xref: /openbmc/linux/fs/btrfs/transaction.c (revision 5104d265)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 
35 #define BTRFS_ROOT_TRANS_TAG 0
36 
37 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38 	[TRANS_STATE_RUNNING]		= 0U,
39 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
40 					   __TRANS_START),
41 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
42 					   __TRANS_START |
43 					   __TRANS_ATTACH),
44 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
45 					   __TRANS_START |
46 					   __TRANS_ATTACH |
47 					   __TRANS_JOIN),
48 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
49 					   __TRANS_START |
50 					   __TRANS_ATTACH |
51 					   __TRANS_JOIN |
52 					   __TRANS_JOIN_NOLOCK),
53 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
54 					   __TRANS_START |
55 					   __TRANS_ATTACH |
56 					   __TRANS_JOIN |
57 					   __TRANS_JOIN_NOLOCK),
58 };
59 
60 static void put_transaction(struct btrfs_transaction *transaction)
61 {
62 	WARN_ON(atomic_read(&transaction->use_count) == 0);
63 	if (atomic_dec_and_test(&transaction->use_count)) {
64 		BUG_ON(!list_empty(&transaction->list));
65 		WARN_ON(transaction->delayed_refs.root.rb_node);
66 		while (!list_empty(&transaction->pending_chunks)) {
67 			struct extent_map *em;
68 
69 			em = list_first_entry(&transaction->pending_chunks,
70 					      struct extent_map, list);
71 			list_del_init(&em->list);
72 			free_extent_map(em);
73 		}
74 		kmem_cache_free(btrfs_transaction_cachep, transaction);
75 	}
76 }
77 
78 static noinline void switch_commit_root(struct btrfs_root *root)
79 {
80 	free_extent_buffer(root->commit_root);
81 	root->commit_root = btrfs_root_node(root);
82 }
83 
84 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
85 					 unsigned int type)
86 {
87 	if (type & TRANS_EXTWRITERS)
88 		atomic_inc(&trans->num_extwriters);
89 }
90 
91 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
92 					 unsigned int type)
93 {
94 	if (type & TRANS_EXTWRITERS)
95 		atomic_dec(&trans->num_extwriters);
96 }
97 
98 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
99 					  unsigned int type)
100 {
101 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
102 }
103 
104 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
105 {
106 	return atomic_read(&trans->num_extwriters);
107 }
108 
109 /*
110  * either allocate a new transaction or hop into the existing one
111  */
112 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
113 {
114 	struct btrfs_transaction *cur_trans;
115 	struct btrfs_fs_info *fs_info = root->fs_info;
116 
117 	spin_lock(&fs_info->trans_lock);
118 loop:
119 	/* The file system has been taken offline. No new transactions. */
120 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
121 		spin_unlock(&fs_info->trans_lock);
122 		return -EROFS;
123 	}
124 
125 	cur_trans = fs_info->running_transaction;
126 	if (cur_trans) {
127 		if (cur_trans->aborted) {
128 			spin_unlock(&fs_info->trans_lock);
129 			return cur_trans->aborted;
130 		}
131 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
132 			spin_unlock(&fs_info->trans_lock);
133 			return -EBUSY;
134 		}
135 		atomic_inc(&cur_trans->use_count);
136 		atomic_inc(&cur_trans->num_writers);
137 		extwriter_counter_inc(cur_trans, type);
138 		spin_unlock(&fs_info->trans_lock);
139 		return 0;
140 	}
141 	spin_unlock(&fs_info->trans_lock);
142 
143 	/*
144 	 * If we are ATTACH, we just want to catch the current transaction,
145 	 * and commit it. If there is no transaction, just return ENOENT.
146 	 */
147 	if (type == TRANS_ATTACH)
148 		return -ENOENT;
149 
150 	/*
151 	 * JOIN_NOLOCK only happens during the transaction commit, so
152 	 * it is impossible that ->running_transaction is NULL
153 	 */
154 	BUG_ON(type == TRANS_JOIN_NOLOCK);
155 
156 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
157 	if (!cur_trans)
158 		return -ENOMEM;
159 
160 	spin_lock(&fs_info->trans_lock);
161 	if (fs_info->running_transaction) {
162 		/*
163 		 * someone started a transaction after we unlocked.  Make sure
164 		 * to redo the checks above
165 		 */
166 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
167 		goto loop;
168 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
169 		spin_unlock(&fs_info->trans_lock);
170 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
171 		return -EROFS;
172 	}
173 
174 	atomic_set(&cur_trans->num_writers, 1);
175 	extwriter_counter_init(cur_trans, type);
176 	init_waitqueue_head(&cur_trans->writer_wait);
177 	init_waitqueue_head(&cur_trans->commit_wait);
178 	cur_trans->state = TRANS_STATE_RUNNING;
179 	/*
180 	 * One for this trans handle, one so it will live on until we
181 	 * commit the transaction.
182 	 */
183 	atomic_set(&cur_trans->use_count, 2);
184 	cur_trans->start_time = get_seconds();
185 
186 	cur_trans->delayed_refs.root = RB_ROOT;
187 	cur_trans->delayed_refs.num_entries = 0;
188 	cur_trans->delayed_refs.num_heads_ready = 0;
189 	cur_trans->delayed_refs.num_heads = 0;
190 	cur_trans->delayed_refs.flushing = 0;
191 	cur_trans->delayed_refs.run_delayed_start = 0;
192 
193 	/*
194 	 * although the tree mod log is per file system and not per transaction,
195 	 * the log must never go across transaction boundaries.
196 	 */
197 	smp_mb();
198 	if (!list_empty(&fs_info->tree_mod_seq_list))
199 		WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
200 			"creating a fresh transaction\n");
201 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
202 		WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
203 			"creating a fresh transaction\n");
204 	atomic64_set(&fs_info->tree_mod_seq, 0);
205 
206 	spin_lock_init(&cur_trans->delayed_refs.lock);
207 	atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
208 	atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
209 	init_waitqueue_head(&cur_trans->delayed_refs.wait);
210 
211 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
212 	INIT_LIST_HEAD(&cur_trans->ordered_operations);
213 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
214 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
215 	extent_io_tree_init(&cur_trans->dirty_pages,
216 			     fs_info->btree_inode->i_mapping);
217 	fs_info->generation++;
218 	cur_trans->transid = fs_info->generation;
219 	fs_info->running_transaction = cur_trans;
220 	cur_trans->aborted = 0;
221 	spin_unlock(&fs_info->trans_lock);
222 
223 	return 0;
224 }
225 
226 /*
227  * this does all the record keeping required to make sure that a reference
228  * counted root is properly recorded in a given transaction.  This is required
229  * to make sure the old root from before we joined the transaction is deleted
230  * when the transaction commits
231  */
232 static int record_root_in_trans(struct btrfs_trans_handle *trans,
233 			       struct btrfs_root *root)
234 {
235 	if (root->ref_cows && root->last_trans < trans->transid) {
236 		WARN_ON(root == root->fs_info->extent_root);
237 		WARN_ON(root->commit_root != root->node);
238 
239 		/*
240 		 * see below for in_trans_setup usage rules
241 		 * we have the reloc mutex held now, so there
242 		 * is only one writer in this function
243 		 */
244 		root->in_trans_setup = 1;
245 
246 		/* make sure readers find in_trans_setup before
247 		 * they find our root->last_trans update
248 		 */
249 		smp_wmb();
250 
251 		spin_lock(&root->fs_info->fs_roots_radix_lock);
252 		if (root->last_trans == trans->transid) {
253 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
254 			return 0;
255 		}
256 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
257 			   (unsigned long)root->root_key.objectid,
258 			   BTRFS_ROOT_TRANS_TAG);
259 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
260 		root->last_trans = trans->transid;
261 
262 		/* this is pretty tricky.  We don't want to
263 		 * take the relocation lock in btrfs_record_root_in_trans
264 		 * unless we're really doing the first setup for this root in
265 		 * this transaction.
