xref: /openbmc/linux/fs/btrfs/transaction.c (revision 4dc7ccf7)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 
31 #define BTRFS_ROOT_TRANS_TAG 0
32 
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 {
35 	WARN_ON(transaction->use_count == 0);
36 	transaction->use_count--;
37 	if (transaction->use_count == 0) {
38 		list_del_init(&transaction->list);
39 		memset(transaction, 0, sizeof(*transaction));
40 		kmem_cache_free(btrfs_transaction_cachep, transaction);
41 	}
42 }
43 
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46 	free_extent_buffer(root->commit_root);
47 	root->commit_root = btrfs_root_node(root);
48 }
49 
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root)
54 {
55 	struct btrfs_transaction *cur_trans;
56 	cur_trans = root->fs_info->running_transaction;
57 	if (!cur_trans) {
58 		cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59 					     GFP_NOFS);
60 		BUG_ON(!cur_trans);
61 		root->fs_info->generation++;
62 		cur_trans->num_writers = 1;
63 		cur_trans->num_joined = 0;
64 		cur_trans->transid = root->fs_info->generation;
65 		init_waitqueue_head(&cur_trans->writer_wait);
66 		init_waitqueue_head(&cur_trans->commit_wait);
67 		cur_trans->in_commit = 0;
68 		cur_trans->blocked = 0;
69 		cur_trans->use_count = 1;
70 		cur_trans->commit_done = 0;
71 		cur_trans->start_time = get_seconds();
72 
73 		cur_trans->delayed_refs.root = RB_ROOT;
74 		cur_trans->delayed_refs.num_entries = 0;
75 		cur_trans->delayed_refs.num_heads_ready = 0;
76 		cur_trans->delayed_refs.num_heads = 0;
77 		cur_trans->delayed_refs.flushing = 0;
78 		cur_trans->delayed_refs.run_delayed_start = 0;
79 		spin_lock_init(&cur_trans->delayed_refs.lock);
80 
81 		INIT_LIST_HEAD(&cur_trans->pending_snapshots);
82 		list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
83 		extent_io_tree_init(&cur_trans->dirty_pages,
84 				     root->fs_info->btree_inode->i_mapping,
85 				     GFP_NOFS);
86 		spin_lock(&root->fs_info->new_trans_lock);
87 		root->fs_info->running_transaction = cur_trans;
88 		spin_unlock(&root->fs_info->new_trans_lock);
89 	} else {
90 		cur_trans->num_writers++;
91 		cur_trans->num_joined++;
92 	}
93 
94 	return 0;
95 }
96 
97 /*
98  * this does all the record keeping required to make sure that a reference
99  * counted root is properly recorded in a given transaction.  This is required
100  * to make sure the old root from before we joined the transaction is deleted
101  * when the transaction commits
102  */
103 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
104 					 struct btrfs_root *root)
105 {
106 	if (root->ref_cows && root->last_trans < trans->transid) {
107 		WARN_ON(root == root->fs_info->extent_root);
108 		WARN_ON(root->commit_root != root->node);
109 
110 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
111 			   (unsigned long)root->root_key.objectid,
112 			   BTRFS_ROOT_TRANS_TAG);
113 		root->last_trans = trans->transid;
114 		btrfs_init_reloc_root(trans, root);
115 	}
116 	return 0;
117 }
118 
119 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
120 			       struct btrfs_root *root)
121 {
122 	if (!root->ref_cows)
123 		return 0;
124 
125 	mutex_lock(&root->fs_info->trans_mutex);
126 	if (root->last_trans == trans->transid) {
127 		mutex_unlock(&root->fs_info->trans_mutex);
128 		return 0;
129 	}
130 
131 	record_root_in_trans(trans, root);
132 	mutex_unlock(&root->fs_info->trans_mutex);
133 	return 0;
134 }
135 
136 /* wait for commit against the current transaction to become unblocked
137  * when this is done, it is safe to start a new transaction, but the current
138  * transaction might not be fully on disk.
