1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 35 #define BTRFS_ROOT_TRANS_TAG 0 36 37 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 38 [TRANS_STATE_RUNNING] = 0U, 39 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | 40 __TRANS_START), 41 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | 42 __TRANS_START | 43 __TRANS_ATTACH), 44 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | 45 __TRANS_START | 46 __TRANS_ATTACH | 47 __TRANS_JOIN), 48 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | 49 __TRANS_START | 50 __TRANS_ATTACH | 51 __TRANS_JOIN | 52 __TRANS_JOIN_NOLOCK), 53 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | 54 __TRANS_START | 55 __TRANS_ATTACH | 56 __TRANS_JOIN | 57 __TRANS_JOIN_NOLOCK), 58 }; 59 60 void btrfs_put_transaction(struct btrfs_transaction *transaction) 61 { 62 WARN_ON(atomic_read(&transaction->use_count) == 0); 63 if (atomic_dec_and_test(&transaction->use_count)) { 64 BUG_ON(!list_empty(&transaction->list)); 65 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 66 while (!list_empty(&transaction->pending_chunks)) { 67 struct extent_map *em; 68 69 em = list_first_entry(&transaction->pending_chunks, 70 struct extent_map, list); 71 list_del_init(&em->list); 72 free_extent_map(em); 73 } 74 kmem_cache_free(btrfs_transaction_cachep, transaction); 75 } 76 } 77 78 static noinline void switch_commit_root(struct btrfs_root *root) 79 { 80 free_extent_buffer(root->commit_root); 81 root->commit_root = btrfs_root_node(root); 82 } 83 84 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 85 unsigned int type) 86 { 87 if (type & TRANS_EXTWRITERS) 88 atomic_inc(&trans->num_extwriters); 89 } 90 91 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 92 unsigned int type) 93 { 94 if (type & TRANS_EXTWRITERS) 95 atomic_dec(&trans->num_extwriters); 96 } 97 98 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 99 unsigned int type) 100 { 101 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 102 } 103 104 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 105 { 106 return atomic_read(&trans->num_extwriters); 107 } 108 109 /* 110 * either allocate a new transaction or hop into the existing one 111 */ 112 static noinline int join_transaction(struct btrfs_root *root, unsigned int type) 113 { 114 struct btrfs_transaction *cur_trans; 115 struct btrfs_fs_info *fs_info = root->fs_info; 116 117 spin_lock(&fs_info->trans_lock); 118 loop: 119 /* The file system has been taken offline. No new transactions. */ 120 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 121 spin_unlock(&fs_info->trans_lock); 122 return -EROFS; 123 } 124 125 cur_trans = fs_info->running_transaction; 126 if (cur_trans) { 127 if (cur_trans->aborted) { 128 spin_unlock(&fs_info->trans_lock); 129 return cur_trans->aborted; 130 } 131 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 132 spin_unlock(&fs_info->trans_lock); 133 return -EBUSY; 134 } 135 atomic_inc(&cur_trans->use_count); 136 atomic_inc(&cur_trans->num_writers); 137 extwriter_counter_inc(cur_trans, type); 138 spin_unlock(&fs_info->trans_lock); 139 return 0; 140 } 141 spin_unlock(&fs_info->trans_lock); 142 143 /* 144 * If we are ATTACH, we just want to catch the current transaction, 145 * and commit it. If there is no transaction, just return ENOENT. 146 */ 147 if (type == TRANS_ATTACH) 148 return -ENOENT; 149 150 /* 151 * JOIN_NOLOCK only happens during the transaction commit, so 152 * it is impossible that ->running_transaction is NULL 153 */ 154 BUG_ON(type == TRANS_JOIN_NOLOCK); 155 156 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 157 if (!cur_trans) 158 return -ENOMEM; 159 160 spin_lock(&fs_info->trans_lock); 161 if (fs_info->running_transaction) { 162 /* 163 * someone started a transaction after we unlocked. Make sure 164 * to redo the checks above 165 */ 166 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 167 goto loop; 168 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 169 spin_unlock(&fs_info->trans_lock); 170 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 171 return -EROFS; 172 } 173 174 atomic_set(&cur_trans->num_writers, 1); 175 extwriter_counter_init(cur_trans, type); 176 init_waitqueue_head(&cur_trans->writer_wait); 177 init_waitqueue_head(&cur_trans->commit_wait); 178 cur_trans->state = TRANS_STATE_RUNNING; 179 /* 180 * One for this trans handle, one so it will live on until we 181 * commit the transaction. 182 */ 183 atomic_set(&cur_trans->use_count, 2); 184 cur_trans->start_time = get_seconds(); 185 186 cur_trans->delayed_refs.href_root = RB_ROOT; 187 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 188 cur_trans->delayed_refs.num_heads_ready = 0; 189 cur_trans->delayed_refs.num_heads = 0; 190 cur_trans->delayed_refs.flushing = 0; 191 cur_trans->delayed_refs.run_delayed_start = 0; 192 193 /* 194 * although the tree mod log is per file system and not per transaction, 195 * the log must never go across transaction boundaries. 196 */ 197 smp_mb(); 198 if (!list_empty(&fs_info->tree_mod_seq_list)) 199 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when " 200 "creating a fresh transaction\n"); 201 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 202 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when " 203 "creating a fresh transaction\n"); 204 atomic64_set(&fs_info->tree_mod_seq, 0); 205 206 spin_lock_init(&cur_trans->delayed_refs.lock); 207 208 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 209 INIT_LIST_HEAD(&cur_trans->ordered_operations); 210 INIT_LIST_HEAD(&cur_trans->pending_chunks); 211 list_add_tail(&cur_trans->list, &fs_info->trans_list); 212 extent_io_tree_init(&cur_trans->dirty_pages, 213 fs_info->btree_inode->i_mapping); 214 fs_info->generation++; 215 cur_trans->transid = fs_info->generation; 216 fs_info->running_transaction = cur_trans; 217 cur_trans->aborted = 0; 218 spin_unlock(&fs_info->trans_lock); 219 220 return 0; 221 } 222 223 /* 224 * this does all the record keeping required to make sure that a reference 225 * counted root is properly recorded in a given transaction. This is required 226 * to make sure the old root from before we joined the transaction is deleted 227 * when the transaction commits 228 */ 229 static int record_root_in_trans(struct btrfs_trans_handle *trans, 230 struct btrfs_root *root) 231 { 232 if (root->ref_cows && root->last_trans < trans->transid) { 233 WARN_ON(root == root->fs_info->extent_root); 234 WARN_ON(root->commit_root != root->node); 235 236 /* 237 * see below for in_trans_setup usage rules 238 * we have the reloc mutex held now, so there 239 * is only one writer in this function 240 */ 241 root->in_trans_setup = 1; 242 243 /* make sure readers find in_trans_setup before 244 * they find our root->last_trans update 245 */ 246 smp_wmb(); 247 248 spin_lock(&root->fs_info->fs_roots_radix_lock); 249 if (root->last_trans == trans->transid) { 250 spin_unlock(&root->fs_info->fs_roots_radix_lock); 251 return 0; 252 } 253 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 254 (unsigned long)root->root_key.objectid, 255 BTRFS_ROOT_TRANS_TAG); 256 spin_unlock(&root->fs_info->fs_roots_radix_lock); 257 root->last_trans = trans->transid; 258 259 /* this is pretty tricky. We don't want to 260 * take the relocation lock in btrfs_record_root_in_trans 261 * unless we're really doing the first setup for this root in 262 * this transaction. 