266 		 *
267 		 * Normally we'd use root->last_trans as a flag to decide
268 		 * if we want to take the expensive mutex.
269 		 *
270 		 * But, we have to set root->last_trans before we
271 		 * init the relocation root, otherwise, we trip over warnings
272 		 * in ctree.c.  The solution used here is to flag ourselves
273 		 * with root->in_trans_setup.  When this is 1, we're still
274 		 * fixing up the reloc trees and everyone must wait.
275 		 *
276 		 * When this is zero, they can trust root->last_trans and fly
277 		 * through btrfs_record_root_in_trans without having to take the
278 		 * lock.  smp_wmb() makes sure that all the writes above are
279 		 * done before we pop in the zero below
280 		 */
281 		btrfs_init_reloc_root(trans, root);
282 		smp_wmb();
283 		root->in_trans_setup = 0;
284 	}
285 	return 0;
286 }
287 
288 
289 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
290 			       struct btrfs_root *root)
291 {
292 	if (!root->ref_cows)
293 		return 0;
294 
295 	/*
296 	 * see record_root_in_trans for comments about in_trans_setup usage
297 	 * and barriers
298 	 */
299 	smp_rmb();
300 	if (root->last_trans == trans->transid &&
301 	    !root->in_trans_setup)
302 		return 0;
303 
304 	mutex_lock(&root->fs_info->reloc_mutex);
305 	record_root_in_trans(trans, root);
306 	mutex_unlock(&root->fs_info->reloc_mutex);
307 
308 	return 0;
309 }
310 
311 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
312 {
313 	return (trans->state >= TRANS_STATE_BLOCKED &&
314 		trans->state < TRANS_STATE_UNBLOCKED &&
315 		!trans->aborted);
316 }
317 
318 /* wait for commit against the current transaction to become unblocked
319  * when this is done, it is safe to start a new transaction, but the current
320  * transaction might not be fully on disk.
321  */
322 static void wait_current_trans(struct btrfs_root *root)
323 {
324 	struct btrfs_transaction *cur_trans;
325 
326 	spin_lock(&root->fs_info->trans_lock);
327 	cur_trans = root->fs_info->running_transaction;
328 	if (cur_trans && is_transaction_blocked(cur_trans)) {
329 		atomic_inc(&cur_trans->use_count);
330 		spin_unlock(&root->fs_info->trans_lock);
331 
332 		wait_event(root->fs_info->transaction_wait,
333 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
334 			   cur_trans->aborted);
335 		put_transaction(cur_trans);
336 	} else {
337 		spin_unlock(&root->fs_info->trans_lock);
338 	}
339 }
340 
341 static int may_wait_transaction(struct btrfs_root *root, int type)
342 {
343 	if (root->fs_info->log_root_recovering)
344 		return 0;
345 
346 	if (type == TRANS_USERSPACE)
347 		return 1;
348 
349 	if (type == TRANS_START &&
350 	    !atomic_read(&root->fs_info->open_ioctl_trans))
351 		return 1;
352 
353 	return 0;
354 }
355 
356 static struct btrfs_trans_handle *
357 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
358 		  enum btrfs_reserve_flush_enum flush)
359 {
360 	struct btrfs_trans_handle *h;
361 	struct btrfs_transaction *cur_trans;
362 	u64 num_bytes = 0;
363 	int ret;
364 	u64 qgroup_reserved = 0;
365 
366 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
367 		return ERR_PTR(-EROFS);
368 
369 	if (current->journal_info) {
370 		WARN_ON(type & TRANS_EXTWRITERS);
371 		h = current->journal_info;
372 		h->use_count++;
373 		WARN_ON(h->use_count > 2);
374 		h->orig_rsv = h->block_rsv;
375 		h->block_rsv = NULL;
376 		goto got_it;
377 	}
378 
379 	/*
380 	 * Do the reservation before we join the transaction so we can do all
381 	 * the appropriate flushing if need be.
382 	 */
383 	if (num_items > 0 && root != root->fs_info->chunk_root) {
384 		if (root->fs_info->quota_enabled &&
385 		    is_fstree(root->root_key.objectid)) {
386 			qgroup_reserved = num_items * root->leafsize;
387 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
388 			if (ret)
389 				return ERR_PTR(ret);
390 		}
391 
392 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
393 		ret = btrfs_block_rsv_add(root,
394 					  &root->fs_info->trans_block_rsv,
395 					  num_bytes, flush);
396 		if (ret)
397 			goto reserve_fail;
398 	}
399 again:
400 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
401 	if (!h) {
402 		ret = -ENOMEM;
403 		goto alloc_fail;
404 	}
405 
406 	/*
407 	 * If we are JOIN_NOLOCK we're already committing a transaction and
408 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
409 	 * because we're already holding a ref.  We need this because we could
410 	 * have raced in and did an fsync() on a file which can kick a commit
411 	 * and then we deadlock with somebody doing a freeze.
412 	 *
413 	 * If we are ATTACH, it means we just want to catch the current
414 	 * transaction and commit it, so we needn't do sb_start_intwrite().
415 	 */
416 	if (type & __TRANS_FREEZABLE)
417 		sb_start_intwrite(root->fs_info->sb);
418 
419 	if (may_wait_transaction(root, type))
420 		wait_current_trans(root);
421 
422 	do {
423 		ret = join_transaction(root, type);
424 		if (ret == -EBUSY) {
425 			wait_current_trans(root);
426 			if (unlikely(type == TRANS_ATTACH))
427 				ret = -ENOENT;
428 		}
429 	} while (ret == -EBUSY);
430 
431 	if (ret < 0) {
432 		/* We must get the transaction if we are JOIN_NOLOCK. */
433 		BUG_ON(type == TRANS_JOIN_NOLOCK);
434 		goto join_fail;
435 	}
436 
437 	cur_trans = root->fs_info->running_transaction;
438 
439 	h->transid = cur_trans->transid;
440 	h->transaction = cur_trans;
441 	h->blocks_used = 0;
442 	h->bytes_reserved = 0;
443 	h->root = root;
444 	h->delayed_ref_updates = 0;
445 	h->use_count = 1;
446 	h->adding_csums = 0;
447 	h->block_rsv = NULL;
448 	h->orig_rsv = NULL;
449 	h->aborted = 0;
450 	h->qgroup_reserved = 0;
451 	h->delayed_ref_elem.seq = 0;
452 	h->type = type;
453 	h->allocating_chunk = false;
454 	INIT_LIST_HEAD(&h->qgroup_ref_list);
455 	INIT_LIST_HEAD(&h->new_bgs);
456 
457 	smp_mb();
458 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
459 	    may_wait_transaction(root, type)) {
460 		btrfs_commit_transaction(h, root);
461 		goto again;
462 	}
463 
464 	if (num_bytes) {
465 		trace_btrfs_space_reservation(root->fs_info, "transaction",
466 					      h->transid, num_bytes, 1);
467 		h->block_rsv = &root->fs_info->trans_block_rsv;
468 		h->bytes_reserved = num_bytes;
469 	}
470 	h->qgroup_reserved = qgroup_reserved;
471 
472 got_it:
473 	btrfs_record_root_in_trans(h, root);
474 
475 	if (!current->journal_info && type != TRANS_USERSPACE)
476 		current->journal_info = h;
477 	return h;
478 
479 join_fail:
480 	if (type & __TRANS_FREEZABLE)
481 		sb_end_intwrite(root->fs_info->sb);
482 	kmem_cache_free(btrfs_trans_handle_cachep, h);
483 alloc_fail:
484 	if (num_bytes)
485 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
486 					num_bytes);
487 reserve_fail:
488 	if (qgroup_reserved)
489 		btrfs_qgroup_free(root, qgroup_reserved);
490 	return ERR_PTR(ret);
491 }
492 
493 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
494 						   int num_items)
495 {
496 	return start_transaction(root, num_items, TRANS_START,
497 				 BTRFS_RESERVE_FLUSH_ALL);
498 }
499 
500 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
501 					struct btrfs_root *root, int num_items)
502 {
503 	return start_transaction(root, num_items, TRANS_START,
504 				 BTRFS_RESERVE_FLUSH_LIMIT);
505 }
506 
507 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
508 {
509 	return start_transaction(root, 0, TRANS_JOIN, 0);
510 }
511 
512 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
513 {
514 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
515 }
516 
517 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
518 {
519 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
520 }
521 
522 /*
523  * btrfs_attach_transaction() - catch the running transaction
524  *
525  * It is used when we want to commit the current the transaction, but
526  * don't want to start a new one.