139  */
140 static void wait_current_trans(struct btrfs_root *root)
141 {
142 	struct btrfs_transaction *cur_trans;
143 
144 	cur_trans = root->fs_info->running_transaction;
145 	if (cur_trans && cur_trans->blocked) {
146 		DEFINE_WAIT(wait);
147 		cur_trans->use_count++;
148 		while (1) {
149 			prepare_to_wait(&root->fs_info->transaction_wait, &wait,
150 					TASK_UNINTERRUPTIBLE);
151 			if (!cur_trans->blocked)
152 				break;
153 			mutex_unlock(&root->fs_info->trans_mutex);
154 			schedule();
155 			mutex_lock(&root->fs_info->trans_mutex);
156 		}
157 		finish_wait(&root->fs_info->transaction_wait, &wait);
158 		put_transaction(cur_trans);
159 	}
160 }
161 
162 enum btrfs_trans_type {
163 	TRANS_START,
164 	TRANS_JOIN,
165 	TRANS_USERSPACE,
166 };
167 
168 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
169 					     int num_blocks, int type)
170 {
171 	struct btrfs_trans_handle *h =
172 		kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
173 	int ret;
174 
175 	mutex_lock(&root->fs_info->trans_mutex);
176 	if (!root->fs_info->log_root_recovering &&
177 	    ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
178 	     type == TRANS_USERSPACE))
179 		wait_current_trans(root);
180 	ret = join_transaction(root);
181 	BUG_ON(ret);
182 
183 	h->transid = root->fs_info->running_transaction->transid;
184 	h->transaction = root->fs_info->running_transaction;
185 	h->blocks_reserved = num_blocks;
186 	h->blocks_used = 0;
187 	h->block_group = 0;
188 	h->alloc_exclude_nr = 0;
189 	h->alloc_exclude_start = 0;
190 	h->delayed_ref_updates = 0;
191 
192 	if (!current->journal_info && type != TRANS_USERSPACE)
193 		current->journal_info = h;
194 
195 	root->fs_info->running_transaction->use_count++;
196 	record_root_in_trans(h, root);
197 	mutex_unlock(&root->fs_info->trans_mutex);
198 	return h;
199 }
200 
201 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
202 						   int num_blocks)
203 {
204 	return start_transaction(root, num_blocks, TRANS_START);
205 }
206 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
207 						   int num_blocks)
208 {
209 	return start_transaction(root, num_blocks, TRANS_JOIN);
210 }
211 
212 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
213 							 int num_blocks)
214 {
215 	return start_transaction(r, num_blocks, TRANS_USERSPACE);
216 }
217 
218 /* wait for a transaction commit to be fully complete */
219 static noinline int wait_for_commit(struct btrfs_root *root,
220 				    struct btrfs_transaction *commit)
221 {
222 	DEFINE_WAIT(wait);
223 	mutex_lock(&root->fs_info->trans_mutex);
224 	while (!commit->commit_done) {
225 		prepare_to_wait(&commit->commit_wait, &wait,
226 				TASK_UNINTERRUPTIBLE);
227 		if (commit->commit_done)
228 			break;
229 		mutex_unlock(&root->fs_info->trans_mutex);
230 		schedule();
231 		mutex_lock(&root->fs_info->trans_mutex);
232 	}
233 	mutex_unlock(&root->fs_info->trans_mutex);
234 	finish_wait(&commit->commit_wait, &wait);
235 	return 0;
236 }
237 
238 #if 0
239 /*
240  * rate limit against the drop_snapshot code.  This helps to slow down new
241  * operations if the drop_snapshot code isn't able to keep up.
242  */
243 static void throttle_on_drops(struct btrfs_root *root)
244 {
245 	struct btrfs_fs_info *info = root->fs_info;
246 	int harder_count = 0;
247 
248 harder:
249 	if (atomic_read(&info->throttles)) {
250 		DEFINE_WAIT(wait);
251 		int thr;
252 		thr = atomic_read(&info->throttle_gen);
253 
254 		do {
255 			prepare_to_wait(&info->transaction_throttle,
256 					&wait, TASK_UNINTERRUPTIBLE);
257 			if (!atomic_read(&info->throttles)) {
258 				finish_wait(&info->transaction_throttle, &wait);
259 				break;
260 			}
261 			schedule();
262 			finish_wait(&info->transaction_throttle, &wait);
263 		} while (thr == atomic_read(&info->throttle_gen));
264 		harder_count++;
265 
266 		if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
267 		    harder_count < 2)
268 			goto harder;
269 
270 		if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
271 		    harder_count < 10)
272 			goto harder;
273 
274 		if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
275 		    harder_count < 20)
276 			goto harder;
277 	}
278 }
279 #endif
280 
281 void btrfs_throttle(struct btrfs_root *root)
282 {
283 	mutex_lock(&root->fs_info->trans_mutex);
284 	if (!root->fs_info->open_ioctl_trans)
285 		wait_current_trans(root);
286 	mutex_unlock(&root->fs_info->trans_mutex);
287 }
288 
289 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
290 			  struct btrfs_root *root, int throttle)
291 {
292 	struct btrfs_transaction *cur_trans;
293 	struct btrfs_fs_info *info = root->fs_info;
294 	int count = 0;
295 
296 	while (count < 4) {
297 		unsigned long cur = trans->delayed_ref_updates;
