xref: /openbmc/linux/fs/btrfs/transaction.c (revision 56d06fa2)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			printk(KERN_ERR "pending csums is %llu\n",
69 			       transaction->delayed_refs.pending_csums);
70 		while (!list_empty(&transaction->pending_chunks)) {
71 			struct extent_map *em;
72 
73 			em = list_first_entry(&transaction->pending_chunks,
74 					      struct extent_map, list);
75 			list_del_init(&em->list);
76 			free_extent_map(em);
77 		}
78 		/*
79 		 * If any block groups are found in ->deleted_bgs then it's
80 		 * because the transaction was aborted and a commit did not
81 		 * happen (things failed before writing the new superblock
82 		 * and calling btrfs_finish_extent_commit()), so we can not
83 		 * discard the physical locations of the block groups.
84 		 */
85 		while (!list_empty(&transaction->deleted_bgs)) {
86 			struct btrfs_block_group_cache *cache;
87 
88 			cache = list_first_entry(&transaction->deleted_bgs,
89 						 struct btrfs_block_group_cache,
90 						 bg_list);
91 			list_del_init(&cache->bg_list);
92 			btrfs_put_block_group_trimming(cache);
93 			btrfs_put_block_group(cache);
94 		}
95 		kmem_cache_free(btrfs_transaction_cachep, transaction);
96 	}
97 }
98 
99 static void clear_btree_io_tree(struct extent_io_tree *tree)
100 {
101 	spin_lock(&tree->lock);
102 	/*
103 	 * Do a single barrier for the waitqueue_active check here, the state
104 	 * of the waitqueue should not change once clear_btree_io_tree is
105 	 * called.
106 	 */
107 	smp_mb();
108 	while (!RB_EMPTY_ROOT(&tree->state)) {
109 		struct rb_node *node;
110 		struct extent_state *state;
111 
112 		node = rb_first(&tree->state);
113 		state = rb_entry(node, struct extent_state, rb_node);
114 		rb_erase(&state->rb_node, &tree->state);
115 		RB_CLEAR_NODE(&state->rb_node);
116 		/*
117 		 * btree io trees aren't supposed to have tasks waiting for
118 		 * changes in the flags of extent states ever.
119 		 */
120 		ASSERT(!waitqueue_active(&state->wq));
121 		free_extent_state(state);
122 
123 		cond_resched_lock(&tree->lock);
124 	}
125 	spin_unlock(&tree->lock);
126 }
127 
128 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
129 					 struct btrfs_fs_info *fs_info)
130 {
131 	struct btrfs_root *root, *tmp;
132 
133 	down_write(&fs_info->commit_root_sem);
134 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
135 				 dirty_list) {
136 		list_del_init(&root->dirty_list);
137 		free_extent_buffer(root->commit_root);
138 		root->commit_root = btrfs_root_node(root);
139 		if (is_fstree(root->objectid))
140 			btrfs_unpin_free_ino(root);
141 		clear_btree_io_tree(&root->dirty_log_pages);
142 	}
143 
144 	/* We can free old roots now. */
145 	spin_lock(&trans->dropped_roots_lock);
146 	while (!list_empty(&trans->dropped_roots)) {
147 		root = list_first_entry(&trans->dropped_roots,
148 					struct btrfs_root, root_list);
149 		list_del_init(&root->root_list);
150 		spin_unlock(&trans->dropped_roots_lock);
151 		btrfs_drop_and_free_fs_root(fs_info, root);
152 		spin_lock(&trans->dropped_roots_lock);
153 	}
154 	spin_unlock(&trans->dropped_roots_lock);
155 	up_write(&fs_info->commit_root_sem);
156 }
157 
158 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
159 					 unsigned int type)
160 {
161 	if (type & TRANS_EXTWRITERS)
162 		atomic_inc(&trans->num_extwriters);
163 }
164 
165 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
166 					 unsigned int type)
167 {
168 	if (type & TRANS_EXTWRITERS)
169 		atomic_dec(&trans->num_extwriters);
170 }
171 
172 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
173 					  unsigned int type)
174 {
175 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
176 }
177 
178 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
179 {
180 	return atomic_read(&trans->num_extwriters);
181 }
182 
183 /*
184  * either allocate a new transaction or hop into the existing one
185  */
186 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
187 {
188 	struct btrfs_transaction *cur_trans;
189 	struct btrfs_fs_info *fs_info = root->fs_info;
190 
191 	spin_lock(&fs_info->trans_lock);
192 loop:
193 	/* The file system has been taken offline. No new transactions. */
194 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
195 		spin_unlock(&fs_info->trans_lock);
196 		return -EROFS;
197 	}
198 
199 	cur_trans = fs_info->running_transaction;
200 	if (cur_trans) {
201 		if (cur_trans->aborted) {
202 			spin_unlock(&fs_info->trans_lock);
203 			return cur_trans->aborted;
204 		}
205 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
206 			spin_unlock(&fs_info->trans_lock);
207 			return -EBUSY;
208 		}
209 		atomic_inc(&cur_trans->use_count);
210 		atomic_inc(&cur_trans->num_writers);
211 		extwriter_counter_inc(cur_trans, type);
212 		spin_unlock(&fs_info->trans_lock);
213 		return 0;
214 	}
215 	spin_unlock(&fs_info->trans_lock);
216 
217 	/*
218 	 * If we are ATTACH, we just want to catch the current transaction,
219 	 * and commit it. If there is no transaction, just return ENOENT.
220 	 */
221 	if (type == TRANS_ATTACH)
222 		return -ENOENT;
223 
224 	/*
225 	 * JOIN_NOLOCK only happens during the transaction commit, so
226 	 * it is impossible that ->running_transaction is NULL
227 	 */
228 	BUG_ON(type == TRANS_JOIN_NOLOCK);
229 
230 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
231 	if (!cur_trans)
232 		return -ENOMEM;
233 
234 	spin_lock(&fs_info->trans_lock);
235 	if (fs_info->running_transaction) {
236 		/*
237 		 * someone started a transaction after we unlocked.  Make sure
238 		 * to redo the checks above
239 		 */
240 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
241 		goto loop;
242 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
243 		spin_unlock(&fs_info->trans_lock);
244 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
245 		return -EROFS;
246 	}
247 
248 	atomic_set(&cur_trans->num_writers, 1);
249 	extwriter_counter_init(cur_trans, type);
250 	init_waitqueue_head(&cur_trans->writer_wait);
251 	init_waitqueue_head(&cur_trans->commit_wait);
252 	init_waitqueue_head(&cur_trans->pending_wait);
253 	cur_trans->state = TRANS_STATE_RUNNING;
254 	/*
255 	 * One for this trans handle, one so it will live on until we
256 	 * commit the transaction.
257 	 */
258 	atomic_set(&cur_trans->use_count, 2);
259 	atomic_set(&cur_trans->pending_ordered, 0);
260 	cur_trans->flags = 0;
261 	cur_trans->start_time = get_seconds();
262 
263 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
264 
265 	cur_trans->delayed_refs.href_root = RB_ROOT;
266 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
267 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
268 
269 	/*
270 	 * although the tree mod log is per file system and not per transaction,
271 	 * the log must never go across transaction boundaries.
272 	 */
273 	smp_mb();
274 	if (!list_empty(&fs_info->tree_mod_seq_list))
275 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
276 			"creating a fresh transaction\n");
277 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
278 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
279 			"creating a fresh transaction\n");
280 	atomic64_set(&fs_info->tree_mod_seq, 0);
281 
282 	spin_lock_init(&cur_trans->delayed_refs.lock);
283 
284 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 	INIT_LIST_HEAD(&cur_trans->switch_commits);
287 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 	INIT_LIST_HEAD(&cur_trans->io_bgs);
289 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 	mutex_init(&cur_trans->cache_write_mutex);
291 	cur_trans->num_dirty_bgs = 0;
292 	spin_lock_init(&cur_trans->dirty_bgs_lock);
293 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 	spin_lock_init(&cur_trans->dropped_roots_lock);
295 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 	extent_io_tree_init(&cur_trans->dirty_pages,
297 			     fs_info->btree_inode->i_mapping);
298 	fs_info->generation++;
299 	cur_trans->transid = fs_info->generation;
300 	fs_info->running_transaction = cur_trans;
301 	cur_trans->aborted = 0;
302 	spin_unlock(&fs_info->trans_lock);
303 
304 	return 0;
305 }
306 
307 /*
308  * this does all the record keeping required to make sure that a reference
309  * counted root is properly recorded in a given transaction.  This is required
310  * to make sure the old root from before we joined the transaction is deleted
311  * when the transaction commits
312  */
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 			       struct btrfs_root *root)
315 {
316 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
317 	    root->last_trans < trans->transid) {
318 		WARN_ON(root == root->fs_info->extent_root);
319 		WARN_ON(root->commit_root != root->node);
320 
321 		/*
322 		 * see below for IN_TRANS_SETUP usage rules
323 		 * we have the reloc mutex held now, so there
324 		 * is only one writer in this function
325 		 */
326 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
327 
328 		/* make sure readers find IN_TRANS_SETUP before
329 		 * they find our root->last_trans update
330 		 */
331 		smp_wmb();
332 
333 		spin_lock(&root->fs_info->fs_roots_radix_lock);
334 		if (root->last_trans == trans->transid) {
335 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
336 			return 0;
337 		}
338 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
339 			   (unsigned long)root->root_key.objectid,
340 			   BTRFS_ROOT_TRANS_TAG);
341 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
342 		root->last_trans = trans->transid;
343 
344 		/* this is pretty tricky.  We don't want to
345 		 * take the relocation lock in btrfs_record_root_in_trans
346 		 * unless we're really doing the first setup for this root in
347 		 * this transaction.
