1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 31 #define BTRFS_ROOT_TRANS_TAG 0 32 33 static noinline void put_transaction(struct btrfs_transaction *transaction) 34 { 35 WARN_ON(transaction->use_count == 0); 36 transaction->use_count--; 37 if (transaction->use_count == 0) { 38 list_del_init(&transaction->list); 39 memset(transaction, 0, sizeof(*transaction)); 40 kmem_cache_free(btrfs_transaction_cachep, transaction); 41 } 42 } 43 44 static noinline void switch_commit_root(struct btrfs_root *root) 45 { 46 free_extent_buffer(root->commit_root); 47 root->commit_root = btrfs_root_node(root); 48 } 49 50 /* 51 * either allocate a new transaction or hop into the existing one 52 */ 53 static noinline int join_transaction(struct btrfs_root *root) 54 { 55 struct btrfs_transaction *cur_trans; 56 cur_trans = root->fs_info->running_transaction; 57 if (!cur_trans) { 58 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, 59 GFP_NOFS); 60 BUG_ON(!cur_trans); 61 root->fs_info->generation++; 62 cur_trans->num_writers = 1; 63 cur_trans->num_joined = 0; 64 cur_trans->transid = root->fs_info->generation; 65 init_waitqueue_head(&cur_trans->writer_wait); 66 init_waitqueue_head(&cur_trans->commit_wait); 67 cur_trans->in_commit = 0; 68 cur_trans->blocked = 0; 69 cur_trans->use_count = 1; 70 cur_trans->commit_done = 0; 71 cur_trans->start_time = get_seconds(); 72 73 cur_trans->delayed_refs.root = RB_ROOT; 74 cur_trans->delayed_refs.num_entries = 0; 75 cur_trans->delayed_refs.num_heads_ready = 0; 76 cur_trans->delayed_refs.num_heads = 0; 77 cur_trans->delayed_refs.flushing = 0; 78 cur_trans->delayed_refs.run_delayed_start = 0; 79 spin_lock_init(&cur_trans->delayed_refs.lock); 80 81 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 82 list_add_tail(&cur_trans->list, &root->fs_info->trans_list); 83 extent_io_tree_init(&cur_trans->dirty_pages, 84 root->fs_info->btree_inode->i_mapping, 85 GFP_NOFS); 86 spin_lock(&root->fs_info->new_trans_lock); 87 root->fs_info->running_transaction = cur_trans; 88 spin_unlock(&root->fs_info->new_trans_lock); 89 } else { 90 cur_trans->num_writers++; 91 cur_trans->num_joined++; 92 } 93 94 return 0; 95 } 96 97 /* 98 * this does all the record keeping required to make sure that a reference 99 * counted root is properly recorded in a given transaction. This is required 100 * to make sure the old root from before we joined the transaction is deleted 101 * when the transaction commits 102 */ 103 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans, 104 struct btrfs_root *root) 105 { 106 if (root->ref_cows && root->last_trans < trans->transid) { 107 WARN_ON(root == root->fs_info->extent_root); 108 WARN_ON(root->commit_root != root->node); 109 110 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 111 (unsigned long)root->root_key.objectid, 112 BTRFS_ROOT_TRANS_TAG); 113 root->last_trans = trans->transid; 114 btrfs_init_reloc_root(trans, root); 115 } 116 return 0; 117 } 118 119 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 120 struct btrfs_root *root) 121 { 122 if (!root->ref_cows) 123 return 0; 124 125 mutex_lock(&root->fs_info->trans_mutex); 126 if (root->last_trans == trans->transid) { 127 mutex_unlock(&root->fs_info->trans_mutex); 128 return 0; 129 } 130 131 record_root_in_trans(trans, root); 132 mutex_unlock(&root->fs_info->trans_mutex); 133 return 0; 134 } 135 136 /* wait for commit against the current transaction to become unblocked 137 * when this is done, it is safe to start a new transaction, but the current 138 * transaction might not be fully on disk. 139 */ 140 static void wait_current_trans(struct btrfs_root *root) 141 { 142 struct btrfs_transaction *cur_trans; 143 144 cur_trans = root->fs_info->running_transaction; 145 if (cur_trans && cur_trans->blocked) { 146 DEFINE_WAIT(wait); 147 cur_trans->use_count++; 148 while (1) { 149 prepare_to_wait(&root->fs_info->transaction_wait, &wait, 150 TASK_UNINTERRUPTIBLE); 151 if (!cur_trans->blocked) 152 break; 153 mutex_unlock(&root->fs_info->trans_mutex); 154 schedule(); 155 mutex_lock(&root->fs_info->trans_mutex); 156 } 157 finish_wait(&root->fs_info->transaction_wait, &wait); 158 put_transaction(cur_trans); 159 } 160 } 161 162 enum btrfs_trans_type { 163 TRANS_START, 164 TRANS_JOIN, 165 TRANS_USERSPACE, 166 TRANS_JOIN_NOLOCK, 167 }; 168 169 static int may_wait_transaction(struct btrfs_root *root, int type) 170 { 171 if (!root->fs_info->log_root_recovering && 172 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) || 173 type == TRANS_USERSPACE)) 174 return 1; 175 return 0; 176 } 177 178 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root, 179 u64 num_items, int type) 180 { 181 struct btrfs_trans_handle *h; 182 struct btrfs_transaction *cur_trans; 183 int ret; 184 185 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 186 return ERR_PTR(-EROFS); 187 again: 188 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 189 if (!h) 190 return ERR_PTR(-ENOMEM); 191 192 if (type != TRANS_JOIN_NOLOCK) 193 mutex_lock(&root->fs_info->trans_mutex); 194 if (may_wait_transaction(root, type)) 195 wait_current_trans(root); 196 197 ret = join_transaction(root); 198 BUG_ON(ret); 199 200 cur_trans = root->fs_info->running_transaction; 201 cur_trans->use_count++; 202 if (type != TRANS_JOIN_NOLOCK) 203 mutex_unlock(&root->fs_info->trans_mutex); 204 205 h->transid = cur_trans->transid; 206 h->transaction = cur_trans; 207 h->blocks_used = 0; 208 h->block_group = 0; 209 h->bytes_reserved = 0; 210 h->delayed_ref_updates = 0; 211 h->block_rsv = NULL; 212 213 smp_mb(); 214 if (cur_trans->blocked && may_wait_transaction(root, type)) { 215 btrfs_commit_transaction(h, root); 216 goto again; 217 } 218 219 if (num_items > 0) { 220 ret = btrfs_trans_reserve_metadata(h, root, num_items); 221 if (ret == -EAGAIN) { 222 btrfs_commit_transaction(h, root); 223 goto again; 224 } 225 if (ret < 0) { 226 btrfs_end_transaction(h, root); 227 return ERR_PTR(ret); 228 } 229 } 230 231 if (type != TRANS_JOIN_NOLOCK) 232 mutex_lock(&root->fs_info->trans_mutex); 233 record_root_in_trans(h, root); 234 if (type != TRANS_JOIN_NOLOCK) 235 mutex_unlock(&root->fs_info->trans_mutex); 236 237 if (!current->journal_info && type != TRANS_USERSPACE) 238 current->journal_info = h; 239 return h; 240 } 241 242 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 243 int num_items) 244 { 245 return start_transaction(root, num_items, TRANS_START); 246 } 247 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root, 248 int num_blocks) 249 { 250 return start_transaction(root, 0, TRANS_JOIN); 251 } 252 253 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root, 254 int num_blocks) 255 { 256 return start_transaction(root, 0, TRANS_JOIN_NOLOCK); 257 } 258 259 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r, 260 int num_blocks) 261 { 262 return start_transaction(r, 0, TRANS_USERSPACE); 263 } 264 265 /* wait for a transaction commit to be fully complete */ 266 static noinline int wait_for_commit(struct btrfs_root *root, 267 struct btrfs_transaction *commit) 268 { 269 DEFINE_WAIT(wait); 270 mutex_lock(&root->fs_info->trans_mutex); 271 while (!commit->commit_done) { 272 prepare_to_wait(&commit->commit_wait, &wait, 273 TASK_UNINTERRUPTIBLE); 274 if (commit->commit_done) 275 break; 276 mutex_unlock(&root->fs_info->trans_mutex); 277 schedule(); 278 mutex_lock(&root->fs_info->trans_mutex); 279 } 280 mutex_unlock(&root->fs_info->trans_mutex); 281 finish_wait(&commit->commit_wait, &wait); 282 return 0; 283 } 284 285 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 286 { 287 struct btrfs_transaction *cur_trans = NULL, *t; 288 int ret; 289 290 mutex_lock(&root->fs_info->trans_mutex); 291 292 ret = 0; 293 if (transid) { 294 if (transid <= root->fs_info->last_trans_committed) 295 goto out_unlock; 296 297 /* find specified transaction */ 298 list_for_each_entry(t, &root->fs_info->trans_list, list) { 299 if (t->transid == transid) { 300 cur_trans = t; 301 break; 302 } 303 if (t->transid > transid) 304 break; 305 } 306 ret = -EINVAL; 307 if (!cur_trans) 308 goto out_unlock; /* bad transid */ 309 } else { 310 /* find newest transaction that is committing | committed */ 311 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 312 list) { 313 if (t->in_commit) { 314 if (t->commit_done) 315 goto out_unlock; 316 cur_trans = t; 317 break; 318 } 319 } 320 if (!cur_trans) 321 goto out_unlock; /* nothing committing|committed */ 322 } 323 324 cur_trans->use_count++; 325 mutex_unlock(&root->fs_info->trans_mutex); 326 327 wait_for_commit(root, cur_trans); 328 329 mutex_lock(&root->fs_info->trans_mutex); 330 put_transaction(cur_trans); 331 ret = 0; 332 out_unlock: 333 mutex_unlock(&root->fs_info->trans_mutex); 334 return ret; 335 } 336 337 #if 0 338 /* 339 * rate limit against the drop_snapshot code. This helps to slow down new 340 * operations if the drop_snapshot code isn't able to keep up. 341 */ 342 static void throttle_on_drops(struct btrfs_root *root) 343 { 344 struct btrfs_fs_info *info = root->fs_info; 345 int harder_count = 0; 346 347 harder: 348 if (atomic_read(&info->throttles)) { 349 DEFINE_WAIT(wait); 350 int thr; 351 thr = atomic_read(&info->throttle_gen); 352 353 do { 354 prepare_to_wait(&info->transaction_throttle, 355 &wait, TASK_UNINTERRUPTIBLE); 356 if (!atomic_read(&info->throttles)) { 357 finish_wait(&info->transaction_throttle, &wait); 358 break; 359 } 360 schedule(); 361 finish_wait(&info->transaction_throttle, &wait); 362 } while (thr == atomic_read(&info->throttle_gen)); 363 harder_count++; 364 365 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 && 366 harder_count < 2) 367 goto harder; 368 369 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 && 370 harder_count < 10) 371 goto harder; 372 373 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 && 374 harder_count < 20) 375 goto harder; 376 } 377 } 378 #endif 379 380 void btrfs_throttle(struct btrfs_root *root) 381 { 382 mutex_lock(&root->fs_info->trans_mutex); 383 if (!root->fs_info->open_ioctl_trans) 384 wait_current_trans(root); 385 mutex_unlock(&root->fs_info->trans_mutex); 386 } 387 388 static int should_end_transaction(struct btrfs_trans_handle *trans, 389 struct btrfs_root *root) 390 { 391 int ret; 392 ret = btrfs_block_rsv_check(trans, root, 393 &root->fs_info->global_block_rsv, 0, 5); 394 return ret ? 