298 		trans->delayed_ref_updates = 0;
299 		if (cur &&
300 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
301 			trans->delayed_ref_updates = 0;
302 
303 			/*
304 			 * do a full flush if the transaction is trying
305 			 * to close
306 			 */
307 			if (trans->transaction->delayed_refs.flushing)
308 				cur = 0;
309 			btrfs_run_delayed_refs(trans, root, cur);
310 		} else {
311 			break;
312 		}
313 		count++;
314 	}
315 
316 	mutex_lock(&info->trans_mutex);
317 	cur_trans = info->running_transaction;
318 	WARN_ON(cur_trans != trans->transaction);
319 	WARN_ON(cur_trans->num_writers < 1);
320 	cur_trans->num_writers--;
321 
322 	if (waitqueue_active(&cur_trans->writer_wait))
323 		wake_up(&cur_trans->writer_wait);
324 	put_transaction(cur_trans);
325 	mutex_unlock(&info->trans_mutex);
326 
327 	if (current->journal_info == trans)
328 		current->journal_info = NULL;
329 	memset(trans, 0, sizeof(*trans));
330 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
331 
332 	if (throttle)
333 		btrfs_run_delayed_iputs(root);
334 
335 	return 0;
336 }
337 
338 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
339 			  struct btrfs_root *root)
340 {
341 	return __btrfs_end_transaction(trans, root, 0);
342 }
343 
344 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
345 				   struct btrfs_root *root)
346 {
347 	return __btrfs_end_transaction(trans, root, 1);
348 }
349 
350 /*
351  * when btree blocks are allocated, they have some corresponding bits set for
352  * them in one of two extent_io trees.  This is used to make sure all of
353  * those extents are sent to disk but does not wait on them
354  */
355 int btrfs_write_marked_extents(struct btrfs_root *root,
356 			       struct extent_io_tree *dirty_pages, int mark)
357 {
358 	int ret;
359 	int err = 0;
360 	int werr = 0;
361 	struct page *page;
362 	struct inode *btree_inode = root->fs_info->btree_inode;
363 	u64 start = 0;
364 	u64 end;
365 	unsigned long index;
366 
367 	while (1) {
368 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
369 					    mark);
370 		if (ret)
371 			break;
372 		while (start <= end) {
373 			cond_resched();
374 
375 			index = start >> PAGE_CACHE_SHIFT;
376 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
377 			page = find_get_page(btree_inode->i_mapping, index);
378 			if (!page)
379 				continue;
380 
381 			btree_lock_page_hook(page);
382 			if (!page->mapping) {
383 				unlock_page(page);
384 				page_cache_release(page);
385 				continue;
386 			}
387 
388 			if (PageWriteback(page)) {
389 				if (PageDirty(page))
390 					wait_on_page_writeback(page);
391 				else {
392 					unlock_page(page);
393 					page_cache_release(page);
394 					continue;
395 				}
396 			}
397 			err = write_one_page(page, 0);
398 			if (err)
399 				werr = err;
400 			page_cache_release(page);
401 		}
402 	}
403 	if (err)
404 		werr = err;
405 	return werr;
406 }
407 
408 /*
409  * when btree blocks are allocated, they have some corresponding bits set for
410  * them in one of two extent_io trees.  This is used to make sure all of
411  * those extents are on disk for transaction or log commit.  We wait
412  * on all the pages and clear them from the dirty pages state tree
413  */
414 int btrfs_wait_marked_extents(struct btrfs_root *root,
415 			      struct extent_io_tree *dirty_pages, int mark)
416 {
417 	int ret;
418 	int err = 0;
419 	int werr = 0;
420 	struct page *page;
421 	struct inode *btree_inode = root->fs_info->btree_inode;
422 	u64 start = 0;
423 	u64 end;
424 	unsigned long index;
425 
426 	while (1) {
427 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
428 					    mark);
429 		if (ret)
430 			break;
431 
432 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
433 		while (start <= end) {
434 			index = start >> PAGE_CACHE_SHIFT;
435 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
436 			page = find_get_page(btree_inode->i_mapping, index);
437 			if (!page)
438 				continue;
439 			if (PageDirty(page)) {
440 				btree_lock_page_hook(page);
441 				wait_on_page_writeback(page);
442 				err = write_one_page(page, 0);
443 				if (err)
444 					werr = err;
445 			}
446 			wait_on_page_writeback(page);
447 			page_cache_release(page);
448 			cond_resched();
449 		}
450 	}
451 	if (err)
452 		werr = err;
453 	return werr;
454 }
455 
456 /*
457  * when btree blocks are allocated, they have some corresponding bits set for
458  * them in one of two extent_io trees.  This is used to make sure all of
459  * those extents are on disk for transaction or log commit
460  */
461 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
462 				struct extent_io_tree *dirty_pages, int mark)
463 {
464 	int ret;
465 	int ret2;
466 
