xref: /openbmc/linux/fs/btrfs/transaction.c (revision 3932b9ca)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		while (!list_empty(&transaction->pending_chunks)) {
68 			struct extent_map *em;
69 
70 			em = list_first_entry(&transaction->pending_chunks,
71 					      struct extent_map, list);
72 			list_del_init(&em->list);
73 			free_extent_map(em);
74 		}
75 		kmem_cache_free(btrfs_transaction_cachep, transaction);
76 	}
77 }
78 
79 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
80 					 struct btrfs_fs_info *fs_info)
81 {
82 	struct btrfs_root *root, *tmp;
83 
84 	down_write(&fs_info->commit_root_sem);
85 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
86 				 dirty_list) {
87 		list_del_init(&root->dirty_list);
88 		free_extent_buffer(root->commit_root);
89 		root->commit_root = btrfs_root_node(root);
90 		if (is_fstree(root->objectid))
91 			btrfs_unpin_free_ino(root);
92 	}
93 	up_write(&fs_info->commit_root_sem);
94 }
95 
96 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
97 					 unsigned int type)
98 {
99 	if (type & TRANS_EXTWRITERS)
100 		atomic_inc(&trans->num_extwriters);
101 }
102 
103 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
104 					 unsigned int type)
105 {
106 	if (type & TRANS_EXTWRITERS)
107 		atomic_dec(&trans->num_extwriters);
108 }
109 
110 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
111 					  unsigned int type)
112 {
113 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
114 }
115 
116 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
117 {
118 	return atomic_read(&trans->num_extwriters);
119 }
120 
121 /*
122  * either allocate a new transaction or hop into the existing one
123  */
124 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
125 {
126 	struct btrfs_transaction *cur_trans;
127 	struct btrfs_fs_info *fs_info = root->fs_info;
128 
129 	spin_lock(&fs_info->trans_lock);
130 loop:
131 	/* The file system has been taken offline. No new transactions. */
132 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
133 		spin_unlock(&fs_info->trans_lock);
134 		return -EROFS;
135 	}
136 
137 	cur_trans = fs_info->running_transaction;
138 	if (cur_trans) {
139 		if (cur_trans->aborted) {
140 			spin_unlock(&fs_info->trans_lock);
141 			return cur_trans->aborted;
142 		}
143 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
144 			spin_unlock(&fs_info->trans_lock);
145 			return -EBUSY;
146 		}
147 		atomic_inc(&cur_trans->use_count);
148 		atomic_inc(&cur_trans->num_writers);
149 		extwriter_counter_inc(cur_trans, type);
150 		spin_unlock(&fs_info->trans_lock);
151 		return 0;
152 	}
153 	spin_unlock(&fs_info->trans_lock);
154 
155 	/*
156 	 * If we are ATTACH, we just want to catch the current transaction,
157 	 * and commit it. If there is no transaction, just return ENOENT.
158 	 */
159 	if (type == TRANS_ATTACH)
160 		return -ENOENT;
161 
162 	/*
163 	 * JOIN_NOLOCK only happens during the transaction commit, so
164 	 * it is impossible that ->running_transaction is NULL
165 	 */
166 	BUG_ON(type == TRANS_JOIN_NOLOCK);
167 
168 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
169 	if (!cur_trans)
170 		return -ENOMEM;
171 
172 	spin_lock(&fs_info->trans_lock);
173 	if (fs_info->running_transaction) {
174 		/*
175 		 * someone started a transaction after we unlocked.  Make sure
176 		 * to redo the checks above
177 		 */
178 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
179 		goto loop;
180 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
181 		spin_unlock(&fs_info->trans_lock);
182 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
183 		return -EROFS;
184 	}
185 
186 	atomic_set(&cur_trans->num_writers, 1);
187 	extwriter_counter_init(cur_trans, type);
188 	init_waitqueue_head(&cur_trans->writer_wait);
189 	init_waitqueue_head(&cur_trans->commit_wait);
190 	cur_trans->state = TRANS_STATE_RUNNING;
191 	/*
192 	 * One for this trans handle, one so it will live on until we
193 	 * commit the transaction.
194 	 */
195 	atomic_set(&cur_trans->use_count, 2);
196 	cur_trans->start_time = get_seconds();
197 
198 	cur_trans->delayed_refs.href_root = RB_ROOT;
199 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
200 	cur_trans->delayed_refs.num_heads_ready = 0;
201 	cur_trans->delayed_refs.num_heads = 0;
202 	cur_trans->delayed_refs.flushing = 0;
203 	cur_trans->delayed_refs.run_delayed_start = 0;
204 
205 	/*
206 	 * although the tree mod log is per file system and not per transaction,
207 	 * the log must never go across transaction boundaries.
208 	 */
209 	smp_mb();
210 	if (!list_empty(&fs_info->tree_mod_seq_list))
211 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
212 			"creating a fresh transaction\n");
213 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
214 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
215 			"creating a fresh transaction\n");
216 	atomic64_set(&fs_info->tree_mod_seq, 0);
217 
218 	spin_lock_init(&cur_trans->delayed_refs.lock);
219 
220 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
221 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
222 	INIT_LIST_HEAD(&cur_trans->switch_commits);
223 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
224 	extent_io_tree_init(&cur_trans->dirty_pages,
225 			     fs_info->btree_inode->i_mapping);
226 	fs_info->generation++;
227 	cur_trans->transid = fs_info->generation;
228 	fs_info->running_transaction = cur_trans;
229 	cur_trans->aborted = 0;
230 	spin_unlock(&fs_info->trans_lock);
231 
232 	return 0;
233 }
234 
235 /*
236  * this does all the record keeping required to make sure that a reference
237  * counted root is properly recorded in a given transaction.  This is required
238  * to make sure the old root from before we joined the transaction is deleted
239  * when the transaction commits
240  */
241 static int record_root_in_trans(struct btrfs_trans_handle *trans,
242 			       struct btrfs_root *root)
243 {
244 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
245 	    root->last_trans < trans->transid) {
246 		WARN_ON(root == root->fs_info->extent_root);
247 		WARN_ON(root->commit_root != root->node);
248 
249 		/*
250 		 * see below for IN_TRANS_SETUP usage rules
251 		 * we have the reloc mutex held now, so there
252 		 * is only one writer in this function
253 		 */
254 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
255 
256 		/* make sure readers find IN_TRANS_SETUP before
257 		 * they find our root->last_trans update
258 		 */
259 		smp_wmb();
260 
261 		spin_lock(&root->fs_info->fs_roots_radix_lock);
262 		if (root->last_trans == trans->transid) {
263 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
264 			return 0;
265 		}
266 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
267 			   (unsigned long)root->root_key.objectid,
268 			   BTRFS_ROOT_TRANS_TAG);
269 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
270 		root->last_trans = trans->transid;
271 
272 		/* this is pretty tricky.  We don't want to
273 		 * take the relocation lock in btrfs_record_root_in_trans
274 		 * unless we're really doing the first setup for this root in
275 		 * this transaction.
276 		 *
277 		 * Normally we'd use root->last_trans as a flag to decide
278 		 * if we want to take the expensive mutex.
279 		 *
280 		 * But, we have to set root->last_trans before we
281 		 * init the relocation root, otherwise, we trip over warnings
282 		 * in ctree.c.  The solution used here is to flag ourselves
283 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
284 		 * fixing up the reloc trees and everyone must wait.