1 : 0; 395 } 396 397 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 398 struct btrfs_root *root) 399 { 400 struct btrfs_transaction *cur_trans = trans->transaction; 401 int updates; 402 403 if (cur_trans->blocked || cur_trans->delayed_refs.flushing) 404 return 1; 405 406 updates = trans->delayed_ref_updates; 407 trans->delayed_ref_updates = 0; 408 if (updates) 409 btrfs_run_delayed_refs(trans, root, updates); 410 411 return should_end_transaction(trans, root); 412 } 413 414 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 415 struct btrfs_root *root, int throttle, int lock) 416 { 417 struct btrfs_transaction *cur_trans = trans->transaction; 418 struct btrfs_fs_info *info = root->fs_info; 419 int count = 0; 420 421 while (count < 4) { 422 unsigned long cur = trans->delayed_ref_updates; 423 trans->delayed_ref_updates = 0; 424 if (cur && 425 trans->transaction->delayed_refs.num_heads_ready > 64) { 426 trans->delayed_ref_updates = 0; 427 428 /* 429 * do a full flush if the transaction is trying 430 * to close 431 */ 432 if (trans->transaction->delayed_refs.flushing) 433 cur = 0; 434 btrfs_run_delayed_refs(trans, root, cur); 435 } else { 436 break; 437 } 438 count++; 439 } 440 441 btrfs_trans_release_metadata(trans, root); 442 443 if (lock && !root->fs_info->open_ioctl_trans && 444 should_end_transaction(trans, root)) 445 trans->transaction->blocked = 1; 446 447 if (lock && cur_trans->blocked && !cur_trans->in_commit) { 448 if (throttle) 449 return btrfs_commit_transaction(trans, root); 450 else 451 wake_up_process(info->transaction_kthread); 452 } 453 454 if (lock) 455 mutex_lock(&info->trans_mutex); 456 WARN_ON(cur_trans != info->running_transaction); 457 WARN_ON(cur_trans->num_writers < 1); 458 cur_trans->num_writers--; 459 460 smp_mb(); 461 if (waitqueue_active(&cur_trans->writer_wait)) 462 wake_up(&cur_trans->writer_wait); 463 put_transaction(cur_trans); 464 if (lock) 465 mutex_unlock(&info->trans_mutex); 466 467 if (current->journal_info == trans) 468 current->journal_info = NULL; 469 memset(trans, 0, sizeof(*trans)); 470 kmem_cache_free(btrfs_trans_handle_cachep, trans); 471 472 if (throttle) 473 btrfs_run_delayed_iputs(root); 474 475 return 0; 476 } 477 478 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 479 struct btrfs_root *root) 480 { 481 return __btrfs_end_transaction(trans, root, 0, 1); 482 } 483 484 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 485 struct btrfs_root *root) 486 { 487 return __btrfs_end_transaction(trans, root, 1, 1); 488 } 489 490 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans, 491 struct btrfs_root *root) 492 { 493 return __btrfs_end_transaction(trans, root, 0, 0); 494 } 495 496 /* 497 * when btree blocks are allocated, they have some corresponding bits set for 498 * them in one of two extent_io trees. This is used to make sure all of 499 * those extents are sent to disk but does not wait on them 500 */ 501 int btrfs_write_marked_extents(struct btrfs_root *root, 502 struct extent_io_tree *dirty_pages, int mark) 503 { 504 int ret; 505 int err = 0; 506 int werr = 0; 507 struct page *page; 508 struct inode *btree_inode = root->fs_info->btree_inode; 509 u64 start = 0; 510 u64 end; 511 unsigned long index; 512 513 while (1) { 514 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 515 mark); 516 if (ret) 517 break; 518 while (start <= end) { 519 cond_resched(); 520 521 index = start >> PAGE_CACHE_SHIFT; 522 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 523 page = find_get_page(btree_inode->i_mapping, index); 524 if (!page) 525 continue; 526 527 btree_lock_page_hook(page); 528 if (!page->mapping) { 529 unlock_page(page); 530 page_cache_release(page); 531 continue; 532 } 533 534 if (PageWriteback(page)) { 535 if (PageDirty(page)) 536 wait_on_page_writeback(page); 537 else { 538 unlock_page(page); 539 page_cache_release(page); 540 continue; 541 } 542 } 543 err = write_one_page(page, 0); 544 if (err) 545 werr = err; 546 page_cache_release(page); 547 } 548 } 549 if (err) 550 werr = err; 551 return werr; 552 } 553 554 /* 555 * when btree blocks are allocated, they have some corresponding bits set for 556 * them in one of two extent_io trees. This is used to make sure all of 557 * those extents are on disk for transaction or log commit. We wait 558 * on all the pages and clear them from the dirty pages state tree 559 */ 560 int btrfs_wait_marked_extents(struct btrfs_root *root, 561 struct extent_io_tree *dirty_pages, int mark) 562 { 563 int ret; 564 int err = 0; 565 int werr = 0; 566 struct page *page; 567 struct inode *btree_inode = root->fs_info->btree_inode; 568 u64 start = 0; 569 u64 end; 570 unsigned long index; 571 572 while (1) { 573 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 574 mark); 575 if (ret) 576 break; 577 578 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 579 while (start <= end) { 580 index = start >> PAGE_CACHE_SHIFT; 581 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 582 page = find_get_page(btree_inode->i_mapping, index); 583 if (!page) 584 continue; 585 if (PageDirty(page)) { 586 btree_lock_page_hook(page); 587 wait_on_page_writeback(page); 588 err = write_one_page(page, 0); 589 if (err) 590 werr = err; 591 } 592 wait_on_page_writeback(page); 593 page_cache_release(page); 594 cond_resched(); 595 } 596 } 597 if (err) 598 werr = err; 599 return werr; 600 } 601 602 /* 603 * when btree blocks are allocated, they have some corresponding bits set for 604 * them in one of two extent_io trees. This is used to make sure all of 605 * those extents are on disk for transaction or log commit 606 */ 607 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 608 struct extent_io_tree *dirty_pages, int mark) 609 { 610 int ret; 611 int ret2; 612 613 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 614 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 615 return ret || ret2; 616 } 617 618 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 619 struct btrfs_root *root) 620 { 621 if (!trans || !trans->transaction) { 622 struct inode *btree_inode; 623 btree_inode = root->fs_info->btree_inode; 624 return filemap_write_and_wait(btree_inode->i_mapping); 625 } 626 return btrfs_write_and_wait_marked_extents(root, 627 &trans->transaction->dirty_pages, 628 EXTENT_DIRTY); 629 } 630 631 /* 632 * this is used to update the root pointer in the tree of tree roots. 633 * 634 * But, in the case of the extent allocation tree, updating the root 635 * pointer may allocate blocks which may change the root of the extent 636 * allocation tree. 637 * 638 * So, this loops and repeats and makes sure the cowonly root didn't 639 * change while the root pointer was being updated in the metadata. 640 */ 641 static int update_cowonly_root(struct btrfs_trans_handle *trans, 642 struct btrfs_root *root) 643 { 644 int ret; 645 u64 old_root_bytenr; 646 u64 old_root_used; 647 struct btrfs_root *tree_root = root->fs_info->tree_root; 648 649 old_root_used = btrfs_root_used(&root->root_item); 650 btrfs_write_dirty_block_groups(trans, root); 651 652 while (1) { 653 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 654 if (old_root_bytenr == root->node->start && 655 old_root_used == btrfs_root_used(&root->root_item)) 656 break; 657 658 btrfs_set_root_node(&root->root_item, root->node); 659 ret = btrfs_update_root(trans, tree_root, 660 &root->root_key, 661 &root->root_item); 662 BUG_ON(ret); 663 664 old_root_used = btrfs_root_used(&root->root_item); 665 ret = btrfs_write_dirty_block_groups(trans, root); 666 BUG_ON(ret); 667 } 668 669 if (root != root->fs_info->extent_root) 670 switch_commit_root(root); 671 672 return 0; 673 } 674 675 /* 676 * update all the cowonly tree roots on disk 677 */ 678 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 679 struct btrfs_root *root) 680 { 681 struct btrfs_fs_info *fs_info = root->fs_info; 682 struct list_head *next; 683 struct extent_buffer *eb; 684 int ret; 685 686 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 687 BUG_ON(ret); 688 689 eb = btrfs_lock_root_node(fs_info->tree_root); 690 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb); 691 btrfs_tree_unlock(eb); 692 free_extent_buffer(eb); 693 694 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 695 BUG_ON(ret); 696 697 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 698 next = fs_info->dirty_cowonly_roots.next; 699 list_del_init(next); 700 root = list_entry(next, struct btrfs_root, dirty_list); 701 702 update_cowonly_root(trans, root); 703 } 704 705 down_write(&fs_info->extent_commit_sem); 706 switch_commit_root(fs_info->extent_root); 707 up_write(&fs_info->extent_commit_sem); 708 709 return 0; 710 } 711 712 /* 713 * dead roots are old snapshots that need to be deleted. This allocates 714 * a dirty root struct and adds it into the list of dead roots that need to 715 * be deleted 716 */ 717 int btrfs_add_dead_root(struct btrfs_root *root) 718 { 719 mutex_lock(&root->fs_info->trans_mutex); 720 list_add(&root->root_list, &root->fs_info->dead_roots); 721 mutex_unlock(&root->fs_info->trans_mutex); 722 return 0; 723 } 724 725 /* 726 * update all the cowonly tree roots on disk 727 */ 728 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 729 struct btrfs_root *root) 730 { 731 struct btrfs_root *gang[8]; 732 struct btrfs_fs_info *fs_info = root->fs_info; 733 int i; 734 int ret; 735 int err = 0; 736 737 while (1) { 738 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 739 (void **)gang, 0, 740 ARRAY_SIZE(gang), 741 BTRFS_ROOT_TRANS_TAG); 742 if (ret == 0) 743 break; 