xref: /openbmc/linux/fs/btrfs/transaction.c (revision 52cdded0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
24 #include "space-info.h"
25 
26 #define BTRFS_ROOT_TRANS_TAG 0
27 
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |						    Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update	    |
83  * | super blocks.				    |
84  * |						    |
85  * | At this stage, new transaction is allowed to   |
86  * | start.					    |
87  * | All new start_transaction() calls will be	    |
88  * | attached to transid N+1.			    |
89  * |						    |
90  * | To next stage:				    |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices			    |
93  * V						    |
94  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.	    | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100 	[TRANS_STATE_RUNNING]		= 0U,
101 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
102 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
103 					   __TRANS_ATTACH |
104 					   __TRANS_JOIN |
105 					   __TRANS_JOIN_NOSTART),
106 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
107 					   __TRANS_ATTACH |
108 					   __TRANS_JOIN |
109 					   __TRANS_JOIN_NOLOCK |
110 					   __TRANS_JOIN_NOSTART),
111 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
112 					   __TRANS_ATTACH |
113 					   __TRANS_JOIN |
114 					   __TRANS_JOIN_NOLOCK |
115 					   __TRANS_JOIN_NOSTART),
116 };
117 
118 void btrfs_put_transaction(struct btrfs_transaction *transaction)
119 {
120 	WARN_ON(refcount_read(&transaction->use_count) == 0);
121 	if (refcount_dec_and_test(&transaction->use_count)) {
122 		BUG_ON(!list_empty(&transaction->list));
123 		WARN_ON(!RB_EMPTY_ROOT(
124 				&transaction->delayed_refs.href_root.rb_root));
125 		WARN_ON(!RB_EMPTY_ROOT(
126 				&transaction->delayed_refs.dirty_extent_root));
127 		if (transaction->delayed_refs.pending_csums)
128 			btrfs_err(transaction->fs_info,
129 				  "pending csums is %llu",
130 				  transaction->delayed_refs.pending_csums);
131 		/*
132 		 * If any block groups are found in ->deleted_bgs then it's
133 		 * because the transaction was aborted and a commit did not
134 		 * happen (things failed before writing the new superblock
135 		 * and calling btrfs_finish_extent_commit()), so we can not
136 		 * discard the physical locations of the block groups.
137 		 */
138 		while (!list_empty(&transaction->deleted_bgs)) {
139 			struct btrfs_block_group *cache;
140 
141 			cache = list_first_entry(&transaction->deleted_bgs,
142 						 struct btrfs_block_group,
143 						 bg_list);
144 			list_del_init(&cache->bg_list);
145 			btrfs_unfreeze_block_group(cache);
146 			btrfs_put_block_group(cache);
147 		}
148 		WARN_ON(!list_empty(&transaction->dev_update_list));
149 		kfree(transaction);
150 	}
151 }
152 
153 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
154 {
155 	struct btrfs_transaction *cur_trans = trans->transaction;
156 	struct btrfs_fs_info *fs_info = trans->fs_info;
157 	struct btrfs_root *root, *tmp;
158 
159 	down_write(&fs_info->commit_root_sem);
160 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
161 				 dirty_list) {
162 		list_del_init(&root->dirty_list);
163 		free_extent_buffer(root->commit_root);
164 		root->commit_root = btrfs_root_node(root);
165 		if (is_fstree(root->root_key.objectid))
166 			btrfs_unpin_free_ino(root);
167 		extent_io_tree_release(&root->dirty_log_pages);
168 		btrfs_qgroup_clean_swapped_blocks(root);
169 	}
170 
171 	/* We can free old roots now. */
172 	spin_lock(&cur_trans->dropped_roots_lock);
173 	while (!list_empty(&cur_trans->dropped_roots)) {
174 		root = list_first_entry(&cur_trans->dropped_roots,
175 					struct btrfs_root, root_list);
176 		list_del_init(&root->root_list);
177 		spin_unlock(&cur_trans->dropped_roots_lock);
178 		btrfs_free_log(trans, root);
179 		btrfs_drop_and_free_fs_root(fs_info, root);
180 		spin_lock(&cur_trans->dropped_roots_lock);
181 	}
182 	spin_unlock(&cur_trans->dropped_roots_lock);
183 	up_write(&fs_info->commit_root_sem);
184 }
185 
186 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
187 					 unsigned int type)
188 {
189 	if (type & TRANS_EXTWRITERS)
190 		atomic_inc(&trans->num_extwriters);
191 }
192 
193 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
194 					 unsigned int type)
195 {
196 	if (type & TRANS_EXTWRITERS)
197 		atomic_dec(&trans->num_extwriters);
198 }
199 
200 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
201 					  unsigned int type)
202 {
203 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
204 }
205 
206 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
207 {
208 	return atomic_read(&trans->num_extwriters);
209 }
210 
211 /*
212  * To be called after all the new block groups attached to the transaction
213  * handle have been created (btrfs_create_pending_block_groups()).
214  */
215 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
216 {
217 	struct btrfs_fs_info *fs_info = trans->fs_info;
218 
219 	if (!trans->chunk_bytes_reserved)
220 		return;
221 
222 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
223 
224 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
225 				trans->chunk_bytes_reserved, NULL);
226 	trans->chunk_bytes_reserved = 0;
227 }
228 
229 /*
230  * either allocate a new transaction or hop into the existing one
231  */
232 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
233 				     unsigned int type)
234 {
235 	struct btrfs_transaction *cur_trans;
236 
237 	spin_lock(&fs_info->trans_lock);
238 loop:
239 	/* The file system has been taken offline. No new transactions. */
240 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
241 		spin_unlock(&fs_info->trans_lock);
242 		return -EROFS;
243 	}
244 
245 	cur_trans = fs_info->running_transaction;
246 	if (cur_trans) {
247 		if (TRANS_ABORTED(cur_trans)) {
248 			spin_unlock(&fs_info->trans_lock);
249 			return cur_trans->aborted;
250 		}
251 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
252 			spin_unlock(&fs_info->trans_lock);
253 			return -EBUSY;
254 		}
255 		refcount_inc(&cur_trans->use_count);
256 		atomic_inc(&cur_trans->num_writers);
257 		extwriter_counter_inc(cur_trans, type);
258 		spin_unlock(&fs_info->trans_lock);
259 		return 0;
260 	}
261 	spin_unlock(&fs_info->trans_lock);
262 
263 	/*
264 	 * If we are ATTACH, we just want to catch the current transaction,
265 	 * and commit it. If there is no transaction, just return ENOENT.
266 	 */
267 	if (type == TRANS_ATTACH)
268 		return -ENOENT;
269 
270 	/*
271 	 * JOIN_NOLOCK only happens during the transaction commit, so
272 	 * it is impossible that ->running_transaction is NULL
273 	 */
274 	BUG_ON(type == TRANS_JOIN_NOLOCK);
275 
276 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
277 	if (!cur_trans)
278 		return -ENOMEM;
279 
280 	spin_lock(&fs_info->trans_lock);
281 	if (fs_info->running_transaction) {
282 		/*
283 		 * someone started a transaction after we unlocked.  Make sure
284 		 * to redo the checks above
285 		 */
286 		kfree(cur_trans);
287 		goto loop;
288 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
289 		spin_unlock(&fs_info->trans_lock);
290 		kfree(cur_trans);
291 		return -EROFS;
292 	}
293 
294 	cur_trans->fs_info = fs_info;
295 	atomic_set(&cur_trans->num_writers, 1);
296 	extwriter_counter_init(cur_trans, type);
297 	init_waitqueue_head(&cur_trans->writer_wait);
298 	init_waitqueue_head(&cur_trans->commit_wait);
299 	cur_trans->state = TRANS_STATE_RUNNING;
300 	/*
301 	 * One for this trans handle, one so it will live on until we
302 	 * commit the transaction.
303 	 */
304 	refcount_set(&cur_trans->use_count, 2);
305 	cur_trans->flags = 0;
306 	cur_trans->start_time = ktime_get_seconds();
307 
308 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
309 
310 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
311 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
312 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
313 
314 	/*
315 	 * although the tree mod log is per file system and not per transaction,
316 	 * the log must never go across transaction boundaries.
317 	 */
318 	smp_mb();
319 	if (!list_empty(&fs_info->tree_mod_seq_list))
320 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
321 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
322 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
323 	atomic64_set(&fs_info->tree_mod_seq, 0);
324 
325 	spin_lock_init(&cur_trans->delayed_refs.lock);
326 
327 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
328 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
329 	INIT_LIST_HEAD(&cur_trans->switch_commits);
330 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
331 	INIT_LIST_HEAD(&cur_trans->io_bgs);
332 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
333 	mutex_init(&cur_trans->cache_write_mutex);
334 	spin_lock_init(&cur_trans->dirty_bgs_lock);
335 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
336 	spin_lock_init(&cur_trans->dropped_roots_lock);
337 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
338 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
339 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
340 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
341 			IO_TREE_FS_PINNED_EXTENTS, NULL);
342 	fs_info->generation++;
343 	cur_trans->transid = fs_info->generation;
344 	fs_info->running_transaction = cur_trans;
345 	cur_trans->aborted = 0;
346 	spin_unlock(&fs_info->trans_lock);
347 
348 	return 0;
349 }
350 
351 /*
352  * This does all the record keeping required to make sure that a shareable root
353  * is properly recorded in a given transaction.  This is required to make sure
354  * the old root from before we joined the transaction is deleted when the
355  * transaction commits.