285 		 *
286 		 * When this is zero, they can trust root->last_trans and fly
287 		 * through btrfs_record_root_in_trans without having to take the
288 		 * lock.  smp_wmb() makes sure that all the writes above are
289 		 * done before we pop in the zero below
290 		 */
291 		btrfs_init_reloc_root(trans, root);
292 		smp_mb__before_atomic();
293 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
294 	}
295 	return 0;
296 }
297 
298 
299 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
300 			       struct btrfs_root *root)
301 {
302 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
303 		return 0;
304 
305 	/*
306 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
307 	 * and barriers
308 	 */
309 	smp_rmb();
310 	if (root->last_trans == trans->transid &&
311 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
312 		return 0;
313 
314 	mutex_lock(&root->fs_info->reloc_mutex);
315 	record_root_in_trans(trans, root);
316 	mutex_unlock(&root->fs_info->reloc_mutex);
317 
318 	return 0;
319 }
320 
321 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
322 {
323 	return (trans->state >= TRANS_STATE_BLOCKED &&
324 		trans->state < TRANS_STATE_UNBLOCKED &&
325 		!trans->aborted);
326 }
327 
328 /* wait for commit against the current transaction to become unblocked
329  * when this is done, it is safe to start a new transaction, but the current
330  * transaction might not be fully on disk.
331  */
332 static void wait_current_trans(struct btrfs_root *root)
333 {
334 	struct btrfs_transaction *cur_trans;
335 
336 	spin_lock(&root->fs_info->trans_lock);
337 	cur_trans = root->fs_info->running_transaction;
338 	if (cur_trans && is_transaction_blocked(cur_trans)) {
339 		atomic_inc(&cur_trans->use_count);
340 		spin_unlock(&root->fs_info->trans_lock);
341 
342 		wait_event(root->fs_info->transaction_wait,
343 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
344 			   cur_trans->aborted);
345 		btrfs_put_transaction(cur_trans);
346 	} else {
347 		spin_unlock(&root->fs_info->trans_lock);
348 	}
349 }
350 
351 static int may_wait_transaction(struct btrfs_root *root, int type)
352 {
353 	if (root->fs_info->log_root_recovering)
354 		return 0;
355 
356 	if (type == TRANS_USERSPACE)
357 		return 1;
358 
359 	if (type == TRANS_START &&
360 	    !atomic_read(&root->fs_info->open_ioctl_trans))
361 		return 1;
362 
363 	return 0;
364 }
365 
366 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
367 {
368 	if (!root->fs_info->reloc_ctl ||
369 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
370 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
371 	    root->reloc_root)
372 		return false;
373 
374 	return true;
375 }
376 
377 static struct btrfs_trans_handle *
378 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
379 		  enum btrfs_reserve_flush_enum flush)
380 {
381 	struct btrfs_trans_handle *h;
382 	struct btrfs_transaction *cur_trans;
383 	u64 num_bytes = 0;
384 	u64 qgroup_reserved = 0;
385 	bool reloc_reserved = false;
386 	int ret;
387 
388 	/* Send isn't supposed to start transactions. */
389 	ASSERT(current->journal_info != (void *)BTRFS_SEND_TRANS_STUB);
390 
391 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
392 		return ERR_PTR(-EROFS);
393 
394 	if (current->journal_info) {
395 		WARN_ON(type & TRANS_EXTWRITERS);
396 		h = current->journal_info;
397 		h->use_count++;
398 		WARN_ON(h->use_count > 2);
399 		h->orig_rsv = h->block_rsv;
400 		h->block_rsv = NULL;
401 		goto got_it;
402 	}
403 
404 	/*
405 	 * Do the reservation before we join the transaction so we can do all
406 	 * the appropriate flushing if need be.
407 	 */
408 	if (num_items > 0 && root != root->fs_info->chunk_root) {
409 		if (root->fs_info->quota_enabled &&
410 		    is_fstree(root->root_key.objectid)) {
411 			qgroup_reserved = num_items * root->leafsize;
412 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
413 			if (ret)
414 				return ERR_PTR(ret);
415 		}
416 
417 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
418 		/*
419 		 * Do the reservation for the relocation root creation
420 		 */
421 		if (unlikely(need_reserve_reloc_root(root))) {
422 			num_bytes += root->nodesize;
423 			reloc_reserved = true;
424 		}
425 
426 		ret = btrfs_block_rsv_add(root,
427 					  &root->fs_info->trans_block_rsv,
428 					  num_bytes, flush);
429 		if (ret)
430 			goto reserve_fail;
431 	}
432 again:
433 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
434 	if (!h) {
435 		ret = -ENOMEM;
436 		goto alloc_fail;
437 	}
438 
439 	/*
440 	 * If we are JOIN_NOLOCK we're already committing a transaction and
441 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
442 	 * because we're already holding a ref.  We need this because we could
443 	 * have raced in and did an fsync() on a file which can kick a commit
444 	 * and then we deadlock with somebody doing a freeze.
445 	 *
446 	 * If we are ATTACH, it means we just want to catch the current
447 	 * transaction and commit it, so we needn't do sb_start_intwrite().
448 	 */
449 	if (type & __TRANS_FREEZABLE)
450 		sb_start_intwrite(root->fs_info->sb);
451 
452 	if (may_wait_transaction(root, type))
453 		wait_current_trans(root);
454 
455 	do {
456 		ret = join_transaction(root, type);
457 		if (ret == -EBUSY) {
458 			wait_current_trans(root);
459 			if (unlikely(type == TRANS_ATTACH))
460 				ret = -ENOENT;
461 		}
462 	} while (ret == -EBUSY);
463 
464 	if (ret < 0) {
465 		/* We must get the transaction if we are JOIN_NOLOCK. */
466 		BUG_ON(type == TRANS_JOIN_NOLOCK);
467 		goto join_fail;
468 	}
469 
470 	cur_trans = root->fs_info->running_transaction;
471 
472 	h->transid = cur_trans->transid;
473 	h->transaction = cur_trans;
474 	h->blocks_used = 0;
475 	h->bytes_reserved = 0;
476 	h->root = root;
477 	h->delayed_ref_updates = 0;
478 	h->use_count = 1;
479 	h->adding_csums = 0;
480 	h->block_rsv = NULL;
481 	h->orig_rsv = NULL;
482 	h->aborted = 0;
483 	h->qgroup_reserved = 0;
484 	h->delayed_ref_elem.seq = 0;
485 	h->type = type;
486 	h->allocating_chunk = false;
487 	h->reloc_reserved = false;
488 	h->sync = false;
489 	INIT_LIST_HEAD(&h->qgroup_ref_list);
490 	INIT_LIST_HEAD(&h->new_bgs);
491 
492 	smp_mb();
493 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
494 	    may_wait_transaction(root, type)) {
495 		current->journal_info = h;
496 		btrfs_commit_transaction(h, root);
497 		goto again;
498 	}
499 
500 	if (num_bytes) {
501 		trace_btrfs_space_reservation(root->fs_info, "transaction",
502 					      h->transid, num_bytes, 1);
503 		h->block_rsv = &root->fs_info->trans_block_rsv;
504 		h->bytes_reserved = num_bytes;
505 		h->reloc_reserved = reloc_reserved;
506 	}
507 	h->qgroup_reserved = qgroup_reserved;
508 
509 got_it:
510 	btrfs_record_root_in_trans(h, root);
511 
512 	if (!current->journal_info && type != TRANS_USERSPACE)
513 		current->journal_info = h;
514 	return h;
515 
516 join_fail:
517 	if (type & __TRANS_FREEZABLE)
518 		sb_end_intwrite(root->fs_info->sb);
519 	kmem_cache_free(btrfs_trans_handle_cachep, h);
520 alloc_fail:
521 	if (num_bytes)
522 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
523 					num_bytes);
524 reserve_fail:
525 	if (qgroup_reserved)
526 		btrfs_qgroup_free(root, qgroup_reserved);
527 	return ERR_PTR(ret);
528 }
529 
530 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
531 						   int num_items)
532 {
533 	return start_transaction(root, num_items, TRANS_START,
534 				 BTRFS_RESERVE_FLUSH_ALL);
535 }
536 
537 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
538 					struct btrfs_root *root, int num_items)
539 {
540 	return start_transaction(root, num_items, TRANS_START,
541 				 BTRFS_RESERVE_FLUSH_LIMIT);
542 }
543 
544 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
545 {
546 	return start_transaction(root, 0, TRANS_JOIN, 0);
547 }
548 
549 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
550 {
551 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
552 }
553 
554 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
555 {
556 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
557 }
558 
559 /*
560  * btrfs_attach_transaction() - catch the running transaction
561  *
562  * It is used when we want to commit the current the transaction, but
563  * don't want to start a new one.
