xref: /openbmc/linux/fs/btrfs/transaction.c (revision 37be287c)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 
35 #define BTRFS_ROOT_TRANS_TAG 0
36 
37 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38 	[TRANS_STATE_RUNNING]		= 0U,
39 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
40 					   __TRANS_START),
41 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
42 					   __TRANS_START |
43 					   __TRANS_ATTACH),
44 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
45 					   __TRANS_START |
46 					   __TRANS_ATTACH |
47 					   __TRANS_JOIN),
48 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
49 					   __TRANS_START |
50 					   __TRANS_ATTACH |
51 					   __TRANS_JOIN |
52 					   __TRANS_JOIN_NOLOCK),
53 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
54 					   __TRANS_START |
55 					   __TRANS_ATTACH |
56 					   __TRANS_JOIN |
57 					   __TRANS_JOIN_NOLOCK),
58 };
59 
60 void btrfs_put_transaction(struct btrfs_transaction *transaction)
61 {
62 	WARN_ON(atomic_read(&transaction->use_count) == 0);
63 	if (atomic_dec_and_test(&transaction->use_count)) {
64 		BUG_ON(!list_empty(&transaction->list));
65 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
66 		while (!list_empty(&transaction->pending_chunks)) {
67 			struct extent_map *em;
68 
69 			em = list_first_entry(&transaction->pending_chunks,
70 					      struct extent_map, list);
71 			list_del_init(&em->list);
72 			free_extent_map(em);
73 		}
74 		kmem_cache_free(btrfs_transaction_cachep, transaction);
75 	}
76 }
77 
78 static noinline void switch_commit_root(struct btrfs_root *root)
79 {
80 	free_extent_buffer(root->commit_root);
81 	root->commit_root = btrfs_root_node(root);
82 }
83 
84 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
85 					 unsigned int type)
86 {
87 	if (type & TRANS_EXTWRITERS)
88 		atomic_inc(&trans->num_extwriters);
89 }
90 
91 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
92 					 unsigned int type)
93 {
94 	if (type & TRANS_EXTWRITERS)
95 		atomic_dec(&trans->num_extwriters);
96 }
97 
98 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
99 					  unsigned int type)
100 {
101 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
102 }
103 
104 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
105 {
106 	return atomic_read(&trans->num_extwriters);
107 }
108 
109 /*
110  * either allocate a new transaction or hop into the existing one
111  */
112 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
113 {
114 	struct btrfs_transaction *cur_trans;
115 	struct btrfs_fs_info *fs_info = root->fs_info;
116 
117 	spin_lock(&fs_info->trans_lock);
118 loop:
119 	/* The file system has been taken offline. No new transactions. */
120 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
121 		spin_unlock(&fs_info->trans_lock);
122 		return -EROFS;
123 	}
124 
125 	cur_trans = fs_info->running_transaction;
126 	if (cur_trans) {
127 		if (cur_trans->aborted) {
128 			spin_unlock(&fs_info->trans_lock);
129 			return cur_trans->aborted;
130 		}
131 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
132 			spin_unlock(&fs_info->trans_lock);
133 			return -EBUSY;
134 		}
135 		atomic_inc(&cur_trans->use_count);
136 		atomic_inc(&cur_trans->num_writers);
137 		extwriter_counter_inc(cur_trans, type);
138 		spin_unlock(&fs_info->trans_lock);
139 		return 0;
140 	}
141 	spin_unlock(&fs_info->trans_lock);
142 
143 	/*
144 	 * If we are ATTACH, we just want to catch the current transaction,
145 	 * and commit it. If there is no transaction, just return ENOENT.
146 	 */
147 	if (type == TRANS_ATTACH)
148 		return -ENOENT;
149 
150 	/*
151 	 * JOIN_NOLOCK only happens during the transaction commit, so
152 	 * it is impossible that ->running_transaction is NULL
153 	 */
154 	BUG_ON(type == TRANS_JOIN_NOLOCK);
155 
156 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
157 	if (!cur_trans)
158 		return -ENOMEM;
159 
160 	spin_lock(&fs_info->trans_lock);
161 	if (fs_info->running_transaction) {
162 		/*
163 		 * someone started a transaction after we unlocked.  Make sure
164 		 * to redo the checks above
165 		 */
166 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
167 		goto loop;
168 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
169 		spin_unlock(&fs_info->trans_lock);
170 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
171 		return -EROFS;
172 	}
173 
174 	atomic_set(&cur_trans->num_writers, 1);
175 	extwriter_counter_init(cur_trans, type);
176 	init_waitqueue_head(&cur_trans->writer_wait);
177 	init_waitqueue_head(&cur_trans->commit_wait);
178 	cur_trans->state = TRANS_STATE_RUNNING;
179 	/*
180 	 * One for this trans handle, one so it will live on until we
181 	 * commit the transaction.
182 	 */
183 	atomic_set(&cur_trans->use_count, 2);
184 	cur_trans->start_time = get_seconds();
185 
186 	cur_trans->delayed_refs.href_root = RB_ROOT;
187 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
188 	cur_trans->delayed_refs.num_heads_ready = 0;
189 	cur_trans->delayed_refs.num_heads = 0;
190 	cur_trans->delayed_refs.flushing = 0;
191 	cur_trans->delayed_refs.run_delayed_start = 0;
192 
193 	/*
194 	 * although the tree mod log is per file system and not per transaction,
195 	 * the log must never go across transaction boundaries.