348 		 *
349 		 * Normally we'd use root->last_trans as a flag to decide
350 		 * if we want to take the expensive mutex.
351 		 *
352 		 * But, we have to set root->last_trans before we
353 		 * init the relocation root, otherwise, we trip over warnings
354 		 * in ctree.c.  The solution used here is to flag ourselves
355 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
356 		 * fixing up the reloc trees and everyone must wait.
357 		 *
358 		 * When this is zero, they can trust root->last_trans and fly
359 		 * through btrfs_record_root_in_trans without having to take the
360 		 * lock.  smp_wmb() makes sure that all the writes above are
361 		 * done before we pop in the zero below
362 		 */
363 		btrfs_init_reloc_root(trans, root);
364 		smp_mb__before_atomic();
365 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
366 	}
367 	return 0;
368 }
369 
370 
371 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
372 			    struct btrfs_root *root)
373 {
374 	struct btrfs_transaction *cur_trans = trans->transaction;
375 
376 	/* Add ourselves to the transaction dropped list */
377 	spin_lock(&cur_trans->dropped_roots_lock);
378 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
379 	spin_unlock(&cur_trans->dropped_roots_lock);
380 
381 	/* Make sure we don't try to update the root at commit time */
382 	spin_lock(&root->fs_info->fs_roots_radix_lock);
383 	radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
384 			     (unsigned long)root->root_key.objectid,
385 			     BTRFS_ROOT_TRANS_TAG);
386 	spin_unlock(&root->fs_info->fs_roots_radix_lock);
387 }
388 
389 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
390 			       struct btrfs_root *root)
391 {
392 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
393 		return 0;
394 
395 	/*
396 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
397 	 * and barriers
398 	 */
399 	smp_rmb();
400 	if (root->last_trans == trans->transid &&
401 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
402 		return 0;
403 
404 	mutex_lock(&root->fs_info->reloc_mutex);
405 	record_root_in_trans(trans, root);
406 	mutex_unlock(&root->fs_info->reloc_mutex);
407 
408 	return 0;
409 }
410 
411 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
412 {
413 	return (trans->state >= TRANS_STATE_BLOCKED &&
414 		trans->state < TRANS_STATE_UNBLOCKED &&
415 		!trans->aborted);
416 }
417 
418 /* wait for commit against the current transaction to become unblocked
419  * when this is done, it is safe to start a new transaction, but the current
420  * transaction might not be fully on disk.
421  */
422 static void wait_current_trans(struct btrfs_root *root)
423 {
424 	struct btrfs_transaction *cur_trans;
425 
426 	spin_lock(&root->fs_info->trans_lock);
427 	cur_trans = root->fs_info->running_transaction;
428 	if (cur_trans && is_transaction_blocked(cur_trans)) {
429 		atomic_inc(&cur_trans->use_count);
430 		spin_unlock(&root->fs_info->trans_lock);
431 
432 		wait_event(root->fs_info->transaction_wait,
433 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
434 			   cur_trans->aborted);
435 		btrfs_put_transaction(cur_trans);
436 	} else {
437 		spin_unlock(&root->fs_info->trans_lock);
438 	}
439 }
440 
441 static int may_wait_transaction(struct btrfs_root *root, int type)
442 {
443 	if (root->fs_info->log_root_recovering)
444 		return 0;
445 
446 	if (type == TRANS_USERSPACE)
447 		return 1;
448 
449 	if (type == TRANS_START &&
450 	    !atomic_read(&root->fs_info->open_ioctl_trans))
451 		return 1;
452 
453 	return 0;
454 }
455 
456 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
457 {
458 	if (!root->fs_info->reloc_ctl ||
459 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
460 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
461 	    root->reloc_root)
462 		return false;
463 
464 	return true;
465 }
466 
467 static struct btrfs_trans_handle *
468 start_transaction(struct btrfs_root *root, unsigned int num_items,
469 		  unsigned int type, enum btrfs_reserve_flush_enum flush)
470 {
471 	struct btrfs_trans_handle *h;
472 	struct btrfs_transaction *cur_trans;
473 	u64 num_bytes = 0;
474 	u64 qgroup_reserved = 0;
475 	bool reloc_reserved = false;
476 	int ret;
477 
478 	/* Send isn't supposed to start transactions. */
479 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
480 
481 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
482 		return ERR_PTR(-EROFS);
483 
484 	if (current->journal_info) {
485 		WARN_ON(type & TRANS_EXTWRITERS);
486 		h = current->journal_info;
487 		h->use_count++;
488 		WARN_ON(h->use_count > 2);
489 		h->orig_rsv = h->block_rsv;
490 		h->block_rsv = NULL;
491 		goto got_it;
492 	}
493 
494 	/*
495 	 * Do the reservation before we join the transaction so we can do all
496 	 * the appropriate flushing if need be.
497 	 */
498 	if (num_items > 0 && root != root->fs_info->chunk_root) {
499 		qgroup_reserved = num_items * root->nodesize;
500 		ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
501 		if (ret)
502 			return ERR_PTR(ret);
503 
504 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
505 		/*
506 		 * Do the reservation for the relocation root creation
507 		 */
508 		if (need_reserve_reloc_root(root)) {
509 			num_bytes += root->nodesize;
510 			reloc_reserved = true;
511 		}
512 
513 		ret = btrfs_block_rsv_add(root,
514 					  &root->fs_info->trans_block_rsv,
515 					  num_bytes, flush);
516 		if (ret)
517 			goto reserve_fail;
518 	}
519 again:
520 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
521 	if (!h) {
522 		ret = -ENOMEM;
523 		goto alloc_fail;
524 	}
525 
526 	/*
527 	 * If we are JOIN_NOLOCK we're already committing a transaction and
528 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
529 	 * because we're already holding a ref.  We need this because we could
530 	 * have raced in and did an fsync() on a file which can kick a commit
531 	 * and then we deadlock with somebody doing a freeze.
532 	 *
533 	 * If we are ATTACH, it means we just want to catch the current
534 	 * transaction and commit it, so we needn't do sb_start_intwrite().
535 	 */
536 	if (type & __TRANS_FREEZABLE)
537 		sb_start_intwrite(root->fs_info->sb);
538 
539 	if (may_wait_transaction(root, type))
540 		wait_current_trans(root);
541 
542 	do {
543 		ret = join_transaction(root, type);
544 		if (ret == -EBUSY) {
545 			wait_current_trans(root);
546 			if (unlikely(type == TRANS_ATTACH))
547 				ret = -ENOENT;
548 		}
549 	} while (ret == -EBUSY);
550 
551 	if (ret < 0) {
552 		/* We must get the transaction if we are JOIN_NOLOCK. */
553 		BUG_ON(type == TRANS_JOIN_NOLOCK);
554 		goto join_fail;
555 	}
556 
557 	cur_trans = root->fs_info->running_transaction;
558 
559 	h->transid = cur_trans->transid;
560 	h->transaction = cur_trans;
561 	h->root = root;
562 	h->use_count = 1;
563 
564 	h->type = type;
565 	h->can_flush_pending_bgs = true;
566 	INIT_LIST_HEAD(&h->qgroup_ref_list);
567 	INIT_LIST_HEAD(&h->new_bgs);
568 
569 	smp_mb();
570 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
571 	    may_wait_transaction(root, type)) {
572 		current->journal_info = h;
573 		btrfs_commit_transaction(h, root);
574 		goto again;
575 	}
576 
577 	if (num_bytes) {
578 		trace_btrfs_space_reservation(root->fs_info, "transaction",
579 					      h->transid, num_bytes, 1);
580 		h->block_rsv = &root->fs_info->trans_block_rsv;
581 		h->bytes_reserved = num_bytes;
582 		h->reloc_reserved = reloc_reserved;
583 	}
584 
585 got_it:
586 	btrfs_record_root_in_trans(h, root);
587 
588 	if (!current->journal_info && type != TRANS_USERSPACE)
589 		current->journal_info = h;
590 	return h;
591 
592 join_fail:
593 	if (type & __TRANS_FREEZABLE)
594 		sb_end_intwrite(root->fs_info->sb);
595 	kmem_cache_free(btrfs_trans_handle_cachep, h);
596 alloc_fail:
597 	if (num_bytes)
598 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
599 					num_bytes);
600 reserve_fail:
601 	btrfs_qgroup_free_meta(root, qgroup_reserved);
602 	return ERR_PTR(ret);
603 }
604 
605 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
606 						   unsigned int num_items)
607 {
608 	return start_transaction(root, num_items, TRANS_START,
609 				 BTRFS_RESERVE_FLUSH_ALL);
610 }
611 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
612 					struct btrfs_root *root,
613 					unsigned int num_items,
614 					int min_factor)
615 {
616 	struct btrfs_trans_handle *trans;
617 	u64 num_bytes;
618 	int ret;
619 
620 	trans = btrfs_start_transaction(root, num_items);
621 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
622 		return trans;
623 
624 	trans = btrfs_start_transaction(root, 0);
625 	if (IS_ERR(trans))
626 		return trans;
627 
628 	num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
629 	ret = btrfs_cond_migrate_bytes(root->fs_info,
630 				       &root->fs_info->trans_block_rsv,
631 				       num_bytes,
632 				       min_factor);
633 	if (ret) {
634 		btrfs_end_transaction(trans, root);
635 		return ERR_PTR(ret);
636 	}
637 
638 	trans->block_rsv = &root->fs_info->trans_block_rsv;
639 	trans->bytes_reserved = num_bytes;
640 	trace_btrfs_space_reservation(root->fs_info, "transaction",
641 				      trans->transid, num_bytes, 1);
642 
643 	return trans;
644 }
645 
646 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
647 					struct btrfs_root *root,
648 					unsigned int num_items)
649 {
650 	return start_transaction(root, num_items, TRANS_START,
651 				 BTRFS_RESERVE_FLUSH_LIMIT);
652 }
653 
654 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
655 {
656 	return start_transaction(root, 0, TRANS_JOIN,
657 				 BTRFS_RESERVE_NO_FLUSH);
658 }
659 
660 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
661 {
662 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
663 				 BTRFS_RESERVE_NO_FLUSH);
664 }
665 
666 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
667 {
668 	return start_transaction(root, 0, TRANS_USERSPACE,
669 				 BTRFS_RESERVE_NO_FLUSH);
670 }
671 
672 /*
673  * btrfs_attach_transaction() - catch the running transaction
674  *
675  * It is used when we want to commit the current the transaction, but
676  * don't want to start a new one.