564  *
565  * Note: If this function return -ENOENT, it just means there is no
566  * running transaction. But it is possible that the inactive transaction
567  * is still in the memory, not fully on disk. If you hope there is no
568  * inactive transaction in the fs when -ENOENT is returned, you should
569  * invoke
570  *     btrfs_attach_transaction_barrier()
571  */
572 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
573 {
574 	return start_transaction(root, 0, TRANS_ATTACH, 0);
575 }
576 
577 /*
578  * btrfs_attach_transaction_barrier() - catch the running transaction
579  *
580  * It is similar to the above function, the differentia is this one
581  * will wait for all the inactive transactions until they fully
582  * complete.
583  */
584 struct btrfs_trans_handle *
585 btrfs_attach_transaction_barrier(struct btrfs_root *root)
586 {
587 	struct btrfs_trans_handle *trans;
588 
589 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
590 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
591 		btrfs_wait_for_commit(root, 0);
592 
593 	return trans;
594 }
595 
596 /* wait for a transaction commit to be fully complete */
597 static noinline void wait_for_commit(struct btrfs_root *root,
598 				    struct btrfs_transaction *commit)
599 {
600 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
601 }
602 
603 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
604 {
605 	struct btrfs_transaction *cur_trans = NULL, *t;
606 	int ret = 0;
607 
608 	if (transid) {
609 		if (transid <= root->fs_info->last_trans_committed)
610 			goto out;
611 
612 		ret = -EINVAL;
613 		/* find specified transaction */
614 		spin_lock(&root->fs_info->trans_lock);
615 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
616 			if (t->transid == transid) {
617 				cur_trans = t;
618 				atomic_inc(&cur_trans->use_count);
619 				ret = 0;
620 				break;
621 			}
622 			if (t->transid > transid) {
623 				ret = 0;
624 				break;
625 			}
626 		}
627 		spin_unlock(&root->fs_info->trans_lock);
628 		/* The specified transaction doesn't exist */
629 		if (!cur_trans)
630 			goto out;
631 	} else {
632 		/* find newest transaction that is committing | committed */
633 		spin_lock(&root->fs_info->trans_lock);
634 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
635 					    list) {
636 			if (t->state >= TRANS_STATE_COMMIT_START) {
637 				if (t->state == TRANS_STATE_COMPLETED)
638 					break;
639 				cur_trans = t;
640 				atomic_inc(&cur_trans->use_count);
641 				break;
642 			}
643 		}
644 		spin_unlock(&root->fs_info->trans_lock);
645 		if (!cur_trans)
646 			goto out;  /* nothing committing|committed */
647 	}
648 
649 	wait_for_commit(root, cur_trans);
650 	btrfs_put_transaction(cur_trans);
651 out:
652 	return ret;
653 }
654 
655 void btrfs_throttle(struct btrfs_root *root)
656 {
657 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
658 		wait_current_trans(root);
659 }
660 
661 static int should_end_transaction(struct btrfs_trans_handle *trans,
662 				  struct btrfs_root *root)
663 {
664 	if (root->fs_info->global_block_rsv.space_info->full &&
665 	    btrfs_check_space_for_delayed_refs(trans, root))
666 		return 1;
667 
668 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
669 }
670 
671 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
672 				 struct btrfs_root *root)
673 {
674 	struct btrfs_transaction *cur_trans = trans->transaction;
675 	int updates;
676 	int err;
677 
678 	smp_mb();
679 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
680 	    cur_trans->delayed_refs.flushing)
681 		return 1;
682 
683 	updates = trans->delayed_ref_updates;
684 	trans->delayed_ref_updates = 0;
685 	if (updates) {
686 		err = btrfs_run_delayed_refs(trans, root, updates);
687 		if (err) /* Error code will also eval true */
688 			return err;
689 	}
690 
691 	return should_end_transaction(trans, root);
692 }
693 
694 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
695 			  struct btrfs_root *root, int throttle)
696 {
697 	struct btrfs_transaction *cur_trans = trans->transaction;
698 	struct btrfs_fs_info *info = root->fs_info;
699 	unsigned long cur = trans->delayed_ref_updates;
700 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
701 	int err = 0;
702 	int must_run_delayed_refs = 0;
703 
704 	if (trans->use_count > 1) {
705 		trans->use_count--;
706 		trans->block_rsv = trans->orig_rsv;
707 		return 0;
708 	}
709 
710 	btrfs_trans_release_metadata(trans, root);
711 	trans->block_rsv = NULL;
712 
713 	if (!list_empty(&trans->new_bgs))
714 		btrfs_create_pending_block_groups(trans, root);
715 
716 	trans->delayed_ref_updates = 0;
717 	if (!trans->sync) {
718 		must_run_delayed_refs =
719 			btrfs_should_throttle_delayed_refs(trans, root);
720 		cur = max_t(unsigned long, cur, 32);
721 
722 		/*
723 		 * don't make the caller wait if they are from a NOLOCK
724 		 * or ATTACH transaction, it will deadlock with commit
725 		 */
726 		if (must_run_delayed_refs == 1 &&
727 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
728 			must_run_delayed_refs = 2;
729 	}
730 
731 	if (trans->qgroup_reserved) {
732 		/*
733 		 * the same root has to be passed here between start_transaction
734 		 * and end_transaction. Subvolume quota depends on this.
735 		 */
736 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
737 		trans->qgroup_reserved = 0;
738 	}
739 
740 	btrfs_trans_release_metadata(trans, root);
741 	trans->block_rsv = NULL;
742 
743 	if (!list_empty(&trans->new_bgs))
744 		btrfs_create_pending_block_groups(trans, root);
745 
746 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
747 	    should_end_transaction(trans, root) &&
748 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
749 		spin_lock(&info->trans_lock);
750 		if (cur_trans->state == TRANS_STATE_RUNNING)
751 			cur_trans->state = TRANS_STATE_BLOCKED;
752 		spin_unlock(&info->trans_lock);
753 	}
754 
755 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
756 		if (throttle)
757 			return btrfs_commit_transaction(trans, root);
758 		else
759 			wake_up_process(info->transaction_kthread);
760 	}
761 
762 	if (trans->type & __TRANS_FREEZABLE)
763 		sb_end_intwrite(root->fs_info->sb);
764 
765 	WARN_ON(cur_trans != info->running_transaction);
766 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
767 	atomic_dec(&cur_trans->num_writers);
768 	extwriter_counter_dec(cur_trans, trans->type);
769 
770 	smp_mb();
771 	if (waitqueue_active(&cur_trans->writer_wait))
772 		wake_up(&cur_trans->writer_wait);
773 	btrfs_put_transaction(cur_trans);
774 
775 	if (current->journal_info == trans)
776 		current->journal_info = NULL;
777 
778 	if (throttle)
779 		btrfs_run_delayed_iputs(root);
780 
781 	if (trans->aborted ||
782 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
783 		wake_up_process(info->transaction_kthread);
784 		err = -EIO;
785 	}
786 	assert_qgroups_uptodate(trans);
787 
788 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
789 	if (must_run_delayed_refs) {
790 		btrfs_async_run_delayed_refs(root, cur,
791 					     must_run_delayed_refs == 1);
792 	}
793 	return err;
794 }
795 
796 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
797 			  struct btrfs_root *root)
798 {
799 	return __btrfs_end_transaction(trans, root, 0);
800 }
801 
802 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
803 				   struct btrfs_root *root)
804 {
805 	return __btrfs_end_transaction(trans, root, 1);
806 }
807 
808 /*
809  * when btree blocks are allocated, they have some corresponding bits set for
810  * them in one of two extent_io trees.  This is used to make sure all of
811  * those extents are sent to disk but does not wait on them
812  */
813 int btrfs_write_marked_extents(struct btrfs_root *root,
814 			       struct extent_io_tree *dirty_pages, int mark)
815 {
816 	int err = 0;
817 	int werr = 0;
818 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
819 	struct extent_state *cached_state = NULL;
820 	u64 start = 0;
821 	u64 end;
822 
823 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
