xref: /openbmc/linux/fs/btrfs/transaction.c (revision 565d76cb)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 
31 #define BTRFS_ROOT_TRANS_TAG 0
32 
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 {
35 	WARN_ON(transaction->use_count == 0);
36 	transaction->use_count--;
37 	if (transaction->use_count == 0) {
38 		list_del_init(&transaction->list);
39 		memset(transaction, 0, sizeof(*transaction));
40 		kmem_cache_free(btrfs_transaction_cachep, transaction);
41 	}
42 }
43 
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46 	free_extent_buffer(root->commit_root);
47 	root->commit_root = btrfs_root_node(root);
48 }
49 
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root)
54 {
55 	struct btrfs_transaction *cur_trans;
56 	cur_trans = root->fs_info->running_transaction;
57 	if (!cur_trans) {
58 		cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59 					     GFP_NOFS);
60 		BUG_ON(!cur_trans);
61 		root->fs_info->generation++;
62 		cur_trans->num_writers = 1;
63 		cur_trans->num_joined = 0;
64 		cur_trans->transid = root->fs_info->generation;
65 		init_waitqueue_head(&cur_trans->writer_wait);
66 		init_waitqueue_head(&cur_trans->commit_wait);
67 		cur_trans->in_commit = 0;
68 		cur_trans->blocked = 0;
69 		cur_trans->use_count = 1;
70 		cur_trans->commit_done = 0;
71 		cur_trans->start_time = get_seconds();
72 
73 		cur_trans->delayed_refs.root = RB_ROOT;
74 		cur_trans->delayed_refs.num_entries = 0;
75 		cur_trans->delayed_refs.num_heads_ready = 0;
76 		cur_trans->delayed_refs.num_heads = 0;
77 		cur_trans->delayed_refs.flushing = 0;
78 		cur_trans->delayed_refs.run_delayed_start = 0;
79 		spin_lock_init(&cur_trans->delayed_refs.lock);
80 
81 		INIT_LIST_HEAD(&cur_trans->pending_snapshots);
82 		list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
83 		extent_io_tree_init(&cur_trans->dirty_pages,
84 				     root->fs_info->btree_inode->i_mapping,
85 				     GFP_NOFS);
86 		spin_lock(&root->fs_info->new_trans_lock);
87 		root->fs_info->running_transaction = cur_trans;
88 		spin_unlock(&root->fs_info->new_trans_lock);
89 	} else {
90 		cur_trans->num_writers++;
91 		cur_trans->num_joined++;
92 	}
93 
94 	return 0;
95 }
96 
97 /*
98  * this does all the record keeping required to make sure that a reference
99  * counted root is properly recorded in a given transaction.  This is required
100  * to make sure the old root from before we joined the transaction is deleted
101  * when the transaction commits
102  */
103 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
104 					 struct btrfs_root *root)
105 {
106 	if (root->ref_cows && root->last_trans < trans->transid) {
107 		WARN_ON(root == root->fs_info->extent_root);
108 		WARN_ON(root->commit_root != root->node);
109 
110 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
111 			   (unsigned long)root->root_key.objectid,
112 			   BTRFS_ROOT_TRANS_TAG);
113 		root->last_trans = trans->transid;
114 		btrfs_init_reloc_root(trans, root);
115 	}
116 	return 0;
117 }
118 
119 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
120 			       struct btrfs_root *root)
121 {
122 	if (!root->ref_cows)
123 		return 0;
124 
125 	mutex_lock(&root->fs_info->trans_mutex);
126 	if (root->last_trans == trans->transid) {
127 		mutex_unlock(&root->fs_info->trans_mutex);
128 		return 0;
129 	}
130 
131 	record_root_in_trans(trans, root);
132 	mutex_unlock(&root->fs_info->trans_mutex);
133 	return 0;
134 }
135 
136 /* wait for commit against the current transaction to become unblocked
137  * when this is done, it is safe to start a new transaction, but the current
138  * transaction might not be fully on disk.
139  */
140 static void wait_current_trans(struct btrfs_root *root)
141 {
142 	struct btrfs_transaction *cur_trans;
143 
144 	cur_trans = root->fs_info->running_transaction;
145 	if (cur_trans && cur_trans->blocked) {
146 		DEFINE_WAIT(wait);
147 		cur_trans->use_count++;
148 		while (1) {
149 			prepare_to_wait(&root->fs_info->transaction_wait, &wait,
150 					TASK_UNINTERRUPTIBLE);
151 			if (!cur_trans->blocked)
152 				break;
153 			mutex_unlock(&root->fs_info->trans_mutex);
154 			schedule();
155 			mutex_lock(&root->fs_info->trans_mutex);
156 		}
157 		finish_wait(&root->fs_info->transaction_wait, &wait);
158 		put_transaction(cur_trans);
159 	}
160 }
161 
162 enum btrfs_trans_type {
163 	TRANS_START,
164 	TRANS_JOIN,
165 	TRANS_USERSPACE,
166 	TRANS_JOIN_NOLOCK,
167 };
168 
169 static int may_wait_transaction(struct btrfs_root *root, int type)
170 {
171 	if (!root->fs_info->log_root_recovering &&
172 	    ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