677  *
678  * Note: If this function return -ENOENT, it just means there is no
679  * running transaction. But it is possible that the inactive transaction
680  * is still in the memory, not fully on disk. If you hope there is no
681  * inactive transaction in the fs when -ENOENT is returned, you should
682  * invoke
683  *     btrfs_attach_transaction_barrier()
684  */
685 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
686 {
687 	return start_transaction(root, 0, TRANS_ATTACH,
688 				 BTRFS_RESERVE_NO_FLUSH);
689 }
690 
691 /*
692  * btrfs_attach_transaction_barrier() - catch the running transaction
693  *
694  * It is similar to the above function, the differentia is this one
695  * will wait for all the inactive transactions until they fully
696  * complete.
697  */
698 struct btrfs_trans_handle *
699 btrfs_attach_transaction_barrier(struct btrfs_root *root)
700 {
701 	struct btrfs_trans_handle *trans;
702 
703 	trans = start_transaction(root, 0, TRANS_ATTACH,
704 				  BTRFS_RESERVE_NO_FLUSH);
705 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
706 		btrfs_wait_for_commit(root, 0);
707 
708 	return trans;
709 }
710 
711 /* wait for a transaction commit to be fully complete */
712 static noinline void wait_for_commit(struct btrfs_root *root,
713 				    struct btrfs_transaction *commit)
714 {
715 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
716 }
717 
718 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
719 {
720 	struct btrfs_transaction *cur_trans = NULL, *t;
721 	int ret = 0;
722 
723 	if (transid) {
724 		if (transid <= root->fs_info->last_trans_committed)
725 			goto out;
726 
727 		/* find specified transaction */
728 		spin_lock(&root->fs_info->trans_lock);
729 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
730 			if (t->transid == transid) {
731 				cur_trans = t;
732 				atomic_inc(&cur_trans->use_count);
733 				ret = 0;
734 				break;
735 			}
736 			if (t->transid > transid) {
737 				ret = 0;
738 				break;
739 			}
740 		}
741 		spin_unlock(&root->fs_info->trans_lock);
742 
743 		/*
744 		 * The specified transaction doesn't exist, or we
745 		 * raced with btrfs_commit_transaction
746 		 */
747 		if (!cur_trans) {
748 			if (transid > root->fs_info->last_trans_committed)
749 				ret = -EINVAL;
750 			goto out;
751 		}
752 	} else {
753 		/* find newest transaction that is committing | committed */
754 		spin_lock(&root->fs_info->trans_lock);
755 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
756 					    list) {
757 			if (t->state >= TRANS_STATE_COMMIT_START) {
758 				if (t->state == TRANS_STATE_COMPLETED)
759 					break;
760 				cur_trans = t;
761 				atomic_inc(&cur_trans->use_count);
762 				break;
763 			}
764 		}
765 		spin_unlock(&root->fs_info->trans_lock);
766 		if (!cur_trans)
767 			goto out;  /* nothing committing|committed */
768 	}
769 
770 	wait_for_commit(root, cur_trans);
771 	btrfs_put_transaction(cur_trans);
772 out:
773 	return ret;
774 }
775 
776 void btrfs_throttle(struct btrfs_root *root)
777 {
778 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
779 		wait_current_trans(root);
780 }
781 
782 static int should_end_transaction(struct btrfs_trans_handle *trans,
783 				  struct btrfs_root *root)
784 {
785 	if (root->fs_info->global_block_rsv.space_info->full &&
786 	    btrfs_check_space_for_delayed_refs(trans, root))
787 		return 1;
788 
789 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
790 }
791 
792 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
793 				 struct btrfs_root *root)
794 {
795 	struct btrfs_transaction *cur_trans = trans->transaction;
796 	int updates;
797 	int err;
798 
799 	smp_mb();
800 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
801 	    cur_trans->delayed_refs.flushing)
802 		return 1;
803 
804 	updates = trans->delayed_ref_updates;
805 	trans->delayed_ref_updates = 0;
806 	if (updates) {
807 		err = btrfs_run_delayed_refs(trans, root, updates * 2);
808 		if (err) /* Error code will also eval true */
809 			return err;
810 	}
811 
812 	return should_end_transaction(trans, root);
813 }
814 
815 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
816 			  struct btrfs_root *root, int throttle)
817 {
818 	struct btrfs_transaction *cur_trans = trans->transaction;
819 	struct btrfs_fs_info *info = root->fs_info;
820 	unsigned long cur = trans->delayed_ref_updates;
821 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
822 	int err = 0;
823 	int must_run_delayed_refs = 0;
824 
825 	if (trans->use_count > 1) {
826 		trans->use_count--;
827 		trans->block_rsv = trans->orig_rsv;
828 		return 0;
829 	}
830 
831 	btrfs_trans_release_metadata(trans, root);
832 	trans->block_rsv = NULL;
833 
834 	if (!list_empty(&trans->new_bgs))
835 		btrfs_create_pending_block_groups(trans, root);
836 
837 	trans->delayed_ref_updates = 0;
838 	if (!trans->sync) {
839 		must_run_delayed_refs =
840 			btrfs_should_throttle_delayed_refs(trans, root);
841 		cur = max_t(unsigned long, cur, 32);
842 
843 		/*
844 		 * don't make the caller wait if they are from a NOLOCK
845 		 * or ATTACH transaction, it will deadlock with commit
846 		 */
847 		if (must_run_delayed_refs == 1 &&
848 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
849 			must_run_delayed_refs = 2;
850 	}
851 
852 	btrfs_trans_release_metadata(trans, root);
853 	trans->block_rsv = NULL;
854 
855 	if (!list_empty(&trans->new_bgs))
856 		btrfs_create_pending_block_groups(trans, root);
857 
858 	btrfs_trans_release_chunk_metadata(trans);
859 
860 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
861 	    should_end_transaction(trans, root) &&
862 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
863 		spin_lock(&info->trans_lock);
864 		if (cur_trans->state == TRANS_STATE_RUNNING)
865 			cur_trans->state = TRANS_STATE_BLOCKED;
866 		spin_unlock(&info->trans_lock);
867 	}
868 
869 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
870 		if (throttle)
871 			return btrfs_commit_transaction(trans, root);
872 		else
873 			wake_up_process(info->transaction_kthread);
874 	}
875 
876 	if (trans->type & __TRANS_FREEZABLE)
877 		sb_end_intwrite(root->fs_info->sb);
878 
879 	WARN_ON(cur_trans != info->running_transaction);
880 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
881 	atomic_dec(&cur_trans->num_writers);
882 	extwriter_counter_dec(cur_trans, trans->type);
883 
884 	/*
885 	 * Make sure counter is updated before we wake up waiters.