196 	 */
197 	smp_mb();
198 	if (!list_empty(&fs_info->tree_mod_seq_list))
199 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
200 			"creating a fresh transaction\n");
201 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
202 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
203 			"creating a fresh transaction\n");
204 	atomic64_set(&fs_info->tree_mod_seq, 0);
205 
206 	spin_lock_init(&cur_trans->delayed_refs.lock);
207 
208 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
209 	INIT_LIST_HEAD(&cur_trans->ordered_operations);
210 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
211 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
212 	extent_io_tree_init(&cur_trans->dirty_pages,
213 			     fs_info->btree_inode->i_mapping);
214 	fs_info->generation++;
215 	cur_trans->transid = fs_info->generation;
216 	fs_info->running_transaction = cur_trans;
217 	cur_trans->aborted = 0;
218 	spin_unlock(&fs_info->trans_lock);
219 
220 	return 0;
221 }
222 
223 /*
224  * this does all the record keeping required to make sure that a reference
225  * counted root is properly recorded in a given transaction.  This is required
226  * to make sure the old root from before we joined the transaction is deleted
227  * when the transaction commits
228  */
229 static int record_root_in_trans(struct btrfs_trans_handle *trans,
230 			       struct btrfs_root *root)
231 {
232 	if (root->ref_cows && root->last_trans < trans->transid) {
233 		WARN_ON(root == root->fs_info->extent_root);
234 		WARN_ON(root->commit_root != root->node);
235 
236 		/*
237 		 * see below for in_trans_setup usage rules
238 		 * we have the reloc mutex held now, so there
239 		 * is only one writer in this function
240 		 */
241 		root->in_trans_setup = 1;
242 
243 		/* make sure readers find in_trans_setup before
244 		 * they find our root->last_trans update
245 		 */
246 		smp_wmb();
247 
248 		spin_lock(&root->fs_info->fs_roots_radix_lock);
249 		if (root->last_trans == trans->transid) {
250 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
251 			return 0;
252 		}
253 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
254 			   (unsigned long)root->root_key.objectid,
255 			   BTRFS_ROOT_TRANS_TAG);
256 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
257 		root->last_trans = trans->transid;
258 
259 		/* this is pretty tricky.  We don't want to
260 		 * take the relocation lock in btrfs_record_root_in_trans
261 		 * unless we're really doing the first setup for this root in
262 		 * this transaction.
263 		 *
264 		 * Normally we'd use root->last_trans as a flag to decide
265 		 * if we want to take the expensive mutex.
266 		 *
267 		 * But, we have to set root->last_trans before we
268 		 * init the relocation root, otherwise, we trip over warnings
269 		 * in ctree.c.  The solution used here is to flag ourselves
270 		 * with root->in_trans_setup.  When this is 1, we're still
271 		 * fixing up the reloc trees and everyone must wait.
272 		 *
273 		 * When this is zero, they can trust root->last_trans and fly
274 		 * through btrfs_record_root_in_trans without having to take the
275 		 * lock.  smp_wmb() makes sure that all the writes above are
276 		 * done before we pop in the zero below
277 		 */
278 		btrfs_init_reloc_root(trans, root);
279 		smp_wmb();
280 		root->in_trans_setup = 0;
281 	}
282 	return 0;
283 }
284 
285 
286 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
287 			       struct btrfs_root *root)
288 {
289 	if (!root->ref_cows)
290 		return 0;
291 
292 	/*
293 	 * see record_root_in_trans for comments about in_trans_setup usage
294 	 * and barriers
295 	 */
296 	smp_rmb();
297 	if (root->last_trans == trans->transid &&
298 	    !root->in_trans_setup)
299 		return 0;
300 
301 	mutex_lock(&root->fs_info->reloc_mutex);
302 	record_root_in_trans(trans, root);
303 	mutex_unlock(&root->fs_info->reloc_mutex);
304 
305 	return 0;
306 }
307 
308 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
309 {
310 	return (trans->state >= TRANS_STATE_BLOCKED &&
311 		trans->state < TRANS_STATE_UNBLOCKED &&
312 		!trans->aborted);
313 }
314 
315 /* wait for commit against the current transaction to become unblocked
316  * when this is done, it is safe to start a new transaction, but the current
317  * transaction might not be fully on disk.
318  */
319 static void wait_current_trans(struct btrfs_root *root)
320 {
321 	struct btrfs_transaction *cur_trans;
322 
323 	spin_lock(&root->fs_info->trans_lock);
324 	cur_trans = root->fs_info->running_transaction;
325 	if (cur_trans && is_transaction_blocked(cur_trans)) {
326 		atomic_inc(&cur_trans->use_count);
327 		spin_unlock(&root->fs_info->trans_lock);
328 
329 		wait_event(root->fs_info->transaction_wait,
330 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
331 			   cur_trans->aborted);
332 		btrfs_put_transaction(cur_trans);
333 	} else {
334 		spin_unlock(&root->fs_info->trans_lock);
335 	}
336 }
337 
338 static int may_wait_transaction(struct btrfs_root *root, int type)
339 {
340 	if (root->fs_info->log_root_recovering)
341 		return 0;
342 
343 	if (type == TRANS_USERSPACE)
344 		return 1;
345 
346 	if (type == TRANS_START &&
347 	    !atomic_read(&root->fs_info->open_ioctl_trans))
348 		return 1;
349 
350 	return 0;
351 }
352 
353 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
354 {
355 	if (!root->fs_info->reloc_ctl ||
356 	    !root->ref_cows ||
357 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
358 	    root->reloc_root)
359 		return false;
360 
361 	return true;
362 }
363 
364 static struct btrfs_trans_handle *
365 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
366 		  enum btrfs_reserve_flush_enum flush)
367 {
368 	struct btrfs_trans_handle *h;
369 	struct btrfs_transaction *cur_trans;
370 	u64 num_bytes = 0;
371 	u64 qgroup_reserved = 0;
372 	bool reloc_reserved = false;
373 	int ret;
374 
375 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
376 		return ERR_PTR(-EROFS);
377 
378 	if (current->journal_info) {
379 		WARN_ON(type & TRANS_EXTWRITERS);
380 		h = current->journal_info;
381 		h->use_count++;
382 		WARN_ON(h->use_count > 2);
383 		h->orig_rsv = h->block_rsv;
384 		h->block_rsv = NULL;
385 		goto got_it;
386 	}
387 
388 	/*
389 	 * Do the reservation before we join the transaction so we can do all
390 	 * the appropriate flushing if need be.