263 * 264 * Normally we'd use root->last_trans as a flag to decide 265 * if we want to take the expensive mutex. 266 * 267 * But, we have to set root->last_trans before we 268 * init the relocation root, otherwise, we trip over warnings 269 * in ctree.c. The solution used here is to flag ourselves 270 * with root->in_trans_setup. When this is 1, we're still 271 * fixing up the reloc trees and everyone must wait. 272 * 273 * When this is zero, they can trust root->last_trans and fly 274 * through btrfs_record_root_in_trans without having to take the 275 * lock. smp_wmb() makes sure that all the writes above are 276 * done before we pop in the zero below 277 */ 278 btrfs_init_reloc_root(trans, root); 279 smp_wmb(); 280 root->in_trans_setup = 0; 281 } 282 return 0; 283 } 284 285 286 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 287 struct btrfs_root *root) 288 { 289 if (!root->ref_cows) 290 return 0; 291 292 /* 293 * see record_root_in_trans for comments about in_trans_setup usage 294 * and barriers 295 */ 296 smp_rmb(); 297 if (root->last_trans == trans->transid && 298 !root->in_trans_setup) 299 return 0; 300 301 mutex_lock(&root->fs_info->reloc_mutex); 302 record_root_in_trans(trans, root); 303 mutex_unlock(&root->fs_info->reloc_mutex); 304 305 return 0; 306 } 307 308 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 309 { 310 return (trans->state >= TRANS_STATE_BLOCKED && 311 trans->state < TRANS_STATE_UNBLOCKED && 312 !trans->aborted); 313 } 314 315 /* wait for commit against the current transaction to become unblocked 316 * when this is done, it is safe to start a new transaction, but the current 317 * transaction might not be fully on disk. 318 */ 319 static void wait_current_trans(struct btrfs_root *root) 320 { 321 struct btrfs_transaction *cur_trans; 322 323 spin_lock(&root->fs_info->trans_lock); 324 cur_trans = root->fs_info->running_transaction; 325 if (cur_trans && is_transaction_blocked(cur_trans)) { 326 atomic_inc(&cur_trans->use_count); 327 spin_unlock(&root->fs_info->trans_lock); 328 329 wait_event(root->fs_info->transaction_wait, 330 cur_trans->state >= TRANS_STATE_UNBLOCKED || 331 cur_trans->aborted); 332 btrfs_put_transaction(cur_trans); 333 } else { 334 spin_unlock(&root->fs_info->trans_lock); 335 } 336 } 337 338 static int may_wait_transaction(struct btrfs_root *root, int type) 339 { 340 if (root->fs_info->log_root_recovering) 341 return 0; 342 343 if (type == TRANS_USERSPACE) 344 return 1; 345 346 if (type == TRANS_START && 347 !atomic_read(&root->fs_info->open_ioctl_trans)) 348 return 1; 349 350 return 0; 351 } 352 353 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 354 { 355 if (!root->fs_info->reloc_ctl || 356 !root->ref_cows || 357 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 358 root->reloc_root) 359 return false; 360 361 return true; 362 } 363 364 static struct btrfs_trans_handle * 365 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type, 366 enum btrfs_reserve_flush_enum flush) 367 { 368 struct btrfs_trans_handle *h; 369 struct btrfs_transaction *cur_trans; 370 u64 num_bytes = 0; 371 u64 qgroup_reserved = 0; 372 bool reloc_reserved = false; 373 int ret; 374 375 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 376 return ERR_PTR(-EROFS); 377 378 if (current->journal_info) { 379 WARN_ON(type & TRANS_EXTWRITERS); 380 h = current->journal_info; 381 h->use_count++; 382 WARN_ON(h->use_count > 2); 383 h->orig_rsv = h->block_rsv; 384 h->block_rsv = NULL; 385 goto got_it; 386 } 387 388 /* 389 * Do the reservation before we join the transaction so we can do all 390 * the appropriate flushing if need be. 391 */ 392 if (num_items > 0 && root != root->fs_info->chunk_root) { 393 if (root->fs_info->quota_enabled && 394 is_fstree(root->root_key.objectid)) { 395 qgroup_reserved = num_items * root->leafsize; 396 ret = btrfs_qgroup_reserve(root, qgroup_reserved); 397 if (ret) 398 return ERR_PTR(ret); 399 } 400 401 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 402 /* 403 * Do the reservation for the relocation root creation 404 */ 405 if (unlikely(need_reserve_reloc_root(root))) { 406 num_bytes += root->nodesize; 407 reloc_reserved = true; 408 } 409 410 ret = btrfs_block_rsv_add(root, 411 &root->fs_info->trans_block_rsv, 412 num_bytes, flush); 413 if (ret) 414 goto reserve_fail; 415 } 416 again: 417 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 418 if (!h) { 419 ret = -ENOMEM; 420 goto alloc_fail; 421 } 422 423 /* 424 * If we are JOIN_NOLOCK we're already committing a transaction and 425 * waiting on this guy, so we don't need to do the sb_start_intwrite 426 * because we're already holding a ref. We need this because we could 427 * have raced in and did an fsync() on a file which can kick a commit 428 * and then we deadlock with somebody doing a freeze. 429 * 430 * If we are ATTACH, it means we just want to catch the current 431 * transaction and commit it, so we needn't do sb_start_intwrite(). 432 */ 433 if (type & __TRANS_FREEZABLE) 434 sb_start_intwrite(root->fs_info->sb); 435 436 if (may_wait_transaction(root, type)) 437 wait_current_trans(root); 438 439 do { 440 ret = join_transaction(root, type); 441 if (ret == -EBUSY) { 442 wait_current_trans(root); 443 if (unlikely(type == TRANS_ATTACH)) 444 ret = -ENOENT; 445 } 446 } while (ret == -EBUSY); 447 448 if (ret < 0) { 449 /* We must get the transaction if we are JOIN_NOLOCK. */ 450 BUG_ON(type == TRANS_JOIN_NOLOCK); 451 goto join_fail; 452 } 453 454 cur_trans = root->fs_info->running_transaction; 455 456 h->transid = cur_trans->transid; 457 h->transaction = cur_trans; 458 h->blocks_used = 0; 459 h->bytes_reserved = 0; 460 h->root = root; 461 h->delayed_ref_updates = 0; 462 h->use_count = 1; 463 h->adding_csums = 0; 464 h->block_rsv = NULL; 465 h->orig_rsv = NULL; 466 h->aborted = 0; 467 h->qgroup_reserved = 0; 468 h->delayed_ref_elem.seq = 0; 469 h->type = type; 470 h->allocating_chunk = false; 471 h->reloc_reserved = false; 472 h->sync = false; 473 INIT_LIST_HEAD(&h->qgroup_ref_list); 474 INIT_LIST_HEAD(&h->new_bgs); 475 476 smp_mb(); 477 if (cur_trans->state >= TRANS_STATE_BLOCKED && 478 may_wait_transaction(root, type)) { 479 btrfs_commit_transaction(h, root); 480 goto again; 481 } 482 483 if (num_bytes) { 484 trace_btrfs_space_reservation(root->fs_info, "transaction", 485 h->transid, num_bytes, 1); 486 h->block_rsv = &root->fs_info->trans_block_rsv; 487 h->bytes_reserved = num_bytes; 488 h->reloc_reserved = reloc_reserved; 489 } 490 h->qgroup_reserved = qgroup_reserved; 491 492 got_it: 493 btrfs_record_root_in_trans(h, root); 494 495 if (!current->journal_info && type != TRANS_USERSPACE) 496 current->journal_info = h; 497 return h; 498 499 join_fail: 500 if (type & __TRANS_FREEZABLE) 501 sb_end_intwrite(root->fs_info->sb); 502 kmem_cache_free(btrfs_trans_handle_cachep, h); 503 alloc_fail: 504 if (num_bytes) 505 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 506 num_bytes); 507 reserve_fail: 508 if (qgroup_reserved) 509 btrfs_qgroup_free(root, qgroup_reserved); 510 return ERR_PTR(ret); 511 } 512 513 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 514 int num_items) 515 { 516 return start_transaction(root, num_items, TRANS_START, 517 BTRFS_RESERVE_FLUSH_ALL); 518 } 519 520 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 521 struct btrfs_root *root, int num_items) 522 { 523 return start_transaction(root, num_items, TRANS_START, 524 BTRFS_RESERVE_FLUSH_LIMIT); 525 } 526 527 