173 	     type == TRANS_USERSPACE))
174 		return 1;
175 	return 0;
176 }
177 
178 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
179 						    u64 num_items, int type)
180 {
181 	struct btrfs_trans_handle *h;
182 	struct btrfs_transaction *cur_trans;
183 	int ret;
184 
185 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
186 		return ERR_PTR(-EROFS);
187 again:
188 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
189 	if (!h)
190 		return ERR_PTR(-ENOMEM);
191 
192 	if (type != TRANS_JOIN_NOLOCK)
193 		mutex_lock(&root->fs_info->trans_mutex);
194 	if (may_wait_transaction(root, type))
195 		wait_current_trans(root);
196 
197 	ret = join_transaction(root);
198 	BUG_ON(ret);
199 
200 	cur_trans = root->fs_info->running_transaction;
201 	cur_trans->use_count++;
202 	if (type != TRANS_JOIN_NOLOCK)
203 		mutex_unlock(&root->fs_info->trans_mutex);
204 
205 	h->transid = cur_trans->transid;
206 	h->transaction = cur_trans;
207 	h->blocks_used = 0;
208 	h->block_group = 0;
209 	h->bytes_reserved = 0;
210 	h->delayed_ref_updates = 0;
211 	h->block_rsv = NULL;
212 
213 	smp_mb();
214 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
215 		btrfs_commit_transaction(h, root);
216 		goto again;
217 	}
218 
219 	if (num_items > 0) {
220 		ret = btrfs_trans_reserve_metadata(h, root, num_items);
221 		if (ret == -EAGAIN) {
222 			btrfs_commit_transaction(h, root);
223 			goto again;
224 		}
225 		if (ret < 0) {
226 			btrfs_end_transaction(h, root);
227 			return ERR_PTR(ret);
228 		}
229 	}
230 
231 	if (type != TRANS_JOIN_NOLOCK)
232 		mutex_lock(&root->fs_info->trans_mutex);
233 	record_root_in_trans(h, root);
234 	if (type != TRANS_JOIN_NOLOCK)
235 		mutex_unlock(&root->fs_info->trans_mutex);
236 
237 	if (!current->journal_info && type != TRANS_USERSPACE)
238 		current->journal_info = h;
239 	return h;
240 }
241 
242 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
243 						   int num_items)
244 {
245 	return start_transaction(root, num_items, TRANS_START);
246 }
247 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
248 						   int num_blocks)
249 {
250 	return start_transaction(root, 0, TRANS_JOIN);
251 }
252 
253 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root,
254 							  int num_blocks)
255 {
256 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
257 }
258 
259 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
260 							 int num_blocks)
261 {
262 	return start_transaction(r, 0, TRANS_USERSPACE);
263 }
264 
265 /* wait for a transaction commit to be fully complete */
266 static noinline int wait_for_commit(struct btrfs_root *root,
267 				    struct btrfs_transaction *commit)
268 {
269 	DEFINE_WAIT(wait);
270 	mutex_lock(&root->fs_info->trans_mutex);
271 	while (!commit->commit_done) {
272 		prepare_to_wait(&commit->commit_wait, &wait,
273 				TASK_UNINTERRUPTIBLE);
274 		if (commit->commit_done)
275 			break;
276 		mutex_unlock(&root->fs_info->trans_mutex);
277 		schedule();
278 		mutex_lock(&root->fs_info->trans_mutex);
279 	}
280 	mutex_unlock(&root->fs_info->trans_mutex);
281 	finish_wait(&commit->commit_wait, &wait);
282 	return 0;
283 }
284 
285 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
286 {
287 	struct btrfs_transaction *cur_trans = NULL, *t;
288 	int ret;
289 
290 	mutex_lock(&root->fs_info->trans_mutex);
291 
292 	ret = 0;
293 	if (transid) {
294 		if (transid <= root->fs_info->last_trans_committed)
295 			goto out_unlock;
296 
297 		/* find specified transaction */
298 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
299 			if (t->transid == transid) {
300 				cur_trans = t;
301 				break;
302 			}
303 			if (t->transid > transid)
304 				break;
305 		}
306 		ret = -EINVAL;
307 		if (!cur_trans)
308 			goto out_unlock;  /* bad transid */
309 	} else {
310 		/* find newest transaction that is committing | committed */
311 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
312 					    list) {
313 			if (t->in_commit) {
314 				if (t->commit_done)
315 					goto out_unlock;
316 				cur_trans = t;
317 				break;
318 			}
319 		}
320 		if (!cur_trans)
321 			goto out_unlock;  /* nothing committing|committed */
322 	}
323 
324 	cur_trans->use_count++;
325 	mutex_unlock(&root->fs_info->trans_mutex);
326 
327 	wait_for_commit(root, cur_trans);
328 
329 	mutex_lock(&root->fs_info->trans_mutex);
330 	put_transaction(cur_trans);
331 	ret = 0;
332 out_unlock:
333 	mutex_unlock(&root->fs_info->trans_mutex);
334 	return ret;
335 }
336 
337 #if 0
338 /*
339  * rate limit against the drop_snapshot code.  This helps to slow down new
340  * operations if the drop_snapshot code isn't able to keep up.