391 	 */
392 	if (num_items > 0 && root != root->fs_info->chunk_root) {
393 		if (root->fs_info->quota_enabled &&
394 		    is_fstree(root->root_key.objectid)) {
395 			qgroup_reserved = num_items * root->leafsize;
396 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
397 			if (ret)
398 				return ERR_PTR(ret);
399 		}
400 
401 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
402 		/*
403 		 * Do the reservation for the relocation root creation
404 		 */
405 		if (unlikely(need_reserve_reloc_root(root))) {
406 			num_bytes += root->nodesize;
407 			reloc_reserved = true;
408 		}
409 
410 		ret = btrfs_block_rsv_add(root,
411 					  &root->fs_info->trans_block_rsv,
412 					  num_bytes, flush);
413 		if (ret)
414 			goto reserve_fail;
415 	}
416 again:
417 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
418 	if (!h) {
419 		ret = -ENOMEM;
420 		goto alloc_fail;
421 	}
422 
423 	/*
424 	 * If we are JOIN_NOLOCK we're already committing a transaction and
425 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
426 	 * because we're already holding a ref.  We need this because we could
427 	 * have raced in and did an fsync() on a file which can kick a commit
428 	 * and then we deadlock with somebody doing a freeze.
429 	 *
430 	 * If we are ATTACH, it means we just want to catch the current
431 	 * transaction and commit it, so we needn't do sb_start_intwrite().
432 	 */
433 	if (type & __TRANS_FREEZABLE)
434 		sb_start_intwrite(root->fs_info->sb);
435 
436 	if (may_wait_transaction(root, type))
437 		wait_current_trans(root);
438 
439 	do {
440 		ret = join_transaction(root, type);
441 		if (ret == -EBUSY) {
442 			wait_current_trans(root);
443 			if (unlikely(type == TRANS_ATTACH))
444 				ret = -ENOENT;
445 		}
446 	} while (ret == -EBUSY);
447 
448 	if (ret < 0) {
449 		/* We must get the transaction if we are JOIN_NOLOCK. */
450 		BUG_ON(type == TRANS_JOIN_NOLOCK);
451 		goto join_fail;
452 	}
453 
454 	cur_trans = root->fs_info->running_transaction;
455 
456 	h->transid = cur_trans->transid;
457 	h->transaction = cur_trans;
458 	h->blocks_used = 0;
459 	h->bytes_reserved = 0;
460 	h->root = root;
461 	h->delayed_ref_updates = 0;
462 	h->use_count = 1;
463 	h->adding_csums = 0;
464 	h->block_rsv = NULL;
465 	h->orig_rsv = NULL;
466 	h->aborted = 0;
467 	h->qgroup_reserved = 0;
468 	h->delayed_ref_elem.seq = 0;
469 	h->type = type;
470 	h->allocating_chunk = false;
471 	h->reloc_reserved = false;
472 	h->sync = false;
473 	INIT_LIST_HEAD(&h->qgroup_ref_list);
474 	INIT_LIST_HEAD(&h->new_bgs);
475 
476 	smp_mb();
477 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
478 	    may_wait_transaction(root, type)) {
479 		btrfs_commit_transaction(h, root);
480 		goto again;
481 	}
482 
483 	if (num_bytes) {
484 		trace_btrfs_space_reservation(root->fs_info, "transaction",
485 					      h->transid, num_bytes, 1);
486 		h->block_rsv = &root->fs_info->trans_block_rsv;
487 		h->bytes_reserved = num_bytes;
488 		h->reloc_reserved = reloc_reserved;
489 	}
490 	h->qgroup_reserved = qgroup_reserved;
491 
492 got_it:
493 	btrfs_record_root_in_trans(h, root);
494 
495 	if (!current->journal_info && type != TRANS_USERSPACE)
496 		current->journal_info = h;
497 	return h;
498 
499 join_fail:
500 	if (type & __TRANS_FREEZABLE)
501 		sb_end_intwrite(root->fs_info->sb);
502 	kmem_cache_free(btrfs_trans_handle_cachep, h);
503 alloc_fail:
504 	if (num_bytes)
505 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
506 					num_bytes);
507 reserve_fail:
508 	if (qgroup_reserved)
509 		btrfs_qgroup_free(root, qgroup_reserved);
510 	return ERR_PTR(ret);
511 }
512 
513 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
514 						   int num_items)
515 {
516 	return start_transaction(root, num_items, TRANS_START,
517 				 BTRFS_RESERVE_FLUSH_ALL);
518 }
519 
520 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
521 					struct btrfs_root *root, int num_items)
522 {
523 	return start_transaction(root, num_items, TRANS_START,
524 				 BTRFS_RESERVE_FLUSH_LIMIT);
525 }
526 
527 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
528 {
529 	return start_transaction(root, 0, TRANS_JOIN, 0);
530 }
531 
532 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
533 {
534 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
535 }
536 
537 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
538 {
539 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
540 }
541 
542 /*
543  * btrfs_attach_transaction() - catch the running transaction
544  *
545  * It is used when we want to commit the current the transaction, but
546  * don't want to start a new one.