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 528 { 529 return start_transaction(root, 0, TRANS_JOIN, 0); 530 } 531 532 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 533 { 534 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 535 } 536 537 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 538 { 539 return start_transaction(root, 0, TRANS_USERSPACE, 0); 540 } 541 542 /* 543 * btrfs_attach_transaction() - catch the running transaction 544 * 545 * It is used when we want to commit the current the transaction, but 546 * don't want to start a new one. 547 * 548 * Note: If this function return -ENOENT, it just means there is no 549 * running transaction. But it is possible that the inactive transaction 550 * is still in the memory, not fully on disk. If you hope there is no 551 * inactive transaction in the fs when -ENOENT is returned, you should 552 * invoke 553 * btrfs_attach_transaction_barrier() 554 */ 555 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 556 { 557 return start_transaction(root, 0, TRANS_ATTACH, 0); 558 } 559 560 /* 561 * btrfs_attach_transaction_barrier() - catch the running transaction 562 * 563 * It is similar to the above function, the differentia is this one 564 * will wait for all the inactive transactions until they fully 565 * complete. 566 */ 567 struct btrfs_trans_handle * 568 btrfs_attach_transaction_barrier(struct btrfs_root *root) 569 { 570 struct btrfs_trans_handle *trans; 571 572 trans = start_transaction(root, 0, TRANS_ATTACH, 0); 573 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 574 btrfs_wait_for_commit(root, 0); 575 576 return trans; 577 } 578 579 /* wait for a transaction commit to be fully complete */ 580 static noinline void wait_for_commit(struct btrfs_root *root, 581 struct btrfs_transaction *commit) 582 { 583 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 584 } 585 586 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 587 { 588 struct btrfs_transaction *cur_trans = NULL, *t; 589 int ret = 0; 590 591 if (transid) { 592 if (transid <= root->fs_info->last_trans_committed) 593 goto out; 594 595 ret = -EINVAL; 596 /* find specified transaction */ 597 spin_lock(&root->fs_info->trans_lock); 598 list_for_each_entry(t, &root->fs_info->trans_list, list) { 599 if (t->transid == transid) { 600 cur_trans = t; 601 atomic_inc(&cur_trans->use_count); 602 ret = 0; 603 break; 604 } 605 if (t->transid > transid) { 606 ret = 0; 607 break; 608 } 609 } 610 spin_unlock(&root->fs_info->trans_lock); 611 /* The specified transaction doesn't exist */ 612 if (!cur_trans) 613 goto out; 614 } else { 615 /* find newest transaction that is committing | committed */ 616 spin_lock(&root->fs_info->trans_lock); 617 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 618 list) { 619 if (t->state >= TRANS_STATE_COMMIT_START) { 620 if (t->state == TRANS_STATE_COMPLETED) 621 break; 622 cur_trans = t; 623 atomic_inc(&cur_trans->use_count); 624 break; 625 } 626 } 627 spin_unlock(&root->fs_info->trans_lock); 628 if (!cur_trans) 629 goto out; /* nothing committing|committed */ 630 } 631 632 wait_for_commit(root, cur_trans); 633 btrfs_put_transaction(cur_trans); 634 out: 635 return ret; 636 } 637 638 void btrfs_throttle(struct btrfs_root *root) 639 { 640 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 641 wait_current_trans(root); 642 } 643 644 static int should_end_transaction(struct btrfs_trans_handle *trans, 645 struct btrfs_root *root) 646 { 647 if (root->fs_info->global_block_rsv.space_info->full && 648 btrfs_check_space_for_delayed_refs(trans, root)) 649 return 1; 650 651 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 652 } 653 654 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 655 struct btrfs_root *root) 656 { 657 struct btrfs_transaction *cur_trans = trans->transaction; 658 int updates; 659 int err; 660 661 smp_mb(); 662 if (cur_trans->state >= TRANS_STATE_BLOCKED || 663 cur_trans->delayed_refs.flushing) 664 return 1; 665 666 updates = trans->delayed_ref_updates; 667 trans->delayed_ref_updates = 0; 668 if (updates) { 669 err = btrfs_run_delayed_refs(trans, root, updates); 670 if (err) /* Error code will also eval true */ 671 return err; 672 } 673 674 return should_end_transaction(trans, root); 675 } 676 677 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 678 struct btrfs_root *root, int throttle) 679 { 680 struct btrfs_transaction *cur_trans = trans->transaction; 681 struct btrfs_fs_info *info = root->fs_info; 682 unsigned long cur = trans->delayed_ref_updates; 683 int lock = (trans->type != TRANS_JOIN_NOLOCK); 684 int err = 0; 685 686 if (--trans->use_count) { 687 trans->block_rsv = trans->orig_rsv; 688 return 0; 689 } 690 691 /* 692 * do the qgroup accounting as early as possible 693 */ 694 err = btrfs_delayed_refs_qgroup_accounting(trans, info); 695 696 btrfs_trans_release_metadata(trans, root); 697 trans->block_rsv = NULL; 698 699 if (trans->qgroup_reserved) { 700 /* 701 * the same root has to be passed here between start_transaction 702 * and end_transaction. Subvolume quota depends on this. 703 */ 704 btrfs_qgroup_free(trans->root, trans->qgroup_reserved); 705 trans->qgroup_reserved = 0; 706 } 707 708 if (!list_empty(&trans->new_bgs)) 709 btrfs_create_pending_block_groups(trans, root); 710 711 trans->delayed_ref_updates = 0; 712 if (!trans->sync && btrfs_should_throttle_delayed_refs(trans, root)) { 713 cur = max_t(unsigned long, cur, 32); 714 trans->delayed_ref_updates = 0; 715 btrfs_run_delayed_refs(trans, root, cur); 716 } 717 718 btrfs_trans_release_metadata(trans, root); 719 trans->block_rsv = NULL; 720 721 if (!list_empty(&trans->new_bgs)) 722 btrfs_create_pending_block_groups(trans, root); 723 724 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 725 should_end_transaction(trans, root) && 726 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 727 spin_lock(&info->trans_lock); 728 if (cur_trans->state == TRANS_STATE_RUNNING) 729 cur_trans->state = TRANS_STATE_BLOCKED; 730 spin_unlock(&info->trans_lock); 731 } 732 733 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 734 if (throttle) { 735 /* 736 * We may race with somebody else here so end up having 737 * to call end_transaction on ourselves again, so inc 738 * our use_count. 739 */ 740 trans->use_count++; 741 return btrfs_commit_transaction(trans, root); 742 } else { 743 wake_up_process(info->transaction_kthread); 744 } 745 } 746 747 if (trans->type & __TRANS_FREEZABLE) 748 sb_end_intwrite(root->fs_info->sb); 749 750 WARN_ON(cur_trans != info->running_transaction); 751 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 752 atomic_dec(&cur_trans->num_writers); 753 extwriter_counter_dec(cur_trans, trans->type); 754 755 smp_mb(); 756 if (waitqueue_active(&cur_trans->writer_wait)) 757 wake_up(&cur_trans->writer_wait); 758 btrfs_put_transaction(cur_trans); 759 760 if (current->journal_info == trans) 761 current->journal_info = NULL; 762 763 if (throttle) 764 btrfs_run_delayed_iputs(root); 765 766 if (trans->aborted || 767 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 768 wake_up_process(info->transaction_kthread); 769 err = -EIO; 770 } 771 assert_qgroups_uptodate(trans); 772 773 kmem_cache_free(btrfs_trans_handle_cachep, trans); 774 return err; 775 } 776 777 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 778 struct btrfs_root *root) 779 { 780 return __btrfs_end_transaction(trans, root, 0); 781 } 782 783 