824 				      mark, &cached_state)) {
825 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
826 				   mark, &cached_state, GFP_NOFS);
827 		cached_state = NULL;
828 		err = filemap_fdatawrite_range(mapping, start, end);
829 		if (err)
830 			werr = err;
831 		cond_resched();
832 		start = end + 1;
833 	}
834 	if (err)
835 		werr = err;
836 	return werr;
837 }
838 
839 /*
840  * when btree blocks are allocated, they have some corresponding bits set for
841  * them in one of two extent_io trees.  This is used to make sure all of
842  * those extents are on disk for transaction or log commit.  We wait
843  * on all the pages and clear them from the dirty pages state tree
844  */
845 int btrfs_wait_marked_extents(struct btrfs_root *root,
846 			      struct extent_io_tree *dirty_pages, int mark)
847 {
848 	int err = 0;
849 	int werr = 0;
850 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
851 	struct extent_state *cached_state = NULL;
852 	u64 start = 0;
853 	u64 end;
854 
855 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
856 				      EXTENT_NEED_WAIT, &cached_state)) {
857 		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
858 				 0, 0, &cached_state, GFP_NOFS);
859 		err = filemap_fdatawait_range(mapping, start, end);
860 		if (err)
861 			werr = err;
862 		cond_resched();
863 		start = end + 1;
864 	}
865 	if (err)
866 		werr = err;
867 	return werr;
868 }
869 
870 /*
871  * when btree blocks are allocated, they have some corresponding bits set for
872  * them in one of two extent_io trees.  This is used to make sure all of
873  * those extents are on disk for transaction or log commit
874  */
875 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
876 				struct extent_io_tree *dirty_pages, int mark)
877 {
878 	int ret;
879 	int ret2;
880 	struct blk_plug plug;
881 
882 	blk_start_plug(&plug);
883 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
884 	blk_finish_plug(&plug);
885 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
886 
887 	if (ret)
888 		return ret;
889 	if (ret2)
890 		return ret2;
891 	return 0;
892 }
893 
894 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
895 				     struct btrfs_root *root)
896 {
897 	if (!trans || !trans->transaction) {
898 		struct inode *btree_inode;
899 		btree_inode = root->fs_info->btree_inode;
900 		return filemap_write_and_wait(btree_inode->i_mapping);
901 	}
902 	return btrfs_write_and_wait_marked_extents(root,
903 					   &trans->transaction->dirty_pages,
904 					   EXTENT_DIRTY);
905 }
906 
907 /*
908  * this is used to update the root pointer in the tree of tree roots.
909  *
910  * But, in the case of the extent allocation tree, updating the root
911  * pointer may allocate blocks which may change the root of the extent
912  * allocation tree.
913  *
914  * So, this loops and repeats and makes sure the cowonly root didn't
915  * change while the root pointer was being updated in the metadata.
916  */
917 static int update_cowonly_root(struct btrfs_trans_handle *trans,
918 			       struct btrfs_root *root)
919 {
920 	int ret;
921 	u64 old_root_bytenr;
922 	u64 old_root_used;
923 	struct btrfs_root *tree_root = root->fs_info->tree_root;
924 
925 	old_root_used = btrfs_root_used(&root->root_item);
926 	btrfs_write_dirty_block_groups(trans, root);
927 
928 	while (1) {
929 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
930 		if (old_root_bytenr == root->node->start &&
931 		    old_root_used == btrfs_root_used(&root->root_item))
932 			break;
933 
934 		btrfs_set_root_node(&root->root_item, root->node);
935 		ret = btrfs_update_root(trans, tree_root,
936 					&root->root_key,
937 					&root->root_item);
938 		if (ret)
939 			return ret;
940 
941 		old_root_used = btrfs_root_used(&root->root_item);
942 		ret = btrfs_write_dirty_block_groups(trans, root);
943 		if (ret)
944 			return ret;
945 	}
946 
947 	return 0;
948 }
949 
950 /*
951  * update all the cowonly tree roots on disk
952  *
953  * The error handling in this function may not be obvious. Any of the
954  * failures will cause the file system to go offline. We still need
955  * to clean up the delayed refs.
956  */
957 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
958 					 struct btrfs_root *root)
959 {
960 	struct btrfs_fs_info *fs_info = root->fs_info;
961 	struct list_head *next;
962 	struct extent_buffer *eb;
963 	int ret;
964 
965 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
966 	if (ret)
967 		return ret;
968 
969 	eb = btrfs_lock_root_node(fs_info->tree_root);
970 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
971 			      0, &eb);
972 	btrfs_tree_unlock(eb);
973 	free_extent_buffer(eb);
974 
975 	if (ret)
976 		return ret;
977 
978 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
979 	if (ret)
980 		return ret;
981 
982 	ret = btrfs_run_dev_stats(trans, root->fs_info);
983 	if (ret)
984 		return ret;
985 	ret = btrfs_run_dev_replace(trans, root->fs_info);
986 	if (ret)
987 		return ret;
988 	ret = btrfs_run_qgroups(trans, root->fs_info);
989 	if (ret)
990 		return ret;
991 
992 	/* run_qgroups might have added some more refs */
993 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
994 	if (ret)
995 		return ret;
996 
997 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
998 		next = fs_info->dirty_cowonly_roots.next;
999 		list_del_init(next);
1000 		root = list_entry(next, struct btrfs_root, dirty_list);
1001 
1002 		if (root != fs_info->extent_root)
1003 			list_add_tail(&root->dirty_list,
1004 				      &trans->transaction->switch_commits);
1005 		ret = update_cowonly_root(trans, root);
1006 		if (ret)
1007 			return ret;
1008 	}
1009 
1010 	list_add_tail(&fs_info->extent_root->dirty_list,
1011 		      &trans->transaction->switch_commits);
1012 	btrfs_after_dev_replace_commit(fs_info);
1013 
1014 	return 0;
1015 }
1016 
1017 /*
1018  * dead roots are old snapshots that need to be deleted.  This allocates
1019  * a dirty root struct and adds it into the list of dead roots that need to
1020  * be deleted
1021  */
1022 void btrfs_add_dead_root(struct btrfs_root *root)
1023 {
1024 	spin_lock(&root->fs_info->trans_lock);
1025 	if (list_empty(&root->root_list))
1026 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1027 	spin_unlock(&root->fs_info->trans_lock);
1028 }
1029 
1030 /*
1031  * update all the cowonly tree roots on disk
1032  */
1033 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1034 				    struct btrfs_root *root)
1035 {
1036 	struct btrfs_root *gang[8];
1037 	struct btrfs_fs_info *fs_info = root->fs_info;
1038 	int i;
1039 	int ret;
1040 	int err = 0;
1041 
1042 	spin_lock(&fs_info->fs_roots_radix_lock);
1043 	while (1) {
1044 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1045 						 (void **)gang, 0,
1046 						 ARRAY_SIZE(gang),
1047 						 BTRFS_ROOT_TRANS_TAG);
1048 		if (ret == 0)
1049 			break;
1050 		for (i = 0; i < ret; i++) {
1051 			root = gang[i];
1052 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1053 					(unsigned long)root->root_key.objectid,
1054 					BTRFS_ROOT_TRANS_TAG);
1055 			spin_unlock(&fs_info->fs_roots_radix_lock);
1056 
1057 			btrfs_free_log(trans, root);
1058 			btrfs_update_reloc_root(trans, root);
1059 			btrfs_orphan_commit_root(trans, root);
1060 
1061 			btrfs_save_ino_cache(root, trans);
1062 
1063 			/* see comments in should_cow_block() */
1064 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1065 			smp_mb__after_atomic();
1066 
1067 			if (root->commit_root != root->node) {
1068 				list_add_tail(&root->dirty_list,
1069 					&trans->transaction->switch_commits);
1070 				btrfs_set_root_node(&root->root_item,
1071 						    root->node);
1072 			}
1073 
1074 			err = btrfs_update_root(trans, fs_info->tree_root,
1075 						&root->root_key,
1076 						&root->root_item);
1077 			spin_lock(&fs_info->fs_roots_radix_lock);
1078 			if (err)
1079 				break;
1080 		}
1081 	}
1082 	spin_unlock(&fs_info->fs_roots_radix_lock);
1083 	return err;
1084 }
1085 
1086 /*
1087  * defrag a given btree.