547  *
548  * Note: If this function return -ENOENT, it just means there is no
549  * running transaction. But it is possible that the inactive transaction
550  * is still in the memory, not fully on disk. If you hope there is no
551  * inactive transaction in the fs when -ENOENT is returned, you should
552  * invoke
553  *     btrfs_attach_transaction_barrier()
554  */
555 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
556 {
557 	return start_transaction(root, 0, TRANS_ATTACH, 0);
558 }
559 
560 /*
561  * btrfs_attach_transaction_barrier() - catch the running transaction
562  *
563  * It is similar to the above function, the differentia is this one
564  * will wait for all the inactive transactions until they fully
565  * complete.
566  */
567 struct btrfs_trans_handle *
568 btrfs_attach_transaction_barrier(struct btrfs_root *root)
569 {
570 	struct btrfs_trans_handle *trans;
571 
572 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
573 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
574 		btrfs_wait_for_commit(root, 0);
575 
576 	return trans;
577 }
578 
579 /* wait for a transaction commit to be fully complete */
580 static noinline void wait_for_commit(struct btrfs_root *root,
581 				    struct btrfs_transaction *commit)
582 {
583 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
584 }
585 
586 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
587 {
588 	struct btrfs_transaction *cur_trans = NULL, *t;
589 	int ret = 0;
590 
591 	if (transid) {
592 		if (transid <= root->fs_info->last_trans_committed)
593 			goto out;
594 
595 		ret = -EINVAL;
596 		/* find specified transaction */
597 		spin_lock(&root->fs_info->trans_lock);
598 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
599 			if (t->transid == transid) {
600 				cur_trans = t;
601 				atomic_inc(&cur_trans->use_count);
602 				ret = 0;
603 				break;
604 			}
605 			if (t->transid > transid) {
606 				ret = 0;
607 				break;
608 			}
609 		}
610 		spin_unlock(&root->fs_info->trans_lock);
611 		/* The specified transaction doesn't exist */
612 		if (!cur_trans)
613 			goto out;
614 	} else {
615 		/* find newest transaction that is committing | committed */
616 		spin_lock(&root->fs_info->trans_lock);
617 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
618 					    list) {
619 			if (t->state >= TRANS_STATE_COMMIT_START) {
620 				if (t->state == TRANS_STATE_COMPLETED)
621 					break;
622 				cur_trans = t;
623 				atomic_inc(&cur_trans->use_count);
624 				break;
625 			}
626 		}
627 		spin_unlock(&root->fs_info->trans_lock);
628 		if (!cur_trans)
629 			goto out;  /* nothing committing|committed */
630 	}
631 
632 	wait_for_commit(root, cur_trans);
633 	btrfs_put_transaction(cur_trans);
634 out:
635 	return ret;
636 }
637 
638 void btrfs_throttle(struct btrfs_root *root)
639 {
640 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
641 		wait_current_trans(root);
642 }
643 
644 static int should_end_transaction(struct btrfs_trans_handle *trans,
645 				  struct btrfs_root *root)
646 {
647 	if (root->fs_info->global_block_rsv.space_info->full &&
648 	    btrfs_check_space_for_delayed_refs(trans, root))
649 		return 1;
650 
651 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
652 }
653 
654 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
655 				 struct btrfs_root *root)
656 {
657 	struct btrfs_transaction *cur_trans = trans->transaction;
658 	int updates;
659 	int err;
660 
661 	smp_mb();
662 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
663 	    cur_trans->delayed_refs.flushing)
664 		return 1;
665 
666 	updates = trans->delayed_ref_updates;
667 	trans->delayed_ref_updates = 0;
668 	if (updates) {
669 		err = btrfs_run_delayed_refs(trans, root, updates);
670 		if (err) /* Error code will also eval true */
671 			return err;
672 	}
673 
674 	return should_end_transaction(trans, root);
675 }
676 
677 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
678 			  struct btrfs_root *root, int throttle)
679 {
680 	struct btrfs_transaction *cur_trans = trans->transaction;
681 	struct btrfs_fs_info *info = root->fs_info;
682 	unsigned long cur = trans->delayed_ref_updates;
683 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
684 	int err = 0;
685 
686 	if (--trans->use_count) {
687 		trans->block_rsv = trans->orig_rsv;
688 		return 0;
689 	}
690 
691 	/*
692 	 * do the qgroup accounting as early as possible
693 	 */
694 	err = btrfs_delayed_refs_qgroup_accounting(trans, info);
695 
696 	btrfs_trans_release_metadata(trans, root);
697 	trans->block_rsv = NULL;
698 
699 	if (trans->qgroup_reserved) {
700 		/*
701 		 * the same root has to be passed here between start_transaction
702 		 * and end_transaction. Subvolume quota depends on this.