886 	 */
887 	smp_mb();
888 	if (waitqueue_active(&cur_trans->writer_wait))
889 		wake_up(&cur_trans->writer_wait);
890 	btrfs_put_transaction(cur_trans);
891 
892 	if (current->journal_info == trans)
893 		current->journal_info = NULL;
894 
895 	if (throttle)
896 		btrfs_run_delayed_iputs(root);
897 
898 	if (trans->aborted ||
899 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
900 		wake_up_process(info->transaction_kthread);
901 		err = -EIO;
902 	}
903 	assert_qgroups_uptodate(trans);
904 
905 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
906 	if (must_run_delayed_refs) {
907 		btrfs_async_run_delayed_refs(root, cur,
908 					     must_run_delayed_refs == 1);
909 	}
910 	return err;
911 }
912 
913 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
914 			  struct btrfs_root *root)
915 {
916 	return __btrfs_end_transaction(trans, root, 0);
917 }
918 
919 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
920 				   struct btrfs_root *root)
921 {
922 	return __btrfs_end_transaction(trans, root, 1);
923 }
924 
925 /*
926  * when btree blocks are allocated, they have some corresponding bits set for
927  * them in one of two extent_io trees.  This is used to make sure all of
928  * those extents are sent to disk but does not wait on them
929  */
930 int btrfs_write_marked_extents(struct btrfs_root *root,
931 			       struct extent_io_tree *dirty_pages, int mark)
932 {
933 	int err = 0;
934 	int werr = 0;
935 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
936 	struct extent_state *cached_state = NULL;
937 	u64 start = 0;
938 	u64 end;
939 
940 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
941 				      mark, &cached_state)) {
942 		bool wait_writeback = false;
943 
944 		err = convert_extent_bit(dirty_pages, start, end,
945 					 EXTENT_NEED_WAIT,
946 					 mark, &cached_state, GFP_NOFS);
947 		/*
948 		 * convert_extent_bit can return -ENOMEM, which is most of the
949 		 * time a temporary error. So when it happens, ignore the error
950 		 * and wait for writeback of this range to finish - because we
951 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
952 		 * to btrfs_wait_marked_extents() would not know that writeback
953 		 * for this range started and therefore wouldn't wait for it to
954 		 * finish - we don't want to commit a superblock that points to
955 		 * btree nodes/leafs for which writeback hasn't finished yet
956 		 * (and without errors).
957 		 * We cleanup any entries left in the io tree when committing
958 		 * the transaction (through clear_btree_io_tree()).
959 		 */
960 		if (err == -ENOMEM) {
961 			err = 0;
962 			wait_writeback = true;
963 		}
964 		if (!err)
965 			err = filemap_fdatawrite_range(mapping, start, end);
966 		if (err)
967 			werr = err;
968 		else if (wait_writeback)
969 			werr = filemap_fdatawait_range(mapping, start, end);
970 		free_extent_state(cached_state);
971 		cached_state = NULL;
972 		cond_resched();
973 		start = end + 1;
974 	}
975 	return werr;
976 }
977 
978 /*
979  * when btree blocks are allocated, they have some corresponding bits set for
980  * them in one of two extent_io trees.  This is used to make sure all of
981  * those extents are on disk for transaction or log commit.  We wait
982  * on all the pages and clear them from the dirty pages state tree
983  */
984 int btrfs_wait_marked_extents(struct btrfs_root *root,
985 			      struct extent_io_tree *dirty_pages, int mark)
986 {
987 	int err = 0;
988 	int werr = 0;
989 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
990 	struct extent_state *cached_state = NULL;
991 	u64 start = 0;
992 	u64 end;
993 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
994 	bool errors = false;
995 
996 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
997 				      EXTENT_NEED_WAIT, &cached_state)) {
998 		/*
999 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1000 		 * When committing the transaction, we'll remove any entries
1001 		 * left in the io tree. For a log commit, we don't remove them
1002 		 * after committing the log because the tree can be accessed
1003 		 * concurrently - we do it only at transaction commit time when
1004 		 * it's safe to do it (through clear_btree_io_tree()).
1005 		 */
1006 		err = clear_extent_bit(dirty_pages, start, end,
1007 				       EXTENT_NEED_WAIT,
1008 				       0, 0, &cached_state, GFP_NOFS);
1009 		if (err == -ENOMEM)
1010 			err = 0;
1011 		if (!err)
1012 			err = filemap_fdatawait_range(mapping, start, end);
1013 		if (err)
1014 			werr = err;
1015 		free_extent_state(cached_state);
1016 		cached_state = NULL;
1017 		cond_resched();
1018 		start = end + 1;
1019 	}
1020 	if (err)
1021 		werr = err;
1022 
1023 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1024 		if ((mark & EXTENT_DIRTY) &&
1025 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1026 				       &btree_ino->runtime_flags))
1027 			errors = true;
1028 
1029 		if ((mark & EXTENT_NEW) &&
1030 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1031 				       &btree_ino->runtime_flags))
1032 			errors = true;
1033 	} else {
1034 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1035 				       &btree_ino->runtime_flags))
1036 			errors = true;
1037 	}
1038 
1039 	if (errors && !werr)
1040 		werr = -EIO;
1041 
1042 	return werr;
1043 }
1044 
1045 /*
1046  * when btree blocks are allocated, they have some corresponding bits set for
1047  * them in one of two extent_io trees.  This is used to make sure all of
1048  * those extents are on disk for transaction or log commit
1049  */
1050 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1051 				struct extent_io_tree *dirty_pages, int mark)
1052 {
1053 	int ret;
1054 	int ret2;
1055 	struct blk_plug plug;
1056 
1057 	blk_start_plug(&plug);
1058 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1059 	blk_finish_plug(&plug);
1060 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1061 
1062 	if (ret)
1063 		return ret;
1064 	if (ret2)
1065 		return ret2;
1066 	return 0;
1067 }
1068 
1069 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1070 				     struct btrfs_root *root)
1071 {
1072 	int ret;
1073 
1074 	ret = btrfs_write_and_wait_marked_extents(root,
1075 					   &trans->transaction->dirty_pages,
1076 					   EXTENT_DIRTY);
1077 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1078 
1079 	return ret;
1080 }
1081 
1082 /*
1083  * this is used to update the root pointer in the tree of tree roots.
1084  *
1085  * But, in the case of the extent allocation tree, updating the root
1086  * pointer may allocate blocks which may change the root of the extent
1087  * allocation tree.
1088  *
1089  * So, this loops and repeats and makes sure the cowonly root didn't
1090  * change while the root pointer was being updated in the metadata.
1091  */
1092 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1093 			       struct btrfs_root *root)
1094 {
1095 	int ret;
1096 	u64 old_root_bytenr;
1097 	u64 old_root_used;
1098 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1099 
1100 	old_root_used = btrfs_root_used(&root->root_item);
1101 
1102 	while (1) {
1103 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1104 		if (old_root_bytenr == root->node->start &&
1105 		    old_root_used == btrfs_root_used(&root->root_item))
1106 			break;
1107 
1108 		btrfs_set_root_node(&root->root_item, root->node);
1109 		ret = btrfs_update_root(trans, tree_root,
1110 					&root->root_key,
1111 					&root->root_item);
1112 		if (ret)
1113 			return ret;
1114 
1115 		old_root_used = btrfs_root_used(&root->root_item);
1116 	}
1117 
1118 	return 0;
1119 }
1120 
1121 /*
1122  * update all the cowonly tree roots on disk
1123  *
1124  * The error handling in this function may not be obvious. Any of the
1125  * failures will cause the file system to go offline. We still need
1126  * to clean up the delayed refs.