341  */
342 static void throttle_on_drops(struct btrfs_root *root)
343 {
344 	struct btrfs_fs_info *info = root->fs_info;
345 	int harder_count = 0;
346 
347 harder:
348 	if (atomic_read(&info->throttles)) {
349 		DEFINE_WAIT(wait);
350 		int thr;
351 		thr = atomic_read(&info->throttle_gen);
352 
353 		do {
354 			prepare_to_wait(&info->transaction_throttle,
355 					&wait, TASK_UNINTERRUPTIBLE);
356 			if (!atomic_read(&info->throttles)) {
357 				finish_wait(&info->transaction_throttle, &wait);
358 				break;
359 			}
360 			schedule();
361 			finish_wait(&info->transaction_throttle, &wait);
362 		} while (thr == atomic_read(&info->throttle_gen));
363 		harder_count++;
364 
365 		if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
366 		    harder_count < 2)
367 			goto harder;
368 
369 		if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
370 		    harder_count < 10)
371 			goto harder;
372 
373 		if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
374 		    harder_count < 20)
375 			goto harder;
376 	}
377 }
378 #endif
379 
380 void btrfs_throttle(struct btrfs_root *root)
381 {
382 	mutex_lock(&root->fs_info->trans_mutex);
383 	if (!root->fs_info->open_ioctl_trans)
384 		wait_current_trans(root);
385 	mutex_unlock(&root->fs_info->trans_mutex);
386 }
387 
388 static int should_end_transaction(struct btrfs_trans_handle *trans,
389 				  struct btrfs_root *root)
390 {
391 	int ret;
392 	ret = btrfs_block_rsv_check(trans, root,
393 				    &root->fs_info->global_block_rsv, 0, 5);
394 	return ret ? 1 : 0;
395 }
396 
397 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
398 				 struct btrfs_root *root)
399 {
400 	struct btrfs_transaction *cur_trans = trans->transaction;
401 	int updates;
402 
403 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
404 		return 1;
405 
406 	updates = trans->delayed_ref_updates;
407 	trans->delayed_ref_updates = 0;
408 	if (updates)
409 		btrfs_run_delayed_refs(trans, root, updates);
410 
411 	return should_end_transaction(trans, root);
412 }
413 
414 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
415 			  struct btrfs_root *root, int throttle, int lock)
416 {
417 	struct btrfs_transaction *cur_trans = trans->transaction;
418 	struct btrfs_fs_info *info = root->fs_info;
419 	int count = 0;
420 
421 	while (count < 4) {
422 		unsigned long cur = trans->delayed_ref_updates;
423 		trans->delayed_ref_updates = 0;
424 		if (cur &&
425 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
426 			trans->delayed_ref_updates = 0;
427 
428 			/*
429 			 * do a full flush if the transaction is trying
430 			 * to close
431 			 */
432 			if (trans->transaction->delayed_refs.flushing)
433 				cur = 0;
434 			btrfs_run_delayed_refs(trans, root, cur);
435 		} else {
436 			break;
437 		}
438 		count++;
439 	}
440 
441 	btrfs_trans_release_metadata(trans, root);
442 
443 	if (lock && !root->fs_info->open_ioctl_trans &&
444 	    should_end_transaction(trans, root))
445 		trans->transaction->blocked = 1;
446 
447 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
448 		if (throttle)
449 			return btrfs_commit_transaction(trans, root);
450 		else
451 			wake_up_process(info->transaction_kthread);
452 	}
453 
454 	if (lock)
455 		mutex_lock(&info->trans_mutex);
456 	WARN_ON(cur_trans != info->running_transaction);
457 	WARN_ON(cur_trans->num_writers < 1);
458 	cur_trans->num_writers--;
459 
460 	smp_mb();
461 	if (waitqueue_active(&cur_trans->writer_wait))
462 		wake_up(&cur_trans->writer_wait);
463 	put_transaction(cur_trans);
464 	if (lock)
465 		mutex_unlock(&info->trans_mutex);
466 
467 	if (current->journal_info == trans)
468 		current->journal_info = NULL;
469 	memset(trans, 0, sizeof(*trans));
470 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
471 
472 	if (throttle)
473 		btrfs_run_delayed_iputs(root);
474 
475 	return 0;
476 }
477 
478 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
479 			  struct btrfs_root *root)
480 {
481 	return __btrfs_end_transaction(trans, root, 0, 1);
482 }
483 
484 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
485 				   struct btrfs_root *root)
486 {
487 	return __btrfs_end_transaction(trans, root, 1, 1);
488 }
489 
490 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
491 				 struct btrfs_root *root)
492 {
493 	return __btrfs_end_transaction(trans, root, 0, 0);
494 }
495 
496 /*
497  * when btree blocks are allocated, they have some corresponding bits set for
498  * them in one of two extent_io trees.  This is used to make sure all of
499  * those extents are sent to disk but does not wait on them
500  */
501 int btrfs_write_marked_extents(struct btrfs_root *root,
502 			       struct extent_io_tree *dirty_pages, int mark)
503 {
504 	int ret;
505 	int err = 0;
506 	int werr = 0;
507 	struct page *page;
508 	struct inode *btree_inode = root->fs_info->btree_inode;
509 	u64 start = 0;
510 	u64 end;
511 	unsigned long index;
512 
513 	while (1) {
514 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
515 					    mark);
516 		if (ret)
517 			break;
518 		while (start <= end) {
519 			cond_resched();
520 
521 			index = start >> PAGE_CACHE_SHIFT;
522 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
523 			page = find_get_page(btree_inode->i_mapping, index);
524 			if (!page)
525 				continue;
526 
527 			btree_lock_page_hook(page);
528 			if (!page->mapping) {
529 				unlock_page(page);
530 				page_cache_release(page);
531 				continue;
532 			}
533 
534 			if (PageWriteback(page)) {
535 				if (PageDirty(page))
536 					wait_on_page_writeback(page);
537 				else {
538 					unlock_page(page);
539 					page_cache_release(page);
540 					continue;
541 				}
542 			}
543 			err = write_one_page(page, 0);
544 			if (err)
545 				werr = err;
546 			page_cache_release(page);
547 		}
548 	}
549 	if (err)
550 		werr = err;
551 	return werr;
552 }
553 
554 /*
555  * when btree blocks are allocated, they have some corresponding bits set for
556  * them in one of two extent_io trees.  This is used to make sure all of
557  * those extents are on disk for transaction or log commit.  We wait
558  * on all the pages and clear them from the dirty pages state tree
559  */
560 int btrfs_wait_marked_extents(struct btrfs_root *root,