467 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
468 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
469 	return ret || ret2;
470 }
471 
472 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
473 				     struct btrfs_root *root)
474 {
475 	if (!trans || !trans->transaction) {
476 		struct inode *btree_inode;
477 		btree_inode = root->fs_info->btree_inode;
478 		return filemap_write_and_wait(btree_inode->i_mapping);
479 	}
480 	return btrfs_write_and_wait_marked_extents(root,
481 					   &trans->transaction->dirty_pages,
482 					   EXTENT_DIRTY);
483 }
484 
485 /*
486  * this is used to update the root pointer in the tree of tree roots.
487  *
488  * But, in the case of the extent allocation tree, updating the root
489  * pointer may allocate blocks which may change the root of the extent
490  * allocation tree.
491  *
492  * So, this loops and repeats and makes sure the cowonly root didn't
493  * change while the root pointer was being updated in the metadata.
494  */
495 static int update_cowonly_root(struct btrfs_trans_handle *trans,
496 			       struct btrfs_root *root)
497 {
498 	int ret;
499 	u64 old_root_bytenr;
500 	u64 old_root_used;
501 	struct btrfs_root *tree_root = root->fs_info->tree_root;
502 
503 	old_root_used = btrfs_root_used(&root->root_item);
504 	btrfs_write_dirty_block_groups(trans, root);
505 
506 	while (1) {
507 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
508 		if (old_root_bytenr == root->node->start &&
509 		    old_root_used == btrfs_root_used(&root->root_item))
510 			break;
511 
512 		btrfs_set_root_node(&root->root_item, root->node);
513 		ret = btrfs_update_root(trans, tree_root,
514 					&root->root_key,
515 					&root->root_item);
516 		BUG_ON(ret);
517 
518 		old_root_used = btrfs_root_used(&root->root_item);
519 		ret = btrfs_write_dirty_block_groups(trans, root);
520 		BUG_ON(ret);
521 	}
522 
523 	if (root != root->fs_info->extent_root)
524 		switch_commit_root(root);
525 
526 	return 0;
527 }
528 
529 /*
530  * update all the cowonly tree roots on disk
531  */
532 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
533 					 struct btrfs_root *root)
534 {
535 	struct btrfs_fs_info *fs_info = root->fs_info;
536 	struct list_head *next;
537 	struct extent_buffer *eb;
538 	int ret;
539 
540 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
541 	BUG_ON(ret);
542 
543 	eb = btrfs_lock_root_node(fs_info->tree_root);
544 	btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
545 	btrfs_tree_unlock(eb);
546 	free_extent_buffer(eb);
547 
548 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
549 	BUG_ON(ret);
550 
551 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
552 		next = fs_info->dirty_cowonly_roots.next;
553 		list_del_init(next);
554 		root = list_entry(next, struct btrfs_root, dirty_list);
555 
556 		update_cowonly_root(trans, root);
557 	}
558 
559 	down_write(&fs_info->extent_commit_sem);
560 	switch_commit_root(fs_info->extent_root);
561 	up_write(&fs_info->extent_commit_sem);
562 
563 	return 0;
564 }
565 
566 /*
567  * dead roots are old snapshots that need to be deleted.  This allocates
568  * a dirty root struct and adds it into the list of dead roots that need to
569  * be deleted
570  */
571 int btrfs_add_dead_root(struct btrfs_root *root)
572 {
573 	mutex_lock(&root->fs_info->trans_mutex);
574 	list_add(&root->root_list, &root->fs_info->dead_roots);
575 	mutex_unlock(&root->fs_info->trans_mutex);
576 	return 0;
577 }
578 
579 /*
580  * update all the cowonly tree roots on disk
581  */
582 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
583 				    struct btrfs_root *root)
584 {
585 	struct btrfs_root *gang[8];
586 	struct btrfs_fs_info *fs_info = root->fs_info;
587 	int i;
588 	int ret;
589 	int err = 0;
590 
591 	while (1) {
592 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
593 						 (void **)gang, 0,
594 						 ARRAY_SIZE(gang),
595 						 BTRFS_ROOT_TRANS_TAG);
596 		if (ret == 0)
597 			break;
598 		for (i = 0; i < ret; i++) {
599 			root = gang[i];
600 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
601 					(unsigned long)root->root_key.objectid,
602 					BTRFS_ROOT_TRANS_TAG);
603 
604 			btrfs_free_log(trans, root);
605 			btrfs_update_reloc_root(trans, root);
606 
607 			if (root->commit_root != root->node) {
608 				switch_commit_root(root);
609 				btrfs_set_root_node(&root->root_item,
610 						    root->node);
611 			}
612 
613 			err = btrfs_update_root(trans, fs_info->tree_root,
614 						&root->root_key,
615 						&root->root_item);
616 			if (err)
617 				break;
618 		}
619 	}
620 	return err;
621 }
622 
623 /*
624  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
625  * otherwise every leaf in the btree is read and defragged.