703 		 */
704 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
705 		trans->qgroup_reserved = 0;
706 	}
707 
708 	if (!list_empty(&trans->new_bgs))
709 		btrfs_create_pending_block_groups(trans, root);
710 
711 	trans->delayed_ref_updates = 0;
712 	if (!trans->sync && btrfs_should_throttle_delayed_refs(trans, root)) {
713 		cur = max_t(unsigned long, cur, 32);
714 		trans->delayed_ref_updates = 0;
715 		btrfs_run_delayed_refs(trans, root, cur);
716 	}
717 
718 	btrfs_trans_release_metadata(trans, root);
719 	trans->block_rsv = NULL;
720 
721 	if (!list_empty(&trans->new_bgs))
722 		btrfs_create_pending_block_groups(trans, root);
723 
724 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
725 	    should_end_transaction(trans, root) &&
726 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
727 		spin_lock(&info->trans_lock);
728 		if (cur_trans->state == TRANS_STATE_RUNNING)
729 			cur_trans->state = TRANS_STATE_BLOCKED;
730 		spin_unlock(&info->trans_lock);
731 	}
732 
733 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
734 		if (throttle) {
735 			/*
736 			 * We may race with somebody else here so end up having
737 			 * to call end_transaction on ourselves again, so inc
738 			 * our use_count.
739 			 */
740 			trans->use_count++;
741 			return btrfs_commit_transaction(trans, root);
742 		} else {
743 			wake_up_process(info->transaction_kthread);
744 		}
745 	}
746 
747 	if (trans->type & __TRANS_FREEZABLE)
748 		sb_end_intwrite(root->fs_info->sb);
749 
750 	WARN_ON(cur_trans != info->running_transaction);
751 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
752 	atomic_dec(&cur_trans->num_writers);
753 	extwriter_counter_dec(cur_trans, trans->type);
754 
755 	smp_mb();
756 	if (waitqueue_active(&cur_trans->writer_wait))
757 		wake_up(&cur_trans->writer_wait);
758 	btrfs_put_transaction(cur_trans);
759 
760 	if (current->journal_info == trans)
761 		current->journal_info = NULL;
762 
763 	if (throttle)
764 		btrfs_run_delayed_iputs(root);
765 
766 	if (trans->aborted ||
767 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
768 		wake_up_process(info->transaction_kthread);
769 		err = -EIO;
770 	}
771 	assert_qgroups_uptodate(trans);
772 
773 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
774 	return err;
775 }
776 
777 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
778 			  struct btrfs_root *root)
779 {
780 	return __btrfs_end_transaction(trans, root, 0);
781 }
782 
783 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
784 				   struct btrfs_root *root)
785 {
786 	return __btrfs_end_transaction(trans, root, 1);
787 }
788 
789 /*
790  * when btree blocks are allocated, they have some corresponding bits set for
791  * them in one of two extent_io trees.  This is used to make sure all of
792  * those extents are sent to disk but does not wait on them
793  */
794 int btrfs_write_marked_extents(struct btrfs_root *root,
795 			       struct extent_io_tree *dirty_pages, int mark)
796 {
797 	int err = 0;
798 	int werr = 0;
799 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
800 	struct extent_state *cached_state = NULL;
801 	u64 start = 0;
802 	u64 end;
803 
804 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
805 				      mark, &cached_state)) {
806 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
807 				   mark, &cached_state, GFP_NOFS);
808 		cached_state = NULL;
809 		err = filemap_fdatawrite_range(mapping, start, end);
810 		if (err)
811 			werr = err;
812 		cond_resched();
813 		start = end + 1;
814 	}
815 	if (err)
816 		werr = err;
817 	return werr;
818 }
819 
820 /*
821  * when btree blocks are allocated, they have some corresponding bits set for
822  * them in one of two extent_io trees.  This is used to make sure all of
823  * those extents are on disk for transaction or log commit.  We wait
824  * on all the pages and clear them from the dirty pages state tree
825  */
826 int btrfs_wait_marked_extents(struct btrfs_root *root,
827 			      struct extent_io_tree *dirty_pages, int mark)
828 {
829 	int err = 0;
830 	int werr = 0;
831 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
832 	struct extent_state *cached_state = NULL;
833 	u64 start = 0;
834 	u64 end;
835 
836 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
837 				      EXTENT_NEED_WAIT, &cached_state)) {
838 		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
839 				 0, 0, &cached_state, GFP_NOFS);
840 		err = filemap_fdatawait_range(mapping, start, end);
841 		if (err)
842 			werr = err;
843 		cond_resched();
844 		start = end + 1;
845 	}
846 	if (err)
847 		werr = err;
848 	return werr;
849 }
850 
851 /*
852  * when btree blocks are allocated, they have some corresponding bits set for
853  * them in one of two extent_io trees.  This is used to make sure all of
854  * those extents are on disk for transaction or log commit
855  */
856 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
857 				struct extent_io_tree *dirty_pages, int mark)
858 {
859 	int ret;
860 	int ret2;
861 	struct blk_plug plug;
862 
863 	blk_start_plug(&plug);
864 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
865 	blk_finish_plug(&plug);
866 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
867 
868 	if (ret)
869 		return ret;
870 	if (ret2)
871 		return ret2;
872 	return 0;
873 }
874 
875 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
876 				     struct btrfs_root *root)
877 {
878 	if (!trans || !trans->transaction) {
879 		struct inode *btree_inode;
880 		btree_inode = root->fs_info->btree_inode;
881 		return filemap_write_and_wait(btree_inode->i_mapping);
882 	}
883 	return btrfs_write_and_wait_marked_extents(root,
884 					   &trans->transaction->dirty_pages,
885 					   EXTENT_DIRTY);
886 }
887 
888 /*
889  * this is used to update the root pointer in the tree of tree roots.
890  *
891  * But, in the case of the extent allocation tree, updating the root
892  * pointer may allocate blocks which may change the root of the extent
893  * allocation tree.
894  *
895  * So, this loops and repeats and makes sure the cowonly root didn't
896  * change while the root pointer was being updated in the metadata.