561 			      struct extent_io_tree *dirty_pages, int mark)
562 {
563 	int ret;
564 	int err = 0;
565 	int werr = 0;
566 	struct page *page;
567 	struct inode *btree_inode = root->fs_info->btree_inode;
568 	u64 start = 0;
569 	u64 end;
570 	unsigned long index;
571 
572 	while (1) {
573 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
574 					    mark);
575 		if (ret)
576 			break;
577 
578 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
579 		while (start <= end) {
580 			index = start >> PAGE_CACHE_SHIFT;
581 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
582 			page = find_get_page(btree_inode->i_mapping, index);
583 			if (!page)
584 				continue;
585 			if (PageDirty(page)) {
586 				btree_lock_page_hook(page);
587 				wait_on_page_writeback(page);
588 				err = write_one_page(page, 0);
589 				if (err)
590 					werr = err;
591 			}
592 			wait_on_page_writeback(page);
593 			page_cache_release(page);
594 			cond_resched();
595 		}
596 	}
597 	if (err)
598 		werr = err;
599 	return werr;
600 }
601 
602 /*
603  * when btree blocks are allocated, they have some corresponding bits set for
604  * them in one of two extent_io trees.  This is used to make sure all of
605  * those extents are on disk for transaction or log commit
606  */
607 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
608 				struct extent_io_tree *dirty_pages, int mark)
609 {
610 	int ret;
611 	int ret2;
612 
613 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
614 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
615 	return ret || ret2;
616 }
617 
618 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
619 				     struct btrfs_root *root)
620 {
621 	if (!trans || !trans->transaction) {
622 		struct inode *btree_inode;
623 		btree_inode = root->fs_info->btree_inode;
624 		return filemap_write_and_wait(btree_inode->i_mapping);
625 	}
626 	return btrfs_write_and_wait_marked_extents(root,
627 					   &trans->transaction->dirty_pages,
628 					   EXTENT_DIRTY);
629 }
630 
631 /*
632  * this is used to update the root pointer in the tree of tree roots.
633  *
634  * But, in the case of the extent allocation tree, updating the root
635  * pointer may allocate blocks which may change the root of the extent
636  * allocation tree.
637  *
638  * So, this loops and repeats and makes sure the cowonly root didn't
639  * change while the root pointer was being updated in the metadata.
640  */
641 static int update_cowonly_root(struct btrfs_trans_handle *trans,
642 			       struct btrfs_root *root)
643 {
644 	int ret;
645 	u64 old_root_bytenr;
646 	u64 old_root_used;
647 	struct btrfs_root *tree_root = root->fs_info->tree_root;
648 
649 	old_root_used = btrfs_root_used(&root->root_item);
650 	btrfs_write_dirty_block_groups(trans, root);
651 
652 	while (1) {
653 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
654 		if (old_root_bytenr == root->node->start &&
655 		    old_root_used == btrfs_root_used(&root->root_item))
656 			break;
657 
658 		btrfs_set_root_node(&root->root_item, root->node);
659 		ret = btrfs_update_root(trans, tree_root,
660 					&root->root_key,
661 					&root->root_item);
662 		BUG_ON(ret);
663 
664 		old_root_used = btrfs_root_used(&root->root_item);
665 		ret = btrfs_write_dirty_block_groups(trans, root);
666 		BUG_ON(ret);
667 	}
668 
669 	if (root != root->fs_info->extent_root)
670 		switch_commit_root(root);
671 
672 	return 0;
673 }
674 
675 /*
676  * update all the cowonly tree roots on disk
677  */
678 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
679 					 struct btrfs_root *root)
680 {
681 	struct btrfs_fs_info *fs_info = root->fs_info;
682 	struct list_head *next;
683 	struct extent_buffer *eb;
684 	int ret;
685 
686 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
687 	BUG_ON(ret);
688 
689 	eb = btrfs_lock_root_node(fs_info->tree_root);
690 	btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
691 	btrfs_tree_unlock(eb);
692 	free_extent_buffer(eb);
693 
694 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
695 	BUG_ON(ret);
696 
697 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
698 		next = fs_info->dirty_cowonly_roots.next;
699 		list_del_init(next);
700 		root = list_entry(next, struct btrfs_root, dirty_list);
701 
702 		update_cowonly_root(trans, root);
703 	}
704 
705 	down_write(&fs_info->extent_commit_sem);
706 	switch_commit_root(fs_info->extent_root);
707 	up_write(&fs_info->extent_commit_sem);
708 
709 	return 0;
710 }
711 
712 /*
713  * dead roots are old snapshots that need to be deleted.  This allocates
714  * a dirty root struct and adds it into the list of dead roots that need to
715  * be deleted
716  */
717 int btrfs_add_dead_root(struct btrfs_root *root)
718 {
719 	mutex_lock(&root->fs_info->trans_mutex);
720 	list_add(&root->root_list, &root->fs_info->dead_roots);
721 	mutex_unlock(&root->fs_info->trans_mutex);
722 	return 0;
723 }
724 
725 /*
726  * update all the cowonly tree roots on disk
727  */
728 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
729 				    struct btrfs_root *root)
730 {
731 	struct btrfs_root *gang[8];
732 	struct btrfs_fs_info *fs_info = root->fs_info;
733 	int i;
734 	int ret;
735 	int err = 0;
736 
737 	while (1) {
738 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
739 						 (void **)gang, 0,
740 						 ARRAY_SIZE(gang),
741 						 BTRFS_ROOT_TRANS_TAG);
742 		if (ret == 0)
743 			break;
744 		for (i = 0; i < ret; i++) {
745 			root = gang[i];
746 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
747 					(unsigned long)root->root_key.objectid,
748 					BTRFS_ROOT_TRANS_TAG);
749 
750 			btrfs_free_log(trans, root);
751 			btrfs_update_reloc_root(trans, root);
752 			btrfs_orphan_commit_root(trans, root);
753 
754 			if (root->commit_root != root->node) {
755 				switch_commit_root(root);
756 				btrfs_set_root_node(&root->root_item,
757 						    root->node);
758 			}
759 
760 			err = btrfs_update_root(trans, fs_info->tree_root,
761 						&root->root_key,
762 						&root->root_item);
763 			if (err)
764 				break;
765 		}
766 	}
767 	return err;
768 }
769 
770 /*
771  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
772  * otherwise every leaf in the btree is read and defragged.