626  */
627 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
628 {
629 	struct btrfs_fs_info *info = root->fs_info;
630 	int ret;
631 	struct btrfs_trans_handle *trans;
632 	unsigned long nr;
633 
634 	smp_mb();
635 	if (root->defrag_running)
636 		return 0;
637 	trans = btrfs_start_transaction(root, 1);
638 	while (1) {
639 		root->defrag_running = 1;
640 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
641 		nr = trans->blocks_used;
642 		btrfs_end_transaction(trans, root);
643 		btrfs_btree_balance_dirty(info->tree_root, nr);
644 		cond_resched();
645 
646 		trans = btrfs_start_transaction(root, 1);
647 		if (root->fs_info->closing || ret != -EAGAIN)
648 			break;
649 	}
650 	root->defrag_running = 0;
651 	smp_mb();
652 	btrfs_end_transaction(trans, root);
653 	return 0;
654 }
655 
656 #if 0
657 /*
658  * when dropping snapshots, we generate a ton of delayed refs, and it makes
659  * sense not to join the transaction while it is trying to flush the current
660  * queue of delayed refs out.
661  *
662  * This is used by the drop snapshot code only
663  */
664 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
665 {
666 	DEFINE_WAIT(wait);
667 
668 	mutex_lock(&info->trans_mutex);
669 	while (info->running_transaction &&
670 	       info->running_transaction->delayed_refs.flushing) {
671 		prepare_to_wait(&info->transaction_wait, &wait,
672 				TASK_UNINTERRUPTIBLE);
673 		mutex_unlock(&info->trans_mutex);
674 
675 		schedule();
676 
677 		mutex_lock(&info->trans_mutex);
678 		finish_wait(&info->transaction_wait, &wait);
679 	}
680 	mutex_unlock(&info->trans_mutex);
681 	return 0;
682 }
683 
684 /*
685  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
686  * all of them
687  */
688 int btrfs_drop_dead_root(struct btrfs_root *root)
689 {
690 	struct btrfs_trans_handle *trans;
691 	struct btrfs_root *tree_root = root->fs_info->tree_root;
692 	unsigned long nr;
693 	int ret;
694 
695 	while (1) {
696 		/*
697 		 * we don't want to jump in and create a bunch of
698 		 * delayed refs if the transaction is starting to close
699 		 */
700 		wait_transaction_pre_flush(tree_root->fs_info);
701 		trans = btrfs_start_transaction(tree_root, 1);
702 
703 		/*
704 		 * we've joined a transaction, make sure it isn't
705 		 * closing right now
706 		 */
707 		if (trans->transaction->delayed_refs.flushing) {
708 			btrfs_end_transaction(trans, tree_root);
709 			continue;
710 		}
711 
712 		ret = btrfs_drop_snapshot(trans, root);
713 		if (ret != -EAGAIN)
714 			break;
715 
716 		ret = btrfs_update_root(trans, tree_root,
717 					&root->root_key,
718 					&root->root_item);
719 		if (ret)
720 			break;
721 
722 		nr = trans->blocks_used;
723 		ret = btrfs_end_transaction(trans, tree_root);
724 		BUG_ON(ret);
725 
726 		btrfs_btree_balance_dirty(tree_root, nr);
727 		cond_resched();
728 	}
729 	BUG_ON(ret);
730 
731 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
732 	BUG_ON(ret);
733 
734 	nr = trans->blocks_used;
735 	ret = btrfs_end_transaction(trans, tree_root);
736 	BUG_ON(ret);
737 
738 	free_extent_buffer(root->node);
739 	free_extent_buffer(root->commit_root);
740 	kfree(root);
741 
742 	btrfs_btree_balance_dirty(tree_root, nr);
743 	return ret;
744 }
745 #endif
746 
747 /*
748  * new snapshots need to be created at a very specific time in the
749  * transaction commit.  This does the actual creation
750  */
751 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
752 				   struct btrfs_fs_info *fs_info,
753 				   struct btrfs_pending_snapshot *pending)
754 {
755 	struct btrfs_key key;
756 	struct btrfs_root_item *new_root_item;
757 	struct btrfs_root *tree_root = fs_info->tree_root;
758 	struct btrfs_root *root = pending->root;
759 	struct btrfs_root *parent_root;
760 	struct inode *parent_inode;
761 	struct extent_buffer *tmp;
762 	struct extent_buffer *old;
763 	int ret;
764 	u64 objectid;
765 	int namelen;
766 	u64 index = 0;
767 
768 	parent_inode = pending->dentry->d_parent->d_inode;
769 	parent_root = BTRFS_I(parent_inode)->root;
770 
771 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