897  */
898 static int update_cowonly_root(struct btrfs_trans_handle *trans,
899 			       struct btrfs_root *root)
900 {
901 	int ret;
902 	u64 old_root_bytenr;
903 	u64 old_root_used;
904 	struct btrfs_root *tree_root = root->fs_info->tree_root;
905 
906 	old_root_used = btrfs_root_used(&root->root_item);
907 	btrfs_write_dirty_block_groups(trans, root);
908 
909 	while (1) {
910 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
911 		if (old_root_bytenr == root->node->start &&
912 		    old_root_used == btrfs_root_used(&root->root_item))
913 			break;
914 
915 		btrfs_set_root_node(&root->root_item, root->node);
916 		ret = btrfs_update_root(trans, tree_root,
917 					&root->root_key,
918 					&root->root_item);
919 		if (ret)
920 			return ret;
921 
922 		old_root_used = btrfs_root_used(&root->root_item);
923 		ret = btrfs_write_dirty_block_groups(trans, root);
924 		if (ret)
925 			return ret;
926 	}
927 
928 	if (root != root->fs_info->extent_root)
929 		switch_commit_root(root);
930 
931 	return 0;
932 }
933 
934 /*
935  * update all the cowonly tree roots on disk
936  *
937  * The error handling in this function may not be obvious. Any of the
938  * failures will cause the file system to go offline. We still need
939  * to clean up the delayed refs.
940  */
941 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
942 					 struct btrfs_root *root)
943 {
944 	struct btrfs_fs_info *fs_info = root->fs_info;
945 	struct list_head *next;
946 	struct extent_buffer *eb;
947 	int ret;
948 
949 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
950 	if (ret)
951 		return ret;
952 
953 	eb = btrfs_lock_root_node(fs_info->tree_root);
954 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
955 			      0, &eb);
956 	btrfs_tree_unlock(eb);
957 	free_extent_buffer(eb);
958 
959 	if (ret)
960 		return ret;
961 
962 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
963 	if (ret)
964 		return ret;
965 
966 	ret = btrfs_run_dev_stats(trans, root->fs_info);
967 	if (ret)
968 		return ret;
969 	ret = btrfs_run_dev_replace(trans, root->fs_info);
970 	if (ret)
971 		return ret;
972 	ret = btrfs_run_qgroups(trans, root->fs_info);
973 	if (ret)
974 		return ret;
975 
976 	/* run_qgroups might have added some more refs */
977 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
978 	if (ret)
979 		return ret;
980 
981 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
982 		next = fs_info->dirty_cowonly_roots.next;
983 		list_del_init(next);
984 		root = list_entry(next, struct btrfs_root, dirty_list);
985 
986 		ret = update_cowonly_root(trans, root);
987 		if (ret)
988 			return ret;
989 	}
990 
991 	down_write(&fs_info->extent_commit_sem);
992 	switch_commit_root(fs_info->extent_root);
993 	up_write(&fs_info->extent_commit_sem);
994 
995 	btrfs_after_dev_replace_commit(fs_info);
996 
997 	return 0;
998 }
999 
1000 /*
1001  * dead roots are old snapshots that need to be deleted.  This allocates
1002  * a dirty root struct and adds it into the list of dead roots that need to
1003  * be deleted
1004  */
1005 void btrfs_add_dead_root(struct btrfs_root *root)
1006 {
1007 	spin_lock(&root->fs_info->trans_lock);
1008 	if (list_empty(&root->root_list))
1009 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1010 	spin_unlock(&root->fs_info->trans_lock);
1011 }
1012 
1013 /*
1014  * update all the cowonly tree roots on disk
1015  */
1016 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1017 				    struct btrfs_root *root)
1018 {
1019 	struct btrfs_root *gang[8];
1020 	struct btrfs_fs_info *fs_info = root->fs_info;
1021 	int i;
1022 	int ret;
1023 	int err = 0;
1024 
1025 	spin_lock(&fs_info->fs_roots_radix_lock);
1026 	while (1) {
1027 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1028 						 (void **)gang, 0,
1029 						 ARRAY_SIZE(gang),
1030 						 BTRFS_ROOT_TRANS_TAG);
1031 		if (ret == 0)
1032 			break;
1033 		for (i = 0; i < ret; i++) {
1034 			root = gang[i];
1035 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1036 					(unsigned long)root->root_key.objectid,
1037 					BTRFS_ROOT_TRANS_TAG);
1038 			spin_unlock(&fs_info->fs_roots_radix_lock);
1039 
1040 			btrfs_free_log(trans, root);
1041 			btrfs_update_reloc_root(trans, root);
1042 			btrfs_orphan_commit_root(trans, root);
1043 
1044 			btrfs_save_ino_cache(root, trans);
1045 
1046 			/* see comments in should_cow_block() */
1047 			root->force_cow = 0;
1048 			smp_wmb();
1049 
1050 			if (root->commit_root != root->node) {
1051 				mutex_lock(&root->fs_commit_mutex);
1052 				switch_commit_root(root);
1053 				btrfs_unpin_free_ino(root);
1054 				mutex_unlock(&root->fs_commit_mutex);
1055 
1056 				btrfs_set_root_node(&root->root_item,
1057 						    root->node);
1058 			}
1059 
1060 			err = btrfs_update_root(trans, fs_info->tree_root,
1061 						&root->root_key,
1062 						&root->root_item);
1063 			spin_lock(&fs_info->fs_roots_radix_lock);
1064 			if (err)
1065 				break;
1066 		}
1067 	}
1068 	spin_unlock(&fs_info->fs_roots_radix_lock);
1069 	return err;
1070 }
1071 
1072 /*
1073  * defrag a given btree.