527  *
528  * Note: If this function return -ENOENT, it just means there is no
529  * running transaction. But it is possible that the inactive transaction
530  * is still in the memory, not fully on disk. If you hope there is no
531  * inactive transaction in the fs when -ENOENT is returned, you should
532  * invoke
533  *     btrfs_attach_transaction_barrier()
534  */
535 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
536 {
537 	return start_transaction(root, 0, TRANS_ATTACH, 0);
538 }
539 
540 /*
541  * btrfs_attach_transaction_barrier() - catch the running transaction
542  *
543  * It is similar to the above function, the differentia is this one
544  * will wait for all the inactive transactions until they fully
545  * complete.
546  */
547 struct btrfs_trans_handle *
548 btrfs_attach_transaction_barrier(struct btrfs_root *root)
549 {
550 	struct btrfs_trans_handle *trans;
551 
552 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
553 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
554 		btrfs_wait_for_commit(root, 0);
555 
556 	return trans;
557 }
558 
559 /* wait for a transaction commit to be fully complete */
560 static noinline void wait_for_commit(struct btrfs_root *root,
561 				    struct btrfs_transaction *commit)
562 {
563 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
564 }
565 
566 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
567 {
568 	struct btrfs_transaction *cur_trans = NULL, *t;
569 	int ret = 0;
570 
571 	if (transid) {
572 		if (transid <= root->fs_info->last_trans_committed)
573 			goto out;
574 
575 		ret = -EINVAL;
576 		/* find specified transaction */
577 		spin_lock(&root->fs_info->trans_lock);
578 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
579 			if (t->transid == transid) {
580 				cur_trans = t;
581 				atomic_inc(&cur_trans->use_count);
582 				ret = 0;
583 				break;
584 			}
585 			if (t->transid > transid) {
586 				ret = 0;
587 				break;
588 			}
589 		}
590 		spin_unlock(&root->fs_info->trans_lock);
591 		/* The specified transaction doesn't exist */
592 		if (!cur_trans)
593 			goto out;
594 	} else {
595 		/* find newest transaction that is committing | committed */
596 		spin_lock(&root->fs_info->trans_lock);
597 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
598 					    list) {
599 			if (t->state >= TRANS_STATE_COMMIT_START) {
600 				if (t->state == TRANS_STATE_COMPLETED)
601 					break;
602 				cur_trans = t;
603 				atomic_inc(&cur_trans->use_count);
604 				break;
605 			}
606 		}
607 		spin_unlock(&root->fs_info->trans_lock);
608 		if (!cur_trans)
609 			goto out;  /* nothing committing|committed */
610 	}
611 
612 	wait_for_commit(root, cur_trans);
613 	put_transaction(cur_trans);
614 out:
615 	return ret;
616 }
617 
618 void btrfs_throttle(struct btrfs_root *root)
619 {
620 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
621 		wait_current_trans(root);
622 }
623 
624 static int should_end_transaction(struct btrfs_trans_handle *trans,
625 				  struct btrfs_root *root)
626 {
627 	if (root->fs_info->global_block_rsv.space_info->full &&
628 	    btrfs_should_throttle_delayed_refs(trans, root))
629 		return 1;
630 
631 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
632 }
633 
634 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
635 				 struct btrfs_root *root)
636 {
637 	struct btrfs_transaction *cur_trans = trans->transaction;
638 	int updates;
639 	int err;
640 
641 	smp_mb();
642 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
643 	    cur_trans->delayed_refs.flushing)
644 		return 1;
645 
646 	updates = trans->delayed_ref_updates;
647 	trans->delayed_ref_updates = 0;
648 	if (updates) {
649 		err = btrfs_run_delayed_refs(trans, root, updates);
650 		if (err) /* Error code will also eval true */
651 			return err;
652 	}
653 
654 	return should_end_transaction(trans, root);
655 }
656 
657 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
658 			  struct btrfs_root *root, int throttle)
659 {
660 	struct btrfs_transaction *cur_trans = trans->transaction;
661 	struct btrfs_fs_info *info = root->fs_info;
662 	unsigned long cur = trans->delayed_ref_updates;
663 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
664 	int err = 0;
665 
666 	if (--trans->use_count) {
667 		trans->block_rsv = trans->orig_rsv;
668 		return 0;
669 	}
670 
671 	/*
672 	 * do the qgroup accounting as early as possible
673 	 */
674 	err = btrfs_delayed_refs_qgroup_accounting(trans, info);
675 
676 	btrfs_trans_release_metadata(trans, root);
677 	trans->block_rsv = NULL;
678 
679 	if (trans->qgroup_reserved) {
680 		/*
681 		 * the same root has to be passed here between start_transaction
682 		 * and end_transaction. Subvolume quota depends on this.
683 		 */
684 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
685 		trans->qgroup_reserved = 0;
686 	}
687 
688 	if (!list_empty(&trans->new_bgs))
689 		btrfs_create_pending_block_groups(trans, root);
690 
691 	trans->delayed_ref_updates = 0;
692 	if (btrfs_should_throttle_delayed_refs(trans, root)) {
693 		cur = max_t(unsigned long, cur, 1);
694 		trans->delayed_ref_updates = 0;
695 		btrfs_run_delayed_refs(trans, root, cur);
696 	}
697 
698 	btrfs_trans_release_metadata(trans, root);
699 	trans->block_rsv = NULL;
700 
701 	if (!list_empty(&trans->new_bgs))
702 		btrfs_create_pending_block_groups(trans, root);
703 
704 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
705 	    should_end_transaction(trans, root) &&
706 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
707 		spin_lock(&info->trans_lock);
708 		if (cur_trans->state == TRANS_STATE_RUNNING)
709 			cur_trans->state = TRANS_STATE_BLOCKED;
710 		spin_unlock(&info->trans_lock);
711 	}
712 
713 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
714 		if (throttle) {
715 			/*
716 			 * We may race with somebody else here so end up having
717 			 * to call end_transaction on ourselves again, so inc
718 			 * our use_count.