356  */
357 static int record_root_in_trans(struct btrfs_trans_handle *trans,
358 			       struct btrfs_root *root,
359 			       int force)
360 {
361 	struct btrfs_fs_info *fs_info = root->fs_info;
362 
363 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
364 	    root->last_trans < trans->transid) || force) {
365 		WARN_ON(root == fs_info->extent_root);
366 		WARN_ON(!force && root->commit_root != root->node);
367 
368 		/*
369 		 * see below for IN_TRANS_SETUP usage rules
370 		 * we have the reloc mutex held now, so there
371 		 * is only one writer in this function
372 		 */
373 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
374 
375 		/* make sure readers find IN_TRANS_SETUP before
376 		 * they find our root->last_trans update
377 		 */
378 		smp_wmb();
379 
380 		spin_lock(&fs_info->fs_roots_radix_lock);
381 		if (root->last_trans == trans->transid && !force) {
382 			spin_unlock(&fs_info->fs_roots_radix_lock);
383 			return 0;
384 		}
385 		radix_tree_tag_set(&fs_info->fs_roots_radix,
386 				   (unsigned long)root->root_key.objectid,
387 				   BTRFS_ROOT_TRANS_TAG);
388 		spin_unlock(&fs_info->fs_roots_radix_lock);
389 		root->last_trans = trans->transid;
390 
391 		/* this is pretty tricky.  We don't want to
392 		 * take the relocation lock in btrfs_record_root_in_trans
393 		 * unless we're really doing the first setup for this root in
394 		 * this transaction.
395 		 *
396 		 * Normally we'd use root->last_trans as a flag to decide
397 		 * if we want to take the expensive mutex.
398 		 *
399 		 * But, we have to set root->last_trans before we
400 		 * init the relocation root, otherwise, we trip over warnings
401 		 * in ctree.c.  The solution used here is to flag ourselves
402 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
403 		 * fixing up the reloc trees and everyone must wait.
404 		 *
405 		 * When this is zero, they can trust root->last_trans and fly
406 		 * through btrfs_record_root_in_trans without having to take the
407 		 * lock.  smp_wmb() makes sure that all the writes above are
408 		 * done before we pop in the zero below
409 		 */
410 		btrfs_init_reloc_root(trans, root);
411 		smp_mb__before_atomic();
412 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
413 	}
414 	return 0;
415 }
416 
417 
418 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
419 			    struct btrfs_root *root)
420 {
421 	struct btrfs_fs_info *fs_info = root->fs_info;
422 	struct btrfs_transaction *cur_trans = trans->transaction;
423 
424 	/* Add ourselves to the transaction dropped list */
425 	spin_lock(&cur_trans->dropped_roots_lock);
426 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
427 	spin_unlock(&cur_trans->dropped_roots_lock);
428 
429 	/* Make sure we don't try to update the root at commit time */
430 	spin_lock(&fs_info->fs_roots_radix_lock);
431 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
432 			     (unsigned long)root->root_key.objectid,
433 			     BTRFS_ROOT_TRANS_TAG);
434 	spin_unlock(&fs_info->fs_roots_radix_lock);
435 }
436 
437 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
438 			       struct btrfs_root *root)
439 {
440 	struct btrfs_fs_info *fs_info = root->fs_info;
441 
442 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
443 		return 0;
444 
445 	/*
446 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
447 	 * and barriers
448 	 */
449 	smp_rmb();
450 	if (root->last_trans == trans->transid &&
451 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
452 		return 0;
453 
454 	mutex_lock(&fs_info->reloc_mutex);
455 	record_root_in_trans(trans, root, 0);
456 	mutex_unlock(&fs_info->reloc_mutex);
457 
458 	return 0;
459 }
460 
461 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
462 {
463 	return (trans->state >= TRANS_STATE_COMMIT_START &&
464 		trans->state < TRANS_STATE_UNBLOCKED &&
465 		!TRANS_ABORTED(trans));
466 }
467 
468 /* wait for commit against the current transaction to become unblocked
469  * when this is done, it is safe to start a new transaction, but the current
470  * transaction might not be fully on disk.
471  */
472 static void wait_current_trans(struct btrfs_fs_info *fs_info)
473 {
474 	struct btrfs_transaction *cur_trans;
475 
476 	spin_lock(&fs_info->trans_lock);
477 	cur_trans = fs_info->running_transaction;
478 	if (cur_trans && is_transaction_blocked(cur_trans)) {
479 		refcount_inc(&cur_trans->use_count);
480 		spin_unlock(&fs_info->trans_lock);
481 
482 		wait_event(fs_info->transaction_wait,
483 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
484 			   TRANS_ABORTED(cur_trans));
485 		btrfs_put_transaction(cur_trans);
486 	} else {
487 		spin_unlock(&fs_info->trans_lock);
488 	}
489 }
490 
491 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
492 {
493 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
494 		return 0;
495 
496 	if (type == TRANS_START)
497 		return 1;
498 
499 	return 0;
500 }
501 
502 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
503 {
504 	struct btrfs_fs_info *fs_info = root->fs_info;
505 
506 	if (!fs_info->reloc_ctl ||
507 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
508 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
509 	    root->reloc_root)
510 		return false;
511 
512 	return true;
513 }
514 
515 static struct btrfs_trans_handle *
516 start_transaction(struct btrfs_root *root, unsigned int num_items,
517 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
518 		  bool enforce_qgroups)
519 {
520 	struct btrfs_fs_info *fs_info = root->fs_info;
521 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
522 	struct btrfs_trans_handle *h;
523 	struct btrfs_transaction *cur_trans;
524 	u64 num_bytes = 0;
525 	u64 qgroup_reserved = 0;
526 	bool reloc_reserved = false;
527 	bool do_chunk_alloc = false;
528 	int ret;
529 
530 	/* Send isn't supposed to start transactions. */
531 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
532 
533 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
534 		return ERR_PTR(-EROFS);
535 
536 	if (current->journal_info) {
537 		WARN_ON(type & TRANS_EXTWRITERS);
538 		h = current->journal_info;
539 		refcount_inc(&h->use_count);
540 		WARN_ON(refcount_read(&h->use_count) > 2);
541 		h->orig_rsv = h->block_rsv;
542 		h->block_rsv = NULL;
543 		goto got_it;
544 	}
545 
546 	/*
547 	 * Do the reservation before we join the transaction so we can do all
548 	 * the appropriate flushing if need be.
549 	 */
550 	if (num_items && root != fs_info->chunk_root) {
551 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
552 		u64 delayed_refs_bytes = 0;
553 
554 		qgroup_reserved = num_items * fs_info->nodesize;
555 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
556 				enforce_qgroups);
557 		if (ret)
558 			return ERR_PTR(ret);
559 
560 		/*
561 		 * We want to reserve all the bytes we may need all at once, so
562 		 * we only do 1 enospc flushing cycle per transaction start.  We
563 		 * accomplish this by simply assuming we'll do 2 x num_items
564 		 * worth of delayed refs updates in this trans handle, and
565 		 * refill that amount for whatever is missing in the reserve.
566 		 */
567 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
568 		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
569 		    delayed_refs_rsv->full == 0) {
570 			delayed_refs_bytes = num_bytes;
571 			num_bytes <<= 1;
572 		}
573 
574 		/*
575 		 * Do the reservation for the relocation root creation
576 		 */
577 		if (need_reserve_reloc_root(root)) {
578 			num_bytes += fs_info->nodesize;
579 			reloc_reserved = true;
580 		}
581 
582 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
583 		if (ret)
584 			goto reserve_fail;
585 		if (delayed_refs_bytes) {
586 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
587 							  delayed_refs_bytes);
588 			num_bytes -= delayed_refs_bytes;
589 		}
590 
591 		if (rsv->space_info->force_alloc)
592 			do_chunk_alloc = true;
593 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
594 		   !delayed_refs_rsv->full) {
595 		/*
596 		 * Some people call with btrfs_start_transaction(root, 0)
597 		 * because they can be throttled, but have some other mechanism
598 		 * for reserving space.  We still want these guys to refill the
599 		 * delayed block_rsv so just add 1 items worth of reservation
600 		 * here.
601 		 */
602 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
603 		if (ret)
604 			goto reserve_fail;
605 	}
606 again:
607 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
608 	if (!h) {
609 		ret = -ENOMEM;
610 		goto alloc_fail;
611 	}
612 
613 	/*
614 	 * If we are JOIN_NOLOCK we're already committing a transaction and
615 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
616 	 * because we're already holding a ref.  We need this because we could
617 	 * have raced in and did an fsync() on a file which can kick a commit
618 	 * and then we deadlock with somebody doing a freeze.
619 	 *
620 	 * If we are ATTACH, it means we just want to catch the current
621 	 * transaction and commit it, so we needn't do sb_start_intwrite().
622 	 */
623 	if (type & __TRANS_FREEZABLE)
624 		sb_start_intwrite(fs_info->sb);
625 
626 	if (may_wait_transaction(fs_info, type))
627 		wait_current_trans(fs_info);
628 
629 	do {
630 		ret = join_transaction(fs_info, type);
631 		if (ret == -EBUSY) {
632 			wait_current_trans(fs_info);
633 			if (unlikely(type == TRANS_ATTACH ||
634 				     type == TRANS_JOIN_NOSTART))
635 				ret = -ENOENT;
636 		}
637 	} while (ret == -EBUSY);
638 
639 	if (ret < 0)
640 		goto join_fail;
641 
642 	cur_trans = fs_info->running_transaction;
643 
644 	h->transid = cur_trans->transid;
645 	h->transaction = cur_trans;
646 	h->root = root;
647 	refcount_set(&h->use_count, 1);
648 	h->fs_info = root->fs_info;
649 
650 	h->type = type;
651 	h->can_flush_pending_bgs = true;
652 	INIT_LIST_HEAD(&h->new_bgs);
653 
654 	smp_mb();
655 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
656 	    may_wait_transaction(fs_info, type)) {
657 		current->journal_info = h;
658 		btrfs_commit_transaction(h);
659 		goto again;
660 	}
661 
662 	if (num_bytes) {
663 		trace_btrfs_space_reservation(fs_info, "transaction",
664 					      h->transid, num_bytes, 1);
665 		h->block_rsv = &fs_info->trans_block_rsv;
666 		h->bytes_reserved = num_bytes;
667 		h->reloc_reserved = reloc_reserved;
668 	}
669 
670 got_it:
671 	if (!current->journal_info)
672 		current->journal_info = h;
673 
674 	/*
675 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
676 	 * ALLOC_FORCE the first run through, and then we won't allocate for
677 	 * anybody else who races in later.  We don't care about the return
678 	 * value here.