1074  * Every leaf in the btree is read and defragged.
1075  */
1076 int btrfs_defrag_root(struct btrfs_root *root)
1077 {
1078 	struct btrfs_fs_info *info = root->fs_info;
1079 	struct btrfs_trans_handle *trans;
1080 	int ret;
1081 
1082 	if (xchg(&root->defrag_running, 1))
1083 		return 0;
1084 
1085 	while (1) {
1086 		trans = btrfs_start_transaction(root, 0);
1087 		if (IS_ERR(trans))
1088 			return PTR_ERR(trans);
1089 
1090 		ret = btrfs_defrag_leaves(trans, root);
1091 
1092 		btrfs_end_transaction(trans, root);
1093 		btrfs_btree_balance_dirty(info->tree_root);
1094 		cond_resched();
1095 
1096 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1097 			break;
1098 
1099 		if (btrfs_defrag_cancelled(root->fs_info)) {
1100 			pr_debug("BTRFS: defrag_root cancelled\n");
1101 			ret = -EAGAIN;
1102 			break;
1103 		}
1104 	}
1105 	root->defrag_running = 0;
1106 	return ret;
1107 }
1108 
1109 /*
1110  * new snapshots need to be created at a very specific time in the
1111  * transaction commit.  This does the actual creation.
1112  *
1113  * Note:
1114  * If the error which may affect the commitment of the current transaction
1115  * happens, we should return the error number. If the error which just affect
1116  * the creation of the pending snapshots, just return 0.
1117  */
1118 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1119 				   struct btrfs_fs_info *fs_info,
1120 				   struct btrfs_pending_snapshot *pending)
1121 {
1122 	struct btrfs_key key;
1123 	struct btrfs_root_item *new_root_item;
1124 	struct btrfs_root *tree_root = fs_info->tree_root;
1125 	struct btrfs_root *root = pending->root;
1126 	struct btrfs_root *parent_root;
1127 	struct btrfs_block_rsv *rsv;
1128 	struct inode *parent_inode;
1129 	struct btrfs_path *path;
1130 	struct btrfs_dir_item *dir_item;
1131 	struct dentry *dentry;
1132 	struct extent_buffer *tmp;
1133 	struct extent_buffer *old;
1134 	struct timespec cur_time = CURRENT_TIME;
1135 	int ret = 0;
1136 	u64 to_reserve = 0;
1137 	u64 index = 0;
1138 	u64 objectid;
1139 	u64 root_flags;
1140 	uuid_le new_uuid;
1141 
1142 	path = btrfs_alloc_path();
1143 	if (!path) {
1144 		pending->error = -ENOMEM;
1145 		return 0;
1146 	}
1147 
1148 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1149 	if (!new_root_item) {
1150 		pending->error = -ENOMEM;
1151 		goto root_item_alloc_fail;
1152 	}
1153 
1154 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1155 	if (pending->error)
1156 		goto no_free_objectid;
1157 
1158 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1159 
1160 	if (to_reserve > 0) {
1161 		pending->error = btrfs_block_rsv_add(root,
1162 						     &pending->block_rsv,
1163 						     to_reserve,
1164 						     BTRFS_RESERVE_NO_FLUSH);
1165 		if (pending->error)
1166 			goto no_free_objectid;
1167 	}
1168 
1169 	pending->error = btrfs_qgroup_inherit(trans, fs_info,
1170 					      root->root_key.objectid,
1171 					      objectid, pending->inherit);
1172 	if (pending->error)
1173 		goto no_free_objectid;
1174 
1175 	key.objectid = objectid;
1176 	key.offset = (u64)-1;
1177 	key.type = BTRFS_ROOT_ITEM_KEY;
1178 
1179 	rsv = trans->block_rsv;
1180 	trans->block_rsv = &pending->block_rsv;
1181 	trans->bytes_reserved = trans->block_rsv->reserved;
1182 
1183 	dentry = pending->dentry;
1184 	parent_inode = pending->dir;
1185 	parent_root = BTRFS_I(parent_inode)->root;
1186 	record_root_in_trans(trans, parent_root);
1187 
1188 	/*
1189 	 * insert the directory item
1190 	 */
1191 	ret = btrfs_set_inode_index(parent_inode, &index);
1192 	BUG_ON(ret); /* -ENOMEM */
1193 
1194 	/* check if there is a file/dir which has the same name. */
1195 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1196 					 btrfs_ino(parent_inode),
1197 					 dentry->d_name.name,
1198 					 dentry->d_name.len, 0);
1199 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1200 		pending->error = -EEXIST;
1201 		goto dir_item_existed;
1202 	} else if (IS_ERR(dir_item)) {
1203 		ret = PTR_ERR(dir_item);
1204 		btrfs_abort_transaction(trans, root, ret);
1205 		goto fail;
1206 	}
1207 	btrfs_release_path(path);
1208 
1209 	/*
1210 	 * pull in the delayed directory update
1211 	 * and the delayed inode item
1212 	 * otherwise we corrupt the FS during
1213 	 * snapshot
1214 	 */
1215 	ret = btrfs_run_delayed_items(trans, root);
1216 	if (ret) {	/* Transaction aborted */
1217 		btrfs_abort_transaction(trans, root, ret);
1218 		goto fail;
1219 	}
1220 
1221 	record_root_in_trans(trans, root);
1222 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1223 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1224 	btrfs_check_and_init_root_item(new_root_item);
1225 
1226 	root_flags = btrfs_root_flags(new_root_item);
1227 	if (pending->readonly)
1228 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1229 	else
1230 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1231 	btrfs_set_root_flags(new_root_item, root_flags);
1232 
1233 	btrfs_set_root_generation_v2(new_root_item,
1234 			trans->transid);
1235 	uuid_le_gen(&new_uuid);