744 for (i = 0; i < ret; i++) { 745 root = gang[i]; 746 radix_tree_tag_clear(&fs_info->fs_roots_radix, 747 (unsigned long)root->root_key.objectid, 748 BTRFS_ROOT_TRANS_TAG); 749 750 btrfs_free_log(trans, root); 751 btrfs_update_reloc_root(trans, root); 752 btrfs_orphan_commit_root(trans, root); 753 754 if (root->commit_root != root->node) { 755 switch_commit_root(root); 756 btrfs_set_root_node(&root->root_item, 757 root->node); 758 } 759 760 err = btrfs_update_root(trans, fs_info->tree_root, 761 &root->root_key, 762 &root->root_item); 763 if (err) 764 break; 765 } 766 } 767 return err; 768 } 769 770 /* 771 * defrag a given btree. If cacheonly == 1, this won't read from the disk, 772 * otherwise every leaf in the btree is read and defragged. 773 */ 774 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly) 775 { 776 struct btrfs_fs_info *info = root->fs_info; 777 struct btrfs_trans_handle *trans; 778 int ret; 779 unsigned long nr; 780 781 if (xchg(&root->defrag_running, 1)) 782 return 0; 783 784 while (1) { 785 trans = btrfs_start_transaction(root, 0); 786 if (IS_ERR(trans)) 787 return PTR_ERR(trans); 788 789 ret = btrfs_defrag_leaves(trans, root, cacheonly); 790 791 nr = trans->blocks_used; 792 btrfs_end_transaction(trans, root); 793 btrfs_btree_balance_dirty(info->tree_root, nr); 794 cond_resched(); 795 796 if (root->fs_info->closing || ret != -EAGAIN) 797 break; 798 } 799 root->defrag_running = 0; 800 return ret; 801 } 802 803 #if 0 804 /* 805 * when dropping snapshots, we generate a ton of delayed refs, and it makes 806 * sense not to join the transaction while it is trying to flush the current 807 * queue of delayed refs out. 808 * 809 * This is used by the drop snapshot code only 810 */ 811 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info) 812 { 813 DEFINE_WAIT(wait); 814 815 mutex_lock(&info->trans_mutex); 816 while (info->running_transaction && 817 info->running_transaction->delayed_refs.flushing) { 818 prepare_to_wait(&info->transaction_wait, &wait, 819 TASK_UNINTERRUPTIBLE); 820 mutex_unlock(&info->trans_mutex); 821 822 schedule(); 823 824 mutex_lock(&info->trans_mutex); 825 finish_wait(&info->transaction_wait, &wait); 826 } 827 mutex_unlock(&info->trans_mutex); 828 return 0; 829 } 830 831 /* 832 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on 833 * all of them 834 */ 835 int btrfs_drop_dead_root(struct btrfs_root *root) 836 { 837 struct btrfs_trans_handle *trans; 838 struct btrfs_root *tree_root = root->fs_info->tree_root; 839 unsigned long nr; 840 int ret; 841 842 while (1) { 843 /* 844 * we don't want to jump in and create a bunch of 845 * delayed refs if the transaction is starting to close 846 */ 847 wait_transaction_pre_flush(tree_root->fs_info); 848 trans = btrfs_start_transaction(tree_root, 1); 849 850 /* 851 * we've joined a transaction, make sure it isn't 852 * closing right now 853 */ 854 if (trans->transaction->delayed_refs.flushing) { 855 btrfs_end_transaction(trans, tree_root); 856 continue; 857 } 858 859 ret = btrfs_drop_snapshot(trans, root); 860 if (ret != -EAGAIN) 861 break; 862 863 ret = btrfs_update_root(trans, tree_root, 864 &root->root_key, 865 &root->root_item); 866 if (ret) 867 break; 868 869 nr = trans->blocks_used; 870 ret = btrfs_end_transaction(trans, tree_root); 871 BUG_ON(ret); 872 873 btrfs_btree_balance_dirty(tree_root, nr); 874 cond_resched(); 875 } 876 BUG_ON(ret); 877 878 ret = btrfs_del_root(trans, tree_root, &root->root_key); 879 BUG_ON(ret); 880 881 nr = trans->blocks_used; 882 ret = btrfs_end_transaction(trans, tree_root); 883 BUG_ON(ret); 884 885 free_extent_buffer(root->node); 886 free_extent_buffer(root->commit_root); 887 kfree(root); 888 889 btrfs_btree_balance_dirty(tree_root, nr); 890 return ret; 891 } 892 #endif 893 894 /* 895 * new snapshots need to be created at a very specific time in the 896 * transaction commit. This does the actual creation 897 */ 898 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 899 struct btrfs_fs_info *fs_info, 900 struct btrfs_pending_snapshot *pending) 901 { 902 struct btrfs_key key; 903 struct btrfs_root_item *new_root_item; 904 struct btrfs_root *tree_root = fs_info->tree_root; 905 struct btrfs_root *root = pending->root; 906 struct btrfs_root *parent_root; 907 struct inode *parent_inode; 908 struct dentry *parent; 909 struct dentry *dentry; 910 struct extent_buffer *tmp; 911 struct extent_buffer *old; 912 int ret; 913 u64 to_reserve = 0; 914 u64 index = 0; 915 u64 objectid; 916 u64 root_flags; 917 918 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 919 if (!new_root_item) { 920 pending->error = -ENOMEM; 921 goto fail; 922 } 923 924 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid); 925 if (ret) { 926 pending->error = ret; 927 goto fail; 928 } 929 930 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); 931 btrfs_orphan_pre_snapshot(trans, pending, &to_reserve); 932 933 if (to_reserve > 0) { 934 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv, 