772 	if (!new_root_item) {
773 		ret = -ENOMEM;
774 		goto fail;
775 	}
776 	ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
777 	if (ret)
778 		goto fail;
779 
780 	key.objectid = objectid;
781 	/* record when the snapshot was created in key.offset */
782 	key.offset = trans->transid;
783 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
784 
785 	memcpy(&pending->root_key, &key, sizeof(key));
786 	pending->root_key.offset = (u64)-1;
787 
788 	record_root_in_trans(trans, parent_root);
789 	/*
790 	 * insert the directory item
791 	 */
792 	namelen = strlen(pending->name);
793 	ret = btrfs_set_inode_index(parent_inode, &index);
794 	BUG_ON(ret);
795 	ret = btrfs_insert_dir_item(trans, parent_root,
796 			    pending->name, namelen,
797 			    parent_inode->i_ino,
798 			    &pending->root_key, BTRFS_FT_DIR, index);
799 	BUG_ON(ret);
800 
801 	btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
802 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
803 	BUG_ON(ret);
804 
805 	record_root_in_trans(trans, root);
806 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
807 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
808 
809 	old = btrfs_lock_root_node(root);
810 	btrfs_cow_block(trans, root, old, NULL, 0, &old);
811 	btrfs_set_lock_blocking(old);
812 
813 	btrfs_copy_root(trans, root, old, &tmp, objectid);
814 	btrfs_tree_unlock(old);
815 	free_extent_buffer(old);
816 
817 	btrfs_set_root_node(new_root_item, tmp);
818 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
819 				new_root_item);
820 	BUG_ON(ret);
821 	btrfs_tree_unlock(tmp);
822 	free_extent_buffer(tmp);
823 
824 	ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
825 				 pending->root_key.objectid,
826 				 parent_root->root_key.objectid,
827 				 parent_inode->i_ino, index, pending->name,
828 				 namelen);
829 	BUG_ON(ret);
830 
831 fail:
832 	kfree(new_root_item);
833 	return ret;
834 }
835 
836 /*
837  * create all the snapshots we've scheduled for creation
838  */
839 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
840 					     struct btrfs_fs_info *fs_info)
841 {
842 	struct btrfs_pending_snapshot *pending;
843 	struct list_head *head = &trans->transaction->pending_snapshots;
844 	int ret;
845 
846 	list_for_each_entry(pending, head, list) {
847 		ret = create_pending_snapshot(trans, fs_info, pending);
848 		BUG_ON(ret);
849 	}
850 	return 0;
851 }
852 
853 static void update_super_roots(struct btrfs_root *root)
854 {
855 	struct btrfs_root_item *root_item;
856 	struct btrfs_super_block *super;
857 
858 	super = &root->fs_info->super_copy;
859 
860 	root_item = &root->fs_info->chunk_root->root_item;
861 	super->chunk_root = root_item->bytenr;
862 	super->chunk_root_generation = root_item->generation;
863 	super->chunk_root_level = root_item->level;
864 
865 	root_item = &root->fs_info->tree_root->root_item;
866 	super->root = root_item->bytenr;
867 	super->generation = root_item->generation;
868 	super->root_level = root_item->level;
869 }
870 
871 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
872 {
873 	int ret = 0;
874 	spin_lock(&info->new_trans_lock);
875 	if (info->running_transaction)
876 		ret = info->running_transaction->in_commit;
877 	spin_unlock(&info->new_trans_lock);
878 	return ret;
879 }
880 
881 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
882 			     struct btrfs_root *root)
883 {
884 	unsigned long joined = 0;
885 	unsigned long timeout = 1;
886 	struct btrfs_transaction *cur_trans;
887 	struct btrfs_transaction *prev_trans = NULL;
888 	DEFINE_WAIT(wait);
889 	int ret;
890 	int should_grow = 0;
891 	unsigned long now = get_seconds();
892 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
893 
894 	btrfs_run_ordered_operations(root, 0);
895 
896 	/* make a pass through all the delayed refs we have so far
897 	 * any runnings procs may add more while we are here
898 	 */
899 	ret = btrfs_run_delayed_refs(trans, root, 0);
900 	BUG_ON(ret);
901 
902 	cur_trans = trans->transaction;
903 	/*
904 	 * set the flushing flag so procs in this transaction have to
905 	 * start sending their work down.
