) { 1860 mutex_unlock(&root->fs_info->tree_log_mutex); 1861 mutex_unlock(&root->fs_info->reloc_mutex); 1862 goto scrub_continue; 1863 } 1864 1865 /* 1866 * The tasks which save the space cache and inode cache may also 1867 * update ->aborted, check it. 1868 */ 1869 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1870 ret = cur_trans->aborted; 1871 mutex_unlock(&root->fs_info->tree_log_mutex); 1872 mutex_unlock(&root->fs_info->reloc_mutex); 1873 goto scrub_continue; 1874 } 1875 1876 btrfs_prepare_extent_commit(trans, root); 1877 1878 cur_trans = root->fs_info->running_transaction; 1879 1880 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1881 root->fs_info->tree_root->node); 1882 list_add_tail(&root->fs_info->tree_root->dirty_list, 1883 &cur_trans->switch_commits); 1884 1885 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1886 root->fs_info->chunk_root->node); 1887 list_add_tail(&root->fs_info->chunk_root->dirty_list, 1888 &cur_trans->switch_commits); 1889 1890 switch_commit_roots(cur_trans, root->fs_info); 1891 1892 assert_qgroups_uptodate(trans); 1893 update_super_roots(root); 1894 1895 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 1896 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 1897 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 1898 sizeof(*root->fs_info->super_copy)); 1899 1900 spin_lock(&root->fs_info->trans_lock); 1901 cur_trans->state = TRANS_STATE_UNBLOCKED; 1902 root->fs_info->running_transaction = NULL; 1903 spin_unlock(&root->fs_info->trans_lock); 1904 mutex_unlock(&root->fs_info->reloc_mutex); 1905 1906 wake_up(&root->fs_info->transaction_wait); 1907 1908 ret = btrfs_write_and_wait_transaction(trans, root); 1909 if (ret) { 1910 btrfs_error(root->fs_info, ret, 1911 "Error while writing out transaction"); 1912 mutex_unlock(&root->fs_info->tree_log_mutex); 1913 goto scrub_continue; 1914 } 1915 1916 ret = write_ctree_super(trans, root, 0); 1917 if (ret) { 1918 mutex_unlock(&root->fs_info->tree_log_mutex); 1919 goto scrub_continue; 1920 } 1921 1922 /* 1923 * the super is written, we can safely allow the tree-loggers 1924 * to go about their business 1925 */ 1926 mutex_unlock(&root->fs_info->tree_log_mutex); 1927 1928 btrfs_finish_extent_commit(trans, root); 1929 1930 root->fs_info->last_trans_committed = cur_trans->transid; 1931 /* 1932 * We needn't acquire the lock here because there is no other task 1933 * which can change it. 1934 */ 1935 cur_trans->state = TRANS_STATE_COMPLETED; 1936 wake_up(&cur_trans->commit_wait); 1937 1938 spin_lock(&root->fs_info->trans_lock); 1939 list_del_init(&cur_trans->list); 1940 spin_unlock(&root->fs_info->trans_lock); 1941 1942 btrfs_put_transaction(cur_trans); 1943 btrfs_put_transaction(cur_trans); 1944 1945 if (trans->type & __TRANS_FREEZABLE) 1946 sb_end_intwrite(root->fs_info->sb); 1947 1948 trace_btrfs_transaction_commit(root); 1949 1950 btrfs_scrub_continue(root); 1951 1952 if (current->journal_info == trans) 1953 current->journal_info = NULL; 1954 1955 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1956 1957 if (current != root->fs_info->transaction_kthread) 1958 btrfs_run_delayed_iputs(root); 1959 1960 return ret; 1961 1962 scrub_continue: 1963 btrfs_scrub_continue(root); 1964 cleanup_transaction: 1965 btrfs_trans_release_metadata(trans, root); 1966 trans->block_rsv = NULL; 1967 if (trans->qgroup_reserved) { 1968 btrfs_qgroup_free(root, trans->qgroup_reserved); 1969 trans->qgroup_reserved = 0; 1970 } 1971 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction."); 1972 if (current->journal_info == trans) 1973 current->journal_info = NULL; 1974 cleanup_transaction(trans, root, ret); 1975 1976 return ret; 1977 } 1978 1979 /* 1980 * return < 0 if error 1981 * 0 if there are no more dead_roots at the time of call 1982 * 1 there are more to be processed, call me again 1983 * 1984 * The return value indicates there are certainly more snapshots to delete, but 1985 * if there comes a new one during processing, it may return 0. We don't mind, 1986 * because btrfs_commit_super will poke cleaner thread and it will process it a 1987 * few seconds later. 1988 */ 1989 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 1990 { 1991 int ret; 1992 struct btrfs_fs_info *fs_info = root->fs_info; 1993 1994 spin_lock(&fs_info->trans_lock); 1995 if (list_empty(&fs_info->dead_roots)) { 1996 spin_unlock(&fs_info->trans_lock); 1997 return 0; 1998 } 1999 root = list_first_entry(&fs_info->dead_roots, 2000 struct btrfs_root, root_list); 2001 list_del_init(&root->root_list); 2002 spin_unlock(&fs_info->trans_lock); 2003 2004 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid); 2005 2006 btrfs_kill_all_delayed_nodes(root); 2007 2008 if (btrfs_header_backref_rev(root->node) < 2009 BTRFS_MIXED_BACKREF_REV) 2010 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2011 else 2012 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2013 /* 2014 * If we encounter a transaction abort during snapshot cleaning, we 2015 * don't want to crash here 2016 */ 2017 return (ret < 0) ? 0 : 1; 2018 } 2019