679 	 */
680 	if (do_chunk_alloc && num_bytes) {
681 		u64 flags = h->block_rsv->space_info->flags;
682 
683 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
684 				  CHUNK_ALLOC_NO_FORCE);
685 	}
686 
687 	/*
688 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
689 	 * call btrfs_join_transaction() while we're also starting a
690 	 * transaction.
691 	 *
692 	 * Thus it need to be called after current->journal_info initialized,
693 	 * or we can deadlock.
694 	 */
695 	btrfs_record_root_in_trans(h, root);
696 
697 	return h;
698 
699 join_fail:
700 	if (type & __TRANS_FREEZABLE)
701 		sb_end_intwrite(fs_info->sb);
702 	kmem_cache_free(btrfs_trans_handle_cachep, h);
703 alloc_fail:
704 	if (num_bytes)
705 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
706 					num_bytes, NULL);
707 reserve_fail:
708 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
709 	return ERR_PTR(ret);
710 }
711 
712 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
713 						   unsigned int num_items)
714 {
715 	return start_transaction(root, num_items, TRANS_START,
716 				 BTRFS_RESERVE_FLUSH_ALL, true);
717 }
718 
719 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
720 					struct btrfs_root *root,
721 					unsigned int num_items)
722 {
723 	return start_transaction(root, num_items, TRANS_START,
724 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
725 }
726 
727 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
728 {
729 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
730 				 true);
731 }
732 
733 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
734 {
735 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
736 				 BTRFS_RESERVE_NO_FLUSH, true);
737 }
738 
739 /*
740  * Similar to regular join but it never starts a transaction when none is
741  * running or after waiting for the current one to finish.
742  */
743 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
744 {
745 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
746 				 BTRFS_RESERVE_NO_FLUSH, true);
747 }
748 
749 /*
750  * btrfs_attach_transaction() - catch the running transaction
751  *
752  * It is used when we want to commit the current the transaction, but
753  * don't want to start a new one.
754  *
755  * Note: If this function return -ENOENT, it just means there is no
756  * running transaction. But it is possible that the inactive transaction
757  * is still in the memory, not fully on disk. If you hope there is no
758  * inactive transaction in the fs when -ENOENT is returned, you should
759  * invoke
760  *     btrfs_attach_transaction_barrier()
761  */
762 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
763 {
764 	return start_transaction(root, 0, TRANS_ATTACH,
765 				 BTRFS_RESERVE_NO_FLUSH, true);
766 }
767 
768 /*
769  * btrfs_attach_transaction_barrier() - catch the running transaction
770  *
771  * It is similar to the above function, the difference is this one
772  * will wait for all the inactive transactions until they fully
773  * complete.
774  */
775 struct btrfs_trans_handle *
776 btrfs_attach_transaction_barrier(struct btrfs_root *root)
777 {
778 	struct btrfs_trans_handle *trans;
779 
780 	trans = start_transaction(root, 0, TRANS_ATTACH,
781 				  BTRFS_RESERVE_NO_FLUSH, true);
782 	if (trans == ERR_PTR(-ENOENT))
783 		btrfs_wait_for_commit(root->fs_info, 0);
784 
785 	return trans;
786 }
787 
788 /* wait for a transaction commit to be fully complete */
789 static noinline void wait_for_commit(struct btrfs_transaction *commit)
790 {
791 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
792 }
793 
794 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
795 {
796 	struct btrfs_transaction *cur_trans = NULL, *t;
797 	int ret = 0;
798 
799 	if (transid) {
800 		if (transid <= fs_info->last_trans_committed)
801 			goto out;
802 
803 		/* find specified transaction */
804 		spin_lock(&fs_info->trans_lock);
805 		list_for_each_entry(t, &fs_info->trans_list, list) {
806 			if (t->transid == transid) {
807 				cur_trans = t;
808 				refcount_inc(&cur_trans->use_count);
809 				ret = 0;
810 				break;
811 			}
812 			if (t->transid > transid) {
813 				ret = 0;
814 				break;
815 			}
816 		}
817 		spin_unlock(&fs_info->trans_lock);
818 
819 		/*
820 		 * The specified transaction doesn't exist, or we
821 		 * raced with btrfs_commit_transaction
822 		 */
823 		if (!cur_trans) {
824 			if (transid > fs_info->last_trans_committed)
825 				ret = -EINVAL;
826 			goto out;
827 		}
828 	} else {
829 		/* find newest transaction that is committing | committed */
830 		spin_lock(&fs_info->trans_lock);
831 		list_for_each_entry_reverse(t, &fs_info->trans_list,
832 					    list) {
833 			if (t->state >= TRANS_STATE_COMMIT_START) {
834 				if (t->state == TRANS_STATE_COMPLETED)
835 					break;
836 				cur_trans = t;
837 				refcount_inc(&cur_trans->use_count);
838 				break;
839 			}
840 		}
841 		spin_unlock(&fs_info->trans_lock);
842 		if (!cur_trans)
843 			goto out;  /* nothing committing|committed */
844 	}
845 
846 	wait_for_commit(cur_trans);
847 	btrfs_put_transaction(cur_trans);
848 out:
849 	return ret;
850 }
851 
852 void btrfs_throttle(struct btrfs_fs_info *fs_info)
853 {
854 	wait_current_trans(fs_info);
855 }
856 
857 static int should_end_transaction(struct btrfs_trans_handle *trans)
858 {
859 	struct btrfs_fs_info *fs_info = trans->fs_info;
860 
861 	if (btrfs_check_space_for_delayed_refs(fs_info))
862 		return 1;
863 
864 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
865 }
866 
867 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
868 {
869 	struct btrfs_transaction *cur_trans = trans->transaction;
870 
871 	smp_mb();
872 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
873 	    cur_trans->delayed_refs.flushing)
874 		return 1;
875 
876 	return should_end_transaction(trans);
877 }
878 
879 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
880 
881 {
882 	struct btrfs_fs_info *fs_info = trans->fs_info;
883 
884 	if (!trans->block_rsv) {
885 		ASSERT(!trans->bytes_reserved);
886 		return;
887 	}
888 
889 	if (!trans->bytes_reserved)
890 		return;
891 
892 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
893 	trace_btrfs_space_reservation(fs_info, "transaction",
894 				      trans->transid, trans->bytes_reserved, 0);
895 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
896 				trans->bytes_reserved, NULL);
897 	trans->bytes_reserved = 0;
898 }
899 
900 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
901 				   int throttle)
902 {
903 	struct btrfs_fs_info *info = trans->fs_info;
904 	struct btrfs_transaction *cur_trans = trans->transaction;
905 	int err = 0;
906 
907 	if (refcount_read(&trans->use_count) > 1) {
908 		refcount_dec(&trans->use_count);
909 		trans->block_rsv = trans->orig_rsv;
910 		return 0;
911 	}
912 
913 	btrfs_trans_release_metadata(trans);
914 	trans->block_rsv = NULL;
915 
916 	btrfs_create_pending_block_groups(trans);
917 
918 	btrfs_trans_release_chunk_metadata(trans);
919 
920 	if (trans->type & __TRANS_FREEZABLE)
921 		sb_end_intwrite(info->sb);
922 
923 	WARN_ON(cur_trans != info->running_transaction);
924 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
925 	atomic_dec(&cur_trans->num_writers);
926 	extwriter_counter_dec(cur_trans, trans->type);
927 
928 	cond_wake_up(&cur_trans->writer_wait);
929 	btrfs_put_transaction(cur_trans);
930 
931 	if (current->journal_info == trans)
932 		current->journal_info = NULL;
933 
934 	if (throttle)
935 		btrfs_run_delayed_iputs(info);
936 
937 	if (TRANS_ABORTED(trans) ||
938 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
939 		wake_up_process(info->transaction_kthread);
940 		if (TRANS_ABORTED(trans))
941 			err = trans->aborted;
942 		else
943 			err = -EROFS;
944 	}
945 
946 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
947 	return err;
948 }
949 
950 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
951 {
952 	return __btrfs_end_transaction(trans, 0);
953 }
954 
955 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
956 {
957 	return __btrfs_end_transaction(trans, 1);
958 }
959 
960 /*
961  * when btree blocks are allocated, they have some corresponding bits set for
962  * them in one of two extent_io trees.  This is used to make sure all of
963  * those extents are sent to disk but does not wait on them
964  */
965 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
966 			       struct extent_io_tree *dirty_pages, int mark)
967 {
968 	int err = 0;
969 	int werr = 0;
970 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
971 	struct extent_state *cached_state = NULL;
972 	u64 start = 0;
973 	u64 end;
974 
975 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
976 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
977 				      mark, &cached_state)) {
978 		bool wait_writeback = false;
979 
980 		err = convert_extent_bit(dirty_pages, start, end,
981 					 EXTENT_NEED_WAIT,
982 					 mark, &cached_state);
983 		/*
984 		 * convert_extent_bit can return -ENOMEM, which is most of the
985 		 * time a temporary error. So when it happens, ignore the error
986 		 * and wait for writeback of this range to finish - because we
987 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
988 		 * to __btrfs_wait_marked_extents() would not know that
989 		 * writeback for this range started and therefore wouldn't
990 		 * wait for it to finish - we don't want to commit a
991 		 * superblock that points to btree nodes/leafs for which
992 		 * writeback hasn't finished yet (and without errors).