1127  */
1128 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1129 					 struct btrfs_root *root)
1130 {
1131 	struct btrfs_fs_info *fs_info = root->fs_info;
1132 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1133 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1134 	struct list_head *next;
1135 	struct extent_buffer *eb;
1136 	int ret;
1137 
1138 	eb = btrfs_lock_root_node(fs_info->tree_root);
1139 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1140 			      0, &eb);
1141 	btrfs_tree_unlock(eb);
1142 	free_extent_buffer(eb);
1143 
1144 	if (ret)
1145 		return ret;
1146 
1147 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1148 	if (ret)
1149 		return ret;
1150 
1151 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1152 	if (ret)
1153 		return ret;
1154 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1155 	if (ret)
1156 		return ret;
1157 	ret = btrfs_run_qgroups(trans, root->fs_info);
1158 	if (ret)
1159 		return ret;
1160 
1161 	ret = btrfs_setup_space_cache(trans, root);
1162 	if (ret)
1163 		return ret;
1164 
1165 	/* run_qgroups might have added some more refs */
1166 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1167 	if (ret)
1168 		return ret;
1169 again:
1170 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1171 		next = fs_info->dirty_cowonly_roots.next;
1172 		list_del_init(next);
1173 		root = list_entry(next, struct btrfs_root, dirty_list);
1174 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1175 
1176 		if (root != fs_info->extent_root)
1177 			list_add_tail(&root->dirty_list,
1178 				      &trans->transaction->switch_commits);
1179 		ret = update_cowonly_root(trans, root);
1180 		if (ret)
1181 			return ret;
1182 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1183 		if (ret)
1184 			return ret;
1185 	}
1186 
1187 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1188 		ret = btrfs_write_dirty_block_groups(trans, root);
1189 		if (ret)
1190 			return ret;
1191 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1192 		if (ret)
1193 			return ret;
1194 	}
1195 
1196 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1197 		goto again;
1198 
1199 	list_add_tail(&fs_info->extent_root->dirty_list,
1200 		      &trans->transaction->switch_commits);
1201 	btrfs_after_dev_replace_commit(fs_info);
1202 
1203 	return 0;
1204 }
1205 
1206 /*
1207  * dead roots are old snapshots that need to be deleted.  This allocates
1208  * a dirty root struct and adds it into the list of dead roots that need to
1209  * be deleted
1210  */
1211 void btrfs_add_dead_root(struct btrfs_root *root)
1212 {
1213 	spin_lock(&root->fs_info->trans_lock);
1214 	if (list_empty(&root->root_list))
1215 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1216 	spin_unlock(&root->fs_info->trans_lock);
1217 }
1218 
1219 /*
1220  * update all the cowonly tree roots on disk
1221  */
1222 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1223 				    struct btrfs_root *root)
1224 {
1225 	struct btrfs_root *gang[8];
1226 	struct btrfs_fs_info *fs_info = root->fs_info;
1227 	int i;
1228 	int ret;
1229 	int err = 0;
1230 
1231 	spin_lock(&fs_info->fs_roots_radix_lock);
1232 	while (1) {
1233 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1234 						 (void **)gang, 0,
1235 						 ARRAY_SIZE(gang),
1236 						 BTRFS_ROOT_TRANS_TAG);
1237 		if (ret == 0)
1238 			break;
1239 		for (i = 0; i < ret; i++) {
1240 			root = gang[i];
1241 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1242 					(unsigned long)root->root_key.objectid,
1243 					BTRFS_ROOT_TRANS_TAG);
1244 			spin_unlock(&fs_info->fs_roots_radix_lock);
1245 
1246 			btrfs_free_log(trans, root);
1247 			btrfs_update_reloc_root(trans, root);
1248 			btrfs_orphan_commit_root(trans, root);
1249 
1250 			btrfs_save_ino_cache(root, trans);
1251 
1252 			/* see comments in should_cow_block() */
1253 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1254 			smp_mb__after_atomic();
1255 
1256 			if (root->commit_root != root->node) {
1257 				list_add_tail(&root->dirty_list,
1258 					&trans->transaction->switch_commits);
1259 				btrfs_set_root_node(&root->root_item,
1260 						    root->node);
1261 			}
1262 
1263 			err = btrfs_update_root(trans, fs_info->tree_root,
1264 						&root->root_key,
1265 						&root->root_item);
1266 			spin_lock(&fs_info->fs_roots_radix_lock);
1267 			if (err)
1268 				break;
1269 			btrfs_qgroup_free_meta_all(root);
1270 		}
1271 	}
1272 	spin_unlock(&fs_info->fs_roots_radix_lock);
1273 	return err;
1274 }
1275 
1276 /*
1277  * defrag a given btree.
1278  * Every leaf in the btree is read and defragged.
1279  */
1280 int btrfs_defrag_root(struct btrfs_root *root)
1281 {
1282 	struct btrfs_fs_info *info = root->fs_info;
1283 	struct btrfs_trans_handle *trans;
1284 	int ret;
1285 
1286 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1287 		return 0;
1288 
1289 	while (1) {
1290 		trans = btrfs_start_transaction(root, 0);
1291 		if (IS_ERR(trans))
1292 			return PTR_ERR(trans);
1293 
1294 		ret = btrfs_defrag_leaves(trans, root);
1295 
1296 		btrfs_end_transaction(trans, root);
1297 		btrfs_btree_balance_dirty(info->tree_root);
1298 		cond_resched();
1299 
1300 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1301 			break;
1302 
1303 		if (btrfs_defrag_cancelled(root->fs_info)) {
1304 			pr_debug("BTRFS: defrag_root cancelled\n");
1305 			ret = -EAGAIN;
1306 			break;
1307 		}
1308 	}
1309 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1310 	return ret;
1311 }
1312 
1313 /*
1314  * new snapshots need to be created at a very specific time in the
1315  * transaction commit.  This does the actual creation.
1316  *
1317  * Note:
1318  * If the error which may affect the commitment of the current transaction
1319  * happens, we should return the error number. If the error which just affect
1320  * the creation of the pending snapshots, just return 0.
1321  */
1322 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1323 				   struct btrfs_fs_info *fs_info,
1324 				   struct btrfs_pending_snapshot *pending)
1325 {
1326 	struct btrfs_key key;
1327 	struct btrfs_root_item *new_root_item;
1328 	struct btrfs_root *tree_root = fs_info->tree_root;
1329 	struct btrfs_root *root = pending->root;
1330 	struct btrfs_root *parent_root;
1331 	struct btrfs_block_rsv *rsv;
1332 	struct inode *parent_inode;
1333 	struct btrfs_path *path;
1334 	struct btrfs_dir_item *dir_item;
1335 	struct dentry *dentry;
1336 	struct extent_buffer *tmp;
1337 	struct extent_buffer *old;
1338 	struct timespec cur_time;
1339 	int ret = 0;
1340 	u64 to_reserve = 0;
1341 	u64 index = 0;
1342 	u64 objectid;
1343 	u64 root_flags;
1344 	uuid_le new_uuid;
1345 
1346 	ASSERT(pending->path);
1347 	path = pending->path;
1348 
1349 	ASSERT(pending->root_item);
1350 	new_root_item = pending->root_item;
1351 
1352 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1353 	if (pending->error)
1354 		goto no_free_objectid;
1355 
1356 	/*
1357 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1358 	 * accounted by later btrfs_qgroup_inherit().
1359 	 */
1360 	btrfs_set_skip_qgroup(trans, objectid);
1361 
1362 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1363 
1364 	if (to_reserve > 0) {
1365 		pending->error = btrfs_block_rsv_add(root,
1366 						     &pending->block_rsv,
1367 						     to_reserve,
1368 						     BTRFS_RESERVE_NO_FLUSH);
1369 		if (pending->error)
1370 			goto clear_skip_qgroup;
1371 	}
1372 
1373 	key.objectid = objectid;
1374 	key.offset = (u64)-1;
1375 	key.type = BTRFS_ROOT_ITEM_KEY;
1376 
1377 	rsv = trans->block_rsv;
1378 	trans->block_rsv = &pending->block_rsv;
1379 	trans->bytes_reserved = trans->block_rsv->reserved;
1380 	trace_btrfs_space_reservation(root->fs_info, "transaction",
1381 				      trans->transid,
1382 				      trans->bytes_reserved, 1);
1383 	dentry = pending->dentry;
1384 	parent_inode = pending->dir;
1385 	parent_root = BTRFS_I(parent_inode)->root;
1386 	record_root_in_trans(trans, parent_root);
1387 
1388 	cur_time = current_fs_time(parent_inode->i_sb);
1389 
1390 	/*
1391 	 * insert the directory item
1392 	 */
1393 	ret = btrfs_set_inode_index(parent_inode, &index);
1394 	BUG_ON(ret); /* -ENOMEM */
1395 
1396 	/* check if there is a file/dir which has the same name. */
1397 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1398 					 btrfs_ino(parent_inode),
1399 					 dentry->d_name.name,
1400 					 dentry->d_name.len, 0);
1401 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1402 		pending->error = -EEXIST;
1403 		goto dir_item_existed;
1404 	} else if (IS_ERR(dir_item)) {
1405 		ret = PTR_ERR(dir_item);
1406 		btrfs_abort_transaction(trans, root, ret);
1407 		goto fail;
1408 	}
1409 	btrfs_release_path(path);
1410 
1411 	/*
1412 	 * pull in the delayed directory update
1413 	 * and the delayed inode item
1414 	 * otherwise we corrupt the FS during
1415 	 * snapshot
1416 	 */
1417 	ret = btrfs_run_delayed_items(trans, root);
1418 	if (ret) {	/* Transaction aborted */
1419 		btrfs_abort_transaction(trans, root, ret);
1420 		goto fail;
1421 	}
1422 
1423 	record_root_in_trans(trans, root);
1424 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1425 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1426 	btrfs_check_and_init_root_item(new_root_item);
1427 
1428 	root_flags = btrfs_root_flags(new_root_item);
1429 	if (pending->readonly)
1430 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1431 	else
1432 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1433 	btrfs_set_root_flags(new_root_item, root_flags);
1434 
1435 	btrfs_set_root_generation_v2(new_root_item,
1436 			trans->transid);