719 			 */
720 			trans->use_count++;
721 			return btrfs_commit_transaction(trans, root);
722 		} else {
723 			wake_up_process(info->transaction_kthread);
724 		}
725 	}
726 
727 	if (trans->type & __TRANS_FREEZABLE)
728 		sb_end_intwrite(root->fs_info->sb);
729 
730 	WARN_ON(cur_trans != info->running_transaction);
731 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
732 	atomic_dec(&cur_trans->num_writers);
733 	extwriter_counter_dec(cur_trans, trans->type);
734 
735 	smp_mb();
736 	if (waitqueue_active(&cur_trans->writer_wait))
737 		wake_up(&cur_trans->writer_wait);
738 	put_transaction(cur_trans);
739 
740 	if (current->journal_info == trans)
741 		current->journal_info = NULL;
742 
743 	if (throttle)
744 		btrfs_run_delayed_iputs(root);
745 
746 	if (trans->aborted ||
747 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
748 		err = -EIO;
749 	assert_qgroups_uptodate(trans);
750 
751 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
752 	return err;
753 }
754 
755 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
756 			  struct btrfs_root *root)
757 {
758 	return __btrfs_end_transaction(trans, root, 0);
759 }
760 
761 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
762 				   struct btrfs_root *root)
763 {
764 	return __btrfs_end_transaction(trans, root, 1);
765 }
766 
767 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
768 				struct btrfs_root *root)
769 {
770 	return __btrfs_end_transaction(trans, root, 1);
771 }
772 
773 /*
774  * when btree blocks are allocated, they have some corresponding bits set for
775  * them in one of two extent_io trees.  This is used to make sure all of
776  * those extents are sent to disk but does not wait on them
777  */
778 int btrfs_write_marked_extents(struct btrfs_root *root,
779 			       struct extent_io_tree *dirty_pages, int mark)
780 {
781 	int err = 0;
782 	int werr = 0;
783 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
784 	struct extent_state *cached_state = NULL;
785 	u64 start = 0;
786 	u64 end;
787 
788 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
789 				      mark, &cached_state)) {
790 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
791 				   mark, &cached_state, GFP_NOFS);
792 		cached_state = NULL;
793 		err = filemap_fdatawrite_range(mapping, start, end);
794 		if (err)
795 			werr = err;
796 		cond_resched();
797 		start = end + 1;
798 	}
799 	if (err)
800 		werr = err;
801 	return werr;
802 }
803 
804 /*
805  * when btree blocks are allocated, they have some corresponding bits set for
806  * them in one of two extent_io trees.  This is used to make sure all of
807  * those extents are on disk for transaction or log commit.  We wait
808  * on all the pages and clear them from the dirty pages state tree
809  */
810 int btrfs_wait_marked_extents(struct btrfs_root *root,
811 			      struct extent_io_tree *dirty_pages, int mark)
812 {
813 	int err = 0;
814 	int werr = 0;
815 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
816 	struct extent_state *cached_state = NULL;
817 	u64 start = 0;
818 	u64 end;
819 
820 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
821 				      EXTENT_NEED_WAIT, &cached_state)) {
822 		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
823 				 0, 0, &cached_state, GFP_NOFS);
824 		err = filemap_fdatawait_range(mapping, start, end);
825 		if (err)
826 			werr = err;
827 		cond_resched();
828 		start = end + 1;
829 	}
830 	if (err)
831 		werr = err;
832 	return werr;
833 }
834 
835 /*
836  * when btree blocks are allocated, they have some corresponding bits set for
837  * them in one of two extent_io trees.  This is used to make sure all of
838  * those extents are on disk for transaction or log commit
839  */
840 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
841 				struct extent_io_tree *dirty_pages, int mark)
842 {
843 	int ret;
844 	int ret2;
845 	struct blk_plug plug;
846 
847 	blk_start_plug(&plug);
848 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
849 	blk_finish_plug(&plug);
850 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
851 
852 	if (ret)
853 		return ret;
854 	if (ret2)
855 		return ret2;
856 	return 0;
857 }
858 
859 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
860 				     struct btrfs_root *root)
861 {
862 	if (!trans || !trans->transaction) {
863 		struct inode *btree_inode;
864 		btree_inode = root->fs_info->btree_inode;
865 		return filemap_write_and_wait(btree_inode->i_mapping);
866 	}
867 	return btrfs_write_and_wait_marked_extents(root,
868 					   &trans->transaction->dirty_pages,
869 					   EXTENT_DIRTY);
870 }
871 
872 /*
873  * this is used to update the root pointer in the tree of tree roots.
874  *
875  * But, in the case of the extent allocation tree, updating the root
876  * pointer may allocate blocks which may change the root of the extent
877  * allocation tree.
878  *
879  * So, this loops and repeats and makes sure the cowonly root didn't
880  * change while the root pointer was being updated in the metadata.
881  */
882 static int update_cowonly_root(struct btrfs_trans_handle *trans,
883 			       struct btrfs_root *root)
884 {
885 	int ret;
886 	u64 old_root_bytenr;
887 	u64 old_root_used;
888 	struct btrfs_root *tree_root = root->fs_info->tree_root;
889 
890 	old_root_used = btrfs_root_used(&root->root_item);
891 	btrfs_write_dirty_block_groups(trans, root);
892 
893 	while (1) {
894 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
895 		if (old_root_bytenr == root->node->start &&
896 		    old_root_used == btrfs_root_used(&root->root_item))
897 			break;
898 
899 		btrfs_set_root_node(&root->root_item, root->node);
900 		ret = btrfs_update_root(trans, tree_root,
901 					&root->root_key,
902 					&root->root_item);
903 		if (ret)
904 			return ret;
905 
906 		old_root_used = btrfs_root_used(&root->root_item);
907 		ret = btrfs_write_dirty_block_groups(trans, root);
908 		if (ret)
909 			return ret;
910 	}
911 
912 	if (root != root->fs_info->extent_root)
913 		switch_commit_root(root);
914 
915 	return 0;
916 }
917 
918 /*
919  * update all the cowonly tree roots on disk
920  *
921  * The error handling in this function may not be obvious. Any of the
922  * failures will cause the file system to go offline. We still need
923  * to clean up the delayed refs.
924  */
925 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
926 					 struct btrfs_root *root)
927 {
928 	struct btrfs_fs_info *fs_info = root->fs_info;
929 	struct list_head *next;
930 	struct extent_buffer *eb;
931 	int ret;
932 
933 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
934 	if (ret)
935 		return ret;
936 
937 	eb = btrfs_lock_root_node(fs_info->tree_root);
938 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
939 			      0, &eb);
940 	btrfs_tree_unlock(eb);
941 	free_extent_buffer(eb);
942 
943 	if (ret)
944 		return ret;
945 
946 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
947 	if (ret)
948 		return ret;
949 
950 	ret = btrfs_run_dev_stats(trans, root->fs_info);
951 	WARN_ON(ret);
952 	ret = btrfs_run_dev_replace(trans, root->fs_info);
953 	WARN_ON(ret);
954 
955 	ret = btrfs_run_qgroups(trans, root->fs_info);
956 	BUG_ON(ret);
957 
958 	/* run_qgroups might have added some more refs */
959 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
960 	BUG_ON(ret);
961 
962 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
963 		next = fs_info->dirty_cowonly_roots.next;
964 		list_del_init(next);
965 		root = list_entry(next, struct btrfs_root, dirty_list);
966 
967 		ret = update_cowonly_root(trans, root);
968 		if (ret)
969 			return ret;
970 	}
971 
972 	down_write(&fs_info->extent_commit_sem);
973 	switch_commit_root(fs_info->extent_root);
974 	up_write(&fs_info->extent_commit_sem);
975 
976 	btrfs_after_dev_replace_commit(fs_info);
977 
978 	return 0;
979 }
980 
981 /*
982  * dead roots are old snapshots that need to be deleted.  This allocates
983  * a dirty root struct and adds it into the list of dead roots that need to
984  * be deleted
985  */
986 int btrfs_add_dead_root(struct btrfs_root *root)
987 {
988 	spin_lock(&root->fs_info->trans_lock);
989 	list_add_tail(&root->root_list, &root->fs_info->dead_roots);
990 	spin_unlock(&root->fs_info->trans_lock);
991 	return 0;
992 }
993 
994 /*
995  * update all the cowonly tree roots on disk
996  */
997 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
998 				    struct btrfs_root *root)
999 {
1000 	struct btrfs_root *gang[8];
1001 	struct btrfs_fs_info *fs_info = root->fs_info;
1002 	int i;
1003 	int ret;
1004 	int err = 0;
1005 
1006 	spin_lock(&fs_info->fs_roots_radix_lock);
1007 	while (1) {
1008 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1009 						 (void **)gang, 0,
1010 						 ARRAY_SIZE(gang),
1011 						 BTRFS_ROOT_TRANS_TAG);
1012 		if (ret == 0)
1013 			break;
1014 		for (i = 0; i < ret; i++) {
1015 			root = gang[i];
1016 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1017 					(unsigned long)root->root_key.objectid,
1018 					BTRFS_ROOT_TRANS_TAG);
1019 			spin_unlock(&fs_info->fs_roots_radix_lock);
1020 
1021 			btrfs_free_log(trans, root);
1022 			btrfs_update_reloc_root(trans, root);
1023 			btrfs_orphan_commit_root(trans, root);
1024 
1025 			btrfs_save_ino_cache(root, trans);
1026 
1027 			/* see comments in should_cow_block() */
1028 			root->force_cow = 0;
1029 			smp_wmb();
1030 
1031 			if (root->commit_root != root->node) {
1032 				mutex_lock(&root->fs_commit_mutex);
1033 				switch_commit_root(root);
1034 				btrfs_unpin_free_ino(root);
1035 				mutex_unlock(&root->fs_commit_mutex);
1036 
1037 				btrfs_set_root_node(&root->root_item,
1038 						    root->node);
1039 			}
1040 
1041 			err = btrfs_update_root(trans, fs_info->tree_root,
1042 						&root->root_key,
1043 						&root->root_item);
1044 			spin_lock(&fs_info->fs_roots_radix_lock);
1045 			if (err)
1046 				break;
1047 		}
1048 	}
1049 	spin_unlock(&fs_info->fs_roots_radix_lock);
1050 	return err;
1051 }
1052 
1053 /*
1054  * defrag a given btree.