993 		 * We cleanup any entries left in the io tree when committing
994 		 * the transaction (through extent_io_tree_release()).
995 		 */
996 		if (err == -ENOMEM) {
997 			err = 0;
998 			wait_writeback = true;
999 		}
1000 		if (!err)
1001 			err = filemap_fdatawrite_range(mapping, start, end);
1002 		if (err)
1003 			werr = err;
1004 		else if (wait_writeback)
1005 			werr = filemap_fdatawait_range(mapping, start, end);
1006 		free_extent_state(cached_state);
1007 		cached_state = NULL;
1008 		cond_resched();
1009 		start = end + 1;
1010 	}
1011 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1012 	return werr;
1013 }
1014 
1015 /*
1016  * when btree blocks are allocated, they have some corresponding bits set for
1017  * them in one of two extent_io trees.  This is used to make sure all of
1018  * those extents are on disk for transaction or log commit.  We wait
1019  * on all the pages and clear them from the dirty pages state tree
1020  */
1021 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1022 				       struct extent_io_tree *dirty_pages)
1023 {
1024 	int err = 0;
1025 	int werr = 0;
1026 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1027 	struct extent_state *cached_state = NULL;
1028 	u64 start = 0;
1029 	u64 end;
1030 
1031 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1032 				      EXTENT_NEED_WAIT, &cached_state)) {
1033 		/*
1034 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1035 		 * When committing the transaction, we'll remove any entries
1036 		 * left in the io tree. For a log commit, we don't remove them
1037 		 * after committing the log because the tree can be accessed
1038 		 * concurrently - we do it only at transaction commit time when
1039 		 * it's safe to do it (through extent_io_tree_release()).
1040 		 */
1041 		err = clear_extent_bit(dirty_pages, start, end,
1042 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1043 		if (err == -ENOMEM)
1044 			err = 0;
1045 		if (!err)
1046 			err = filemap_fdatawait_range(mapping, start, end);
1047 		if (err)
1048 			werr = err;
1049 		free_extent_state(cached_state);
1050 		cached_state = NULL;
1051 		cond_resched();
1052 		start = end + 1;
1053 	}
1054 	if (err)
1055 		werr = err;
1056 	return werr;
1057 }
1058 
1059 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1060 		       struct extent_io_tree *dirty_pages)
1061 {
1062 	bool errors = false;
1063 	int err;
1064 
1065 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1066 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1067 		errors = true;
1068 
1069 	if (errors && !err)
1070 		err = -EIO;
1071 	return err;
1072 }
1073 
1074 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1075 {
1076 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1077 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1078 	bool errors = false;
1079 	int err;
1080 
1081 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1082 
1083 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1084 	if ((mark & EXTENT_DIRTY) &&
1085 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1086 		errors = true;
1087 
1088 	if ((mark & EXTENT_NEW) &&
1089 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1090 		errors = true;
1091 
1092 	if (errors && !err)
1093 		err = -EIO;
1094 	return err;
1095 }
1096 
1097 /*
1098  * When btree blocks are allocated the corresponding extents are marked dirty.
1099  * This function ensures such extents are persisted on disk for transaction or
1100  * log commit.
1101  *
1102  * @trans: transaction whose dirty pages we'd like to write
1103  */
1104 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1105 {
1106 	int ret;
1107 	int ret2;
1108 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1109 	struct btrfs_fs_info *fs_info = trans->fs_info;
1110 	struct blk_plug plug;
1111 
1112 	blk_start_plug(&plug);
1113 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1114 	blk_finish_plug(&plug);
1115 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1116 
1117 	extent_io_tree_release(&trans->transaction->dirty_pages);
1118 
1119 	if (ret)
1120 		return ret;
1121 	else if (ret2)
1122 		return ret2;
1123 	else
1124 		return 0;
1125 }
1126 
1127 /*
1128  * this is used to update the root pointer in the tree of tree roots.
1129  *
1130  * But, in the case of the extent allocation tree, updating the root
1131  * pointer may allocate blocks which may change the root of the extent
1132  * allocation tree.
1133  *
1134  * So, this loops and repeats and makes sure the cowonly root didn't
1135  * change while the root pointer was being updated in the metadata.
1136  */
1137 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1138 			       struct btrfs_root *root)
1139 {
1140 	int ret;
1141 	u64 old_root_bytenr;
1142 	u64 old_root_used;
1143 	struct btrfs_fs_info *fs_info = root->fs_info;
1144 	struct btrfs_root *tree_root = fs_info->tree_root;
1145 
1146 	old_root_used = btrfs_root_used(&root->root_item);
1147 
1148 	while (1) {
1149 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1150 		if (old_root_bytenr == root->node->start &&
1151 		    old_root_used == btrfs_root_used(&root->root_item))
1152 			break;
1153 
1154 		btrfs_set_root_node(&root->root_item, root->node);
1155 		ret = btrfs_update_root(trans, tree_root,
1156 					&root->root_key,
1157 					&root->root_item);
1158 		if (ret)
1159 			return ret;
1160 
1161 		old_root_used = btrfs_root_used(&root->root_item);
1162 	}
1163 
1164 	return 0;
1165 }
1166 
1167 /*
1168  * update all the cowonly tree roots on disk
1169  *
1170  * The error handling in this function may not be obvious. Any of the
1171  * failures will cause the file system to go offline. We still need
1172  * to clean up the delayed refs.
1173  */
1174 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1175 {
1176 	struct btrfs_fs_info *fs_info = trans->fs_info;
1177 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1178 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1179 	struct list_head *next;
1180 	struct extent_buffer *eb;
1181 	int ret;
1182 
1183 	eb = btrfs_lock_root_node(fs_info->tree_root);
1184 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1185 			      0, &eb);
1186 	btrfs_tree_unlock(eb);
1187 	free_extent_buffer(eb);
1188 
1189 	if (ret)
1190 		return ret;
1191 
1192 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1193 	if (ret)
1194 		return ret;
1195 
1196 	ret = btrfs_run_dev_stats(trans);
1197 	if (ret)
1198 		return ret;
1199 	ret = btrfs_run_dev_replace(trans);
1200 	if (ret)
1201 		return ret;
1202 	ret = btrfs_run_qgroups(trans);
1203 	if (ret)
1204 		return ret;
1205 
1206 	ret = btrfs_setup_space_cache(trans);
1207 	if (ret)
1208 		return ret;
1209 
1210 	/* run_qgroups might have added some more refs */
1211 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1212 	if (ret)
1213 		return ret;
1214 again:
1215 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1216 		struct btrfs_root *root;
1217 		next = fs_info->dirty_cowonly_roots.next;
1218 		list_del_init(next);
1219 		root = list_entry(next, struct btrfs_root, dirty_list);
1220 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1221 
1222 		if (root != fs_info->extent_root)
1223 			list_add_tail(&root->dirty_list,
1224 				      &trans->transaction->switch_commits);
1225 		ret = update_cowonly_root(trans, root);
1226 		if (ret)
1227 			return ret;
1228 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1229 		if (ret)
1230 			return ret;
1231 	}
1232 
1233 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1234 		ret = btrfs_write_dirty_block_groups(trans);
1235 		if (ret)
1236 			return ret;
1237 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1238 		if (ret)
1239 			return ret;
1240 	}
1241 
1242 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1243 		goto again;
1244 
1245 	list_add_tail(&fs_info->extent_root->dirty_list,
1246 		      &trans->transaction->switch_commits);
1247 
1248 	/* Update dev-replace pointer once everything is committed */
1249 	fs_info->dev_replace.committed_cursor_left =
1250 		fs_info->dev_replace.cursor_left_last_write_of_item;
1251 
1252 	return 0;
1253 }
1254 
1255 /*
1256  * dead roots are old snapshots that need to be deleted.  This allocates
1257  * a dirty root struct and adds it into the list of dead roots that need to
1258  * be deleted
1259  */
1260 void btrfs_add_dead_root(struct btrfs_root *root)
1261 {
1262 	struct btrfs_fs_info *fs_info = root->fs_info;
1263 
1264 	spin_lock(&fs_info->trans_lock);
1265 	if (list_empty(&root->root_list)) {
1266 		btrfs_grab_root(root);
1267 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1268 	}
1269 	spin_unlock(&fs_info->trans_lock);
1270 }
1271 
1272 /*
1273  * update all the cowonly tree roots on disk
1274  */
1275 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1276 {
1277 	struct btrfs_fs_info *fs_info = trans->fs_info;
1278 	struct btrfs_root *gang[8];
1279 	int i;
1280 	int ret;
1281 	int err = 0;
1282 
1283 	spin_lock(&fs_info->fs_roots_radix_lock);
1284 	while (1) {
1285 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1286 						 (void **)gang, 0,
1287 						 ARRAY_SIZE(gang),
1288 						 BTRFS_ROOT_TRANS_TAG);
1289 		if (ret == 0)
1290 			break;
1291 		for (i = 0; i < ret; i++) {
1292 			struct btrfs_root *root = gang[i];
1293 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1294 					(unsigned long)root->root_key.objectid,
1295 					BTRFS_ROOT_TRANS_TAG);
1296 			spin_unlock(&fs_info->fs_roots_radix_lock);
1297 
1298 			btrfs_free_log(trans, root);
1299 			btrfs_update_reloc_root(trans, root);
1300 
1301 			btrfs_save_ino_cache(root, trans);
1302 
1303 			/* see comments in should_cow_block() */
1304 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1305 			smp_mb__after_atomic();
1306 
1307 			if (root->commit_root != root->node) {
1308 				list_add_tail(&root->dirty_list,
1309 					&trans->transaction->switch_commits);
1310 				btrfs_set_root_node(&root->root_item,
1311 						    root->node);
1312 			}
1313 
1314 			err = btrfs_update_root(trans, fs_info->tree_root,
1315 						&root->root_key,
1316 						&root->root_item);
1317 			spin_lock(&fs_info->fs_roots_radix_lock);
1318 			if (err)
1319 				break;
1320 			btrfs_qgroup_free_meta_all_pertrans(root);
1321 		}
1322 	}
1323 	spin_unlock(&fs_info->fs_roots_radix_lock);
1324 	return err;
1325 }
1326 
1327 /*
1328  * defrag a given btree.