906 	 */
907 	cur_trans->delayed_refs.flushing = 1;
908 
909 	ret = btrfs_run_delayed_refs(trans, root, 0);
910 	BUG_ON(ret);
911 
912 	mutex_lock(&root->fs_info->trans_mutex);
913 	if (cur_trans->in_commit) {
914 		cur_trans->use_count++;
915 		mutex_unlock(&root->fs_info->trans_mutex);
916 		btrfs_end_transaction(trans, root);
917 
918 		ret = wait_for_commit(root, cur_trans);
919 		BUG_ON(ret);
920 
921 		mutex_lock(&root->fs_info->trans_mutex);
922 		put_transaction(cur_trans);
923 		mutex_unlock(&root->fs_info->trans_mutex);
924 
925 		return 0;
926 	}
927 
928 	trans->transaction->in_commit = 1;
929 	trans->transaction->blocked = 1;
930 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
931 		prev_trans = list_entry(cur_trans->list.prev,
932 					struct btrfs_transaction, list);
933 		if (!prev_trans->commit_done) {
934 			prev_trans->use_count++;
935 			mutex_unlock(&root->fs_info->trans_mutex);
936 
937 			wait_for_commit(root, prev_trans);
938 
939 			mutex_lock(&root->fs_info->trans_mutex);
940 			put_transaction(prev_trans);
941 		}
942 	}
943 
944 	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
945 		should_grow = 1;
946 
947 	do {
948 		int snap_pending = 0;
949 		joined = cur_trans->num_joined;
950 		if (!list_empty(&trans->transaction->pending_snapshots))
951 			snap_pending = 1;
952 
953 		WARN_ON(cur_trans != trans->transaction);
954 		prepare_to_wait(&cur_trans->writer_wait, &wait,
955 				TASK_UNINTERRUPTIBLE);
956 
957 		if (cur_trans->num_writers > 1)
958 			timeout = MAX_SCHEDULE_TIMEOUT;
959 		else if (should_grow)
960 			timeout = 1;
961 
962 		mutex_unlock(&root->fs_info->trans_mutex);
963 
964 		if (flush_on_commit || snap_pending) {
965 			btrfs_start_delalloc_inodes(root, 1);
966 			ret = btrfs_wait_ordered_extents(root, 0, 1);
967 			BUG_ON(ret);
968 		}
969 
970 		/*
971 		 * rename don't use btrfs_join_transaction, so, once we
972 		 * set the transaction to blocked above, we aren't going
973 		 * to get any new ordered operations.  We can safely run
974 		 * it here and no for sure that nothing new will be added
975 		 * to the list
976 		 */
977 		btrfs_run_ordered_operations(root, 1);
978 
979 		smp_mb();
980 		if (cur_trans->num_writers > 1 || should_grow)
981 			schedule_timeout(timeout);
982 
983 		mutex_lock(&root->fs_info->trans_mutex);
984 		finish_wait(&cur_trans->writer_wait, &wait);
985 	} while (cur_trans->num_writers > 1 ||
986 		 (should_grow && cur_trans->num_joined != joined));
987 
988 	ret = create_pending_snapshots(trans, root->fs_info);
989 	BUG_ON(ret);
990 
991 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
992 	BUG_ON(ret);
993 
994 	WARN_ON(cur_trans != trans->transaction);
995 
996 	/* btrfs_commit_tree_roots is responsible for getting the
997 	 * various roots consistent with each other.  Every pointer
998 	 * in the tree of tree roots has to point to the most up to date
999 	 * root for every subvolume and other tree.  So, we have to keep
1000 	 * the tree logging code from jumping in and changing any
1001 	 * of the trees.