1088  * Every leaf in the btree is read and defragged.
1089  */
1090 int btrfs_defrag_root(struct btrfs_root *root)
1091 {
1092 	struct btrfs_fs_info *info = root->fs_info;
1093 	struct btrfs_trans_handle *trans;
1094 	int ret;
1095 
1096 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1097 		return 0;
1098 
1099 	while (1) {
1100 		trans = btrfs_start_transaction(root, 0);
1101 		if (IS_ERR(trans))
1102 			return PTR_ERR(trans);
1103 
1104 		ret = btrfs_defrag_leaves(trans, root);
1105 
1106 		btrfs_end_transaction(trans, root);
1107 		btrfs_btree_balance_dirty(info->tree_root);
1108 		cond_resched();
1109 
1110 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1111 			break;
1112 
1113 		if (btrfs_defrag_cancelled(root->fs_info)) {
1114 			pr_debug("BTRFS: defrag_root cancelled\n");
1115 			ret = -EAGAIN;
1116 			break;
1117 		}
1118 	}
1119 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1120 	return ret;
1121 }
1122 
1123 /*
1124  * new snapshots need to be created at a very specific time in the
1125  * transaction commit.  This does the actual creation.
1126  *
1127  * Note:
1128  * If the error which may affect the commitment of the current transaction
1129  * happens, we should return the error number. If the error which just affect
1130  * the creation of the pending snapshots, just return 0.
1131  */
1132 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1133 				   struct btrfs_fs_info *fs_info,
1134 				   struct btrfs_pending_snapshot *pending)
1135 {
1136 	struct btrfs_key key;
1137 	struct btrfs_root_item *new_root_item;
1138 	struct btrfs_root *tree_root = fs_info->tree_root;
1139 	struct btrfs_root *root = pending->root;
1140 	struct btrfs_root *parent_root;
1141 	struct btrfs_block_rsv *rsv;
1142 	struct inode *parent_inode;
1143 	struct btrfs_path *path;
1144 	struct btrfs_dir_item *dir_item;
1145 	struct dentry *dentry;
1146 	struct extent_buffer *tmp;
1147 	struct extent_buffer *old;
1148 	struct timespec cur_time = CURRENT_TIME;
1149 	int ret = 0;
1150 	u64 to_reserve = 0;
1151 	u64 index = 0;
1152 	u64 objectid;
1153 	u64 root_flags;
1154 	uuid_le new_uuid;
1155 
1156 	path = btrfs_alloc_path();
1157 	if (!path) {
1158 		pending->error = -ENOMEM;
1159 		return 0;
1160 	}
1161 
1162 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1163 	if (!new_root_item) {
1164 		pending->error = -ENOMEM;
1165 		goto root_item_alloc_fail;
1166 	}
1167 
1168 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1169 	if (pending->error)
1170 		goto no_free_objectid;
1171 
1172 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1173 
1174 	if (to_reserve > 0) {
1175 		pending->error = btrfs_block_rsv_add(root,
1176 						     &pending->block_rsv,
1177 						     to_reserve,
1178 						     BTRFS_RESERVE_NO_FLUSH);
1179 		if (pending->error)
1180 			goto no_free_objectid;
1181 	}
1182 
1183 	key.objectid = objectid;
1184 	key.offset = (u64)-1;
1185 	key.type = BTRFS_ROOT_ITEM_KEY;
1186 
1187 	rsv = trans->block_rsv;
1188 	trans->block_rsv = &pending->block_rsv;
1189 	trans->bytes_reserved = trans->block_rsv->reserved;
1190 
1191 	dentry = pending->dentry;
1192 	parent_inode = pending->dir;
1193 	parent_root = BTRFS_I(parent_inode)->root;
1194 	record_root_in_trans(trans, parent_root);
1195 
1196 	/*
1197 	 * insert the directory item
1198 	 */
1199 	ret = btrfs_set_inode_index(parent_inode, &index);
1200 	BUG_ON(ret); /* -ENOMEM */
1201 
1202 	/* check if there is a file/dir which has the same name. */
1203 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1204 					 btrfs_ino(parent_inode),
1205 					 dentry->d_name.name,
1206 					 dentry->d_name.len, 0);
1207 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1208 		pending->error = -EEXIST;
1209 		goto dir_item_existed;
1210 	} else if (IS_ERR(dir_item)) {
1211 		ret = PTR_ERR(dir_item);
1212 		btrfs_abort_transaction(trans, root, ret);
1213 		goto fail;
1214 	}
1215 	btrfs_release_path(path);
1216 
1217 	/*
1218 	 * pull in the delayed directory update
1219 	 * and the delayed inode item
1220 	 * otherwise we corrupt the FS during
1221 	 * snapshot
1222 	 */
1223 	ret = btrfs_run_delayed_items(trans, root);
1224 	if (ret) {	/* Transaction aborted */
1225 		btrfs_abort_transaction(trans, root, ret);
1226 		goto fail;
1227 	}
1228 
1229 	record_root_in_trans(trans, root);
1230 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1231 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1232 	btrfs_check_and_init_root_item(new_root_item);
1233 
1234 	root_flags = btrfs_root_flags(new_root_item);
1235 	if (pending->readonly)
1236 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1237 	else
1238 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1239 	btrfs_set_root_flags(new_root_item, root_flags);
1240 
1241 	btrfs_set_root_generation_v2(new_root_item,
1242 			trans->transid);
1243 	uuid_le_gen(&new_uuid);
1244 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1245 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1246 			BTRFS_UUID_SIZE);
1247 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1248 		memset(new_root_item->received_uuid, 0,
1249 		       sizeof(new_root_item->received_uuid));
1250 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1251 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1252 		btrfs_set_root_stransid(new_root_item, 0);
1253 		btrfs_set_root_rtransid(new_root_item, 0);
1254 	}
1255 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1256 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1257 	btrfs_set_root_otransid(new_root_item, trans->transid);
1258 
1259 	old = btrfs_lock_root_node(root);
1260 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1261 	if (ret) {
1262 		btrfs_tree_unlock(old);
1263 		free_extent_buffer(old);
1264 		btrfs_abort_transaction(trans, root, ret);
1265 		goto fail;
1266 	}
1267 
1268 	btrfs_set_lock_blocking(old);
1269 
1270 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1271 	/* clean up in any case */
1272 	btrfs_tree_unlock(old);
1273 	free_extent_buffer(old);
1274 	if (ret) {
1275 		btrfs_abort_transaction(trans, root, ret);
1276 		goto fail;
1277 	}
1278 
1279 	/*
1280 	 * We need to flush delayed refs in order to make sure all of our quota
1281 	 * operations have been done before we call btrfs_qgroup_inherit.