1055  * Every leaf in the btree is read and defragged.
1056  */
1057 int btrfs_defrag_root(struct btrfs_root *root)
1058 {
1059 	struct btrfs_fs_info *info = root->fs_info;
1060 	struct btrfs_trans_handle *trans;
1061 	int ret;
1062 
1063 	if (xchg(&root->defrag_running, 1))
1064 		return 0;
1065 
1066 	while (1) {
1067 		trans = btrfs_start_transaction(root, 0);
1068 		if (IS_ERR(trans))
1069 			return PTR_ERR(trans);
1070 
1071 		ret = btrfs_defrag_leaves(trans, root);
1072 
1073 		btrfs_end_transaction(trans, root);
1074 		btrfs_btree_balance_dirty(info->tree_root);
1075 		cond_resched();
1076 
1077 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1078 			break;
1079 
1080 		if (btrfs_defrag_cancelled(root->fs_info)) {
1081 			printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1082 			ret = -EAGAIN;
1083 			break;
1084 		}
1085 	}
1086 	root->defrag_running = 0;
1087 	return ret;
1088 }
1089 
1090 /*
1091  * new snapshots need to be created at a very specific time in the
1092  * transaction commit.  This does the actual creation.
1093  *
1094  * Note:
1095  * If the error which may affect the commitment of the current transaction
1096  * happens, we should return the error number. If the error which just affect
1097  * the creation of the pending snapshots, just return 0.
1098  */
1099 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1100 				   struct btrfs_fs_info *fs_info,
1101 				   struct btrfs_pending_snapshot *pending)
1102 {
1103 	struct btrfs_key key;
1104 	struct btrfs_root_item *new_root_item;
1105 	struct btrfs_root *tree_root = fs_info->tree_root;
1106 	struct btrfs_root *root = pending->root;
1107 	struct btrfs_root *parent_root;
1108 	struct btrfs_block_rsv *rsv;
1109 	struct inode *parent_inode;
1110 	struct btrfs_path *path;
1111 	struct btrfs_dir_item *dir_item;
1112 	struct dentry *dentry;
1113 	struct extent_buffer *tmp;
1114 	struct extent_buffer *old;
1115 	struct timespec cur_time = CURRENT_TIME;
1116 	int ret = 0;
1117 	u64 to_reserve = 0;
1118 	u64 index = 0;
1119 	u64 objectid;
1120 	u64 root_flags;
1121 	uuid_le new_uuid;
1122 
1123 	path = btrfs_alloc_path();
1124 	if (!path) {
1125 		pending->error = -ENOMEM;
1126 		return 0;
1127 	}
1128 
1129 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1130 	if (!new_root_item) {
1131 		pending->error = -ENOMEM;
1132 		goto root_item_alloc_fail;
1133 	}
1134 
1135 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1136 	if (pending->error)
1137 		goto no_free_objectid;
1138 
1139 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1140 
1141 	if (to_reserve > 0) {
1142 		pending->error = btrfs_block_rsv_add(root,
1143 						     &pending->block_rsv,
1144 						     to_reserve,
1145 						     BTRFS_RESERVE_NO_FLUSH);
1146 		if (pending->error)
1147 			goto no_free_objectid;
1148 	}
1149 
1150 	pending->error = btrfs_qgroup_inherit(trans, fs_info,
1151 					      root->root_key.objectid,
1152 					      objectid, pending->inherit);
1153 	if (pending->error)
1154 		goto no_free_objectid;
1155 
1156 	key.objectid = objectid;
1157 	key.offset = (u64)-1;
1158 	key.type = BTRFS_ROOT_ITEM_KEY;
1159 
1160 	rsv = trans->block_rsv;
1161 	trans->block_rsv = &pending->block_rsv;
1162 	trans->bytes_reserved = trans->block_rsv->reserved;
1163 
1164 	dentry = pending->dentry;
1165 	parent_inode = pending->dir;
1166 	parent_root = BTRFS_I(parent_inode)->root;
1167 	record_root_in_trans(trans, parent_root);
1168 
1169 	/*
1170 	 * insert the directory item
1171 	 */
1172 	ret = btrfs_set_inode_index(parent_inode, &index);
1173 	BUG_ON(ret); /* -ENOMEM */
1174 
1175 	/* check if there is a file/dir which has the same name. */
1176 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1177 					 btrfs_ino(parent_inode),
1178 					 dentry->d_name.name,
1179 					 dentry->d_name.len, 0);
1180 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1181 		pending->error = -EEXIST;
1182 		goto dir_item_existed;
1183 	} else if (IS_ERR(dir_item)) {
1184 		ret = PTR_ERR(dir_item);
1185 		btrfs_abort_transaction(trans, root, ret);
1186 		goto fail;
1187 	}
1188 	btrfs_release_path(path);
1189 
1190 	/*
1191 	 * pull in the delayed directory update
1192 	 * and the delayed inode item
1193 	 * otherwise we corrupt the FS during
1194 	 * snapshot
1195 	 */
1196 	ret = btrfs_run_delayed_items(trans, root);
1197 	if (ret) {	/* Transaction aborted */
1198 		btrfs_abort_transaction(trans, root, ret);
1199 		goto fail;
1200 	}
1201 
1202 	record_root_in_trans(trans, root);
1203 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1204 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1205 	btrfs_check_and_init_root_item(new_root_item);
1206 
1207 	root_flags = btrfs_root_flags(new_root_item);
1208 	if (pending->readonly)
1209 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1210 	else
1211 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1212 	btrfs_set_root_flags(new_root_item, root_flags);
1213 
1214 	btrfs_set_root_generation_v2(new_root_item,
1215 			trans->transid);
1216 	uuid_le_gen(&new_uuid);
1217 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1218 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1219 			BTRFS_UUID_SIZE);
1220 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1221 		memset(new_root_item->received_uuid, 0,
1222 		       sizeof(new_root_item->received_uuid));
1223 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1224 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1225 		btrfs_set_root_stransid(new_root_item, 0);
1226 		btrfs_set_root_rtransid(new_root_item, 0);
1227 	}
1228 	new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1229 	new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1230 	btrfs_set_root_otransid(new_root_item, trans->transid);
1231 
1232 	old = btrfs_lock_root_node(root);
1233 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1234 	if (ret) {
1235 		btrfs_tree_unlock(old);
1236 		free_extent_buffer(old);
1237 		btrfs_abort_transaction(trans, root, ret);
1238 		goto fail;
1239 	}
1240 
1241 	btrfs_set_lock_blocking(old);
1242 
1243 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1244 	/* clean up in any case */
1245 	btrfs_tree_unlock(old);
1246 	free_extent_buffer(old);
1247 	if (ret) {
1248 		btrfs_abort_transaction(trans, root, ret);
1249 		goto fail;
1250 	}
1251 
1252 	/* see comments in should_cow_block() */
1253 	root->force_cow = 1;
1254 	smp_wmb();
1255 
1256 	btrfs_set_root_node(new_root_item, tmp);
1257 	/* record when the snapshot was created in key.offset */
1258 	key.offset = trans->transid;
1259 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1260 	btrfs_tree_unlock(tmp);
1261 	free_extent_buffer(tmp);
1262 	if (ret) {
1263 		btrfs_abort_transaction(trans, root, ret);
1264 		goto fail;
1265 	}
1266 
1267 	/*
1268 	 * insert root back/forward references
1269 	 */
1270 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1271 				 parent_root->root_key.objectid,
1272 				 btrfs_ino(parent_inode), index,
1273 				 dentry->d_name.name, dentry->d_name.len);
1274 	if (ret) {
1275 		btrfs_abort_transaction(trans, root, ret);
1276 		goto fail;
1277 	}
1278 