1002 	 *
1003 	 * At this point in the commit, there can't be any tree-log
1004 	 * writers, but a little lower down we drop the trans mutex
1005 	 * and let new people in.  By holding the tree_log_mutex
1006 	 * from now until after the super is written, we avoid races
1007 	 * with the tree-log code.
1008 	 */
1009 	mutex_lock(&root->fs_info->tree_log_mutex);
1010 
1011 	ret = commit_fs_roots(trans, root);
1012 	BUG_ON(ret);
1013 
1014 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1015 	 * safe to free the root of tree log roots
1016 	 */
1017 	btrfs_free_log_root_tree(trans, root->fs_info);
1018 
1019 	ret = commit_cowonly_roots(trans, root);
1020 	BUG_ON(ret);
1021 
1022 	btrfs_prepare_extent_commit(trans, root);
1023 
1024 	cur_trans = root->fs_info->running_transaction;
1025 	spin_lock(&root->fs_info->new_trans_lock);
1026 	root->fs_info->running_transaction = NULL;
1027 	spin_unlock(&root->fs_info->new_trans_lock);
1028 
1029 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1030 			    root->fs_info->tree_root->node);
1031 	switch_commit_root(root->fs_info->tree_root);
1032 
1033 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1034 			    root->fs_info->chunk_root->node);
1035 	switch_commit_root(root->fs_info->chunk_root);
1036 
1037 	update_super_roots(root);
1038 
1039 	if (!root->fs_info->log_root_recovering) {
1040 		btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1041 		btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1042 	}
1043 
1044 	memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1045 	       sizeof(root->fs_info->super_copy));
1046 
1047 	trans->transaction->blocked = 0;
1048 
1049 	wake_up(&root->fs_info->transaction_wait);
1050 
1051 	mutex_unlock(&root->fs_info->trans_mutex);
1052 	ret = btrfs_write_and_wait_transaction(trans, root);
1053 	BUG_ON(ret);
1054 	write_ctree_super(trans, root, 0);
1055 
1056 	/*
1057 	 * the super is written, we can safely allow the tree-loggers
1058 	 * to go about their business
1059 	 */
1060 	mutex_unlock(&root->fs_info->tree_log_mutex);
1061 
1062 	btrfs_finish_extent_commit(trans, root);
1063 
1064 	mutex_lock(&root->fs_info->trans_mutex);
1065 
1066 	cur_trans->commit_done = 1;
1067 
1068 	root->fs_info->last_trans_committed = cur_trans->transid;
1069 
1070 	wake_up(&cur_trans->commit_wait);
1071 
1072 	put_transaction(cur_trans);
1073 	put_transaction(cur_trans);
1074 
1075 	mutex_unlock(&root->fs_info->trans_mutex);
1076 
1077 	if (current->journal_info == trans)
1078 		current->journal_info = NULL;
1079 
1080 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1081 
1082 	if (current != root->fs_info->transaction_kthread)
1083 		btrfs_run_delayed_iputs(root);
1084 
1085 	return ret;
1086 }
1087 
1088 /*
1089  * interface function to delete all the snapshots we have scheduled for deletion
1090  */
1091 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1092 {
1093 	LIST_HEAD(list);
1094 	struct btrfs_fs_info *fs_info = root->fs_info;
1095 
1096 	mutex_lock(&fs_info->trans_mutex);
1097 	list_splice_init(&fs_info->dead_roots, &list);
1098 	mutex_unlock(&fs_info->trans_mutex);
1099 
1100 	while (!list_empty(&list)) {
1101 		root = list_entry(list.next, struct btrfs_root, root_list);
1102 		list_del(&root->root_list);
1103 
1104 		if (btrfs_header_backref_rev(root->node) <
1105 		    BTRFS_MIXED_BACKREF_REV)
1106 			btrfs_drop_snapshot(root, 0);
1107 		else
1108 			btrfs_drop_snapshot(root, 1);
1109 	}
1110 	return 0;
1111 }
1112