1282 	 */
1283 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1284 	if (ret) {
1285 		btrfs_abort_transaction(trans, root, ret);
1286 		goto fail;
1287 	}
1288 
1289 	ret = btrfs_qgroup_inherit(trans, fs_info,
1290 				   root->root_key.objectid,
1291 				   objectid, pending->inherit);
1292 	if (ret) {
1293 		btrfs_abort_transaction(trans, root, ret);
1294 		goto fail;
1295 	}
1296 
1297 	/* see comments in should_cow_block() */
1298 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1299 	smp_wmb();
1300 
1301 	btrfs_set_root_node(new_root_item, tmp);
1302 	/* record when the snapshot was created in key.offset */
1303 	key.offset = trans->transid;
1304 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1305 	btrfs_tree_unlock(tmp);
1306 	free_extent_buffer(tmp);
1307 	if (ret) {
1308 		btrfs_abort_transaction(trans, root, ret);
1309 		goto fail;
1310 	}
1311 
1312 	/*
1313 	 * insert root back/forward references
1314 	 */
1315 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1316 				 parent_root->root_key.objectid,
1317 				 btrfs_ino(parent_inode), index,
1318 				 dentry->d_name.name, dentry->d_name.len);
1319 	if (ret) {
1320 		btrfs_abort_transaction(trans, root, ret);
1321 		goto fail;
1322 	}
1323 
1324 	key.offset = (u64)-1;
1325 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1326 	if (IS_ERR(pending->snap)) {
1327 		ret = PTR_ERR(pending->snap);
1328 		btrfs_abort_transaction(trans, root, ret);
1329 		goto fail;
1330 	}
1331 
1332 	ret = btrfs_reloc_post_snapshot(trans, pending);
1333 	if (ret) {
1334 		btrfs_abort_transaction(trans, root, ret);
1335 		goto fail;
1336 	}
1337 
1338 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1339 	if (ret) {
1340 		btrfs_abort_transaction(trans, root, ret);
1341 		goto fail;
1342 	}
1343 
1344 	ret = btrfs_insert_dir_item(trans, parent_root,
1345 				    dentry->d_name.name, dentry->d_name.len,
1346 				    parent_inode, &key,
1347 				    BTRFS_FT_DIR, index);
1348 	/* We have check then name at the beginning, so it is impossible. */
1349 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1350 	if (ret) {
1351 		btrfs_abort_transaction(trans, root, ret);
1352 		goto fail;
1353 	}
1354 
1355 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1356 					 dentry->d_name.len * 2);
1357 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1358 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1359 	if (ret) {
1360 		btrfs_abort_transaction(trans, root, ret);
1361 		goto fail;
1362 	}
1363 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1364 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1365 	if (ret) {
1366 		btrfs_abort_transaction(trans, root, ret);
1367 		goto fail;
1368 	}
1369 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1370 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1371 					  new_root_item->received_uuid,
1372 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1373 					  objectid);
1374 		if (ret && ret != -EEXIST) {
1375 			btrfs_abort_transaction(trans, root, ret);
1376 			goto fail;
1377 		}
1378 	}
1379 fail:
1380 	pending->error = ret;
1381 dir_item_existed:
1382 	trans->block_rsv = rsv;
1383 	trans->bytes_reserved = 0;
1384 no_free_objectid:
1385 	kfree(new_root_item);
1386 root_item_alloc_fail:
1387 	btrfs_free_path(path);
1388 	return ret;
1389 }
1390 
1391 /*
1392  * create all the snapshots we've scheduled for creation
1393  */
1394 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1395 					     struct btrfs_fs_info *fs_info)
1396 {
1397 	struct btrfs_pending_snapshot *pending, *next;
1398 	struct list_head *head = &trans->transaction->pending_snapshots;
1399 	int ret = 0;
1400 
1401 	list_for_each_entry_safe(pending, next, head, list) {
1402 		list_del(&pending->list);
1403 		ret = create_pending_snapshot(trans, fs_info, pending);
1404 		if (ret)
1405 			break;
1406 	}
1407 	return ret;
1408 }
1409 
1410 static void update_super_roots(struct btrfs_root *root)
1411 {
1412 	struct btrfs_root_item *root_item;
1413 	struct btrfs_super_block *super;
1414 
1415 	super = root->fs_info->super_copy;
1416 
1417 	root_item = &root->fs_info->chunk_root->root_item;
1418 	super->chunk_root = root_item->bytenr;
1419 	super->chunk_root_generation = root_item->generation;
1420 	super->chunk_root_level = root_item->level;
1421 
1422 	root_item = &root->fs_info->tree_root->root_item;
1423 	super->root = root_item->bytenr;
1424 	super->generation = root_item->generation;
1425 	super->root_level = root_item->level;
1426 	if (btrfs_test_opt(root, SPACE_CACHE))
1427 		super->cache_generation = root_item->generation;
1428 	if (root->fs_info->update_uuid_tree_gen)
1429 		super->uuid_tree_generation = root_item->generation;
1430 }
1431 
1432 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1433 {
1434 	struct btrfs_transaction *trans;
1435 	int ret = 0;
1436 
1437 	spin_lock(&info->trans_lock);
1438 	trans = info->running_transaction;
1439 	if (trans)
1440 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1441 	spin_unlock(&info->trans_lock);
1442 	return ret;
1443 }
1444 
1445 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1446 {
1447 	struct btrfs_transaction *trans;
1448 	int ret = 0;
1449 
1450 	spin_lock(&info->trans_lock);
1451 	trans = info->running_transaction;
1452 	if (trans)
1453 		ret = is_transaction_blocked(trans);
1454 	spin_unlock(&info->trans_lock);
1455 	return ret;
1456 }
1457 
1458 /*
1459  * wait for the current transaction commit to start and block subsequent
1460  * transaction joins
1461  */
1462 static void wait_current_trans_commit_start(struct btrfs_root *root,
1463 					    struct btrfs_transaction *trans)
1464 {
1465 	wait_event(root->fs_info->transaction_blocked_wait,
1466 		   trans->state >= TRANS_STATE_COMMIT_START ||
1467 		   trans->aborted);
1468 }
1469 
1470 /*
1471  * wait for the current transaction to start and then become unblocked.
1472  * caller holds ref.
1473  */
1474 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1475 					 struct btrfs_transaction *trans)
1476 {
1477 	wait_event(root->fs_info->transaction_wait,
1478 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1479 		   trans->aborted);
1480 }
1481 
1482 /*
1483  * commit transactions asynchronously. once btrfs_commit_transaction_async
1484  * returns, any subsequent transaction will not be allowed to join.
1485  */
1486 struct btrfs_async_commit {
1487 	struct btrfs_trans_handle *newtrans;
1488 	struct btrfs_root *root;
1489 	struct work_struct work;
1490 };
1491 
1492 static void do_async_commit(struct work_struct *work)
1493 {
1494 	struct btrfs_async_commit *ac =
1495 		container_of(work, struct btrfs_async_commit, work);
1496 
1497 	/*
1498 	 * We've got freeze protection passed with the transaction.
1499 	 * Tell lockdep about it.
1500 	 */
1501 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1502 		rwsem_acquire_read(
1503 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1504 		     0, 1, _THIS_IP_);
1505 
1506 	current->journal_info = ac->newtrans;
1507 
1508 	btrfs_commit_transaction(ac->newtrans, ac->root);
1509 	kfree(ac);
1510 }
1511 
1512 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1513 				   struct btrfs_root *root,
1514 				   int wait_for_unblock)
1515 {
1516 	struct btrfs_async_commit *ac;
1517 	struct btrfs_transaction *cur_trans;
1518 
1519 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1520 	if (!ac)
1521 		return -ENOMEM;
1522 
1523 	INIT_WORK(&ac->work, do_async_commit);
1524 	ac->root = root;
1525 	ac->newtrans = btrfs_join_transaction(root);
1526 	if (IS_ERR(ac->newtrans)) {
1527 		int err = PTR_ERR(ac->newtrans);
1528 		kfree(ac);
1529 		return err;
1530 	}
1531 
1532 	/* take transaction reference */
1533 	cur_trans = trans->transaction;
1534 	atomic_inc(&cur_trans->use_count);
1535 
1536 	btrfs_end_transaction(trans, root);
1537 
1538 	/*
1539 	 * Tell lockdep we've released the freeze rwsem, since the
1540 	 * async commit thread will be the one to unlock it.