1437 	uuid_le_gen(&new_uuid);
1438 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1439 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1440 			BTRFS_UUID_SIZE);
1441 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1442 		memset(new_root_item->received_uuid, 0,
1443 		       sizeof(new_root_item->received_uuid));
1444 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1445 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1446 		btrfs_set_root_stransid(new_root_item, 0);
1447 		btrfs_set_root_rtransid(new_root_item, 0);
1448 	}
1449 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1450 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1451 	btrfs_set_root_otransid(new_root_item, trans->transid);
1452 
1453 	old = btrfs_lock_root_node(root);
1454 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1455 	if (ret) {
1456 		btrfs_tree_unlock(old);
1457 		free_extent_buffer(old);
1458 		btrfs_abort_transaction(trans, root, ret);
1459 		goto fail;
1460 	}
1461 
1462 	btrfs_set_lock_blocking(old);
1463 
1464 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1465 	/* clean up in any case */
1466 	btrfs_tree_unlock(old);
1467 	free_extent_buffer(old);
1468 	if (ret) {
1469 		btrfs_abort_transaction(trans, root, ret);
1470 		goto fail;
1471 	}
1472 	/* see comments in should_cow_block() */
1473 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1474 	smp_wmb();
1475 
1476 	btrfs_set_root_node(new_root_item, tmp);
1477 	/* record when the snapshot was created in key.offset */
1478 	key.offset = trans->transid;
1479 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1480 	btrfs_tree_unlock(tmp);
1481 	free_extent_buffer(tmp);
1482 	if (ret) {
1483 		btrfs_abort_transaction(trans, root, ret);
1484 		goto fail;
1485 	}
1486 
1487 	/*
1488 	 * insert root back/forward references
1489 	 */
1490 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1491 				 parent_root->root_key.objectid,
1492 				 btrfs_ino(parent_inode), index,
1493 				 dentry->d_name.name, dentry->d_name.len);
1494 	if (ret) {
1495 		btrfs_abort_transaction(trans, root, ret);
1496 		goto fail;
1497 	}
1498 
1499 	key.offset = (u64)-1;
1500 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1501 	if (IS_ERR(pending->snap)) {
1502 		ret = PTR_ERR(pending->snap);
1503 		btrfs_abort_transaction(trans, root, ret);
1504 		goto fail;
1505 	}
1506 
1507 	ret = btrfs_reloc_post_snapshot(trans, pending);
1508 	if (ret) {
1509 		btrfs_abort_transaction(trans, root, ret);
1510 		goto fail;
1511 	}
1512 
1513 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1514 	if (ret) {
1515 		btrfs_abort_transaction(trans, root, ret);
1516 		goto fail;
1517 	}
1518 
1519 	ret = btrfs_insert_dir_item(trans, parent_root,
1520 				    dentry->d_name.name, dentry->d_name.len,
1521 				    parent_inode, &key,
1522 				    BTRFS_FT_DIR, index);
1523 	/* We have check then name at the beginning, so it is impossible. */
1524 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1525 	if (ret) {
1526 		btrfs_abort_transaction(trans, root, ret);
1527 		goto fail;
1528 	}
1529 
1530 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1531 					 dentry->d_name.len * 2);
1532 	parent_inode->i_mtime = parent_inode->i_ctime =
1533 		current_fs_time(parent_inode->i_sb);
1534 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1535 	if (ret) {
1536 		btrfs_abort_transaction(trans, root, ret);
1537 		goto fail;
1538 	}
1539 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1540 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1541 	if (ret) {
1542 		btrfs_abort_transaction(trans, root, ret);
1543 		goto fail;
1544 	}
1545 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1546 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1547 					  new_root_item->received_uuid,
1548 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1549 					  objectid);
1550 		if (ret && ret != -EEXIST) {
1551 			btrfs_abort_transaction(trans, root, ret);
1552 			goto fail;
1553 		}
1554 	}
1555 
1556 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1557 	if (ret) {
1558 		btrfs_abort_transaction(trans, root, ret);
1559 		goto fail;
1560 	}
1561 
1562 	/*
1563 	 * account qgroup counters before qgroup_inherit()
1564 	 */
1565 	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1566 	if (ret)
1567 		goto fail;
1568 	ret = btrfs_qgroup_account_extents(trans, fs_info);
1569 	if (ret)
1570 		goto fail;
1571 	ret = btrfs_qgroup_inherit(trans, fs_info,
1572 				   root->root_key.objectid,
1573 				   objectid, pending->inherit);
1574 	if (ret) {
1575 		btrfs_abort_transaction(trans, root, ret);
1576 		goto fail;
1577 	}
1578 
1579 fail:
1580 	pending->error = ret;
1581 dir_item_existed:
1582 	trans->block_rsv = rsv;
1583 	trans->bytes_reserved = 0;
1584 clear_skip_qgroup:
1585 	btrfs_clear_skip_qgroup(trans);
1586 no_free_objectid:
1587 	kfree(new_root_item);
1588 	pending->root_item = NULL;
1589 	btrfs_free_path(path);
1590 	pending->path = NULL;
1591 
1592 	return ret;
1593 }
1594 
1595 /*
1596  * create all the snapshots we've scheduled for creation
1597  */
1598 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1599 					     struct btrfs_fs_info *fs_info)
1600 {
1601 	struct btrfs_pending_snapshot *pending, *next;
1602 	struct list_head *head = &trans->transaction->pending_snapshots;
1603 	int ret = 0;
1604 
1605 	list_for_each_entry_safe(pending, next, head, list) {
1606 		list_del(&pending->list);
1607 		ret = create_pending_snapshot(trans, fs_info, pending);
1608 		if (ret)
1609 			break;
1610 	}
1611 	return ret;
1612 }
1613 
1614 static void update_super_roots(struct btrfs_root *root)
1615 {
1616 	struct btrfs_root_item *root_item;
1617 	struct btrfs_super_block *super;
1618 
1619 	super = root->fs_info->super_copy;
1620 
1621 	root_item = &root->fs_info->chunk_root->root_item;
1622 	super->chunk_root = root_item->bytenr;
1623 	super->chunk_root_generation = root_item->generation;
1624 	super->chunk_root_level = root_item->level;
1625 
1626 	root_item = &root->fs_info->tree_root->root_item;
1627 	super->root = root_item->bytenr;
1628 	super->generation = root_item->generation;
1629 	super->root_level = root_item->level;
1630 	if (btrfs_test_opt(root, SPACE_CACHE))
1631 		super->cache_generation = root_item->generation;
1632 	if (root->fs_info->update_uuid_tree_gen)
1633 		super->uuid_tree_generation = root_item->generation;
1634 }
1635 
1636 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1637 {
1638 	struct btrfs_transaction *trans;
1639 	int ret = 0;
1640 
1641 	spin_lock(&info->trans_lock);
1642 	trans = info->running_transaction;
1643 	if (trans)
1644 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1645 	spin_unlock(&info->trans_lock);
1646 	return ret;
1647 }
1648 
1649 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1650 {
1651 	struct btrfs_transaction *trans;
1652 	int ret = 0;
1653 
1654 	spin_lock(&info->trans_lock);
1655 	trans = info->running_transaction;
1656 	if (trans)
1657 		ret = is_transaction_blocked(trans);
1658 	spin_unlock(&info->trans_lock);
1659 	return ret;
1660 }
1661 
1662 /*
1663  * wait for the current transaction commit to start and block subsequent
1664  * transaction joins
1665  */
1666 static void wait_current_trans_commit_start(struct btrfs_root *root,
1667 					    struct btrfs_transaction *trans)
1668 {
1669 	wait_event(root->fs_info->transaction_blocked_wait,
1670 		   trans->state >= TRANS_STATE_COMMIT_START ||
1671 		   trans->aborted);
1672 }
1673 
1674 /*
1675  * wait for the current transaction to start and then become unblocked.
1676  * caller holds ref.
1677  */
1678 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1679 					 struct btrfs_transaction *trans)
1680 {
1681 	wait_event(root->fs_info->transaction_wait,
1682 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1683 		   trans->aborted);
1684 }
1685 
1686 /*
1687  * commit transactions asynchronously. once btrfs_commit_transaction_async
1688  * returns, any subsequent transaction will not be allowed to join.
1689  */
1690 struct btrfs_async_commit {
1691 	struct btrfs_trans_handle *newtrans;
1692 	struct btrfs_root *root;
1693 	struct work_struct work;
1694 };
1695 
1696 static void do_async_commit(struct work_struct *work)
1697 {
1698 	struct btrfs_async_commit *ac =
1699 		container_of(work, struct btrfs_async_commit, work);
1700 
1701 	/*
1702 	 * We've got freeze protection passed with the transaction.
1703 	 * Tell lockdep about it.
1704 	 */
1705 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1706 		__sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1707 
1708 	current->journal_info = ac->newtrans;
1709 
1710 	btrfs_commit_transaction(ac->newtrans, ac->root);
1711 	kfree(ac);
1712 }
1713 
1714 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1715 				   struct btrfs_root *root,
1716 				   int wait_for_unblock)
1717 {
1718 	struct btrfs_async_commit *ac;
1719 	struct btrfs_transaction *cur_trans;
1720 
1721 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1722 	if (!ac)
1723 		return -ENOMEM;
1724 
1725 	INIT_WORK(&ac->work, do_async_commit);
1726 	ac->root = root;
1727 	ac->newtrans = btrfs_join_transaction(root);
1728 	if (IS_ERR(ac->newtrans)) {
1729 		int err = PTR_ERR(ac->newtrans);
1730 		kfree(ac);
1731 		return err;
1732 	}
1733 
1734 	/* take transaction reference */
1735 	cur_trans = trans->transaction;
1736 	atomic_inc(&cur_trans->use_count);
1737 
1738 	btrfs_end_transaction(trans, root);
1739 
1740 	/*
1741 	 * Tell lockdep we've released the freeze rwsem, since the
1742 	 * async commit thread will be the one to unlock it.