1279 	key.offset = (u64)-1;
1280 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1281 	if (IS_ERR(pending->snap)) {
1282 		ret = PTR_ERR(pending->snap);
1283 		btrfs_abort_transaction(trans, root, ret);
1284 		goto fail;
1285 	}
1286 
1287 	ret = btrfs_reloc_post_snapshot(trans, pending);
1288 	if (ret) {
1289 		btrfs_abort_transaction(trans, root, ret);
1290 		goto fail;
1291 	}
1292 
1293 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1294 	if (ret) {
1295 		btrfs_abort_transaction(trans, root, ret);
1296 		goto fail;
1297 	}
1298 
1299 	ret = btrfs_insert_dir_item(trans, parent_root,
1300 				    dentry->d_name.name, dentry->d_name.len,
1301 				    parent_inode, &key,
1302 				    BTRFS_FT_DIR, index);
1303 	/* We have check then name at the beginning, so it is impossible. */
1304 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1305 	if (ret) {
1306 		btrfs_abort_transaction(trans, root, ret);
1307 		goto fail;
1308 	}
1309 
1310 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1311 					 dentry->d_name.len * 2);
1312 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1313 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1314 	if (ret)
1315 		btrfs_abort_transaction(trans, root, ret);
1316 fail:
1317 	pending->error = ret;
1318 dir_item_existed:
1319 	trans->block_rsv = rsv;
1320 	trans->bytes_reserved = 0;
1321 no_free_objectid:
1322 	kfree(new_root_item);
1323 root_item_alloc_fail:
1324 	btrfs_free_path(path);
1325 	return ret;
1326 }
1327 
1328 /*
1329  * create all the snapshots we've scheduled for creation
1330  */
1331 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1332 					     struct btrfs_fs_info *fs_info)
1333 {
1334 	struct btrfs_pending_snapshot *pending, *next;
1335 	struct list_head *head = &trans->transaction->pending_snapshots;
1336 	int ret = 0;
1337 
1338 	list_for_each_entry_safe(pending, next, head, list) {
1339 		list_del(&pending->list);
1340 		ret = create_pending_snapshot(trans, fs_info, pending);
1341 		if (ret)
1342 			break;
1343 	}
1344 	return ret;
1345 }
1346 
1347 static void update_super_roots(struct btrfs_root *root)
1348 {
1349 	struct btrfs_root_item *root_item;
1350 	struct btrfs_super_block *super;
1351 
1352 	super = root->fs_info->super_copy;
1353 
1354 	root_item = &root->fs_info->chunk_root->root_item;
1355 	super->chunk_root = root_item->bytenr;
1356 	super->chunk_root_generation = root_item->generation;
1357 	super->chunk_root_level = root_item->level;
1358 
1359 	root_item = &root->fs_info->tree_root->root_item;
1360 	super->root = root_item->bytenr;
1361 	super->generation = root_item->generation;
1362 	super->root_level = root_item->level;
1363 	if (btrfs_test_opt(root, SPACE_CACHE))
1364 		super->cache_generation = root_item->generation;
1365 }
1366 
1367 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1368 {
1369 	struct btrfs_transaction *trans;
1370 	int ret = 0;
1371 
1372 	spin_lock(&info->trans_lock);
1373 	trans = info->running_transaction;
1374 	if (trans)
1375 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1376 	spin_unlock(&info->trans_lock);
1377 	return ret;
1378 }
1379 
1380 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1381 {
1382 	struct btrfs_transaction *trans;
1383 	int ret = 0;
1384 
1385 	spin_lock(&info->trans_lock);
1386 	trans = info->running_transaction;
1387 	if (trans)
1388 		ret = is_transaction_blocked(trans);
1389 	spin_unlock(&info->trans_lock);
1390 	return ret;
1391 }
1392 
1393 /*
1394  * wait for the current transaction commit to start and block subsequent
1395  * transaction joins
1396  */
1397 static void wait_current_trans_commit_start(struct btrfs_root *root,
1398 					    struct btrfs_transaction *trans)
1399 {
1400 	wait_event(root->fs_info->transaction_blocked_wait,
1401 		   trans->state >= TRANS_STATE_COMMIT_START ||
1402 		   trans->aborted);
1403 }
1404 
1405 /*
1406  * wait for the current transaction to start and then become unblocked.
1407  * caller holds ref.
1408  */
1409 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1410 					 struct btrfs_transaction *trans)
1411 {
1412 	wait_event(root->fs_info->transaction_wait,
1413 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1414 		   trans->aborted);
1415 }
1416 
1417 /*
1418  * commit transactions asynchronously. once btrfs_commit_transaction_async
1419  * returns, any subsequent transaction will not be allowed to join.
1420  */
1421 struct btrfs_async_commit {
1422 	struct btrfs_trans_handle *newtrans;
1423 	struct btrfs_root *root;
1424 	struct work_struct work;
1425 };
1426 
1427 static void do_async_commit(struct work_struct *work)
1428 {
1429 	struct btrfs_async_commit *ac =
1430 		container_of(work, struct btrfs_async_commit, work);
1431 
1432 	/*
1433 	 * We've got freeze protection passed with the transaction.
1434 	 * Tell lockdep about it.
1435 	 */
1436 	if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1437 		rwsem_acquire_read(
1438 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1439 		     0, 1, _THIS_IP_);
1440 
1441 	current->journal_info = ac->newtrans;
1442 
1443 	btrfs_commit_transaction(ac->newtrans, ac->root);
1444 	kfree(ac);
1445 }
1446 
1447 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1448 				   struct btrfs_root *root,
1449 				   int wait_for_unblock)
1450 {
1451 	struct btrfs_async_commit *ac;
1452 	struct btrfs_transaction *cur_trans;
1453 
1454 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1455 	if (!ac)
1456 		return -ENOMEM;
1457 
1458 	INIT_WORK(&ac->work, do_async_commit);
1459 	ac->root = root;
1460 	ac->newtrans = btrfs_join_transaction(root);
1461 	if (IS_ERR(ac->newtrans)) {
1462 		int err = PTR_ERR(ac->newtrans);
1463 		kfree(ac);
1464 		return err;
1465 	}
1466 
1467 	/* take transaction reference */
1468 	cur_trans = trans->transaction;
1469 	atomic_inc(&cur_trans->use_count);
1470 
1471 	btrfs_end_transaction(trans, root);
1472 
1473 	/*
1474 	 * Tell lockdep we've released the freeze rwsem, since the
1475 	 * async commit thread will be the one to unlock it.
1476 	 */
1477 	if (trans->type < TRANS_JOIN_NOLOCK)
1478 		rwsem_release(
1479 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1480 			1, _THIS_IP_);
1481 
1482 	schedule_work(&ac->work);
1483 
1484 	/* wait for transaction to start and unblock */
1485 	if (wait_for_unblock)
1486 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1487 	else
1488 		wait_current_trans_commit_start(root, cur_trans);
1489 
1490 	if (current->journal_info == trans)
1491 		current->journal_info = NULL;
1492 
1493 	put_transaction(cur_trans);
1494 	return 0;
1495 }
1496 
1497 
1498 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1499 				struct btrfs_root *root, int err)
1500 {
1501 	struct btrfs_transaction *cur_trans = trans->transaction;
1502 	DEFINE_WAIT(wait);
1503 
1504 	WARN_ON(trans->use_count > 1);
1505 
1506 	btrfs_abort_transaction(trans, root, err);
1507 
1508 	spin_lock(&root->fs_info->trans_lock);
1509 
1510 	/*
1511 	 * If the transaction is removed from the list, it means this
1512 	 * transaction has been committed successfully, so it is impossible
1513 	 * to call the cleanup function.