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 784 struct btrfs_root *root) 785 { 786 return __btrfs_end_transaction(trans, root, 1); 787 } 788 789 /* 790 * when btree blocks are allocated, they have some corresponding bits set for 791 * them in one of two extent_io trees. This is used to make sure all of 792 * those extents are sent to disk but does not wait on them 793 */ 794 int btrfs_write_marked_extents(struct btrfs_root *root, 795 struct extent_io_tree *dirty_pages, int mark) 796 { 797 int err = 0; 798 int werr = 0; 799 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 800 struct extent_state *cached_state = NULL; 801 u64 start = 0; 802 u64 end; 803 804 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 805 mark, &cached_state)) { 806 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 807 mark, &cached_state, GFP_NOFS); 808 cached_state = NULL; 809 err = filemap_fdatawrite_range(mapping, start, end); 810 if (err) 811 werr = err; 812 cond_resched(); 813 start = end + 1; 814 } 815 if (err) 816 werr = err; 817 return werr; 818 } 819 820 /* 821 * when btree blocks are allocated, they have some corresponding bits set for 822 * them in one of two extent_io trees. This is used to make sure all of 823 * those extents are on disk for transaction or log commit. We wait 824 * on all the pages and clear them from the dirty pages state tree 825 */ 826 int btrfs_wait_marked_extents(struct btrfs_root *root, 827 struct extent_io_tree *dirty_pages, int mark) 828 { 829 int err = 0; 830 int werr = 0; 831 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 832 struct extent_state *cached_state = NULL; 833 u64 start = 0; 834 u64 end; 835 836 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 837 EXTENT_NEED_WAIT, &cached_state)) { 838 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 839 0, 0, &cached_state, GFP_NOFS); 840 err = filemap_fdatawait_range(mapping, start, end); 841 if (err) 842 werr = err; 843 cond_resched(); 844 start = end + 1; 845 } 846 if (err) 847 werr = err; 848 return werr; 849 } 850 851 /* 852 * when btree blocks are allocated, they have some corresponding bits set for 853 * them in one of two extent_io trees. This is used to make sure all of 854 * those extents are on disk for transaction or log commit 855 */ 856 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 857 struct extent_io_tree *dirty_pages, int mark) 858 { 859 int ret; 860 int ret2; 861 struct blk_plug plug; 862 863 blk_start_plug(&plug); 864 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 865 blk_finish_plug(&plug); 866 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 867 868 if (ret) 869 return ret; 870 if (ret2) 871 return ret2; 872 return 0; 873 } 874 875 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 876 struct btrfs_root *root) 877 { 878 if (!trans || !trans->transaction) { 879 struct inode *btree_inode; 880 btree_inode = root->fs_info->btree_inode; 881 return filemap_write_and_wait(btree_inode->i_mapping); 882 } 883 return btrfs_write_and_wait_marked_extents(root, 884 &trans->transaction->dirty_pages, 885 EXTENT_DIRTY); 886 } 887 888 /* 889 * this is used to update the root pointer in the tree of tree roots. 890 * 891 * But, in the case of the extent allocation tree, updating the root 892 * pointer may allocate blocks which may change the root of the extent 893 * allocation tree. 894 * 895 * So, this loops and repeats and makes sure the cowonly root didn't 896 * change while the root pointer was being updated in the metadata. 897 */ 898 static int update_cowonly_root(struct btrfs_trans_handle *trans, 899 struct btrfs_root *root) 900 { 901 int ret; 902 u64 old_root_bytenr; 903 u64 old_root_used; 904 struct btrfs_root *tree_root = root->fs_info->tree_root; 905 906 old_root_used = btrfs_root_used(&root->root_item); 907 btrfs_write_dirty_block_groups(trans, root); 908 909 while (1) { 910 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 911 if (old_root_bytenr == root->node->start && 912 old_root_used == btrfs_root_used(&root->root_item)) 913 break; 914 915 btrfs_set_root_node(&root->root_item, root->node); 916 ret = btrfs_update_root(trans, tree_root, 917 &root->root_key, 918 &root->root_item); 919 if (ret) 920 return ret; 921 922 old_root_used = btrfs_root_used(&root->root_item); 923 ret = btrfs_write_dirty_block_groups(trans, root); 924 if (ret) 925 return ret; 926 } 927 928 if (root != root->fs_info->extent_root) 929 switch_commit_root(root); 930 931 return 0; 932 } 933 934 /* 935 * update all the cowonly tree roots on disk 936 * 937 * The error handling in this function may not be obvious. Any of the 938 * failures will cause the file system to go offline. We still need 939 * to clean up the delayed refs. 940 */ 941 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 942 struct btrfs_root *root) 943 { 944 struct btrfs_fs_info *fs_info = root->fs_info; 945 struct list_head *next; 946 struct extent_buffer *eb; 947 int ret; 948 949 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 950 if (ret) 951 return ret; 952 953 eb = btrfs_lock_root_node(fs_info->tree_root); 954 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 955 0, &eb); 956 btrfs_tree_unlock(eb); 957 free_extent_buffer(eb); 958 959 if (ret) 960 return ret; 961 962 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 963 if (ret) 964 return ret; 965 966 ret = btrfs_run_dev_stats(trans, root->fs_info); 967 if (ret) 968 return ret; 969 ret = btrfs_run_dev_replace(trans, root->fs_info); 970 if (ret) 971 return ret; 972 ret = btrfs_run_qgroups(trans, root->fs_info); 973 if (ret) 974 return ret; 975 976 /* run_qgroups might have added some more refs */ 977 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 978 if (ret) 979 return ret; 980 981 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 982 next = fs_info->dirty_cowonly_roots.next; 983 list_del_init(next); 984 root = list_entry(next, struct btrfs_root, dirty_list); 985 986 ret = update_cowonly_root(trans, root); 987 if (ret) 988 return ret; 989 } 990 991 down_write(&fs_info->extent_commit_sem); 992 switch_commit_root(fs_info->extent_root); 993 up_write(&fs_info->extent_commit_sem); 994 995 btrfs_after_dev_replace_commit(fs_info); 996 997 return 0; 998 } 999 1000 /* 1001 * dead roots are old snapshots that need to be deleted. This allocates 1002 * a dirty root struct and adds it into the list of dead roots that need to 1003 * be deleted 1004 */ 1005 void btrfs_add_dead_root(struct btrfs_root *root) 1006 { 1007 spin_lock(&root->fs_info->trans_lock); 1008 if (list_empty(&root->root_list)) 1009 list_add_tail(&root->root_list, &root->fs_info->dead_roots); 1010 spin_unlock(&root->fs_info->trans_lock); 1011 } 1012 1013 /* 1014 * update all the cowonly tree roots on disk 1015 */ 1016 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 1017 struct btrfs_root *root) 1018 { 1019 struct btrfs_root *gang[8]; 1020 struct btrfs_fs_info *fs_info = root->fs_info; 1021 int i; 1022 int ret; 1023 int err = 0; 1024 1025 spin_lock(&fs_info->fs_roots_radix_lock); 1026 while (1) { 1027 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1028 (void **)gang, 0, 1029 ARRAY_SIZE(gang), 1030 BTRFS_ROOT_TRANS_TAG); 1031 if (ret == 0) 1032 break; 1033 for (i = 0; i < ret; i++) { 1034 root = gang[i]; 1035 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1036 (unsigned long)root->root_key.objectid, 1037 BTRFS_ROOT_TRANS_TAG); 1038 spin_unlock(&fs_info->fs_roots_radix_lock); 1039 1040 btrfs_free_log(trans, root); 1041 btrfs_update_reloc_root(trans, root); 1042 btrfs_orphan_commit_root(trans, root); 1043 1044 btrfs_save_ino_cache(root, trans); 1045 1046 /* see comments in should_cow_block() */ 1047 root->force_cow = 0; 1048 smp_wmb(); 1049 1050 if (root->commit_root != root->node) { 1051 mutex_lock(&root->fs_commit_mutex); 1052 switch_commit_root(root); 1053 btrfs_unpin_free_ino(root); 1054 mutex_unlock(&root->fs_commit_mutex); 1055 1056 btrfs_set_root_node(&root->root_item, 1057 root->node); 1058 } 1059 1060 err = btrfs_update_root(trans, fs_info->tree_root, 1061 &root->root_key, 1062 &root->root_item); 1063 spin_lock(&fs_info->fs_roots_radix_lock); 1064 if (err) 1065 break; 1066 } 1067 } 1068 spin_unlock(&fs_info->fs_roots_radix_lock); 1069 return err; 1070 } 1071 1072 /* 1073 * defrag a given btree. 