773  */
774 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
775 {
776 	struct btrfs_fs_info *info = root->fs_info;
777 	struct btrfs_trans_handle *trans;
778 	int ret;
779 	unsigned long nr;
780 
781 	if (xchg(&root->defrag_running, 1))
782 		return 0;
783 
784 	while (1) {
785 		trans = btrfs_start_transaction(root, 0);
786 		if (IS_ERR(trans))
787 			return PTR_ERR(trans);
788 
789 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
790 
791 		nr = trans->blocks_used;
792 		btrfs_end_transaction(trans, root);
793 		btrfs_btree_balance_dirty(info->tree_root, nr);
794 		cond_resched();
795 
796 		if (root->fs_info->closing || ret != -EAGAIN)
797 			break;
798 	}
799 	root->defrag_running = 0;
800 	return ret;
801 }
802 
803 #if 0
804 /*
805  * when dropping snapshots, we generate a ton of delayed refs, and it makes
806  * sense not to join the transaction while it is trying to flush the current
807  * queue of delayed refs out.
808  *
809  * This is used by the drop snapshot code only
810  */
811 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
812 {
813 	DEFINE_WAIT(wait);
814 
815 	mutex_lock(&info->trans_mutex);
816 	while (info->running_transaction &&
817 	       info->running_transaction->delayed_refs.flushing) {
818 		prepare_to_wait(&info->transaction_wait, &wait,
819 				TASK_UNINTERRUPTIBLE);
820 		mutex_unlock(&info->trans_mutex);
821 
822 		schedule();
823 
824 		mutex_lock(&info->trans_mutex);
825 		finish_wait(&info->transaction_wait, &wait);
826 	}
827 	mutex_unlock(&info->trans_mutex);
828 	return 0;
829 }
830 
831 /*
832  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
833  * all of them
834  */
835 int btrfs_drop_dead_root(struct btrfs_root *root)
836 {
837 	struct btrfs_trans_handle *trans;
838 	struct btrfs_root *tree_root = root->fs_info->tree_root;
839 	unsigned long nr;
840 	int ret;
841 
842 	while (1) {
843 		/*
844 		 * we don't want to jump in and create a bunch of
845 		 * delayed refs if the transaction is starting to close
846 		 */
847 		wait_transaction_pre_flush(tree_root->fs_info);
848 		trans = btrfs_start_transaction(tree_root, 1);
849 
850 		/*
851 		 * we've joined a transaction, make sure it isn't
852 		 * closing right now
853 		 */
854 		if (trans->transaction->delayed_refs.flushing) {
855 			btrfs_end_transaction(trans, tree_root);
856 			continue;
857 		}
858 
859 		ret = btrfs_drop_snapshot(trans, root);
860 		if (ret != -EAGAIN)
861 			break;
862 
863 		ret = btrfs_update_root(trans, tree_root,
864 					&root->root_key,
865 					&root->root_item);
866 		if (ret)
867 			break;
868 
869 		nr = trans->blocks_used;
870 		ret = btrfs_end_transaction(trans, tree_root);
871 		BUG_ON(ret);
872 
873 		btrfs_btree_balance_dirty(tree_root, nr);
874 		cond_resched();
875 	}
876 	BUG_ON(ret);
877 
878 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
879 	BUG_ON(ret);
880 
881 	nr = trans->blocks_used;
882 	ret = btrfs_end_transaction(trans, tree_root);
883 	BUG_ON(ret);
884 
885 	free_extent_buffer(root->node);
886 	free_extent_buffer(root->commit_root);
887 	kfree(root);
888 
889 	btrfs_btree_balance_dirty(tree_root, nr);
890 	return ret;
891 }
892 #endif
893 
894 /*
895  * new snapshots need to be created at a very specific time in the
896  * transaction commit.  This does the actual creation
897  */
898 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
899 				   struct btrfs_fs_info *fs_info,
900 				   struct btrfs_pending_snapshot *pending)
901 {
902 	struct btrfs_key key;
903 	struct btrfs_root_item *new_root_item;
904 	struct btrfs_root *tree_root = fs_info->tree_root;
905 	struct btrfs_root *root = pending->root;
906 	struct btrfs_root *parent_root;
907 	struct inode *parent_inode;
908 	struct dentry *parent;
909 	struct dentry *dentry;
910 	struct extent_buffer *tmp;
911 	struct extent_buffer *old;
912 	int ret;
913 	u64 to_reserve = 0;
914 	u64 index = 0;
915 	u64 objectid;
916 	u64 root_flags;
917 
918 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
919 	if (!new_root_item) {
920 		pending->error = -ENOMEM;
921 		goto fail;
922 	}
923 
924 	ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
925 	if (ret) {
926 		pending->error = ret;
927 		goto fail;
928 	}
929 
930 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
931 	btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
932 
933 	if (to_reserve > 0) {
934 		ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
935 					  to_reserve);
936 		if (ret) {
937 			pending->error = ret;
938 			goto fail;
939 		}
940 	}
941 
942 	key.objectid = objectid;
943 	key.offset = (u64)-1;
944 	key.type = BTRFS_ROOT_ITEM_KEY;
945 
946 	trans->block_rsv = &pending->block_rsv;
947 
948 	dentry = pending->dentry;
949 	parent = dget_parent(dentry);
950 	parent_inode = parent->d_inode;
951 	parent_root = BTRFS_I(parent_inode)->root;