1514 	 */
1515 	BUG_ON(list_empty(&cur_trans->list));
1516 
1517 	list_del_init(&cur_trans->list);
1518 	if (cur_trans == root->fs_info->running_transaction) {
1519 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1520 		spin_unlock(&root->fs_info->trans_lock);
1521 		wait_event(cur_trans->writer_wait,
1522 			   atomic_read(&cur_trans->num_writers) == 1);
1523 
1524 		spin_lock(&root->fs_info->trans_lock);
1525 	}
1526 	spin_unlock(&root->fs_info->trans_lock);
1527 
1528 	btrfs_cleanup_one_transaction(trans->transaction, root);
1529 
1530 	spin_lock(&root->fs_info->trans_lock);
1531 	if (cur_trans == root->fs_info->running_transaction)
1532 		root->fs_info->running_transaction = NULL;
1533 	spin_unlock(&root->fs_info->trans_lock);
1534 
1535 	put_transaction(cur_trans);
1536 	put_transaction(cur_trans);
1537 
1538 	trace_btrfs_transaction_commit(root);
1539 
1540 	btrfs_scrub_continue(root);
1541 
1542 	if (current->journal_info == trans)
1543 		current->journal_info = NULL;
1544 
1545 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1546 }
1547 
1548 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1549 					  struct btrfs_root *root)
1550 {
1551 	int ret;
1552 
1553 	ret = btrfs_run_delayed_items(trans, root);
1554 	if (ret)
1555 		return ret;
1556 
1557 	/*
1558 	 * running the delayed items may have added new refs. account
1559 	 * them now so that they hinder processing of more delayed refs
1560 	 * as little as possible.
1561 	 */
1562 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1563 
1564 	/*
1565 	 * rename don't use btrfs_join_transaction, so, once we
1566 	 * set the transaction to blocked above, we aren't going
1567 	 * to get any new ordered operations.  We can safely run
1568 	 * it here and no for sure that nothing new will be added
1569 	 * to the list
1570 	 */
1571 	ret = btrfs_run_ordered_operations(trans, root, 1);
1572 
1573 	return ret;
1574 }
1575 
1576 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1577 {
1578 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1579 		return btrfs_start_all_delalloc_inodes(fs_info, 1);
1580 	return 0;
1581 }
1582 
1583 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1584 {
1585 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1586 		btrfs_wait_all_ordered_extents(fs_info, 1);
1587 }
1588 
1589 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1590 			     struct btrfs_root *root)
1591 {
1592 	struct btrfs_transaction *cur_trans = trans->transaction;
1593 	struct btrfs_transaction *prev_trans = NULL;
1594 	int ret;
1595 
1596 	ret = btrfs_run_ordered_operations(trans, root, 0);
1597 	if (ret) {
1598 		btrfs_abort_transaction(trans, root, ret);
1599 		btrfs_end_transaction(trans, root);
1600 		return ret;
1601 	}
1602 
1603 	/* Stop the commit early if ->aborted is set */
1604 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1605 		ret = cur_trans->aborted;
1606 		btrfs_end_transaction(trans, root);
1607 		return ret;
1608 	}
1609 
1610 	/* make a pass through all the delayed refs we have so far
1611 	 * any runnings procs may add more while we are here
1612 	 */
1613 	ret = btrfs_run_delayed_refs(trans, root, 0);
1614 	if (ret) {
1615 		btrfs_end_transaction(trans, root);
1616 		return ret;
1617 	}
1618 
1619 	btrfs_trans_release_metadata(trans, root);
1620 	trans->block_rsv = NULL;
1621 	if (trans->qgroup_reserved) {
1622 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1623 		trans->qgroup_reserved = 0;
1624 	}
1625 
1626 	cur_trans = trans->transaction;
1627 
1628 	/*
1629 	 * set the flushing flag so procs in this transaction have to
1630 	 * start sending their work down.
1631 	 */
1632 	cur_trans->delayed_refs.flushing = 1;
1633 	smp_wmb();
1634 
1635 	if (!list_empty(&trans->new_bgs))
1636 		btrfs_create_pending_block_groups(trans, root);
1637 
1638 	ret = btrfs_run_delayed_refs(trans, root, 0);
1639 	if (ret) {
1640 		btrfs_end_transaction(trans, root);
1641 		return ret;
1642 	}
1643 
1644 	spin_lock(&root->fs_info->trans_lock);
1645 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1646 		spin_unlock(&root->fs_info->trans_lock);
1647 		atomic_inc(&cur_trans->use_count);
1648 		ret = btrfs_end_transaction(trans, root);
1649 
1650 		wait_for_commit(root, cur_trans);
1651 
1652 		put_transaction(cur_trans);
1653 
1654 		return ret;
1655 	}
1656 
1657 	cur_trans->state = TRANS_STATE_COMMIT_START;
1658 	wake_up(&root->fs_info->transaction_blocked_wait);
1659 
1660 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1661 		prev_trans = list_entry(cur_trans->list.prev,
1662 					struct btrfs_transaction, list);
1663 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1664 			atomic_inc(&prev_trans->use_count);
1665 			spin_unlock(&root->fs_info->trans_lock);
1666 
1667 			wait_for_commit(root, prev_trans);
1668 
1669 			put_transaction(prev_trans);
1670 		} else {
1671 			spin_unlock(&root->fs_info->trans_lock);
1672 		}
1673 	} else {
1674 		spin_unlock(&root->fs_info->trans_lock);
1675 	}
1676 
1677 	extwriter_counter_dec(cur_trans, trans->type);
1678 
1679 	ret = btrfs_start_delalloc_flush(root->fs_info);
1680 	if (ret)
1681 		goto cleanup_transaction;
1682 
1683 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1684 	if (ret)
1685 		goto cleanup_transaction;
1686 
1687 	wait_event(cur_trans->writer_wait,
1688 		   extwriter_counter_read(cur_trans) == 0);
1689 
1690 	/* some pending stuffs might be added after the previous flush. */
1691 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1692 	if (ret)
1693 		goto cleanup_transaction;
1694 
1695 	btrfs_wait_delalloc_flush(root->fs_info);
1696 	/*
1697 	 * Ok now we need to make sure to block out any other joins while we
1698 	 * commit the transaction.  We could have started a join before setting
1699 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1700 	 */
1701 	spin_lock(&root->fs_info->trans_lock);
1702 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1703 	spin_unlock(&root->fs_info->trans_lock);
1704 	wait_event(cur_trans->writer_wait,
1705 		   atomic_read(&cur_trans->num_writers) == 1);
1706 
1707 	/* ->aborted might be set after the previous check, so check it */
1708 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1709 		ret = cur_trans->aborted;
1710 		goto cleanup_transaction;
1711 	}
1712 	/*
1713 	 * the reloc mutex makes sure that we stop
1714 	 * the balancing code from coming in and moving
1715 	 * extents around in the middle of the commit
1716 	 */
1717 	mutex_lock(&root->fs_info->reloc_mutex);
1718 
1719 	/*
1720 	 * We needn't worry about the delayed items because we will
1721 	 * deal with them in create_pending_snapshot(), which is the
1722 	 * core function of the snapshot creation.
1723 	 */
1724 	ret = create_pending_snapshots(trans, root->fs_info);
1725 	if (ret) {
1726 		mutex_unlock(&root->fs_info->reloc_mutex);
1727 		goto cleanup_transaction;
1728 	}
1729 
1730 	/*
1731 	 * We insert the dir indexes of the snapshots and update the inode
1732 	 * of the snapshots' parents after the snapshot creation, so there
1733 	 * are some delayed items which are not dealt with. Now deal with
1734 	 * them.