1329  * Every leaf in the btree is read and defragged.
1330  */
1331 int btrfs_defrag_root(struct btrfs_root *root)
1332 {
1333 	struct btrfs_fs_info *info = root->fs_info;
1334 	struct btrfs_trans_handle *trans;
1335 	int ret;
1336 
1337 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1338 		return 0;
1339 
1340 	while (1) {
1341 		trans = btrfs_start_transaction(root, 0);
1342 		if (IS_ERR(trans))
1343 			return PTR_ERR(trans);
1344 
1345 		ret = btrfs_defrag_leaves(trans, root);
1346 
1347 		btrfs_end_transaction(trans);
1348 		btrfs_btree_balance_dirty(info);
1349 		cond_resched();
1350 
1351 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1352 			break;
1353 
1354 		if (btrfs_defrag_cancelled(info)) {
1355 			btrfs_debug(info, "defrag_root cancelled");
1356 			ret = -EAGAIN;
1357 			break;
1358 		}
1359 	}
1360 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1361 	return ret;
1362 }
1363 
1364 /*
1365  * Do all special snapshot related qgroup dirty hack.
1366  *
1367  * Will do all needed qgroup inherit and dirty hack like switch commit
1368  * roots inside one transaction and write all btree into disk, to make
1369  * qgroup works.
1370  */
1371 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1372 				   struct btrfs_root *src,
1373 				   struct btrfs_root *parent,
1374 				   struct btrfs_qgroup_inherit *inherit,
1375 				   u64 dst_objectid)
1376 {
1377 	struct btrfs_fs_info *fs_info = src->fs_info;
1378 	int ret;
1379 
1380 	/*
1381 	 * Save some performance in the case that qgroups are not
1382 	 * enabled. If this check races with the ioctl, rescan will
1383 	 * kick in anyway.
1384 	 */
1385 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1386 		return 0;
1387 
1388 	/*
1389 	 * Ensure dirty @src will be committed.  Or, after coming
1390 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1391 	 * recorded root will never be updated again, causing an outdated root
1392 	 * item.
1393 	 */
1394 	record_root_in_trans(trans, src, 1);
1395 
1396 	/*
1397 	 * We are going to commit transaction, see btrfs_commit_transaction()
1398 	 * comment for reason locking tree_log_mutex
1399 	 */
1400 	mutex_lock(&fs_info->tree_log_mutex);
1401 
1402 	ret = commit_fs_roots(trans);
1403 	if (ret)
1404 		goto out;
1405 	ret = btrfs_qgroup_account_extents(trans);
1406 	if (ret < 0)
1407 		goto out;
1408 
1409 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1410 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1411 				   inherit);
1412 	if (ret < 0)
1413 		goto out;
1414 
1415 	/*
1416 	 * Now we do a simplified commit transaction, which will:
1417 	 * 1) commit all subvolume and extent tree
1418 	 *    To ensure all subvolume and extent tree have a valid
1419 	 *    commit_root to accounting later insert_dir_item()
1420 	 * 2) write all btree blocks onto disk
1421 	 *    This is to make sure later btree modification will be cowed
1422 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1423 	 * In this simplified commit, we don't really care about other trees
1424 	 * like chunk and root tree, as they won't affect qgroup.
1425 	 * And we don't write super to avoid half committed status.
1426 	 */
1427 	ret = commit_cowonly_roots(trans);
1428 	if (ret)
1429 		goto out;
1430 	switch_commit_roots(trans);
1431 	ret = btrfs_write_and_wait_transaction(trans);
1432 	if (ret)
1433 		btrfs_handle_fs_error(fs_info, ret,
1434 			"Error while writing out transaction for qgroup");
1435 
1436 out:
1437 	mutex_unlock(&fs_info->tree_log_mutex);
1438 
1439 	/*
1440 	 * Force parent root to be updated, as we recorded it before so its
1441 	 * last_trans == cur_transid.
1442 	 * Or it won't be committed again onto disk after later
1443 	 * insert_dir_item()
1444 	 */
1445 	if (!ret)
1446 		record_root_in_trans(trans, parent, 1);
1447 	return ret;
1448 }
1449 
1450 /*
1451  * new snapshots need to be created at a very specific time in the
1452  * transaction commit.  This does the actual creation.
1453  *
1454  * Note:
1455  * If the error which may affect the commitment of the current transaction
1456  * happens, we should return the error number. If the error which just affect
1457  * the creation of the pending snapshots, just return 0.
1458  */
1459 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1460 				   struct btrfs_pending_snapshot *pending)
1461 {
1462 
1463 	struct btrfs_fs_info *fs_info = trans->fs_info;
1464 	struct btrfs_key key;
1465 	struct btrfs_root_item *new_root_item;
1466 	struct btrfs_root *tree_root = fs_info->tree_root;
1467 	struct btrfs_root *root = pending->root;
1468 	struct btrfs_root *parent_root;
1469 	struct btrfs_block_rsv *rsv;
1470 	struct inode *parent_inode;
1471 	struct btrfs_path *path;
1472 	struct btrfs_dir_item *dir_item;
1473 	struct dentry *dentry;
1474 	struct extent_buffer *tmp;
1475 	struct extent_buffer *old;
1476 	struct timespec64 cur_time;
1477 	int ret = 0;
1478 	u64 to_reserve = 0;
1479 	u64 index = 0;
1480 	u64 objectid;
1481 	u64 root_flags;
1482 
1483 	ASSERT(pending->path);
1484 	path = pending->path;
1485 
1486 	ASSERT(pending->root_item);
1487 	new_root_item = pending->root_item;
1488 
1489 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1490 	if (pending->error)
1491 		goto no_free_objectid;
1492 
1493 	/*
1494 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1495 	 * accounted by later btrfs_qgroup_inherit().
1496 	 */
1497 	btrfs_set_skip_qgroup(trans, objectid);
1498 
1499 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1500 
1501 	if (to_reserve > 0) {
1502 		pending->error = btrfs_block_rsv_add(root,
1503 						     &pending->block_rsv,
1504 						     to_reserve,
1505 						     BTRFS_RESERVE_NO_FLUSH);
1506 		if (pending->error)
1507 			goto clear_skip_qgroup;
1508 	}
1509 
1510 	key.objectid = objectid;
1511 	key.offset = (u64)-1;
1512 	key.type = BTRFS_ROOT_ITEM_KEY;
1513 
1514 	rsv = trans->block_rsv;
1515 	trans->block_rsv = &pending->block_rsv;
1516 	trans->bytes_reserved = trans->block_rsv->reserved;
1517 	trace_btrfs_space_reservation(fs_info, "transaction",
1518 				      trans->transid,
1519 				      trans->bytes_reserved, 1);
1520 	dentry = pending->dentry;
1521 	parent_inode = pending->dir;
1522 	parent_root = BTRFS_I(parent_inode)->root;
1523 	record_root_in_trans(trans, parent_root, 0);
1524 
1525 	cur_time = current_time(parent_inode);
1526 
1527 	/*
1528 	 * insert the directory item
1529 	 */
1530 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1531 	BUG_ON(ret); /* -ENOMEM */
1532 
1533 	/* check if there is a file/dir which has the same name. */
1534 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1535 					 btrfs_ino(BTRFS_I(parent_inode)),
1536 					 dentry->d_name.name,
1537 					 dentry->d_name.len, 0);
1538 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1539 		pending->error = -EEXIST;
1540 		goto dir_item_existed;
1541 	} else if (IS_ERR(dir_item)) {
1542 		ret = PTR_ERR(dir_item);
1543 		btrfs_abort_transaction(trans, ret);
1544 		goto fail;
1545 	}
1546 	btrfs_release_path(path);
1547 
1548 	/*
1549 	 * pull in the delayed directory update
1550 	 * and the delayed inode item
1551 	 * otherwise we corrupt the FS during
1552 	 * snapshot
1553 	 */
1554 	ret = btrfs_run_delayed_items(trans);
1555 	if (ret) {	/* Transaction aborted */
1556 		btrfs_abort_transaction(trans, ret);
1557 		goto fail;
1558 	}
1559 
1560 	record_root_in_trans(trans, root, 0);
1561 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1562 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1563 	btrfs_check_and_init_root_item(new_root_item);
1564 
1565 	root_flags = btrfs_root_flags(new_root_item);
1566 	if (pending->readonly)
1567 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1568 	else
1569 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1570 	btrfs_set_root_flags(new_root_item, root_flags);
1571 
1572 	btrfs_set_root_generation_v2(new_root_item,
1573 			trans->transid);
1574 	generate_random_guid(new_root_item->uuid);
1575 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1576 			BTRFS_UUID_SIZE);
1577 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1578 		memset(new_root_item->received_uuid, 0,
1579 		       sizeof(new_root_item->received_uuid));
1580 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1581 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1582 		btrfs_set_root_stransid(new_root_item, 0);
1583 		btrfs_set_root_rtransid(new_root_item, 0);
1584 	}
1585 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1586 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1587 	btrfs_set_root_otransid(new_root_item, trans->transid);
1588 
1589 	old = btrfs_lock_root_node(root);
1590 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1591 	if (ret) {
1592 		btrfs_tree_unlock(old);
1593 		free_extent_buffer(old);
1594 		btrfs_abort_transaction(trans, ret);
1595 		goto fail;
1596 	}
1597 
1598 	btrfs_set_lock_blocking_write(old);
1599 
1600 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1601 	/* clean up in any case */
1602 	btrfs_tree_unlock(old);
1603 	free_extent_buffer(old);
1604 	if (ret) {
1605 		btrfs_abort_transaction(trans, ret);
1606 		goto fail;
1607 	}
1608 	/* see comments in should_cow_block() */
1609 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1610 	smp_wmb();
1611 
1612 	btrfs_set_root_node(new_root_item, tmp);
1613 	/* record when the snapshot was created in key.offset */
1614 	key.offset = trans->transid;
1615 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1616 	btrfs_tree_unlock(tmp);
1617 	free_extent_buffer(tmp);
1618 	if (ret) {
1619 		btrfs_abort_transaction(trans, ret);
1620 		goto fail;
1621 	}
1622 
1623 	/*
1624 	 * insert root back/forward references
1625 	 */
1626 	ret = btrfs_add_root_ref(trans, objectid,
1627 				 parent_root->root_key.objectid,
1628 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1629 				 dentry->d_name.name, dentry->d_name.len);
1630 	if (ret) {
1631 		btrfs_abort_transaction(trans, ret);
1632 		goto fail;
1633 	}
1634 
1635 	key.offset = (u64)-1;
1636 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1637 	if (IS_ERR(pending->snap)) {
1638 		ret = PTR_ERR(pending->snap);
1639 		btrfs_abort_transaction(trans, ret);
1640 		goto fail;
1641 	}
1642 
1643 	ret = btrfs_reloc_post_snapshot(trans, pending);
1644 	if (ret) {
1645 		btrfs_abort_transaction(trans, ret);
1646 		goto fail;
1647 	}
1648 
1649 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1650 	if (ret) {
1651 		btrfs_abort_transaction(trans, ret);
1652 		goto fail;
1653 	}
1654 
1655 	/*
1656 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1657 	 * snapshot hack to do fast snapshot.