1074 * Every leaf in the btree is read and defragged. 1075 */ 1076 int btrfs_defrag_root(struct btrfs_root *root) 1077 { 1078 struct btrfs_fs_info *info = root->fs_info; 1079 struct btrfs_trans_handle *trans; 1080 int ret; 1081 1082 if (xchg(&root->defrag_running, 1)) 1083 return 0; 1084 1085 while (1) { 1086 trans = btrfs_start_transaction(root, 0); 1087 if (IS_ERR(trans)) 1088 return PTR_ERR(trans); 1089 1090 ret = btrfs_defrag_leaves(trans, root); 1091 1092 btrfs_end_transaction(trans, root); 1093 btrfs_btree_balance_dirty(info->tree_root); 1094 cond_resched(); 1095 1096 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 1097 break; 1098 1099 if (btrfs_defrag_cancelled(root->fs_info)) { 1100 pr_debug("BTRFS: defrag_root cancelled\n"); 1101 ret = -EAGAIN; 1102 break; 1103 } 1104 } 1105 root->defrag_running = 0; 1106 return ret; 1107 } 1108 1109 /* 1110 * new snapshots need to be created at a very specific time in the 1111 * transaction commit. This does the actual creation. 1112 * 1113 * Note: 1114 * If the error which may affect the commitment of the current transaction 1115 * happens, we should return the error number. If the error which just affect 1116 * the creation of the pending snapshots, just return 0. 1117 */ 1118 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1119 struct btrfs_fs_info *fs_info, 1120 struct btrfs_pending_snapshot *pending) 1121 { 1122 struct btrfs_key key; 1123 struct btrfs_root_item *new_root_item; 1124 struct btrfs_root *tree_root = fs_info->tree_root; 1125 struct btrfs_root *root = pending->root; 1126 struct btrfs_root *parent_root; 1127 struct btrfs_block_rsv *rsv; 1128 struct inode *parent_inode; 1129 struct btrfs_path *path; 1130 struct btrfs_dir_item *dir_item; 1131 struct dentry *dentry; 1132 struct extent_buffer *tmp; 1133 struct extent_buffer *old; 1134 struct timespec cur_time = CURRENT_TIME; 1135 int ret = 0; 1136 u64 to_reserve = 0; 1137 u64 index = 0; 1138 u64 objectid; 1139 u64 root_flags; 1140 uuid_le new_uuid; 1141 1142 path = btrfs_alloc_path(); 1143 if (!path) { 1144 pending->error = -ENOMEM; 1145 return 0; 1146 } 1147 1148 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1149 if (!new_root_item) { 1150 pending->error = -ENOMEM; 1151 goto root_item_alloc_fail; 1152 } 1153 1154 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1155 if (pending->error) 1156 goto no_free_objectid; 1157 1158 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); 1159 1160 if (to_reserve > 0) { 1161 pending->error = btrfs_block_rsv_add(root, 1162 &pending->block_rsv, 1163 to_reserve, 1164 BTRFS_RESERVE_NO_FLUSH); 1165 if (pending->error) 1166 goto no_free_objectid; 1167 } 1168 1169 pending->error = btrfs_qgroup_inherit(trans, fs_info, 1170 root->root_key.objectid, 1171 objectid, pending->inherit); 1172 if (pending->error) 1173 goto no_free_objectid; 1174 1175 key.objectid = objectid; 1176 key.offset = (u64)-1; 1177 key.type = BTRFS_ROOT_ITEM_KEY; 1178 1179 rsv = trans->block_rsv; 1180 trans->block_rsv = &pending->block_rsv; 1181 trans->bytes_reserved = trans->block_rsv->reserved; 1182 1183 dentry = pending->dentry; 1184 parent_inode = pending->dir; 1185 parent_root = BTRFS_I(parent_inode)->root; 1186 record_root_in_trans(trans, parent_root); 1187 1188 /* 1189 * insert the directory item 1190 */ 1191 ret = btrfs_set_inode_index(parent_inode, &index); 1192 BUG_ON(ret); /* -ENOMEM */ 1193 1194 /* check if there is a file/dir which has the same name. */ 1195 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1196 btrfs_ino(parent_inode), 1197 dentry->d_name.name, 1198 dentry->d_name.len, 0); 1199 if (dir_item != NULL && !IS_ERR(dir_item)) { 1200 pending->error = -EEXIST; 1201 goto dir_item_existed; 1202 } else if (IS_ERR(dir_item)) { 1203 ret = PTR_ERR(dir_item); 1204 btrfs_abort_transaction(trans, root, ret); 1205 goto fail; 1206 } 1207 btrfs_release_path(path); 1208 1209 /* 1210 * pull in the delayed directory update 1211 * and the delayed inode item 1212 * otherwise we corrupt the FS during 1213 * snapshot 1214 */ 1215 ret = btrfs_run_delayed_items(trans, root); 1216 if (ret) { /* Transaction aborted */ 1217 btrfs_abort_transaction(trans, root, ret); 1218 goto fail; 1219 } 1220 1221 record_root_in_trans(trans, root); 1222 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1223 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1224 btrfs_check_and_init_root_item(new_root_item); 1225 1226 root_flags = btrfs_root_flags(new_root_item); 1227 if (pending->readonly) 1228 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1229 else 1230 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1231 btrfs_set_root_flags(new_root_item, root_flags); 1232 1233 btrfs_set_root_generation_v2(new_root_item, 1234 trans->transid); 1235 uuid_le_gen(&new_uuid); 1236 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1237 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1238 BTRFS_UUID_SIZE); 1239 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1240 memset(new_root_item->received_uuid, 0, 1241 sizeof(new_root_item->received_uuid)); 1242 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1243 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1244 btrfs_set_root_stransid(new_root_item, 0); 1245 btrfs_set_root_rtransid(new_root_item, 0); 1246 } 1247 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1248 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1249 btrfs_set_root_otransid(new_root_item, trans->transid); 1250 1251 old = btrfs_lock_root_node(root); 1252 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1253 if (ret) { 1254 btrfs_tree_unlock(old); 1255 free_extent_buffer(old); 1256 btrfs_abort_transaction(trans, root, ret); 1257 goto fail; 1258 } 1259 1260 btrfs_set_lock_blocking(old); 1261 1262 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1263 /* clean up in any case */ 1264 btrfs_tree_unlock(old); 1265 free_extent_buffer(old); 1266 if (ret) { 1267 btrfs_abort_transaction(trans, root, ret); 1268 goto fail; 1269 } 1270 1271 /* see comments in should_cow_block() */ 1272 root->force_cow = 1; 1273 smp_wmb(); 1274 1275 btrfs_set_root_node(new_root_item, tmp); 1276 /* record when the snapshot was created in key.offset */ 1277 key.offset = trans->transid; 1278 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1279 btrfs_tree_unlock(tmp); 1280 free_extent_buffer(tmp); 1281 if (ret) { 1282 btrfs_abort_transaction(trans, root, ret); 1283 goto fail; 1284 } 1285 1286 /* 1287 * insert root back/forward references 1288 */ 1289 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1290 