935 to_reserve); 936 if (ret) { 937 pending->error = ret; 938 goto fail; 939 } 940 } 941 942 key.objectid = objectid; 943 key.offset = (u64)-1; 944 key.type = BTRFS_ROOT_ITEM_KEY; 945 946 trans->block_rsv = &pending->block_rsv; 947 948 dentry = pending->dentry; 949 parent = dget_parent(dentry); 950 parent_inode = parent->d_inode; 951 parent_root = BTRFS_I(parent_inode)->root; 952 record_root_in_trans(trans, parent_root); 953 954 /* 955 * insert the directory item 956 */ 957 ret = btrfs_set_inode_index(parent_inode, &index); 958 BUG_ON(ret); 959 ret = btrfs_insert_dir_item(trans, parent_root, 960 dentry->d_name.name, dentry->d_name.len, 961 parent_inode->i_ino, &key, 962 BTRFS_FT_DIR, index); 963 BUG_ON(ret); 964 965 btrfs_i_size_write(parent_inode, parent_inode->i_size + 966 dentry->d_name.len * 2); 967 ret = btrfs_update_inode(trans, parent_root, parent_inode); 968 BUG_ON(ret); 969 970 record_root_in_trans(trans, root); 971 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 972 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 973 974 root_flags = btrfs_root_flags(new_root_item); 975 if (pending->readonly) 976 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 977 else 978 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 979 btrfs_set_root_flags(new_root_item, root_flags); 980 981 old = btrfs_lock_root_node(root); 982 btrfs_cow_block(trans, root, old, NULL, 0, &old); 983 btrfs_set_lock_blocking(old); 984 985 btrfs_copy_root(trans, root, old, &tmp, objectid); 986 btrfs_tree_unlock(old); 987 free_extent_buffer(old); 988 989 btrfs_set_root_node(new_root_item, tmp); 990 /* record when the snapshot was created in key.offset */ 991 key.offset = trans->transid; 992 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 993 btrfs_tree_unlock(tmp); 994 free_extent_buffer(tmp); 995 BUG_ON(ret); 996 997 /* 998 * insert root back/forward references 999 */ 1000 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1001 parent_root->root_key.objectid, 1002 parent_inode->i_ino, index, 1003 dentry->d_name.name, dentry->d_name.len); 1004 BUG_ON(ret); 1005 dput(parent); 1006 1007 key.offset = (u64)-1; 1008 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1009 BUG_ON(IS_ERR(pending->snap)); 1010 1011 btrfs_reloc_post_snapshot(trans, pending); 1012 btrfs_orphan_post_snapshot(trans, pending); 1013 fail: 1014 kfree(new_root_item); 1015 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1); 1016 return 0; 1017 } 1018 1019 /* 1020 * create all the snapshots we've scheduled for creation 1021 */ 1022 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1023 struct btrfs_fs_info *fs_info) 1024 { 1025 struct btrfs_pending_snapshot *pending; 1026 struct list_head *head = &trans->transaction->pending_snapshots; 1027 int ret; 1028 1029 list_for_each_entry(pending, head, list) { 1030 ret = create_pending_snapshot(trans, fs_info, pending); 1031 BUG_ON(ret); 1032 } 1033 return 0; 1034 } 1035 1036 static void update_super_roots(struct btrfs_root *root) 1037 { 1038 struct btrfs_root_item *root_item; 1039 struct btrfs_super_block *super; 1040 1041 super = &root->fs_info->super_copy; 1042 1043 root_item = &root->fs_info->chunk_root->root_item; 1044 super->chunk_root = root_item->bytenr; 1045 super->chunk_root_generation = root_item->generation; 1046 super->chunk_root_level = root_item->level; 1047 1048 root_item = &root->fs_info->tree_root->root_item; 1049 super->root = root_item->bytenr; 1050 super->generation = root_item->generation; 1051 super->root_level = root_item->level; 1052 if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE)) 1053 super->cache_generation = root_item->generation; 1054 } 1055 1056 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1057 { 1058 int ret = 0; 1059 spin_lock(&info->new_trans_lock); 1060 if (info->running_transaction) 1061 ret = info->running_transaction->in_commit; 1062 spin_unlock(&info->new_trans_lock); 1063 return ret; 1064 } 1065 1066 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1067 { 1068 int ret = 0; 1069 spin_lock(&info->new_trans_lock); 1070 if (info->running_transaction) 1071 ret = info->running_transaction->blocked; 1072 spin_unlock(&info->new_trans_lock); 1073 return ret; 1074 } 1075 1076 /* 1077 * wait for the current transaction commit to start and block subsequent 1078 * transaction joins 1079 */ 1080 static void wait_current_trans_commit_start(struct btrfs_root *root, 1081 struct btrfs_transaction *trans) 1082 { 1083 DEFINE_WAIT(wait); 1084 1085 if (trans->in_commit) 1086 return; 1087 1088 while (1) { 1089 prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait, 1090 TASK_UNINTERRUPTIBLE); 1091 if (trans->in_commit) { 1092 finish_wait(&root->fs_info->transaction_blocked_wait, 1093 &wait); 1094 break; 1095 } 1096 mutex_unlock(&root->fs_info->trans_mutex); 1097 schedule(); 1098 mutex_lock(&root->fs_info->trans_mutex); 1099 finish_wait(&root->fs_info->transaction_blocked_wait, &wait); 1100 } 1101 } 1102 1103 /* 1104 * wait for the current transaction to start and then become unblocked. 