1735 	 *
1736 	 * We needn't worry that this operation will corrupt the snapshots,
1737 	 * because all the tree which are snapshoted will be forced to COW
1738 	 * the nodes and leaves.
1739 	 */
1740 	ret = btrfs_run_delayed_items(trans, root);
1741 	if (ret) {
1742 		mutex_unlock(&root->fs_info->reloc_mutex);
1743 		goto cleanup_transaction;
1744 	}
1745 
1746 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1747 	if (ret) {
1748 		mutex_unlock(&root->fs_info->reloc_mutex);
1749 		goto cleanup_transaction;
1750 	}
1751 
1752 	/*
1753 	 * make sure none of the code above managed to slip in a
1754 	 * delayed item
1755 	 */
1756 	btrfs_assert_delayed_root_empty(root);
1757 
1758 	WARN_ON(cur_trans != trans->transaction);
1759 
1760 	btrfs_scrub_pause(root);
1761 	/* btrfs_commit_tree_roots is responsible for getting the
1762 	 * various roots consistent with each other.  Every pointer
1763 	 * in the tree of tree roots has to point to the most up to date
1764 	 * root for every subvolume and other tree.  So, we have to keep
1765 	 * the tree logging code from jumping in and changing any
1766 	 * of the trees.
1767 	 *
1768 	 * At this point in the commit, there can't be any tree-log
1769 	 * writers, but a little lower down we drop the trans mutex
1770 	 * and let new people in.  By holding the tree_log_mutex
1771 	 * from now until after the super is written, we avoid races
1772 	 * with the tree-log code.
1773 	 */
1774 	mutex_lock(&root->fs_info->tree_log_mutex);
1775 
1776 	ret = commit_fs_roots(trans, root);
1777 	if (ret) {
1778 		mutex_unlock(&root->fs_info->tree_log_mutex);
1779 		mutex_unlock(&root->fs_info->reloc_mutex);
1780 		goto cleanup_transaction;
1781 	}
1782 
1783 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1784 	 * safe to free the root of tree log roots
1785 	 */
1786 	btrfs_free_log_root_tree(trans, root->fs_info);
1787 
1788 	ret = commit_cowonly_roots(trans, root);
1789 	if (ret) {
1790 		mutex_unlock(&root->fs_info->tree_log_mutex);
1791 		mutex_unlock(&root->fs_info->reloc_mutex);
1792 		goto cleanup_transaction;
1793 	}
1794 
1795 	/*
1796 	 * The tasks which save the space cache and inode cache may also
1797 	 * update ->aborted, check it.
1798 	 */
1799 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1800 		ret = cur_trans->aborted;
1801 		mutex_unlock(&root->fs_info->tree_log_mutex);
1802 		mutex_unlock(&root->fs_info->reloc_mutex);
1803 		goto cleanup_transaction;
1804 	}
1805 
1806 	btrfs_prepare_extent_commit(trans, root);
1807 
1808 	cur_trans = root->fs_info->running_transaction;
1809 
1810 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1811 			    root->fs_info->tree_root->node);
1812 	switch_commit_root(root->fs_info->tree_root);
1813 
1814 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1815 			    root->fs_info->chunk_root->node);
1816 	switch_commit_root(root->fs_info->chunk_root);
1817 
1818 	assert_qgroups_uptodate(trans);
1819 	update_super_roots(root);
1820 
1821 	if (!root->fs_info->log_root_recovering) {
1822 		btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1823 		btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1824 	}
1825 
1826 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1827 	       sizeof(*root->fs_info->super_copy));
1828 
1829 	spin_lock(&root->fs_info->trans_lock);
1830 	cur_trans->state = TRANS_STATE_UNBLOCKED;
1831 	root->fs_info->running_transaction = NULL;
1832 	spin_unlock(&root->fs_info->trans_lock);
1833 	mutex_unlock(&root->fs_info->reloc_mutex);
1834 
1835 	wake_up(&root->fs_info->transaction_wait);
1836 
1837 	ret = btrfs_write_and_wait_transaction(trans, root);
1838 	if (ret) {
1839 		btrfs_error(root->fs_info, ret,
1840 			    "Error while writing out transaction");
1841 		mutex_unlock(&root->fs_info->tree_log_mutex);
1842 		goto cleanup_transaction;
1843 	}
1844 
1845 	ret = write_ctree_super(trans, root, 0);
1846 	if (ret) {
1847 		mutex_unlock(&root->fs_info->tree_log_mutex);
1848 		goto cleanup_transaction;
1849 	}
1850 
1851 	/*
1852 	 * the super is written, we can safely allow the tree-loggers
1853 	 * to go about their business
1854 	 */
1855 	mutex_unlock(&root->fs_info->tree_log_mutex);
1856 
1857 	btrfs_finish_extent_commit(trans, root);
1858 
1859 	root->fs_info->last_trans_committed = cur_trans->transid;
1860 	/*
1861 	 * We needn't acquire the lock here because there is no other task
1862 	 * which can change it.
1863 	 */
1864 	cur_trans->state = TRANS_STATE_COMPLETED;
1865 	wake_up(&cur_trans->commit_wait);
1866 
1867 	spin_lock(&root->fs_info->trans_lock);
1868 	list_del_init(&cur_trans->list);
1869 	spin_unlock(&root->fs_info->trans_lock);
1870 
1871 	put_transaction(cur_trans);
1872 	put_transaction(cur_trans);
1873 
1874 	if (trans->type & __TRANS_FREEZABLE)
1875 		sb_end_intwrite(root->fs_info->sb);
1876 
1877 	trace_btrfs_transaction_commit(root);
1878 
1879 	btrfs_scrub_continue(root);
1880 
1881 	if (current->journal_info == trans)
1882 		current->journal_info = NULL;
1883 
1884 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1885 
1886 	if (current != root->fs_info->transaction_kthread)
1887 		btrfs_run_delayed_iputs(root);
1888 
1889 	return ret;
1890 
1891 cleanup_transaction:
1892 	btrfs_trans_release_metadata(trans, root);
1893 	trans->block_rsv = NULL;
1894 	if (trans->qgroup_reserved) {
1895 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1896 		trans->qgroup_reserved = 0;
1897 	}
1898 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1899 	if (current->journal_info == trans)
1900 		current->journal_info = NULL;
1901 	cleanup_transaction(trans, root, ret);
1902 
1903 	return ret;
1904 }
1905 
1906 /*
1907  * return < 0 if error
1908  * 0 if there are no more dead_roots at the time of call
1909  * 1 there are more to be processed, call me again
1910  *
1911  * The return value indicates there are certainly more snapshots to delete, but
1912  * if there comes a new one during processing, it may return 0. We don't mind,
1913  * because btrfs_commit_super will poke cleaner thread and it will process it a
1914  * few seconds later.
1915  */
1916 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1917 {
1918 	int ret;
1919 	struct btrfs_fs_info *fs_info = root->fs_info;
1920 
1921 	spin_lock(&fs_info->trans_lock);
1922 	if (list_empty(&fs_info->dead_roots)) {
1923 		spin_unlock(&fs_info->trans_lock);
1924 		return 0;
1925 	}
1926 	root = list_first_entry(&fs_info->dead_roots,
1927 			struct btrfs_root, root_list);
1928 	list_del(&root->root_list);
1929 	spin_unlock(&fs_info->trans_lock);
1930 
1931 	pr_debug("btrfs: cleaner removing %llu\n",
1932 			(unsigned long long)root->objectid);
1933 
1934 	btrfs_kill_all_delayed_nodes(root);
1935 
1936 	if (btrfs_header_backref_rev(root->node) <
1937 			BTRFS_MIXED_BACKREF_REV)
1938 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1939 	else
1940 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1941 	/*
1942 	 * If we encounter a transaction abort during snapshot cleaning, we
1943 	 * don't want to crash here
1944 	 */
1945 	BUG_ON(ret < 0 && ret != -EAGAIN && ret != -EROFS);
1946 	return 1;
1947 }
1948