952 	record_root_in_trans(trans, parent_root);
953 
954 	/*
955 	 * insert the directory item
956 	 */
957 	ret = btrfs_set_inode_index(parent_inode, &index);
958 	BUG_ON(ret);
959 	ret = btrfs_insert_dir_item(trans, parent_root,
960 				dentry->d_name.name, dentry->d_name.len,
961 				parent_inode->i_ino, &key,
962 				BTRFS_FT_DIR, index);
963 	BUG_ON(ret);
964 
965 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
966 					 dentry->d_name.len * 2);
967 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
968 	BUG_ON(ret);
969 
970 	record_root_in_trans(trans, root);
971 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
972 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
973 
974 	root_flags = btrfs_root_flags(new_root_item);
975 	if (pending->readonly)
976 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
977 	else
978 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
979 	btrfs_set_root_flags(new_root_item, root_flags);
980 
981 	old = btrfs_lock_root_node(root);
982 	btrfs_cow_block(trans, root, old, NULL, 0, &old);
983 	btrfs_set_lock_blocking(old);
984 
985 	btrfs_copy_root(trans, root, old, &tmp, objectid);
986 	btrfs_tree_unlock(old);
987 	free_extent_buffer(old);
988 
989 	btrfs_set_root_node(new_root_item, tmp);
990 	/* record when the snapshot was created in key.offset */
991 	key.offset = trans->transid;
992 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
993 	btrfs_tree_unlock(tmp);
994 	free_extent_buffer(tmp);
995 	BUG_ON(ret);
996 
997 	/*
998 	 * insert root back/forward references
999 	 */
1000 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1001 				 parent_root->root_key.objectid,
1002 				 parent_inode->i_ino, index,
1003 				 dentry->d_name.name, dentry->d_name.len);
1004 	BUG_ON(ret);
1005 	dput(parent);
1006 
1007 	key.offset = (u64)-1;
1008 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1009 	BUG_ON(IS_ERR(pending->snap));
1010 
1011 	btrfs_reloc_post_snapshot(trans, pending);
1012 	btrfs_orphan_post_snapshot(trans, pending);
1013 fail:
1014 	kfree(new_root_item);
1015 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1016 	return 0;
1017 }
1018 
1019 /*
1020  * create all the snapshots we've scheduled for creation
1021  */
1022 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1023 					     struct btrfs_fs_info *fs_info)
1024 {
1025 	struct btrfs_pending_snapshot *pending;
1026 	struct list_head *head = &trans->transaction->pending_snapshots;
1027 	int ret;
1028 
1029 	list_for_each_entry(pending, head, list) {
1030 		ret = create_pending_snapshot(trans, fs_info, pending);
1031 		BUG_ON(ret);
1032 	}
1033 	return 0;
1034 }
1035 
1036 static void update_super_roots(struct btrfs_root *root)
1037 {
1038 	struct btrfs_root_item *root_item;
1039 	struct btrfs_super_block *super;
1040 
1041 	super = &root->fs_info->super_copy;
1042 
1043 	root_item = &root->fs_info->chunk_root->root_item;
1044 	super->chunk_root = root_item->bytenr;
1045 	super->chunk_root_generation = root_item->generation;
1046 	super->chunk_root_level = root_item->level;
1047 
1048 	root_item = &root->fs_info->tree_root->root_item;
1049 	super->root = root_item->bytenr;
1050 	super->generation = root_item->generation;
1051 	super->root_level = root_item->level;
1052 	if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1053 		super->cache_generation = root_item->generation;
1054 }
1055 
1056 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1057 {
1058 	int ret = 0;
1059 	spin_lock(&info->new_trans_lock);
1060 	if (info->running_transaction)
1061 		ret = info->running_transaction->in_commit;
1062 	spin_unlock(&info->new_trans_lock);
1063 	return ret;
1064 }
1065 
1066 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1067 {
1068 	int ret = 0;
1069 	spin_lock(&info->new_trans_lock);
1070 	if (info->running_transaction)
1071 		ret = info->running_transaction->blocked;
1072 	spin_unlock(&info->new_trans_lock);
1073 	return ret;
1074 }
1075 
1076 /*
1077  * wait for the current transaction commit to start and block subsequent
1078  * transaction joins
1079  */
1080 static void wait_current_trans_commit_start(struct btrfs_root *root,
1081 					    struct btrfs_transaction *trans)
1082 {
1083 	DEFINE_WAIT(wait);
1084 
1085 	if (trans->in_commit)
1086 		return;
1087 
1088 	while (1) {
1089 		prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait,
1090 				TASK_UNINTERRUPTIBLE);
1091 		if (trans->in_commit) {
1092 			finish_wait(&root->fs_info->transaction_blocked_wait,
1093 				    &wait);
1094 			break;
1095 		}
1096 		mutex_unlock(&root->fs_info->trans_mutex);
1097 		schedule();
1098 		mutex_lock(&root->fs_info->trans_mutex);
1099 		finish_wait(&root->fs_info->transaction_blocked_wait, &wait);
1100 	}
1101 }
1102 
1103 /*
1104  * wait for the current transaction to start and then become unblocked.
1105  * caller holds ref.