1105 * caller holds ref. 1106 */ 1107 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1108 struct btrfs_transaction *trans) 1109 { 1110 DEFINE_WAIT(wait); 1111 1112 if (trans->commit_done || (trans->in_commit && !trans->blocked)) 1113 return; 1114 1115 while (1) { 1116 prepare_to_wait(&root->fs_info->transaction_wait, &wait, 1117 TASK_UNINTERRUPTIBLE); 1118 if (trans->commit_done || 1119 (trans->in_commit && !trans->blocked)) { 1120 finish_wait(&root->fs_info->transaction_wait, 1121 &wait); 1122 break; 1123 } 1124 mutex_unlock(&root->fs_info->trans_mutex); 1125 schedule(); 1126 mutex_lock(&root->fs_info->trans_mutex); 1127 finish_wait(&root->fs_info->transaction_wait, 1128 &wait); 1129 } 1130 } 1131 1132 /* 1133 * commit transactions asynchronously. once btrfs_commit_transaction_async 1134 * returns, any subsequent transaction will not be allowed to join. 1135 */ 1136 struct btrfs_async_commit { 1137 struct btrfs_trans_handle *newtrans; 1138 struct btrfs_root *root; 1139 struct delayed_work work; 1140 }; 1141 1142 static void do_async_commit(struct work_struct *work) 1143 { 1144 struct btrfs_async_commit *ac = 1145 container_of(work, struct btrfs_async_commit, work.work); 1146 1147 btrfs_commit_transaction(ac->newtrans, ac->root); 1148 kfree(ac); 1149 } 1150 1151 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1152 struct btrfs_root *root, 1153 int wait_for_unblock) 1154 { 1155 struct btrfs_async_commit *ac; 1156 struct btrfs_transaction *cur_trans; 1157 1158 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1159 BUG_ON(!ac); 1160 1161 INIT_DELAYED_WORK(&ac->work, do_async_commit); 1162 ac->root = root; 1163 ac->newtrans = btrfs_join_transaction(root, 0); 1164 if (IS_ERR(ac->newtrans)) { 1165 int err = PTR_ERR(ac->newtrans); 1166 kfree(ac); 1167 return err; 1168 } 1169 1170 /* take transaction reference */ 1171 mutex_lock(&root->fs_info->trans_mutex); 1172 cur_trans = trans->transaction; 1173 cur_trans->use_count++; 1174 mutex_unlock(&root->fs_info->trans_mutex); 1175 1176 btrfs_end_transaction(trans, root); 1177 schedule_delayed_work(&ac->work, 0); 1178 1179 /* wait for transaction to start and unblock */ 1180 mutex_lock(&root->fs_info->trans_mutex); 1181 if (wait_for_unblock) 1182 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1183 else 1184 wait_current_trans_commit_start(root, cur_trans); 1185 put_transaction(cur_trans); 1186 mutex_unlock(&root->fs_info->trans_mutex); 1187 1188 return 0; 1189 } 1190 1191 /* 1192 * btrfs_transaction state sequence: 1193 * in_commit = 0, blocked = 0 (initial) 1194 * in_commit = 1, blocked = 1 1195 * blocked = 0 1196 * commit_done = 1 1197 */ 1198 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1199 struct btrfs_root *root) 1200 { 1201 unsigned long joined = 0; 1202 struct btrfs_transaction *cur_trans; 1203 struct btrfs_transaction *prev_trans = NULL; 1204 DEFINE_WAIT(wait); 1205 int ret; 1206 int should_grow = 0; 1207 unsigned long now = get_seconds(); 1208 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT); 1209 1210 btrfs_run_ordered_operations(root, 0); 1211 1212 /* make a pass through all the delayed refs we have so far 1213 * any runnings procs may add more while we are here 1214 */ 1215 ret = btrfs_run_delayed_refs(trans, root, 0); 1216 BUG_ON(ret); 1217 1218 btrfs_trans_release_metadata(trans, root); 1219 1220 cur_trans = trans->transaction; 1221 /* 1222 * set the flushing flag so procs in this transaction have to 1223 * start sending their work down. 1224 */ 1225 cur_trans->delayed_refs.flushing = 1; 1226 1227 ret = btrfs_run_delayed_refs(trans, root, 0); 1228 BUG_ON(ret); 1229 1230 mutex_lock(&root->fs_info->trans_mutex); 1231 if (cur_trans->in_commit) { 1232 cur_trans->use_count++; 1233 mutex_unlock(&root->fs_info->trans_mutex); 1234 btrfs_end_transaction(trans, root); 1235 1236 ret = wait_for_commit(root, cur_trans); 1237 BUG_ON(ret); 1238 1239 mutex_lock(&root->fs_info->trans_mutex); 1240 put_transaction(cur_trans); 1241 mutex_unlock(&root->fs_info->trans_mutex); 1242 1243 return 0; 1244 } 1245 1246 trans->transaction->in_commit = 1; 1247 trans->transaction->blocked = 1; 1248 wake_up(&root->fs_info->transaction_blocked_wait); 1249 1250 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1251 prev_trans = list_entry(cur_trans->list.prev, 1252 struct btrfs_transaction, list); 1253 if (!prev_trans->commit_done) { 1254 prev_trans->use_count++; 1255 mutex_unlock(&root->fs_info->trans_mutex); 1256 1257 wait_for_commit(root, prev_trans); 1258 1259 mutex_lock(&root->fs_info->trans_mutex); 1260 put_transaction(prev_trans); 1261 } 1262 } 1263 1264 if (now < cur_trans->start_time || now - cur_trans->start_time < 1) 1265 should_grow = 1; 1266 1267 do { 1268 int snap_pending = 0; 1269 joined = cur_trans->num_joined; 1270 if (!list_empty(&trans->transaction->pending_snapshots)) 1271 snap_pending = 1; 1272 1273 