1541 	 */
1542 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1543 		rwsem_release(
1544 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1545 			1, _THIS_IP_);
1546 
1547 	schedule_work(&ac->work);
1548 
1549 	/* wait for transaction to start and unblock */
1550 	if (wait_for_unblock)
1551 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1552 	else
1553 		wait_current_trans_commit_start(root, cur_trans);
1554 
1555 	if (current->journal_info == trans)
1556 		current->journal_info = NULL;
1557 
1558 	btrfs_put_transaction(cur_trans);
1559 	return 0;
1560 }
1561 
1562 
1563 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1564 				struct btrfs_root *root, int err)
1565 {
1566 	struct btrfs_transaction *cur_trans = trans->transaction;
1567 	DEFINE_WAIT(wait);
1568 
1569 	WARN_ON(trans->use_count > 1);
1570 
1571 	btrfs_abort_transaction(trans, root, err);
1572 
1573 	spin_lock(&root->fs_info->trans_lock);
1574 
1575 	/*
1576 	 * If the transaction is removed from the list, it means this
1577 	 * transaction has been committed successfully, so it is impossible
1578 	 * to call the cleanup function.
1579 	 */
1580 	BUG_ON(list_empty(&cur_trans->list));
1581 
1582 	list_del_init(&cur_trans->list);
1583 	if (cur_trans == root->fs_info->running_transaction) {
1584 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1585 		spin_unlock(&root->fs_info->trans_lock);
1586 		wait_event(cur_trans->writer_wait,
1587 			   atomic_read(&cur_trans->num_writers) == 1);
1588 
1589 		spin_lock(&root->fs_info->trans_lock);
1590 	}
1591 	spin_unlock(&root->fs_info->trans_lock);
1592 
1593 	btrfs_cleanup_one_transaction(trans->transaction, root);
1594 
1595 	spin_lock(&root->fs_info->trans_lock);
1596 	if (cur_trans == root->fs_info->running_transaction)
1597 		root->fs_info->running_transaction = NULL;
1598 	spin_unlock(&root->fs_info->trans_lock);
1599 
1600 	if (trans->type & __TRANS_FREEZABLE)
1601 		sb_end_intwrite(root->fs_info->sb);
1602 	btrfs_put_transaction(cur_trans);
1603 	btrfs_put_transaction(cur_trans);
1604 
1605 	trace_btrfs_transaction_commit(root);
1606 
1607 	if (current->journal_info == trans)
1608 		current->journal_info = NULL;
1609 	btrfs_scrub_cancel(root->fs_info);
1610 
1611 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1612 }
1613 
1614 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1615 {
1616 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1617 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1618 	return 0;
1619 }
1620 
1621 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1622 {
1623 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1624 		btrfs_wait_ordered_roots(fs_info, -1);
1625 }
1626 
1627 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1628 			     struct btrfs_root *root)
1629 {
1630 	struct btrfs_transaction *cur_trans = trans->transaction;
1631 	struct btrfs_transaction *prev_trans = NULL;
1632 	int ret;
1633 
1634 	/* Stop the commit early if ->aborted is set */
1635 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1636 		ret = cur_trans->aborted;
1637 		btrfs_end_transaction(trans, root);
1638 		return ret;
1639 	}
1640 
1641 	/* make a pass through all the delayed refs we have so far
1642 	 * any runnings procs may add more while we are here
1643 	 */
1644 	ret = btrfs_run_delayed_refs(trans, root, 0);
1645 	if (ret) {
1646 		btrfs_end_transaction(trans, root);
1647 		return ret;
1648 	}
1649 
1650 	btrfs_trans_release_metadata(trans, root);
1651 	trans->block_rsv = NULL;
1652 	if (trans->qgroup_reserved) {
1653 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1654 		trans->qgroup_reserved = 0;
1655 	}
1656 
1657 	cur_trans = trans->transaction;
1658 
1659 	/*
1660 	 * set the flushing flag so procs in this transaction have to
1661 	 * start sending their work down.
1662 	 */
1663 	cur_trans->delayed_refs.flushing = 1;
1664 	smp_wmb();
1665 
1666 	if (!list_empty(&trans->new_bgs))
1667 		btrfs_create_pending_block_groups(trans, root);
1668 
1669 	ret = btrfs_run_delayed_refs(trans, root, 0);
1670 	if (ret) {
1671 		btrfs_end_transaction(trans, root);
1672 		return ret;
1673 	}
1674 
1675 	spin_lock(&root->fs_info->trans_lock);
1676 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1677 		spin_unlock(&root->fs_info->trans_lock);
1678 		atomic_inc(&cur_trans->use_count);
1679 		ret = btrfs_end_transaction(trans, root);
1680 
1681 		wait_for_commit(root, cur_trans);
1682 
1683 		btrfs_put_transaction(cur_trans);
1684 
1685 		return ret;
1686 	}
1687 
1688 	cur_trans->state = TRANS_STATE_COMMIT_START;
1689 	wake_up(&root->fs_info->transaction_blocked_wait);
1690 
1691 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1692 		prev_trans = list_entry(cur_trans->list.prev,
1693 					struct btrfs_transaction, list);
1694 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1695 			atomic_inc(&prev_trans->use_count);
1696 			spin_unlock(&root->fs_info->trans_lock);
1697 
1698 			wait_for_commit(root, prev_trans);
1699 
1700 			btrfs_put_transaction(prev_trans);
1701 		} else {
1702 			spin_unlock(&root->fs_info->trans_lock);
1703 		}
1704 	} else {
1705 		spin_unlock(&root->fs_info->trans_lock);
1706 	}
1707 
1708 	extwriter_counter_dec(cur_trans, trans->type);
1709 
1710 	ret = btrfs_start_delalloc_flush(root->fs_info);
1711 	if (ret)
1712 		goto cleanup_transaction;
1713 
1714 	ret = btrfs_run_delayed_items(trans, root);
1715 	if (ret)
1716 		goto cleanup_transaction;
1717 
1718 	wait_event(cur_trans->writer_wait,
1719 		   extwriter_counter_read(cur_trans) == 0);
1720 
1721 	/* some pending stuffs might be added after the previous flush. */
1722 	ret = btrfs_run_delayed_items(trans, root);
1723 	if (ret)
1724 		goto cleanup_transaction;
1725 
1726 	btrfs_wait_delalloc_flush(root->fs_info);
1727 
1728 	btrfs_scrub_pause(root);
1729 	/*
1730 	 * Ok now we need to make sure to block out any other joins while we
1731 	 * commit the transaction.  We could have started a join before setting
1732 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1733 	 */
1734 	spin_lock(&root->fs_info->trans_lock);
1735 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1736 	spin_unlock(&root->fs_info->trans_lock);
1737 	wait_event(cur_trans->writer_wait,
1738 		   atomic_read(&cur_trans->num_writers) == 1);
1739 
1740 	/* ->aborted might be set after the previous check, so check it */
1741 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1742 		ret = cur_trans->aborted;
1743 		goto scrub_continue;
1744 	}
1745 	/*
1746 	 * the reloc mutex makes sure that we stop
1747 	 * the balancing code from coming in and moving
1748 	 * extents around in the middle of the commit
1749 	 */
1750 	mutex_lock(&root->fs_info->reloc_mutex);
1751 
1752 	/*
1753 	 * We needn't worry about the delayed items because we will
1754 	 * deal with them in create_pending_snapshot(), which is the
1755 	 * core function of the snapshot creation.
1756 	 */
1757 	ret = create_pending_snapshots(trans, root->fs_info);
1758 	if (ret) {
1759 		mutex_unlock(&root->fs_info->reloc_mutex);
1760 		goto scrub_continue;
1761 	}
1762 
1763 	/*
1764 	 * We insert the dir indexes of the snapshots and update the inode
1765 	 * of the snapshots' parents after the snapshot creation, so there
1766 	 * are some delayed items which are not dealt with. Now deal with
1767 	 * them.
1768 	 *
1769 	 * We needn't worry that this operation will corrupt the snapshots,
1770 	 * because all the tree which are snapshoted will be forced to COW
1771 	 * the nodes and leaves.