1106  */
1107 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1108 					 struct btrfs_transaction *trans)
1109 {
1110 	DEFINE_WAIT(wait);
1111 
1112 	if (trans->commit_done || (trans->in_commit && !trans->blocked))
1113 		return;
1114 
1115 	while (1) {
1116 		prepare_to_wait(&root->fs_info->transaction_wait, &wait,
1117 				TASK_UNINTERRUPTIBLE);
1118 		if (trans->commit_done ||
1119 		    (trans->in_commit && !trans->blocked)) {
1120 			finish_wait(&root->fs_info->transaction_wait,
1121 				    &wait);
1122 			break;
1123 		}
1124 		mutex_unlock(&root->fs_info->trans_mutex);
1125 		schedule();
1126 		mutex_lock(&root->fs_info->trans_mutex);
1127 		finish_wait(&root->fs_info->transaction_wait,
1128 			    &wait);
1129 	}
1130 }
1131 
1132 /*
1133  * commit transactions asynchronously. once btrfs_commit_transaction_async
1134  * returns, any subsequent transaction will not be allowed to join.
1135  */
1136 struct btrfs_async_commit {
1137 	struct btrfs_trans_handle *newtrans;
1138 	struct btrfs_root *root;
1139 	struct delayed_work work;
1140 };
1141 
1142 static void do_async_commit(struct work_struct *work)
1143 {
1144 	struct btrfs_async_commit *ac =
1145 		container_of(work, struct btrfs_async_commit, work.work);
1146 
1147 	btrfs_commit_transaction(ac->newtrans, ac->root);
1148 	kfree(ac);
1149 }
1150 
1151 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1152 				   struct btrfs_root *root,
1153 				   int wait_for_unblock)
1154 {
1155 	struct btrfs_async_commit *ac;
1156 	struct btrfs_transaction *cur_trans;
1157 
1158 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1159 	BUG_ON(!ac);
1160 
1161 	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1162 	ac->root = root;
1163 	ac->newtrans = btrfs_join_transaction(root, 0);
1164 	if (IS_ERR(ac->newtrans)) {
1165 		int err = PTR_ERR(ac->newtrans);
1166 		kfree(ac);
1167 		return err;
1168 	}
1169 
1170 	/* take transaction reference */
1171 	mutex_lock(&root->fs_info->trans_mutex);
1172 	cur_trans = trans->transaction;
1173 	cur_trans->use_count++;
1174 	mutex_unlock(&root->fs_info->trans_mutex);
1175 
1176 	btrfs_end_transaction(trans, root);
1177 	schedule_delayed_work(&ac->work, 0);
1178 
1179 	/* wait for transaction to start and unblock */
1180 	mutex_lock(&root->fs_info->trans_mutex);
1181 	if (wait_for_unblock)
1182 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1183 	else
1184 		wait_current_trans_commit_start(root, cur_trans);
1185 	put_transaction(cur_trans);
1186 	mutex_unlock(&root->fs_info->trans_mutex);
1187 
1188 	return 0;
1189 }
1190 
1191 /*
1192  * btrfs_transaction state sequence:
1193  *    in_commit = 0, blocked = 0  (initial)
1194  *    in_commit = 1, blocked = 1
1195  *    blocked = 0
1196  *    commit_done = 1
1197  */
1198 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1199 			     struct btrfs_root *root)
1200 {
1201 	unsigned long joined = 0;
1202 	struct btrfs_transaction *cur_trans;
1203 	struct btrfs_transaction *prev_trans = NULL;
1204 	DEFINE_WAIT(wait);
1205 	int ret;
1206 	int should_grow = 0;
1207 	unsigned long now = get_seconds();
1208 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1209 
1210 	btrfs_run_ordered_operations(root, 0);
1211 
1212 	/* make a pass through all the delayed refs we have so far
1213 	 * any runnings procs may add more while we are here
1214 	 */
1215 	ret = btrfs_run_delayed_refs(trans, root, 0);
1216 	BUG_ON(ret);
1217 
1218 	btrfs_trans_release_metadata(trans, root);
1219 
1220 	cur_trans = trans->transaction;
1221 	/*
1222 	 * set the flushing flag so procs in this transaction have to
1223 	 * start sending their work down.
1224 	 */
1225 	cur_trans->delayed_refs.flushing = 1;
1226 
1227 	ret = btrfs_run_delayed_refs(trans, root, 0);
1228 	BUG_ON(ret);
1229 
1230 	mutex_lock(&root->fs_info->trans_mutex);
1231 	if (cur_trans->in_commit) {
1232 		cur_trans->use_count++;
1233 		mutex_unlock(&root->fs_info->trans_mutex);
1234 		btrfs_end_transaction(trans, root);
1235 
1236 		ret = wait_for_commit(root, cur_trans);
1237 		BUG_ON(ret);
1238 
1239 		mutex_lock(&root->fs_info->trans_mutex);
1240 		put_transaction(cur_trans);
1241 		mutex_unlock(&root->fs_info->trans_mutex);
1242 
1243 		return 0;
1244 	}
1245 
1246 	trans->transaction->in_commit = 1;
1247 	trans->transaction->blocked = 1;
1248 	wake_up(&root->fs_info->transaction_blocked_wait);
1249 
1250 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1251 		prev_trans = list_entry(cur_trans->list.prev,
1252 					struct btrfs_transaction, list);
1253 		if (!prev_trans->commit_done) {
1254 			prev_trans->use_count++;
1255 			mutex_unlock(&root->fs_info->trans_mutex);
1256 
1257 			wait_for_commit(root, prev_trans);
1258 
1259 			mutex_lock(&root->fs_info->trans_mutex);
1260 			put_transaction(prev_trans);
1261 		}
1262 	}
1263 
1264 	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1265 		should_grow = 1;
1266 
1267 	do {
1268 		int snap_pending = 0;
1269 		joined = cur_trans->num_joined;
1270 		if (!list_empty(&trans->transaction->pending_snapshots))
1271 			snap_pending = 1;
1272 
1273 		WARN_ON(cur_trans != trans->transaction);