WARN_ON(cur_trans != trans->transaction); 1274 mutex_unlock(&root->fs_info->trans_mutex); 1275 1276 if (flush_on_commit || snap_pending) { 1277 btrfs_start_delalloc_inodes(root, 1); 1278 ret = btrfs_wait_ordered_extents(root, 0, 1); 1279 BUG_ON(ret); 1280 } 1281 1282 /* 1283 * rename don't use btrfs_join_transaction, so, once we 1284 * set the transaction to blocked above, we aren't going 1285 * to get any new ordered operations. We can safely run 1286 * it here and no for sure that nothing new will be added 1287 * to the list 1288 */ 1289 btrfs_run_ordered_operations(root, 1); 1290 1291 prepare_to_wait(&cur_trans->writer_wait, &wait, 1292 TASK_UNINTERRUPTIBLE); 1293 1294 smp_mb(); 1295 if (cur_trans->num_writers > 1) 1296 schedule_timeout(MAX_SCHEDULE_TIMEOUT); 1297 else if (should_grow) 1298 schedule_timeout(1); 1299 1300 mutex_lock(&root->fs_info->trans_mutex); 1301 finish_wait(&cur_trans->writer_wait, &wait); 1302 } while (cur_trans->num_writers > 1 || 1303 (should_grow && cur_trans->num_joined != joined)); 1304 1305 ret = create_pending_snapshots(trans, root->fs_info); 1306 BUG_ON(ret); 1307 1308 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1309 BUG_ON(ret); 1310 1311 WARN_ON(cur_trans != trans->transaction); 1312 1313 /* btrfs_commit_tree_roots is responsible for getting the 1314 * various roots consistent with each other. Every pointer 1315 * in the tree of tree roots has to point to the most up to date 1316 * root for every subvolume and other tree. So, we have to keep 1317 * the tree logging code from jumping in and changing any 1318 * of the trees. 1319 * 1320 * At this point in the commit, there can't be any tree-log 1321 * writers, but a little lower down we drop the trans mutex 1322 * and let new people in. By holding the tree_log_mutex 1323 * from now until after the super is written, we avoid races 1324 * with the tree-log code. 1325 */ 1326 mutex_lock(&root->fs_info->tree_log_mutex); 1327 1328 ret = commit_fs_roots(trans, root); 1329 BUG_ON(ret); 1330 1331 /* commit_fs_roots gets rid of all the tree log roots, it is now 1332 * safe to free the root of tree log roots 1333 */ 1334 btrfs_free_log_root_tree(trans, root->fs_info); 1335 1336 ret = commit_cowonly_roots(trans, root); 1337 BUG_ON(ret); 1338 1339 btrfs_prepare_extent_commit(trans, root); 1340 1341 cur_trans = root->fs_info->running_transaction; 1342 spin_lock(&root->fs_info->new_trans_lock); 1343 root->fs_info->running_transaction = NULL; 1344 spin_unlock(&root->fs_info->new_trans_lock); 1345 1346 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1347 root->fs_info->tree_root->node); 1348 switch_commit_root(root->fs_info->tree_root); 1349 1350 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1351 root->fs_info->chunk_root->node); 1352 switch_commit_root(root->fs_info->chunk_root); 1353 1354 update_super_roots(root); 1355 1356 if (!root->fs_info->log_root_recovering) { 1357 btrfs_set_super_log_root(&root->fs_info->super_copy, 0); 1358 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0); 1359 } 1360 1361 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy, 1362 sizeof(root->fs_info->super_copy)); 1363 1364 trans->transaction->blocked = 0; 1365 1366 wake_up(&root->fs_info->transaction_wait); 1367 1368 mutex_unlock(&root->fs_info->trans_mutex); 1369 ret = btrfs_write_and_wait_transaction(trans, root); 1370 BUG_ON(ret); 1371 write_ctree_super(trans, root, 0); 1372 1373 /* 1374 * the super is written, we can safely allow the tree-loggers 1375 * to go about their business 1376 */ 1377 mutex_unlock(&root->fs_info->tree_log_mutex); 1378 1379 btrfs_finish_extent_commit(trans, root); 1380 1381 mutex_lock(&root->fs_info->trans_mutex); 1382 1383 cur_trans->commit_done = 1; 1384 1385 root->fs_info->last_trans_committed = cur_trans->transid; 1386 1387 wake_up(&cur_trans->commit_wait); 1388 1389 put_transaction(cur_trans); 1390 put_transaction(cur_trans); 1391 1392 mutex_unlock(&root->fs_info->trans_mutex); 1393 1394 if (current->journal_info == trans) 1395 current->journal_info = NULL; 1396 1397 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1398 1399 if (current != root->fs_info->transaction_kthread) 1400 btrfs_run_delayed_iputs(root); 1401 1402 return ret; 1403 } 1404 1405 /* 1406 * interface function to delete all the snapshots we have scheduled for deletion 1407 */ 1408 int btrfs_clean_old_snapshots(struct btrfs_root *root) 1409 { 1410 LIST_HEAD(list); 1411 struct btrfs_fs_info *fs_info = root->fs_info; 1412 1413 mutex_lock(&fs_info->trans_mutex); 1414 list_splice_init(&fs_info->dead_roots, &list); 1415 mutex_unlock(&fs_info->trans_mutex); 1416 1417 while (!list_empty(&list)) { 1418 root = list_entry(list.next, struct btrfs_root, root_list); 1419 list_del(&root->root_list); 1420 1421 if (btrfs_header_backref_rev(root->node) < 1422 BTRFS_MIXED_BACKREF_REV) 1423 btrfs_drop_snapshot(root, NULL, 0); 1424 else 1425 btrfs_drop_snapshot(root, NULL, 1); 1426 } 1427 return 0; 1428 } 1429