1772 	 */
1773 	ret = btrfs_run_delayed_items(trans, root);
1774 	if (ret) {
1775 		mutex_unlock(&root->fs_info->reloc_mutex);
1776 		goto scrub_continue;
1777 	}
1778 
1779 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1780 	if (ret) {
1781 		mutex_unlock(&root->fs_info->reloc_mutex);
1782 		goto scrub_continue;
1783 	}
1784 
1785 	/*
1786 	 * make sure none of the code above managed to slip in a
1787 	 * delayed item
1788 	 */
1789 	btrfs_assert_delayed_root_empty(root);
1790 
1791 	WARN_ON(cur_trans != trans->transaction);
1792 
1793 	/* btrfs_commit_tree_roots is responsible for getting the
1794 	 * various roots consistent with each other.  Every pointer
1795 	 * in the tree of tree roots has to point to the most up to date
1796 	 * root for every subvolume and other tree.  So, we have to keep
1797 	 * the tree logging code from jumping in and changing any
1798 	 * of the trees.
1799 	 *
1800 	 * At this point in the commit, there can't be any tree-log
1801 	 * writers, but a little lower down we drop the trans mutex
1802 	 * and let new people in.  By holding the tree_log_mutex
1803 	 * from now until after the super is written, we avoid races
1804 	 * with the tree-log code.
1805 	 */
1806 	mutex_lock(&root->fs_info->tree_log_mutex);
1807 
1808 	ret = commit_fs_roots(trans, root);
1809 	if (ret) {
1810 		mutex_unlock(&root->fs_info->tree_log_mutex);
1811 		mutex_unlock(&root->fs_info->reloc_mutex);
1812 		goto scrub_continue;
1813 	}
1814 
1815 	/*
1816 	 * Since the transaction is done, we should set the inode map cache flag
1817 	 * before any other comming transaction.
1818 	 */
1819 	if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1820 		btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1821 	else
1822 		btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1823 
1824 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1825 	 * safe to free the root of tree log roots
1826 	 */
1827 	btrfs_free_log_root_tree(trans, root->fs_info);
1828 
1829 	ret = commit_cowonly_roots(trans, root);
1830 	if (ret) {
1831 		mutex_unlock(&root->fs_info->tree_log_mutex);
1832 		mutex_unlock(&root->fs_info->reloc_mutex);
1833 		goto scrub_continue;
1834 	}
1835 
1836 	/*
1837 	 * The tasks which save the space cache and inode cache may also
1838 	 * update ->aborted, check it.
1839 	 */
1840 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1841 		ret = cur_trans->aborted;
1842 		mutex_unlock(&root->fs_info->tree_log_mutex);
1843 		mutex_unlock(&root->fs_info->reloc_mutex);
1844 		goto scrub_continue;
1845 	}
1846 
1847 	btrfs_prepare_extent_commit(trans, root);
1848 
1849 	cur_trans = root->fs_info->running_transaction;
1850 
1851 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1852 			    root->fs_info->tree_root->node);
1853 	list_add_tail(&root->fs_info->tree_root->dirty_list,
1854 		      &cur_trans->switch_commits);
1855 
1856 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1857 			    root->fs_info->chunk_root->node);
1858 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
1859 		      &cur_trans->switch_commits);
1860 
1861 	switch_commit_roots(cur_trans, root->fs_info);
1862 
1863 	assert_qgroups_uptodate(trans);
1864 	update_super_roots(root);
1865 
1866 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1867 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1868 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1869 	       sizeof(*root->fs_info->super_copy));
1870 
1871 	spin_lock(&root->fs_info->trans_lock);
1872 	cur_trans->state = TRANS_STATE_UNBLOCKED;
1873 	root->fs_info->running_transaction = NULL;
1874 	spin_unlock(&root->fs_info->trans_lock);
1875 	mutex_unlock(&root->fs_info->reloc_mutex);
1876 
1877 	wake_up(&root->fs_info->transaction_wait);
1878 
1879 	ret = btrfs_write_and_wait_transaction(trans, root);
1880 	if (ret) {
1881 		btrfs_error(root->fs_info, ret,
1882 			    "Error while writing out transaction");
1883 		mutex_unlock(&root->fs_info->tree_log_mutex);
1884 		goto scrub_continue;
1885 	}
1886 
1887 	ret = write_ctree_super(trans, root, 0);
1888 	if (ret) {
1889 		mutex_unlock(&root->fs_info->tree_log_mutex);
1890 		goto scrub_continue;
1891 	}
1892 
1893 	/*
1894 	 * the super is written, we can safely allow the tree-loggers
1895 	 * to go about their business
1896 	 */
1897 	mutex_unlock(&root->fs_info->tree_log_mutex);
1898 
1899 	btrfs_finish_extent_commit(trans, root);
1900 
1901 	root->fs_info->last_trans_committed = cur_trans->transid;
1902 	/*
1903 	 * We needn't acquire the lock here because there is no other task
1904 	 * which can change it.
1905 	 */
1906 	cur_trans->state = TRANS_STATE_COMPLETED;
1907 	wake_up(&cur_trans->commit_wait);
1908 
1909 	spin_lock(&root->fs_info->trans_lock);
1910 	list_del_init(&cur_trans->list);
1911 	spin_unlock(&root->fs_info->trans_lock);
1912 
1913 	btrfs_put_transaction(cur_trans);
1914 	btrfs_put_transaction(cur_trans);
1915 
1916 	if (trans->type & __TRANS_FREEZABLE)
1917 		sb_end_intwrite(root->fs_info->sb);
1918 
1919 	trace_btrfs_transaction_commit(root);
1920 
1921 	btrfs_scrub_continue(root);
1922 
1923 	if (current->journal_info == trans)
1924 		current->journal_info = NULL;
1925 
1926 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1927 
1928 	if (current != root->fs_info->transaction_kthread)
1929 		btrfs_run_delayed_iputs(root);
1930 
1931 	return ret;
1932 
1933 scrub_continue:
1934 	btrfs_scrub_continue(root);
1935 cleanup_transaction:
1936 	btrfs_trans_release_metadata(trans, root);
1937 	trans->block_rsv = NULL;
1938 	if (trans->qgroup_reserved) {
1939 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1940 		trans->qgroup_reserved = 0;
1941 	}
1942 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1943 	if (current->journal_info == trans)
1944 		current->journal_info = NULL;
1945 	cleanup_transaction(trans, root, ret);
1946 
1947 	return ret;
1948 }
1949 
1950 /*
1951  * return < 0 if error
1952  * 0 if there are no more dead_roots at the time of call
1953  * 1 there are more to be processed, call me again
1954  *
1955  * The return value indicates there are certainly more snapshots to delete, but
1956  * if there comes a new one during processing, it may return 0. We don't mind,
1957  * because btrfs_commit_super will poke cleaner thread and it will process it a
1958  * few seconds later.
1959  */
1960 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1961 {
1962 	int ret;
1963 	struct btrfs_fs_info *fs_info = root->fs_info;
1964 
1965 	spin_lock(&fs_info->trans_lock);
1966 	if (list_empty(&fs_info->dead_roots)) {
1967 		spin_unlock(&fs_info->trans_lock);
1968 		return 0;
1969 	}
1970 	root = list_first_entry(&fs_info->dead_roots,
1971 			struct btrfs_root, root_list);
1972 	list_del_init(&root->root_list);
1973 	spin_unlock(&fs_info->trans_lock);
1974 
1975 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
1976 
1977 	btrfs_kill_all_delayed_nodes(root);
1978 
1979 	if (btrfs_header_backref_rev(root->node) <
1980 			BTRFS_MIXED_BACKREF_REV)
1981 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1982 	else
1983 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1984 	/*
1985 	 * If we encounter a transaction abort during snapshot cleaning, we
1986 	 * don't want to crash here
1987 	 */
1988 	return (ret < 0) ? 0 : 1;
1989 }
1990