1274 		mutex_unlock(&root->fs_info->trans_mutex);
1275 
1276 		if (flush_on_commit || snap_pending) {
1277 			btrfs_start_delalloc_inodes(root, 1);
1278 			ret = btrfs_wait_ordered_extents(root, 0, 1);
1279 			BUG_ON(ret);
1280 		}
1281 
1282 		/*
1283 		 * rename don't use btrfs_join_transaction, so, once we
1284 		 * set the transaction to blocked above, we aren't going
1285 		 * to get any new ordered operations.  We can safely run
1286 		 * it here and no for sure that nothing new will be added
1287 		 * to the list
1288 		 */
1289 		btrfs_run_ordered_operations(root, 1);
1290 
1291 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1292 				TASK_UNINTERRUPTIBLE);
1293 
1294 		smp_mb();
1295 		if (cur_trans->num_writers > 1)
1296 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1297 		else if (should_grow)
1298 			schedule_timeout(1);
1299 
1300 		mutex_lock(&root->fs_info->trans_mutex);
1301 		finish_wait(&cur_trans->writer_wait, &wait);
1302 	} while (cur_trans->num_writers > 1 ||
1303 		 (should_grow && cur_trans->num_joined != joined));
1304 
1305 	ret = create_pending_snapshots(trans, root->fs_info);
1306 	BUG_ON(ret);
1307 
1308 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1309 	BUG_ON(ret);
1310 
1311 	WARN_ON(cur_trans != trans->transaction);
1312 
1313 	/* btrfs_commit_tree_roots is responsible for getting the
1314 	 * various roots consistent with each other.  Every pointer
1315 	 * in the tree of tree roots has to point to the most up to date
1316 	 * root for every subvolume and other tree.  So, we have to keep
1317 	 * the tree logging code from jumping in and changing any
1318 	 * of the trees.
1319 	 *
1320 	 * At this point in the commit, there can't be any tree-log
1321 	 * writers, but a little lower down we drop the trans mutex
1322 	 * and let new people in.  By holding the tree_log_mutex
1323 	 * from now until after the super is written, we avoid races
1324 	 * with the tree-log code.
1325 	 */
1326 	mutex_lock(&root->fs_info->tree_log_mutex);
1327 
1328 	ret = commit_fs_roots(trans, root);
1329 	BUG_ON(ret);
1330 
1331 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1332 	 * safe to free the root of tree log roots
1333 	 */
1334 	btrfs_free_log_root_tree(trans, root->fs_info);
1335 
1336 	ret = commit_cowonly_roots(trans, root);
1337 	BUG_ON(ret);
1338 
1339 	btrfs_prepare_extent_commit(trans, root);
1340 
1341 	cur_trans = root->fs_info->running_transaction;
1342 	spin_lock(&root->fs_info->new_trans_lock);
1343 	root->fs_info->running_transaction = NULL;
1344 	spin_unlock(&root->fs_info->new_trans_lock);
1345 
1346 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1347 			    root->fs_info->tree_root->node);
1348 	switch_commit_root(root->fs_info->tree_root);
1349 
1350 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1351 			    root->fs_info->chunk_root->node);
1352 	switch_commit_root(root->fs_info->chunk_root);
1353 
1354 	update_super_roots(root);
1355 
1356 	if (!root->fs_info->log_root_recovering) {
1357 		btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1358 		btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1359 	}
1360 
1361 	memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1362 	       sizeof(root->fs_info->super_copy));
1363 
1364 	trans->transaction->blocked = 0;
1365 
1366 	wake_up(&root->fs_info->transaction_wait);
1367 
1368 	mutex_unlock(&root->fs_info->trans_mutex);
1369 	ret = btrfs_write_and_wait_transaction(trans, root);
1370 	BUG_ON(ret);
1371 	write_ctree_super(trans, root, 0);
1372 
1373 	/*
1374 	 * the super is written, we can safely allow the tree-loggers
1375 	 * to go about their business
1376 	 */
1377 	mutex_unlock(&root->fs_info->tree_log_mutex);
1378 
1379 	btrfs_finish_extent_commit(trans, root);
1380 
1381 	mutex_lock(&root->fs_info->trans_mutex);
1382 
1383 	cur_trans->commit_done = 1;
1384 
1385 	root->fs_info->last_trans_committed = cur_trans->transid;
1386 
1387 	wake_up(&cur_trans->commit_wait);
1388 
1389 	put_transaction(cur_trans);
1390 	put_transaction(cur_trans);
1391 
1392 	mutex_unlock(&root->fs_info->trans_mutex);
1393 
1394 	if (current->journal_info == trans)
1395 		current->journal_info = NULL;
1396 
1397 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1398 
1399 	if (current != root->fs_info->transaction_kthread)
1400 		btrfs_run_delayed_iputs(root);
1401 
1402 	return ret;
1403 }
1404 
1405 /*
1406  * interface function to delete all the snapshots we have scheduled for deletion
1407  */
1408 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1409 {
1410 	LIST_HEAD(list);
1411 	struct btrfs_fs_info *fs_info = root->fs_info;
1412 
1413 	mutex_lock(&fs_info->trans_mutex);
1414 	list_splice_init(&fs_info->dead_roots, &list);
1415 	mutex_unlock(&fs_info->trans_mutex);
1416 
1417 	while (!list_empty(&list)) {
1418 		root = list_entry(list.next, struct btrfs_root, root_list);
1419 		list_del(&root->root_list);
1420 
1421 		if (btrfs_header_backref_rev(root->node) <
1422 		    BTRFS_MIXED_BACKREF_REV)
1423 			btrfs_drop_snapshot(root, NULL, 0);
1424 		else
1425 			btrfs_drop_snapshot(root, NULL, 1);
1426 	}
1427 	return 0;
1428 }
1429