parent_root->root_key.objectid, 1291 btrfs_ino(parent_inode), index, 1292 dentry->d_name.name, dentry->d_name.len); 1293 if (ret) { 1294 btrfs_abort_transaction(trans, root, ret); 1295 goto fail; 1296 } 1297 1298 key.offset = (u64)-1; 1299 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1300 if (IS_ERR(pending->snap)) { 1301 ret = PTR_ERR(pending->snap); 1302 btrfs_abort_transaction(trans, root, ret); 1303 goto fail; 1304 } 1305 1306 ret = btrfs_reloc_post_snapshot(trans, pending); 1307 if (ret) { 1308 btrfs_abort_transaction(trans, root, ret); 1309 goto fail; 1310 } 1311 1312 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1313 if (ret) { 1314 btrfs_abort_transaction(trans, root, ret); 1315 goto fail; 1316 } 1317 1318 ret = btrfs_insert_dir_item(trans, parent_root, 1319 dentry->d_name.name, dentry->d_name.len, 1320 parent_inode, &key, 1321 BTRFS_FT_DIR, index); 1322 /* We have check then name at the beginning, so it is impossible. */ 1323 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1324 if (ret) { 1325 btrfs_abort_transaction(trans, root, ret); 1326 goto fail; 1327 } 1328 1329 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1330 dentry->d_name.len * 2); 1331 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1332 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1333 if (ret) { 1334 btrfs_abort_transaction(trans, root, ret); 1335 goto fail; 1336 } 1337 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b, 1338 BTRFS_UUID_KEY_SUBVOL, objectid); 1339 if (ret) { 1340 btrfs_abort_transaction(trans, root, ret); 1341 goto fail; 1342 } 1343 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1344 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 1345 new_root_item->received_uuid, 1346 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1347 objectid); 1348 if (ret && ret != -EEXIST) { 1349 btrfs_abort_transaction(trans, root, ret); 1350 goto fail; 1351 } 1352 } 1353 fail: 1354 pending->error = ret; 1355 dir_item_existed: 1356 trans->block_rsv = rsv; 1357 trans->bytes_reserved = 0; 1358 no_free_objectid: 1359 kfree(new_root_item); 1360 root_item_alloc_fail: 1361 btrfs_free_path(path); 1362 return ret; 1363 } 1364 1365 /* 1366 * create all the snapshots we've scheduled for creation 1367 */ 1368 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1369 struct btrfs_fs_info *fs_info) 1370 { 1371 struct btrfs_pending_snapshot *pending, *next; 1372 struct list_head *head = &trans->transaction->pending_snapshots; 1373 int ret = 0; 1374 1375 list_for_each_entry_safe(pending, next, head, list) { 1376 list_del(&pending->list); 1377 ret = create_pending_snapshot(trans, fs_info, pending); 1378 if (ret) 1379 break; 1380 } 1381 return ret; 1382 } 1383 1384 static void update_super_roots(struct btrfs_root *root) 1385 { 1386 struct btrfs_root_item *root_item; 1387 struct btrfs_super_block *super; 1388 1389 super = root->fs_info->super_copy; 1390 1391 root_item = &root->fs_info->chunk_root->root_item; 1392 super->chunk_root = root_item->bytenr; 1393 super->chunk_root_generation = root_item->generation; 1394 super->chunk_root_level = root_item->level; 1395 1396 root_item = &root->fs_info->tree_root->root_item; 1397 super->root = root_item->bytenr; 1398 super->generation = root_item->generation; 1399 super->root_level = root_item->level; 1400 if (btrfs_test_opt(root, SPACE_CACHE)) 1401 super->cache_generation = root_item->generation; 1402 if (root->fs_info->update_uuid_tree_gen) 1403 super->uuid_tree_generation = root_item->generation; 1404 } 1405 1406 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1407 { 1408 struct btrfs_transaction *trans; 1409 int ret = 0; 1410 1411 spin_lock(&info->trans_lock); 1412 trans = info->running_transaction; 1413 if (trans) 1414 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1415 spin_unlock(&info->trans_lock); 1416 return ret; 1417 } 1418 1419 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1420 { 1421 struct btrfs_transaction *trans; 1422 int ret = 0; 1423 1424 spin_lock(&info->trans_lock); 1425 trans = info->running_transaction; 1426 if (trans) 1427 ret = is_transaction_blocked(trans); 1428 spin_unlock(&info->trans_lock); 1429 return ret; 1430 } 1431 1432 /* 1433 * wait for the current transaction commit to start and block subsequent 1434 * transaction joins 1435 */ 1436 static void wait_current_trans_commit_start(struct btrfs_root *root, 1437 struct btrfs_transaction *trans) 1438 { 1439 wait_event(root->fs_info->transaction_blocked_wait, 1440 trans->state >= TRANS_STATE_COMMIT_START || 1441 trans->aborted); 1442 } 1443 1444 /* 1445 * wait for the current transaction to start and then become unblocked. 1446 * caller holds ref. 1447 */ 1448 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1449 struct btrfs_transaction *trans) 1450 { 1451 wait_event(root->fs_info->transaction_wait, 1452 trans->state >= TRANS_STATE_UNBLOCKED || 1453 trans->aborted); 1454 } 1455 1456 /* 1457 * commit transactions asynchronously. once btrfs_commit_transaction_async 1458 * returns, any subsequent transaction will not be allowed to join. 1459 */ 1460 struct btrfs_async_commit { 1461 struct btrfs_trans_handle *newtrans; 1462 struct btrfs_root *root; 1463 struct work_struct work; 1464 }; 1465 1466 static void do_async_commit(struct work_struct *work) 1467 { 1468 struct btrfs_async_commit *ac = 1469 container_of(work, struct btrfs_async_commit, work); 1470 1471 /* 1472 * We've got freeze protection passed with the transaction. 1473 * Tell lockdep about it. 1474 */ 1475 if (ac->newtrans->type & __TRANS_FREEZABLE) 1476 rwsem_acquire_read( 1477 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1478 0, 1, _THIS_IP_); 1479 1480 current->journal_info = ac->newtrans; 1481 1482 btrfs_commit_transaction(ac->newtrans, ac->root); 1483 kfree(ac); 1484 } 1485 1486 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1487 struct btrfs_root *root, 1488 int wait_for_unblock) 1489 { 1490 struct btrfs_async_commit *ac; 1491 struct btrfs_transaction *cur_trans; 1492 1493 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1494 if (!ac) 1495 return -ENOMEM; 1496 1497 INIT_WORK(&ac->work, do_async_commit); 1498 ac->root = root; 1499 ac->newtrans = btrfs_join_transaction(root); 1500 if (IS_ERR(ac->newtrans)) { 1501 int err = PTR_ERR(ac->newtrans); 1502 kfree(ac); 1503 return err; 1504 } 1505 1506 /* take transaction reference */ 1507 cur_trans = trans->transaction; 1508 atomic_inc(&cur_trans->use_count); 1509 1510 btrfs_end_transaction(trans, root); 1511 1512 /* 1513 * Tell lockdep we've released the freeze rwsem, since the 1514 * async commit thread will be the one to unlock it. 1515 */ 1516 if (ac->newtrans->type & __TRANS_FREEZABLE) 1517 rwsem_release( 1518 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1519 1, _THIS_IP_); 1520 1521 schedule_work(&ac->work); 1522 1523 /* wait for transaction to start and unblock */ 1524 if (wait_for_unblock) 1525 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1526 else 1527 wait_current_trans_commit_start(root, cur_trans); 1528 1529 if (current->journal_info == trans) 1530 current->journal_info = NULL; 1531 1532 btrfs_put_transaction(cur_trans); 1533 return 0; 1534 } 1535 1536 1537 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1538 struct btrfs_root *root, int err) 1539 { 1540 struct btrfs_transaction *cur_trans = trans->transaction; 1541 DEFINE_WAIT(wait); 1542 1543 WARN_ON(trans->use_count > 1); 1544 1545 btrfs_abort_transaction(trans, root, err); 1546 1547 spin_lock(&root->fs_info->trans_lock); 1548 1549 /* 1550 * If the transaction is removed from the list, it means this 1551 * transaction has been committed successfully, so it is impossible 1552 * to call the cleanup function. 