1743 	 */
1744 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1745 		__sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1746 
1747 	schedule_work(&ac->work);
1748 
1749 	/* wait for transaction to start and unblock */
1750 	if (wait_for_unblock)
1751 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1752 	else
1753 		wait_current_trans_commit_start(root, cur_trans);
1754 
1755 	if (current->journal_info == trans)
1756 		current->journal_info = NULL;
1757 
1758 	btrfs_put_transaction(cur_trans);
1759 	return 0;
1760 }
1761 
1762 
1763 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1764 				struct btrfs_root *root, int err)
1765 {
1766 	struct btrfs_transaction *cur_trans = trans->transaction;
1767 	DEFINE_WAIT(wait);
1768 
1769 	WARN_ON(trans->use_count > 1);
1770 
1771 	btrfs_abort_transaction(trans, root, err);
1772 
1773 	spin_lock(&root->fs_info->trans_lock);
1774 
1775 	/*
1776 	 * If the transaction is removed from the list, it means this
1777 	 * transaction has been committed successfully, so it is impossible
1778 	 * to call the cleanup function.
1779 	 */
1780 	BUG_ON(list_empty(&cur_trans->list));
1781 
1782 	list_del_init(&cur_trans->list);
1783 	if (cur_trans == root->fs_info->running_transaction) {
1784 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1785 		spin_unlock(&root->fs_info->trans_lock);
1786 		wait_event(cur_trans->writer_wait,
1787 			   atomic_read(&cur_trans->num_writers) == 1);
1788 
1789 		spin_lock(&root->fs_info->trans_lock);
1790 	}
1791 	spin_unlock(&root->fs_info->trans_lock);
1792 
1793 	btrfs_cleanup_one_transaction(trans->transaction, root);
1794 
1795 	spin_lock(&root->fs_info->trans_lock);
1796 	if (cur_trans == root->fs_info->running_transaction)
1797 		root->fs_info->running_transaction = NULL;
1798 	spin_unlock(&root->fs_info->trans_lock);
1799 
1800 	if (trans->type & __TRANS_FREEZABLE)
1801 		sb_end_intwrite(root->fs_info->sb);
1802 	btrfs_put_transaction(cur_trans);
1803 	btrfs_put_transaction(cur_trans);
1804 
1805 	trace_btrfs_transaction_commit(root);
1806 
1807 	if (current->journal_info == trans)
1808 		current->journal_info = NULL;
1809 	btrfs_scrub_cancel(root->fs_info);
1810 
1811 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1812 }
1813 
1814 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1815 {
1816 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1817 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1818 	return 0;
1819 }
1820 
1821 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1822 {
1823 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1824 		btrfs_wait_ordered_roots(fs_info, -1);
1825 }
1826 
1827 static inline void
1828 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1829 {
1830 	wait_event(cur_trans->pending_wait,
1831 		   atomic_read(&cur_trans->pending_ordered) == 0);
1832 }
1833 
1834 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1835 			     struct btrfs_root *root)
1836 {
1837 	struct btrfs_transaction *cur_trans = trans->transaction;
1838 	struct btrfs_transaction *prev_trans = NULL;
1839 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1840 	int ret;
1841 
1842 	/* Stop the commit early if ->aborted is set */
1843 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1844 		ret = cur_trans->aborted;
1845 		btrfs_end_transaction(trans, root);
1846 		return ret;
1847 	}
1848 
1849 	/* make a pass through all the delayed refs we have so far
1850 	 * any runnings procs may add more while we are here
1851 	 */
1852 	ret = btrfs_run_delayed_refs(trans, root, 0);
1853 	if (ret) {
1854 		btrfs_end_transaction(trans, root);
1855 		return ret;
1856 	}
1857 
1858 	btrfs_trans_release_metadata(trans, root);
1859 	trans->block_rsv = NULL;
1860 
1861 	cur_trans = trans->transaction;
1862 
1863 	/*
1864 	 * set the flushing flag so procs in this transaction have to
1865 	 * start sending their work down.
1866 	 */
1867 	cur_trans->delayed_refs.flushing = 1;
1868 	smp_wmb();
1869 
1870 	if (!list_empty(&trans->new_bgs))
1871 		btrfs_create_pending_block_groups(trans, root);
1872 
1873 	ret = btrfs_run_delayed_refs(trans, root, 0);
1874 	if (ret) {
1875 		btrfs_end_transaction(trans, root);
1876 		return ret;
1877 	}
1878 
1879 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1880 		int run_it = 0;
1881 
1882 		/* this mutex is also taken before trying to set
1883 		 * block groups readonly.  We need to make sure
1884 		 * that nobody has set a block group readonly
1885 		 * after a extents from that block group have been
1886 		 * allocated for cache files.  btrfs_set_block_group_ro
1887 		 * will wait for the transaction to commit if it
1888 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1889 		 *
1890 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1891 		 * only one process starts all the block group IO.  It wouldn't
1892 		 * hurt to have more than one go through, but there's no
1893 		 * real advantage to it either.
1894 		 */
1895 		mutex_lock(&root->fs_info->ro_block_group_mutex);
1896 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1897 				      &cur_trans->flags))
1898 			run_it = 1;
1899 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1900 
1901 		if (run_it)
1902 			ret = btrfs_start_dirty_block_groups(trans, root);
1903 	}
1904 	if (ret) {
1905 		btrfs_end_transaction(trans, root);
1906 		return ret;
1907 	}
1908 
1909 	spin_lock(&root->fs_info->trans_lock);
1910 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1911 		spin_unlock(&root->fs_info->trans_lock);
1912 		atomic_inc(&cur_trans->use_count);
1913 		ret = btrfs_end_transaction(trans, root);
1914 
1915 		wait_for_commit(root, cur_trans);
1916 
1917 		if (unlikely(cur_trans->aborted))
1918 			ret = cur_trans->aborted;
1919 
1920 		btrfs_put_transaction(cur_trans);
1921 
1922 		return ret;
1923 	}
1924 
1925 	cur_trans->state = TRANS_STATE_COMMIT_START;
1926 	wake_up(&root->fs_info->transaction_blocked_wait);
1927 
1928 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1929 		prev_trans = list_entry(cur_trans->list.prev,
1930 					struct btrfs_transaction, list);
1931 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1932 			atomic_inc(&prev_trans->use_count);
1933 			spin_unlock(&root->fs_info->trans_lock);
1934 
1935 			wait_for_commit(root, prev_trans);
1936 			ret = prev_trans->aborted;
1937 
1938 			btrfs_put_transaction(prev_trans);
1939 			if (ret)
1940 				goto cleanup_transaction;
1941 		} else {
1942 			spin_unlock(&root->fs_info->trans_lock);
1943 		}
1944 	} else {
1945 		spin_unlock(&root->fs_info->trans_lock);
1946 	}
1947 
1948 	extwriter_counter_dec(cur_trans, trans->type);
1949 
1950 	ret = btrfs_start_delalloc_flush(root->fs_info);
1951 	if (ret)
1952 		goto cleanup_transaction;
1953 
1954 	ret = btrfs_run_delayed_items(trans, root);
1955 	if (ret)
1956 		goto cleanup_transaction;
1957 
1958 	wait_event(cur_trans->writer_wait,
1959 		   extwriter_counter_read(cur_trans) == 0);
1960 
1961 	/* some pending stuffs might be added after the previous flush. */
1962 	ret = btrfs_run_delayed_items(trans, root);
1963 	if (ret)
1964 		goto cleanup_transaction;
1965 
1966 	btrfs_wait_delalloc_flush(root->fs_info);
1967 
1968 	btrfs_wait_pending_ordered(cur_trans);
1969 
1970 	btrfs_scrub_pause(root);
1971 	/*
1972 	 * Ok now we need to make sure to block out any other joins while we
1973 	 * commit the transaction.  We could have started a join before setting
1974 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1975 	 */
1976 	spin_lock(&root->fs_info->trans_lock);
1977 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1978 	spin_unlock(&root->fs_info->trans_lock);
1979 	wait_event(cur_trans->writer_wait,
1980 		   atomic_read(&cur_trans->num_writers) == 1);
1981 
1982 	/* ->aborted might be set after the previous check, so check it */
1983 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1984 		ret = cur_trans->aborted;
1985 		goto scrub_continue;
1986 	}
1987 	/*
1988 	 * the reloc mutex makes sure that we stop
1989 	 * the balancing code from coming in and moving
1990 	 * extents around in the middle of the commit
1991 	 */
1992 	mutex_lock(&root->fs_info->reloc_mutex);
1993 
1994 	/*
1995 	 * We needn't worry about the delayed items because we will
1996 	 * deal with them in create_pending_snapshot(), which is the
1997 	 * core function of the snapshot creation.
1998 	 */
1999 	ret = create_pending_snapshots(trans, root->fs_info);
2000 	if (ret) {
2001 		mutex_unlock(&root->fs_info->reloc_mutex);
2002 		goto scrub_continue;
2003 	}
2004 
2005 	/*
2006 	 * We insert the dir indexes of the snapshots and update the inode
2007 	 * of the snapshots' parents after the snapshot creation, so there
2008 	 * are some delayed items which are not dealt with. Now deal with
2009 	 * them.
2010 	 *
2011 	 * We needn't worry that this operation will corrupt the snapshots,
2012 	 * because all the tree which are snapshoted will be forced to COW
2013 	 * the nodes and leaves.