1658 	 * To co-operate with that hack, we do hack again.
1659 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1660 	 */
1661 	ret = qgroup_account_snapshot(trans, root, parent_root,
1662 				      pending->inherit, objectid);
1663 	if (ret < 0)
1664 		goto fail;
1665 
1666 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1667 				    dentry->d_name.len, BTRFS_I(parent_inode),
1668 				    &key, BTRFS_FT_DIR, index);
1669 	/* We have check then name at the beginning, so it is impossible. */
1670 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1671 	if (ret) {
1672 		btrfs_abort_transaction(trans, ret);
1673 		goto fail;
1674 	}
1675 
1676 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1677 					 dentry->d_name.len * 2);
1678 	parent_inode->i_mtime = parent_inode->i_ctime =
1679 		current_time(parent_inode);
1680 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1681 	if (ret) {
1682 		btrfs_abort_transaction(trans, ret);
1683 		goto fail;
1684 	}
1685 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1686 				  BTRFS_UUID_KEY_SUBVOL,
1687 				  objectid);
1688 	if (ret) {
1689 		btrfs_abort_transaction(trans, ret);
1690 		goto fail;
1691 	}
1692 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1693 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1694 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1695 					  objectid);
1696 		if (ret && ret != -EEXIST) {
1697 			btrfs_abort_transaction(trans, ret);
1698 			goto fail;
1699 		}
1700 	}
1701 
1702 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1703 	if (ret) {
1704 		btrfs_abort_transaction(trans, ret);
1705 		goto fail;
1706 	}
1707 
1708 fail:
1709 	pending->error = ret;
1710 dir_item_existed:
1711 	trans->block_rsv = rsv;
1712 	trans->bytes_reserved = 0;
1713 clear_skip_qgroup:
1714 	btrfs_clear_skip_qgroup(trans);
1715 no_free_objectid:
1716 	kfree(new_root_item);
1717 	pending->root_item = NULL;
1718 	btrfs_free_path(path);
1719 	pending->path = NULL;
1720 
1721 	return ret;
1722 }
1723 
1724 /*
1725  * create all the snapshots we've scheduled for creation
1726  */
1727 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1728 {
1729 	struct btrfs_pending_snapshot *pending, *next;
1730 	struct list_head *head = &trans->transaction->pending_snapshots;
1731 	int ret = 0;
1732 
1733 	list_for_each_entry_safe(pending, next, head, list) {
1734 		list_del(&pending->list);
1735 		ret = create_pending_snapshot(trans, pending);
1736 		if (ret)
1737 			break;
1738 	}
1739 	return ret;
1740 }
1741 
1742 static void update_super_roots(struct btrfs_fs_info *fs_info)
1743 {
1744 	struct btrfs_root_item *root_item;
1745 	struct btrfs_super_block *super;
1746 
1747 	super = fs_info->super_copy;
1748 
1749 	root_item = &fs_info->chunk_root->root_item;
1750 	super->chunk_root = root_item->bytenr;
1751 	super->chunk_root_generation = root_item->generation;
1752 	super->chunk_root_level = root_item->level;
1753 
1754 	root_item = &fs_info->tree_root->root_item;
1755 	super->root = root_item->bytenr;
1756 	super->generation = root_item->generation;
1757 	super->root_level = root_item->level;
1758 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1759 		super->cache_generation = root_item->generation;
1760 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1761 		super->uuid_tree_generation = root_item->generation;
1762 }
1763 
1764 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1765 {
1766 	struct btrfs_transaction *trans;
1767 	int ret = 0;
1768 
1769 	spin_lock(&info->trans_lock);
1770 	trans = info->running_transaction;
1771 	if (trans)
1772 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1773 	spin_unlock(&info->trans_lock);
1774 	return ret;
1775 }
1776 
1777 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1778 {
1779 	struct btrfs_transaction *trans;
1780 	int ret = 0;
1781 
1782 	spin_lock(&info->trans_lock);
1783 	trans = info->running_transaction;
1784 	if (trans)
1785 		ret = is_transaction_blocked(trans);
1786 	spin_unlock(&info->trans_lock);
1787 	return ret;
1788 }
1789 
1790 /*
1791  * wait for the current transaction commit to start and block subsequent
1792  * transaction joins
1793  */
1794 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1795 					    struct btrfs_transaction *trans)
1796 {
1797 	wait_event(fs_info->transaction_blocked_wait,
1798 		   trans->state >= TRANS_STATE_COMMIT_START ||
1799 		   TRANS_ABORTED(trans));
1800 }
1801 
1802 /*
1803  * wait for the current transaction to start and then become unblocked.
1804  * caller holds ref.
1805  */
1806 static void wait_current_trans_commit_start_and_unblock(
1807 					struct btrfs_fs_info *fs_info,
1808 					struct btrfs_transaction *trans)
1809 {
1810 	wait_event(fs_info->transaction_wait,
1811 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1812 		   TRANS_ABORTED(trans));
1813 }
1814 
1815 /*
1816  * commit transactions asynchronously. once btrfs_commit_transaction_async
1817  * returns, any subsequent transaction will not be allowed to join.
1818  */
1819 struct btrfs_async_commit {
1820 	struct btrfs_trans_handle *newtrans;
1821 	struct work_struct work;
1822 };
1823 
1824 static void do_async_commit(struct work_struct *work)
1825 {
1826 	struct btrfs_async_commit *ac =
1827 		container_of(work, struct btrfs_async_commit, work);
1828 
1829 	/*
1830 	 * We've got freeze protection passed with the transaction.
1831 	 * Tell lockdep about it.
1832 	 */
1833 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1834 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1835 
1836 	current->journal_info = ac->newtrans;
1837 
1838 	btrfs_commit_transaction(ac->newtrans);
1839 	kfree(ac);
1840 }
1841 
1842 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1843 				   int wait_for_unblock)
1844 {
1845 	struct btrfs_fs_info *fs_info = trans->fs_info;
1846 	struct btrfs_async_commit *ac;
1847 	struct btrfs_transaction *cur_trans;
1848 
1849 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1850 	if (!ac)
1851 		return -ENOMEM;
1852 
1853 	INIT_WORK(&ac->work, do_async_commit);
1854 	ac->newtrans = btrfs_join_transaction(trans->root);
1855 	if (IS_ERR(ac->newtrans)) {
1856 		int err = PTR_ERR(ac->newtrans);
1857 		kfree(ac);
1858 		return err;
1859 	}
1860 
1861 	/* take transaction reference */
1862 	cur_trans = trans->transaction;
1863 	refcount_inc(&cur_trans->use_count);
1864 
1865 	btrfs_end_transaction(trans);
1866 
1867 	/*
1868 	 * Tell lockdep we've released the freeze rwsem, since the
1869 	 * async commit thread will be the one to unlock it.
1870 	 */
1871 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1872 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1873 
1874 	schedule_work(&ac->work);
1875 
1876 	/* wait for transaction to start and unblock */
1877 	if (wait_for_unblock)
1878 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1879 	else
1880 		wait_current_trans_commit_start(fs_info, cur_trans);
1881 
1882 	if (current->journal_info == trans)
1883 		current->journal_info = NULL;
1884 
1885 	btrfs_put_transaction(cur_trans);
1886 	return 0;
1887 }
1888 
1889 
1890 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1891 {
1892 	struct btrfs_fs_info *fs_info = trans->fs_info;
1893 	struct btrfs_transaction *cur_trans = trans->transaction;
1894 
1895 	WARN_ON(refcount_read(&trans->use_count) > 1);
1896 
1897 	btrfs_abort_transaction(trans, err);
1898 
1899 	spin_lock(&fs_info->trans_lock);
1900 
1901 	/*
1902 	 * If the transaction is removed from the list, it means this
1903 	 * transaction has been committed successfully, so it is impossible
1904 	 * to call the cleanup function.