1553 */ 1554 BUG_ON(list_empty(&cur_trans->list)); 1555 1556 list_del_init(&cur_trans->list); 1557 if (cur_trans == root->fs_info->running_transaction) { 1558 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1559 spin_unlock(&root->fs_info->trans_lock); 1560 wait_event(cur_trans->writer_wait, 1561 atomic_read(&cur_trans->num_writers) == 1); 1562 1563 spin_lock(&root->fs_info->trans_lock); 1564 } 1565 spin_unlock(&root->fs_info->trans_lock); 1566 1567 btrfs_cleanup_one_transaction(trans->transaction, root); 1568 1569 spin_lock(&root->fs_info->trans_lock); 1570 if (cur_trans == root->fs_info->running_transaction) 1571 root->fs_info->running_transaction = NULL; 1572 spin_unlock(&root->fs_info->trans_lock); 1573 1574 if (trans->type & __TRANS_FREEZABLE) 1575 sb_end_intwrite(root->fs_info->sb); 1576 btrfs_put_transaction(cur_trans); 1577 btrfs_put_transaction(cur_trans); 1578 1579 trace_btrfs_transaction_commit(root); 1580 1581 btrfs_scrub_continue(root); 1582 1583 if (current->journal_info == trans) 1584 current->journal_info = NULL; 1585 1586 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1587 } 1588 1589 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans, 1590 struct btrfs_root *root) 1591 { 1592 int ret; 1593 1594 ret = btrfs_run_delayed_items(trans, root); 1595 /* 1596 * running the delayed items may have added new refs. account 1597 * them now so that they hinder processing of more delayed refs 1598 * as little as possible. 1599 */ 1600 if (ret) { 1601 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 1602 return ret; 1603 } 1604 1605 ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 1606 if (ret) 1607 return ret; 1608 1609 /* 1610 * rename don't use btrfs_join_transaction, so, once we 1611 * set the transaction to blocked above, we aren't going 1612 * to get any new ordered operations. We can safely run 1613 * it here and no for sure that nothing new will be added 1614 * to the list 1615 */ 1616 ret = btrfs_run_ordered_operations(trans, root, 1); 1617 1618 return ret; 1619 } 1620 1621 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1622 { 1623 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1624 return btrfs_start_delalloc_roots(fs_info, 1); 1625 return 0; 1626 } 1627 1628 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1629 { 1630 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1631 btrfs_wait_ordered_roots(fs_info, -1); 1632 } 1633 1634 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1635 struct btrfs_root *root) 1636 { 1637 struct btrfs_transaction *cur_trans = trans->transaction; 1638 struct btrfs_transaction *prev_trans = NULL; 1639 int ret; 1640 1641 ret = btrfs_run_ordered_operations(trans, root, 0); 1642 if (ret) { 1643 btrfs_abort_transaction(trans, root, ret); 1644 btrfs_end_transaction(trans, root); 1645 return ret; 1646 } 1647 1648 /* Stop the commit early if ->aborted is set */ 1649 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1650 ret = cur_trans->aborted; 1651 btrfs_end_transaction(trans, root); 1652 return ret; 1653 } 1654 1655 /* make a pass through all the delayed refs we have so far 1656 * any runnings procs may add more while we are here 1657 */ 1658 ret = btrfs_run_delayed_refs(trans, root, 0); 1659 if (ret) { 1660 btrfs_end_transaction(trans, root); 1661 return ret; 1662 } 1663 1664 btrfs_trans_release_metadata(trans, root); 1665 trans->block_rsv = NULL; 1666 if (trans->qgroup_reserved) { 1667 btrfs_qgroup_free(root, trans->qgroup_reserved); 1668 trans->qgroup_reserved = 0; 1669 } 1670 1671 cur_trans = trans->transaction; 1672 1673 /* 1674 * set the flushing flag so procs in this transaction have to 1675 * start sending their work down. 1676 */ 1677 cur_trans->delayed_refs.flushing = 1; 1678 smp_wmb(); 1679 1680 if (!list_empty(&trans->new_bgs)) 1681 btrfs_create_pending_block_groups(trans, root); 1682 1683 ret = btrfs_run_delayed_refs(trans, root, 0); 1684 if (ret) { 1685 btrfs_end_transaction(trans, root); 1686 return ret; 1687 } 1688 1689 spin_lock(&root->fs_info->trans_lock); 1690 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1691 spin_unlock(&root->fs_info->trans_lock); 1692 atomic_inc(&cur_trans->use_count); 1693 ret = btrfs_end_transaction(trans, root); 1694 1695 wait_for_commit(root, cur_trans); 1696 1697 btrfs_put_transaction(cur_trans); 1698 1699 return ret; 1700 } 1701 1702 cur_trans->state = TRANS_STATE_COMMIT_START; 1703 wake_up(&root->fs_info->transaction_blocked_wait); 1704 1705 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1706 prev_trans = list_entry(cur_trans->list.prev, 1707 struct btrfs_transaction, list); 1708 if (prev_trans->state != TRANS_STATE_COMPLETED) { 1709 atomic_inc(&prev_trans->use_count); 1710 spin_unlock(&root->fs_info->trans_lock); 1711 1712 wait_for_commit(root, prev_trans); 1713 1714 btrfs_put_transaction(prev_trans); 1715 } else { 1716 spin_unlock(&root->fs_info->trans_lock); 1717 } 1718 } else { 1719 spin_unlock(&root->fs_info->trans_lock); 1720 } 1721 1722 extwriter_counter_dec(cur_trans, trans->type); 1723 1724 ret = btrfs_start_delalloc_flush(root->fs_info); 1725 if (ret) 1726 goto cleanup_transaction; 1727 1728 ret = btrfs_flush_all_pending_stuffs(trans, root); 1729 if (ret) 1730 goto cleanup_transaction; 1731 1732 wait_event(cur_trans->writer_wait, 1733 extwriter_counter_read(cur_trans) == 0); 1734 1735 /* some pending stuffs might be added after the previous flush. */ 1736 ret = btrfs_flush_all_pending_stuffs(trans, root); 1737 if (ret) 1738 goto cleanup_transaction; 1739 1740 btrfs_wait_delalloc_flush(root->fs_info); 1741 1742 btrfs_scrub_pause(root); 1743 /* 1744 * Ok now we need to make sure to block out any other joins while we 1745 * commit the transaction. We could have started a join before setting 1746 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 1747 */ 1748 spin_lock(&root->fs_info->trans_lock); 1749 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1750 spin_unlock(&root->fs_info->trans_lock); 1751 wait_event(cur_trans->writer_wait, 1752 atomic_read(&cur_trans->num_writers) == 1); 1753 1754 /* ->aborted might be set after the previous check, so check it */ 1755 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1756 ret = cur_trans->aborted; 1757 goto cleanup_transaction; 1758 } 1759 /* 1760 * the reloc mutex makes sure that we stop 1761 * the balancing code from coming in and moving 1762 * extents around in the middle of the commit 1763 */ 1764 mutex_lock(&root->fs_info->reloc_mutex); 1765 1766 /* 1767 * We needn't worry about the delayed items because we will 1768 * deal with them in create_pending_snapshot(), which is the 1769 * core function of the snapshot creation. 1770 */ 1771 ret = create_pending_snapshots(trans, root->fs_info); 1772 if (ret) { 1773 mutex_unlock(&root->fs_info->reloc_mutex); 1774 goto cleanup_transaction; 1775 } 1776 1777 /* 1778 * We insert the dir indexes of the snapshots and update the inode 1779 * of the snapshots' parents after the snapshot creation, so there 1780 * are some delayed items which are not dealt with. Now deal with 1781 * them. 1782 * 1783 * We needn't worry that this operation will corrupt the snapshots, 1784 * because all the tree which are snapshoted will be forced to COW 1785 * the nodes and leaves. 