2014 	 */
2015 	ret = btrfs_run_delayed_items(trans, root);
2016 	if (ret) {
2017 		mutex_unlock(&root->fs_info->reloc_mutex);
2018 		goto scrub_continue;
2019 	}
2020 
2021 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2022 	if (ret) {
2023 		mutex_unlock(&root->fs_info->reloc_mutex);
2024 		goto scrub_continue;
2025 	}
2026 
2027 	/* Reocrd old roots for later qgroup accounting */
2028 	ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2029 	if (ret) {
2030 		mutex_unlock(&root->fs_info->reloc_mutex);
2031 		goto scrub_continue;
2032 	}
2033 
2034 	/*
2035 	 * make sure none of the code above managed to slip in a
2036 	 * delayed item
2037 	 */
2038 	btrfs_assert_delayed_root_empty(root);
2039 
2040 	WARN_ON(cur_trans != trans->transaction);
2041 
2042 	/* btrfs_commit_tree_roots is responsible for getting the
2043 	 * various roots consistent with each other.  Every pointer
2044 	 * in the tree of tree roots has to point to the most up to date
2045 	 * root for every subvolume and other tree.  So, we have to keep
2046 	 * the tree logging code from jumping in and changing any
2047 	 * of the trees.
2048 	 *
2049 	 * At this point in the commit, there can't be any tree-log
2050 	 * writers, but a little lower down we drop the trans mutex
2051 	 * and let new people in.  By holding the tree_log_mutex
2052 	 * from now until after the super is written, we avoid races
2053 	 * with the tree-log code.
2054 	 */
2055 	mutex_lock(&root->fs_info->tree_log_mutex);
2056 
2057 	ret = commit_fs_roots(trans, root);
2058 	if (ret) {
2059 		mutex_unlock(&root->fs_info->tree_log_mutex);
2060 		mutex_unlock(&root->fs_info->reloc_mutex);
2061 		goto scrub_continue;
2062 	}
2063 
2064 	/*
2065 	 * Since the transaction is done, we can apply the pending changes
2066 	 * before the next transaction.
2067 	 */
2068 	btrfs_apply_pending_changes(root->fs_info);
2069 
2070 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2071 	 * safe to free the root of tree log roots
2072 	 */
2073 	btrfs_free_log_root_tree(trans, root->fs_info);
2074 
2075 	/*
2076 	 * Since fs roots are all committed, we can get a quite accurate
2077 	 * new_roots. So let's do quota accounting.
2078 	 */
2079 	ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2080 	if (ret < 0) {
2081 		mutex_unlock(&root->fs_info->tree_log_mutex);
2082 		mutex_unlock(&root->fs_info->reloc_mutex);
2083 		goto scrub_continue;
2084 	}
2085 
2086 	ret = commit_cowonly_roots(trans, root);
2087 	if (ret) {
2088 		mutex_unlock(&root->fs_info->tree_log_mutex);
2089 		mutex_unlock(&root->fs_info->reloc_mutex);
2090 		goto scrub_continue;
2091 	}
2092 
2093 	/*
2094 	 * The tasks which save the space cache and inode cache may also
2095 	 * update ->aborted, check it.
2096 	 */
2097 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2098 		ret = cur_trans->aborted;
2099 		mutex_unlock(&root->fs_info->tree_log_mutex);
2100 		mutex_unlock(&root->fs_info->reloc_mutex);
2101 		goto scrub_continue;
2102 	}
2103 
2104 	btrfs_prepare_extent_commit(trans, root);
2105 
2106 	cur_trans = root->fs_info->running_transaction;
2107 
2108 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2109 			    root->fs_info->tree_root->node);
2110 	list_add_tail(&root->fs_info->tree_root->dirty_list,
2111 		      &cur_trans->switch_commits);
2112 
2113 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2114 			    root->fs_info->chunk_root->node);
2115 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2116 		      &cur_trans->switch_commits);
2117 
2118 	switch_commit_roots(cur_trans, root->fs_info);
2119 
2120 	assert_qgroups_uptodate(trans);
2121 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2122 	ASSERT(list_empty(&cur_trans->io_bgs));
2123 	update_super_roots(root);
2124 
2125 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2126 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2127 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2128 	       sizeof(*root->fs_info->super_copy));
2129 
2130 	btrfs_update_commit_device_size(root->fs_info);
2131 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2132 
2133 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2134 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2135 
2136 	btrfs_trans_release_chunk_metadata(trans);
2137 
2138 	spin_lock(&root->fs_info->trans_lock);
2139 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2140 	root->fs_info->running_transaction = NULL;
2141 	spin_unlock(&root->fs_info->trans_lock);
2142 	mutex_unlock(&root->fs_info->reloc_mutex);
2143 
2144 	wake_up(&root->fs_info->transaction_wait);
2145 
2146 	ret = btrfs_write_and_wait_transaction(trans, root);
2147 	if (ret) {
2148 		btrfs_std_error(root->fs_info, ret,
2149 			    "Error while writing out transaction");
2150 		mutex_unlock(&root->fs_info->tree_log_mutex);
2151 		goto scrub_continue;
2152 	}
2153 
2154 	ret = write_ctree_super(trans, root, 0);
2155 	if (ret) {
2156 		mutex_unlock(&root->fs_info->tree_log_mutex);
2157 		goto scrub_continue;
2158 	}
2159 
2160 	/*
2161 	 * the super is written, we can safely allow the tree-loggers
2162 	 * to go about their business
2163 	 */
2164 	mutex_unlock(&root->fs_info->tree_log_mutex);
2165 
2166 	btrfs_finish_extent_commit(trans, root);
2167 
2168 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2169 		btrfs_clear_space_info_full(root->fs_info);
2170 
2171 	root->fs_info->last_trans_committed = cur_trans->transid;
2172 	/*
2173 	 * We needn't acquire the lock here because there is no other task
2174 	 * which can change it.
2175 	 */
2176 	cur_trans->state = TRANS_STATE_COMPLETED;
2177 	wake_up(&cur_trans->commit_wait);
2178 
2179 	spin_lock(&root->fs_info->trans_lock);
2180 	list_del_init(&cur_trans->list);
2181 	spin_unlock(&root->fs_info->trans_lock);
2182 
2183 	btrfs_put_transaction(cur_trans);
2184 	btrfs_put_transaction(cur_trans);
2185 
2186 	if (trans->type & __TRANS_FREEZABLE)
2187 		sb_end_intwrite(root->fs_info->sb);
2188 
2189 	trace_btrfs_transaction_commit(root);
2190 
2191 	btrfs_scrub_continue(root);
2192 
2193 	if (current->journal_info == trans)
2194 		current->journal_info = NULL;
2195 
2196 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2197 
2198 	if (current != root->fs_info->transaction_kthread &&
2199 	    current != root->fs_info->cleaner_kthread)
2200 		btrfs_run_delayed_iputs(root);
2201 
2202 	return ret;
2203 
2204 scrub_continue:
2205 	btrfs_scrub_continue(root);
2206 cleanup_transaction:
2207 	btrfs_trans_release_metadata(trans, root);
2208 	btrfs_trans_release_chunk_metadata(trans);
2209 	trans->block_rsv = NULL;
2210 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2211 	if (current->journal_info == trans)
2212 		current->journal_info = NULL;
2213 	cleanup_transaction(trans, root, ret);
2214 
2215 	return ret;
2216 }
2217 
2218 /*
2219  * return < 0 if error
2220  * 0 if there are no more dead_roots at the time of call
2221  * 1 there are more to be processed, call me again
2222  *
2223  * The return value indicates there are certainly more snapshots to delete, but
2224  * if there comes a new one during processing, it may return 0. We don't mind,
2225  * because btrfs_commit_super will poke cleaner thread and it will process it a
2226  * few seconds later.
2227  */
2228 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2229 {
2230 	int ret;
2231 	struct btrfs_fs_info *fs_info = root->fs_info;
2232 
2233 	spin_lock(&fs_info->trans_lock);
2234 	if (list_empty(&fs_info->dead_roots)) {
2235 		spin_unlock(&fs_info->trans_lock);
2236 		return 0;
2237 	}
2238 	root = list_first_entry(&fs_info->dead_roots,
2239 			struct btrfs_root, root_list);
2240 	list_del_init(&root->root_list);
2241 	spin_unlock(&fs_info->trans_lock);
2242 
2243 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2244 
2245 	btrfs_kill_all_delayed_nodes(root);
2246 
2247 	if (btrfs_header_backref_rev(root->node) <
2248 			BTRFS_MIXED_BACKREF_REV)
2249 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2250 	else
2251 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2252 
2253 	return (ret < 0) ? 0 : 1;
2254 }
2255 
2256 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2257 {
2258 	unsigned long prev;
2259 	unsigned long bit;
2260 
2261 	prev = xchg(&fs_info->pending_changes, 0);
2262 	if (!prev)
2263 		return;
2264 
2265 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2266 	if (prev & bit)
2267 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2268 	prev &= ~bit;
2269 
2270 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2271 	if (prev & bit)
2272 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2273 	prev &= ~bit;
2274 
2275 	bit = 1 << BTRFS_PENDING_COMMIT;
2276 	if (prev & bit)
2277 		btrfs_debug(fs_info, "pending commit done");
2278 	prev &= ~bit;
2279 
2280 	if (prev)
2281 		btrfs_warn(fs_info,
2282 			"unknown pending changes left 0x%lx, ignoring", prev);
2283 }
2284