1905 	 */
1906 	BUG_ON(list_empty(&cur_trans->list));
1907 
1908 	list_del_init(&cur_trans->list);
1909 	if (cur_trans == fs_info->running_transaction) {
1910 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1911 		spin_unlock(&fs_info->trans_lock);
1912 		wait_event(cur_trans->writer_wait,
1913 			   atomic_read(&cur_trans->num_writers) == 1);
1914 
1915 		spin_lock(&fs_info->trans_lock);
1916 	}
1917 	spin_unlock(&fs_info->trans_lock);
1918 
1919 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1920 
1921 	spin_lock(&fs_info->trans_lock);
1922 	if (cur_trans == fs_info->running_transaction)
1923 		fs_info->running_transaction = NULL;
1924 	spin_unlock(&fs_info->trans_lock);
1925 
1926 	if (trans->type & __TRANS_FREEZABLE)
1927 		sb_end_intwrite(fs_info->sb);
1928 	btrfs_put_transaction(cur_trans);
1929 	btrfs_put_transaction(cur_trans);
1930 
1931 	trace_btrfs_transaction_commit(trans->root);
1932 
1933 	if (current->journal_info == trans)
1934 		current->journal_info = NULL;
1935 	btrfs_scrub_cancel(fs_info);
1936 
1937 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1938 }
1939 
1940 /*
1941  * Release reserved delayed ref space of all pending block groups of the
1942  * transaction and remove them from the list
1943  */
1944 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1945 {
1946        struct btrfs_fs_info *fs_info = trans->fs_info;
1947        struct btrfs_block_group *block_group, *tmp;
1948 
1949        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1950                btrfs_delayed_refs_rsv_release(fs_info, 1);
1951                list_del_init(&block_group->bg_list);
1952        }
1953 }
1954 
1955 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1956 {
1957 	struct btrfs_fs_info *fs_info = trans->fs_info;
1958 
1959 	/*
1960 	 * We use writeback_inodes_sb here because if we used
1961 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1962 	 * Currently are holding the fs freeze lock, if we do an async flush
1963 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1964 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1965 	 * from already being in a transaction and our join_transaction doesn't
1966 	 * have to re-take the fs freeze lock.
1967 	 */
1968 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1969 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1970 	} else {
1971 		struct btrfs_pending_snapshot *pending;
1972 		struct list_head *head = &trans->transaction->pending_snapshots;
1973 
1974 		/*
1975 		 * Flush dellaloc for any root that is going to be snapshotted.
1976 		 * This is done to avoid a corrupted version of files, in the
1977 		 * snapshots, that had both buffered and direct IO writes (even
1978 		 * if they were done sequentially) due to an unordered update of
1979 		 * the inode's size on disk.
1980 		 */
1981 		list_for_each_entry(pending, head, list) {
1982 			int ret;
1983 
1984 			ret = btrfs_start_delalloc_snapshot(pending->root);
1985 			if (ret)
1986 				return ret;
1987 		}
1988 	}
1989 	return 0;
1990 }
1991 
1992 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1993 {
1994 	struct btrfs_fs_info *fs_info = trans->fs_info;
1995 
1996 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1997 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1998 	} else {
1999 		struct btrfs_pending_snapshot *pending;
2000 		struct list_head *head = &trans->transaction->pending_snapshots;
2001 
2002 		/*
2003 		 * Wait for any dellaloc that we started previously for the roots
2004 		 * that are going to be snapshotted. This is to avoid a corrupted
2005 		 * version of files in the snapshots that had both buffered and
2006 		 * direct IO writes (even if they were done sequentially).
2007 		 */
2008 		list_for_each_entry(pending, head, list)
2009 			btrfs_wait_ordered_extents(pending->root,
2010 						   U64_MAX, 0, U64_MAX);
2011 	}
2012 }
2013 
2014 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2015 {
2016 	struct btrfs_fs_info *fs_info = trans->fs_info;
2017 	struct btrfs_transaction *cur_trans = trans->transaction;
2018 	struct btrfs_transaction *prev_trans = NULL;
2019 	int ret;
2020 
2021 	ASSERT(refcount_read(&trans->use_count) == 1);
2022 
2023 	/*
2024 	 * Some places just start a transaction to commit it.  We need to make
2025 	 * sure that if this commit fails that the abort code actually marks the
2026 	 * transaction as failed, so set trans->dirty to make the abort code do
2027 	 * the right thing.
2028 	 */
2029 	trans->dirty = true;
2030 
2031 	/* Stop the commit early if ->aborted is set */
2032 	if (TRANS_ABORTED(cur_trans)) {
2033 		ret = cur_trans->aborted;
2034 		btrfs_end_transaction(trans);
2035 		return ret;
2036 	}
2037 
2038 	btrfs_trans_release_metadata(trans);
2039 	trans->block_rsv = NULL;
2040 
2041 	/* make a pass through all the delayed refs we have so far
2042 	 * any runnings procs may add more while we are here
2043 	 */
2044 	ret = btrfs_run_delayed_refs(trans, 0);
2045 	if (ret) {
2046 		btrfs_end_transaction(trans);
2047 		return ret;
2048 	}
2049 
2050 	cur_trans = trans->transaction;
2051 
2052 	/*
2053 	 * set the flushing flag so procs in this transaction have to
2054 	 * start sending their work down.
2055 	 */
2056 	cur_trans->delayed_refs.flushing = 1;
2057 	smp_wmb();
2058 
2059 	btrfs_create_pending_block_groups(trans);
2060 
2061 	ret = btrfs_run_delayed_refs(trans, 0);
2062 	if (ret) {
2063 		btrfs_end_transaction(trans);
2064 		return ret;
2065 	}
2066 
2067 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2068 		int run_it = 0;
2069 
2070 		/* this mutex is also taken before trying to set
2071 		 * block groups readonly.  We need to make sure
2072 		 * that nobody has set a block group readonly
2073 		 * after a extents from that block group have been
2074 		 * allocated for cache files.  btrfs_set_block_group_ro
2075 		 * will wait for the transaction to commit if it
2076 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2077 		 *
2078 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2079 		 * only one process starts all the block group IO.  It wouldn't
2080 		 * hurt to have more than one go through, but there's no
2081 		 * real advantage to it either.
2082 		 */
2083 		mutex_lock(&fs_info->ro_block_group_mutex);
2084 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2085 				      &cur_trans->flags))
2086 			run_it = 1;
2087 		mutex_unlock(&fs_info->ro_block_group_mutex);
2088 
2089 		if (run_it) {
2090 			ret = btrfs_start_dirty_block_groups(trans);
2091 			if (ret) {
2092 				btrfs_end_transaction(trans);
2093 				return ret;
2094 			}
2095 		}
2096 	}
2097 
2098 	spin_lock(&fs_info->trans_lock);
2099 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2100 		spin_unlock(&fs_info->trans_lock);
2101 		refcount_inc(&cur_trans->use_count);
2102 		ret = btrfs_end_transaction(trans);
2103 
2104 		wait_for_commit(cur_trans);
2105 
2106 		if (TRANS_ABORTED(cur_trans))
2107 			ret = cur_trans->aborted;
2108 
2109 		btrfs_put_transaction(cur_trans);
2110 
2111 		return ret;
2112 	}
2113 
2114 	cur_trans->state = TRANS_STATE_COMMIT_START;
2115 	wake_up(&fs_info->transaction_blocked_wait);
2116 
2117 	if (cur_trans->list.prev != &fs_info->trans_list) {
2118 		prev_trans = list_entry(cur_trans->list.prev,
2119 					struct btrfs_transaction, list);
2120 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2121 			refcount_inc(&prev_trans->use_count);
2122 			spin_unlock(&fs_info->trans_lock);
2123 
2124 			wait_for_commit(prev_trans);
2125 			ret = READ_ONCE(prev_trans->aborted);
2126 
2127 			btrfs_put_transaction(prev_trans);
2128 			if (ret)
2129 				goto cleanup_transaction;
2130 		} else {
2131 			spin_unlock(&fs_info->trans_lock);
2132 		}
2133 	} else {
2134 		spin_unlock(&fs_info->trans_lock);
2135 		/*
2136 		 * The previous transaction was aborted and was already removed
2137 		 * from the list of transactions at fs_info->trans_list. So we
2138 		 * abort to prevent writing a new superblock that reflects a
2139 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2140 		 */
2141 		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2142 			ret = -EROFS;
2143 			goto cleanup_transaction;
2144 		}
2145 	}
2146 
2147 	extwriter_counter_dec(cur_trans, trans->type);
2148 
2149 	ret = btrfs_start_delalloc_flush(trans);
2150 	if (ret)
2151 		goto cleanup_transaction;
2152 
2153 	ret = btrfs_run_delayed_items(trans);
2154 	if (ret)
2155 		goto cleanup_transaction;
2156 
2157 	wait_event(cur_trans->writer_wait,
2158 		   extwriter_counter_read(cur_trans) == 0);
2159 
2160 	/* some pending stuffs might be added after the previous flush. */
2161 	ret = btrfs_run_delayed_items(trans);
2162 	if (ret)
2163 		goto cleanup_transaction;
2164 
2165 	btrfs_wait_delalloc_flush(trans);
2166 
2167 	btrfs_scrub_pause(fs_info);
2168 	/*
2169 	 * Ok now we need to make sure to block out any other joins while we
2170 	 * commit the transaction.  We could have started a join before setting
2171 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2172 	 */
2173 	spin_lock(&fs_info->trans_lock);
2174 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2175 	spin_unlock(&fs_info->trans_lock);
2176 	wait_event(cur_trans->writer_wait,
2177 		   atomic_read(&cur_trans->num_writers) == 1);
2178 
2179 	if (TRANS_ABORTED(cur_trans)) {
2180 		ret = cur_trans->aborted;
2181 		goto scrub_continue;
2182 	}
2183 	/*
2184 	 * the reloc mutex makes sure that we stop
2185 	 * the balancing code from coming in and moving
2186 	 * extents around in the middle of the commit
2187 	 */
2188 	mutex_lock(&fs_info->reloc_mutex);
2189 
2190 	/*
2191 	 * We needn't worry about the delayed items because we will
2192 	 * deal with them in create_pending_snapshot(), which is the
2193 	 * core function of the snapshot creation.