1786 */ 1787 ret = btrfs_run_delayed_items(trans, root); 1788 if (ret) { 1789 mutex_unlock(&root->fs_info->reloc_mutex); 1790 goto cleanup_transaction; 1791 } 1792 1793 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1794 if (ret) { 1795 mutex_unlock(&root->fs_info->reloc_mutex); 1796 goto cleanup_transaction; 1797 } 1798 1799 /* 1800 * make sure none of the code above managed to slip in a 1801 * delayed item 1802 */ 1803 btrfs_assert_delayed_root_empty(root); 1804 1805 WARN_ON(cur_trans != trans->transaction); 1806 1807 /* btrfs_commit_tree_roots is responsible for getting the 1808 * various roots consistent with each other. Every pointer 1809 * in the tree of tree roots has to point to the most up to date 1810 * root for every subvolume and other tree. So, we have to keep 1811 * the tree logging code from jumping in and changing any 1812 * of the trees. 1813 * 1814 * At this point in the commit, there can't be any tree-log 1815 * writers, but a little lower down we drop the trans mutex 1816 * and let new people in. By holding the tree_log_mutex 1817 * from now until after the super is written, we avoid races 1818 * with the tree-log code. 1819 */ 1820 mutex_lock(&root->fs_info->tree_log_mutex); 1821 1822 ret = commit_fs_roots(trans, root); 1823 if (ret) { 1824 mutex_unlock(&root->fs_info->tree_log_mutex); 1825 mutex_unlock(&root->fs_info->reloc_mutex); 1826 goto cleanup_transaction; 1827 } 1828 1829 /* 1830 * Since the transaction is done, we should set the inode map cache flag 1831 * before any other comming transaction. 1832 */ 1833 if (btrfs_test_opt(root, CHANGE_INODE_CACHE)) 1834 btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE); 1835 else 1836 btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE); 1837 1838 /* commit_fs_roots gets rid of all the tree log roots, it is now 1839 * safe to free the root of tree log roots 1840 */ 1841 btrfs_free_log_root_tree(trans, root->fs_info); 1842 1843 ret = commit_cowonly_roots(trans, root); 1844 if (ret) { 1845 mutex_unlock(&root->fs_info->tree_log_mutex); 1846 mutex_unlock(&root->fs_info->reloc_mutex); 1847 goto cleanup_transaction; 1848 } 1849 1850 /* 1851 * The tasks which save the space cache and inode cache may also 1852 * update ->aborted, check it. 1853 */ 1854 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1855 ret = cur_trans->aborted; 1856 mutex_unlock(&root->fs_info->tree_log_mutex); 1857 mutex_unlock(&root->fs_info->reloc_mutex); 1858 goto cleanup_transaction; 1859 } 1860 1861 btrfs_prepare_extent_commit(trans, root); 1862 1863 cur_trans = root->fs_info->running_transaction; 1864 1865 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1866 root->fs_info->tree_root->node); 1867 switch_commit_root(root->fs_info->tree_root); 1868 1869 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1870 root->fs_info->chunk_root->node); 1871 switch_commit_root(root->fs_info->chunk_root); 1872 1873 assert_qgroups_uptodate(trans); 1874 update_super_roots(root); 1875 1876 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 1877 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 1878 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 1879 sizeof(*root->fs_info->super_copy)); 1880 1881 spin_lock(&root->fs_info->trans_lock); 1882 cur_trans->state = TRANS_STATE_UNBLOCKED; 1883 root->fs_info->running_transaction = NULL; 1884 spin_unlock(&root->fs_info->trans_lock); 1885 mutex_unlock(&root->fs_info->reloc_mutex); 1886 1887 wake_up(&root->fs_info->transaction_wait); 1888 1889 ret = btrfs_write_and_wait_transaction(trans, root); 1890 if (ret) { 1891 btrfs_error(root->fs_info, ret, 1892 "Error while writing out transaction"); 1893 mutex_unlock(&root->fs_info->tree_log_mutex); 1894 goto cleanup_transaction; 1895 } 1896 1897 ret = write_ctree_super(trans, root, 0); 1898 if (ret) { 1899 mutex_unlock(&root->fs_info->tree_log_mutex); 1900 goto cleanup_transaction; 1901 } 1902 1903 /* 1904 * the super is written, we can safely allow the tree-loggers 1905 * to go about their business 1906 */ 1907 mutex_unlock(&root->fs_info->tree_log_mutex); 1908 1909 btrfs_finish_extent_commit(trans, root); 1910 1911 root->fs_info->last_trans_committed = cur_trans->transid; 1912 /* 1913 * We needn't acquire the lock here because there is no other task 1914 * which can change it. 1915 */ 1916 cur_trans->state = TRANS_STATE_COMPLETED; 1917 wake_up(&cur_trans->commit_wait); 1918 1919 spin_lock(&root->fs_info->trans_lock); 1920 list_del_init(&cur_trans->list); 1921 spin_unlock(&root->fs_info->trans_lock); 1922 1923 btrfs_put_transaction(cur_trans); 1924 btrfs_put_transaction(cur_trans); 1925 1926 if (trans->type & __TRANS_FREEZABLE) 1927 sb_end_intwrite(root->fs_info->sb); 1928 1929 trace_btrfs_transaction_commit(root); 1930 1931 btrfs_scrub_continue(root); 1932 1933 if (current->journal_info == trans) 1934 current->journal_info = NULL; 1935 1936 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1937 1938 if (current != root->fs_info->transaction_kthread) 1939 btrfs_run_delayed_iputs(root); 1940 1941 return ret; 1942 1943 cleanup_transaction: 1944 btrfs_trans_release_metadata(trans, root); 1945 trans->block_rsv = NULL; 1946 if (trans->qgroup_reserved) { 1947 btrfs_qgroup_free(root, trans->qgroup_reserved); 1948 trans->qgroup_reserved = 0; 1949 } 1950 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction."); 1951 if (current->journal_info == trans) 1952 current->journal_info = NULL; 1953 cleanup_transaction(trans, root, ret); 1954 1955 return ret; 1956 } 1957 1958 /* 1959 * return < 0 if error 1960 * 0 if there are no more dead_roots at the time of call 1961 * 1 there are more to be processed, call me again 1962 * 1963 * The return value indicates there are certainly more snapshots to delete, but 1964 * if there comes a new one during processing, it may return 0. We don't mind, 1965 * because btrfs_commit_super will poke cleaner thread and it will process it a 1966 * few seconds later. 1967 */ 1968 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 1969 { 1970 int ret; 1971 struct btrfs_fs_info *fs_info = root->fs_info; 1972 1973 spin_lock(&fs_info->trans_lock); 1974 if (list_empty(&fs_info->dead_roots)) { 1975 spin_unlock(&fs_info->trans_lock); 1976 return 0; 1977 } 1978 root = list_first_entry(&fs_info->dead_roots, 1979 struct btrfs_root, root_list); 1980 /* 1981 * Make sure root is not involved in send, 1982 * if we fail with first root, we return 1983 * directly rather than continue. 1984 */ 1985 spin_lock(&root->root_item_lock); 1986 if (root->send_in_progress) { 1987 spin_unlock(&fs_info->trans_lock); 1988 spin_unlock(&root->root_item_lock); 1989 return 0; 1990 } 1991 spin_unlock(&root->root_item_lock); 1992 1993 list_del_init(&root->root_list); 1994 spin_unlock(&fs_info->trans_lock); 1995 1996 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid); 1997 1998 btrfs_kill_all_delayed_nodes(root); 1999 2000 if (btrfs_header_backref_rev(root->node) < 2001 BTRFS_MIXED_BACKREF_REV) 2002 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2003 else 2004 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2005 /* 2006 * If we encounter a transaction abort during snapshot cleaning, we 2007 * don't want to crash here 2008 */ 2009 return (ret < 0) ? 0 : 1; 2010 } 2011