2194 	 */
2195 	ret = create_pending_snapshots(trans);
2196 	if (ret)
2197 		goto unlock_reloc;
2198 
2199 	/*
2200 	 * We insert the dir indexes of the snapshots and update the inode
2201 	 * of the snapshots' parents after the snapshot creation, so there
2202 	 * are some delayed items which are not dealt with. Now deal with
2203 	 * them.
2204 	 *
2205 	 * We needn't worry that this operation will corrupt the snapshots,
2206 	 * because all the tree which are snapshoted will be forced to COW
2207 	 * the nodes and leaves.
2208 	 */
2209 	ret = btrfs_run_delayed_items(trans);
2210 	if (ret)
2211 		goto unlock_reloc;
2212 
2213 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2214 	if (ret)
2215 		goto unlock_reloc;
2216 
2217 	/*
2218 	 * make sure none of the code above managed to slip in a
2219 	 * delayed item
2220 	 */
2221 	btrfs_assert_delayed_root_empty(fs_info);
2222 
2223 	WARN_ON(cur_trans != trans->transaction);
2224 
2225 	/* btrfs_commit_tree_roots is responsible for getting the
2226 	 * various roots consistent with each other.  Every pointer
2227 	 * in the tree of tree roots has to point to the most up to date
2228 	 * root for every subvolume and other tree.  So, we have to keep
2229 	 * the tree logging code from jumping in and changing any
2230 	 * of the trees.
2231 	 *
2232 	 * At this point in the commit, there can't be any tree-log
2233 	 * writers, but a little lower down we drop the trans mutex
2234 	 * and let new people in.  By holding the tree_log_mutex
2235 	 * from now until after the super is written, we avoid races
2236 	 * with the tree-log code.
2237 	 */
2238 	mutex_lock(&fs_info->tree_log_mutex);
2239 
2240 	ret = commit_fs_roots(trans);
2241 	if (ret)
2242 		goto unlock_tree_log;
2243 
2244 	/*
2245 	 * Since the transaction is done, we can apply the pending changes
2246 	 * before the next transaction.
2247 	 */
2248 	btrfs_apply_pending_changes(fs_info);
2249 
2250 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2251 	 * safe to free the root of tree log roots
2252 	 */
2253 	btrfs_free_log_root_tree(trans, fs_info);
2254 
2255 	/*
2256 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2257 	 * new delayed refs. Must handle them or qgroup can be wrong.
2258 	 */
2259 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2260 	if (ret)
2261 		goto unlock_tree_log;
2262 
2263 	/*
2264 	 * Since fs roots are all committed, we can get a quite accurate
2265 	 * new_roots. So let's do quota accounting.
2266 	 */
2267 	ret = btrfs_qgroup_account_extents(trans);
2268 	if (ret < 0)
2269 		goto unlock_tree_log;
2270 
2271 	ret = commit_cowonly_roots(trans);
2272 	if (ret)
2273 		goto unlock_tree_log;
2274 
2275 	/*
2276 	 * The tasks which save the space cache and inode cache may also
2277 	 * update ->aborted, check it.
2278 	 */
2279 	if (TRANS_ABORTED(cur_trans)) {
2280 		ret = cur_trans->aborted;
2281 		goto unlock_tree_log;
2282 	}
2283 
2284 	btrfs_prepare_extent_commit(fs_info);
2285 
2286 	cur_trans = fs_info->running_transaction;
2287 
2288 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2289 			    fs_info->tree_root->node);
2290 	list_add_tail(&fs_info->tree_root->dirty_list,
2291 		      &cur_trans->switch_commits);
2292 
2293 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2294 			    fs_info->chunk_root->node);
2295 	list_add_tail(&fs_info->chunk_root->dirty_list,
2296 		      &cur_trans->switch_commits);
2297 
2298 	switch_commit_roots(trans);
2299 
2300 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2301 	ASSERT(list_empty(&cur_trans->io_bgs));
2302 	update_super_roots(fs_info);
2303 
2304 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2305 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2306 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2307 	       sizeof(*fs_info->super_copy));
2308 
2309 	btrfs_commit_device_sizes(cur_trans);
2310 
2311 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2312 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2313 
2314 	btrfs_trans_release_chunk_metadata(trans);
2315 
2316 	spin_lock(&fs_info->trans_lock);
2317 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2318 	fs_info->running_transaction = NULL;
2319 	spin_unlock(&fs_info->trans_lock);
2320 	mutex_unlock(&fs_info->reloc_mutex);
2321 
2322 	wake_up(&fs_info->transaction_wait);
2323 
2324 	ret = btrfs_write_and_wait_transaction(trans);
2325 	if (ret) {
2326 		btrfs_handle_fs_error(fs_info, ret,
2327 				      "Error while writing out transaction");
2328 		/*
2329 		 * reloc_mutex has been unlocked, tree_log_mutex is still held
2330 		 * but we can't jump to unlock_tree_log causing double unlock
2331 		 */
2332 		mutex_unlock(&fs_info->tree_log_mutex);
2333 		goto scrub_continue;
2334 	}
2335 
2336 	ret = write_all_supers(fs_info, 0);
2337 	/*
2338 	 * the super is written, we can safely allow the tree-loggers
2339 	 * to go about their business
2340 	 */
2341 	mutex_unlock(&fs_info->tree_log_mutex);
2342 	if (ret)
2343 		goto scrub_continue;
2344 
2345 	btrfs_finish_extent_commit(trans);
2346 
2347 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2348 		btrfs_clear_space_info_full(fs_info);
2349 
2350 	fs_info->last_trans_committed = cur_trans->transid;
2351 	/*
2352 	 * We needn't acquire the lock here because there is no other task
2353 	 * which can change it.
2354 	 */
2355 	cur_trans->state = TRANS_STATE_COMPLETED;
2356 	wake_up(&cur_trans->commit_wait);
2357 
2358 	spin_lock(&fs_info->trans_lock);
2359 	list_del_init(&cur_trans->list);
2360 	spin_unlock(&fs_info->trans_lock);
2361 
2362 	btrfs_put_transaction(cur_trans);
2363 	btrfs_put_transaction(cur_trans);
2364 
2365 	if (trans->type & __TRANS_FREEZABLE)
2366 		sb_end_intwrite(fs_info->sb);
2367 
2368 	trace_btrfs_transaction_commit(trans->root);
2369 
2370 	btrfs_scrub_continue(fs_info);
2371 
2372 	if (current->journal_info == trans)
2373 		current->journal_info = NULL;
2374 
2375 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2376 
2377 	return ret;
2378 
2379 unlock_tree_log:
2380 	mutex_unlock(&fs_info->tree_log_mutex);
2381 unlock_reloc:
2382 	mutex_unlock(&fs_info->reloc_mutex);
2383 scrub_continue:
2384 	btrfs_scrub_continue(fs_info);
2385 cleanup_transaction:
2386 	btrfs_trans_release_metadata(trans);
2387 	btrfs_cleanup_pending_block_groups(trans);
2388 	btrfs_trans_release_chunk_metadata(trans);
2389 	trans->block_rsv = NULL;
2390 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2391 	if (current->journal_info == trans)
2392 		current->journal_info = NULL;
2393 	cleanup_transaction(trans, ret);
2394 
2395 	return ret;
2396 }
2397 
2398 /*
2399  * return < 0 if error
2400  * 0 if there are no more dead_roots at the time of call
2401  * 1 there are more to be processed, call me again
2402  *
2403  * The return value indicates there are certainly more snapshots to delete, but
2404  * if there comes a new one during processing, it may return 0. We don't mind,
2405  * because btrfs_commit_super will poke cleaner thread and it will process it a
2406  * few seconds later.
2407  */
2408 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2409 {
2410 	int ret;
2411 	struct btrfs_fs_info *fs_info = root->fs_info;
2412 
2413 	spin_lock(&fs_info->trans_lock);
2414 	if (list_empty(&fs_info->dead_roots)) {
2415 		spin_unlock(&fs_info->trans_lock);
2416 		return 0;
2417 	}
2418 	root = list_first_entry(&fs_info->dead_roots,
2419 			struct btrfs_root, root_list);
2420 	list_del_init(&root->root_list);
2421 	spin_unlock(&fs_info->trans_lock);
2422 
2423 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2424 
2425 	btrfs_kill_all_delayed_nodes(root);
2426 	if (root->ino_cache_inode) {
2427 		iput(root->ino_cache_inode);
2428 		root->ino_cache_inode = NULL;
2429 	}
2430 
2431 	if (btrfs_header_backref_rev(root->node) <
2432 			BTRFS_MIXED_BACKREF_REV)
2433 		ret = btrfs_drop_snapshot(root, 0, 0);
2434 	else
2435 		ret = btrfs_drop_snapshot(root, 1, 0);
2436 
2437 	btrfs_put_root(root);
2438 	return (ret < 0) ? 0 : 1;
2439 }
2440 
2441 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2442 {
2443 	unsigned long prev;
2444 	unsigned long bit;
2445 
2446 	prev = xchg(&fs_info->pending_changes, 0);
2447 	if (!prev)
2448 		return;
2449 
2450 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2451 	if (prev & bit)
2452 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2453 	prev &= ~bit;
2454 
2455 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2456 	if (prev & bit)
2457 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2458 	prev &= ~bit;
2459 
2460 	bit = 1 << BTRFS_PENDING_COMMIT;
2461 	if (prev & bit)
2462 		btrfs_debug(fs_info, "pending commit done");
2463 	prev &= ~bit;
2464 
2465 	if (prev)
2466 		btrfs_warn(fs_info,
2467 			"unknown pending changes left 0x%lx, ignoring", prev);
2468 }
2469