1236 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1237 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1238 			BTRFS_UUID_SIZE);
1239 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1240 		memset(new_root_item->received_uuid, 0,
1241 		       sizeof(new_root_item->received_uuid));
1242 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1243 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1244 		btrfs_set_root_stransid(new_root_item, 0);
1245 		btrfs_set_root_rtransid(new_root_item, 0);
1246 	}
1247 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1248 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1249 	btrfs_set_root_otransid(new_root_item, trans->transid);
1250 
1251 	old = btrfs_lock_root_node(root);
1252 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1253 	if (ret) {
1254 		btrfs_tree_unlock(old);
1255 		free_extent_buffer(old);
1256 		btrfs_abort_transaction(trans, root, ret);
1257 		goto fail;
1258 	}
1259 
1260 	btrfs_set_lock_blocking(old);
1261 
1262 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1263 	/* clean up in any case */
1264 	btrfs_tree_unlock(old);
1265 	free_extent_buffer(old);
1266 	if (ret) {
1267 		btrfs_abort_transaction(trans, root, ret);
1268 		goto fail;
1269 	}
1270 
1271 	/* see comments in should_cow_block() */
1272 	root->force_cow = 1;
1273 	smp_wmb();
1274 
1275 	btrfs_set_root_node(new_root_item, tmp);
1276 	/* record when the snapshot was created in key.offset */
1277 	key.offset = trans->transid;
1278 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1279 	btrfs_tree_unlock(tmp);
1280 	free_extent_buffer(tmp);
1281 	if (ret) {
1282 		btrfs_abort_transaction(trans, root, ret);
1283 		goto fail;
1284 	}
1285 
1286 	/*
1287 	 * insert root back/forward references
1288 	 */
1289 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1290 				 parent_root->root_key.objectid,
1291 				 btrfs_ino(parent_inode), index,
1292 				 dentry->d_name.name, dentry->d_name.len);
1293 	if (ret) {
1294 		btrfs_abort_transaction(trans, root, ret);
1295 		goto fail;
1296 	}
1297 
1298 	key.offset = (u64)-1;
1299 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1300 	if (IS_ERR(pending->snap)) {
1301 		ret = PTR_ERR(pending->snap);
1302 		btrfs_abort_transaction(trans, root, ret);
1303 		goto fail;
1304 	}
1305 
1306 	ret = btrfs_reloc_post_snapshot(trans, pending);
1307 	if (ret) {
1308 		btrfs_abort_transaction(trans, root, ret);
1309 		goto fail;
1310 	}
1311 
1312 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1313 	if (ret) {
1314 		btrfs_abort_transaction(trans, root, ret);
1315 		goto fail;
1316 	}
1317 
1318 	ret = btrfs_insert_dir_item(trans, parent_root,
1319 				    dentry->d_name.name, dentry->d_name.len,
1320 				    parent_inode, &key,
1321 				    BTRFS_FT_DIR, index);
1322 	/* We have check then name at the beginning, so it is impossible. */
1323 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1324 	if (ret) {
1325 		btrfs_abort_transaction(trans, root, ret);
1326 		goto fail;
1327 	}
1328 
1329 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1330 					 dentry->d_name.len * 2);
1331 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1332 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1333 	if (ret) {
1334 		btrfs_abort_transaction(trans, root, ret);
1335 		goto fail;
1336 	}
1337 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1338 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1339 	if (ret) {
1340 		btrfs_abort_transaction(trans, root, ret);
1341 		goto fail;
1342 	}
1343 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1344 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1345 					  new_root_item->received_uuid,
1346 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1347 					  objectid);
1348 		if (ret && ret != -EEXIST) {
1349 			btrfs_abort_transaction(trans, root, ret);
1350 			goto fail;
1351 		}
1352 	}
1353 fail:
1354 	pending->error = ret;
1355 dir_item_existed:
1356 	trans->block_rsv = rsv;
1357 	trans->bytes_reserved = 0;
1358 no_free_objectid:
1359 	kfree(new_root_item);
1360 root_item_alloc_fail:
1361 	btrfs_free_path(path);
1362 	return ret;
1363 }
1364 
1365 /*
1366  * create all the snapshots we've scheduled for creation
1367  */
1368 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1369 					     struct btrfs_fs_info *fs_info)
1370 {
1371 	struct btrfs_pending_snapshot *pending, *next;
1372 	struct list_head *head = &trans->transaction->pending_snapshots;
1373 	int ret = 0;
1374 
1375 	list_for_each_entry_safe(pending, next, head, list) {
1376 		list_del(&pending->list);
1377 		ret = create_pending_snapshot(trans, fs_info, pending);
1378 		if (ret)
1379 			break;
1380 	}
1381 	return ret;
1382 }
1383 
1384 static void update_super_roots(struct btrfs_root *root)
1385 {
1386 	struct btrfs_root_item *root_item;
1387 	struct btrfs_super_block *super;
1388 
1389 	super = root->fs_info->super_copy;
1390 
1391 	root_item = &root->fs_info->chunk_root->root_item;
1392 	super->chunk_root = root_item->bytenr;
1393 	super->chunk_root_generation = root_item->generation;
1394 	super->chunk_root_level = root_item->level;
1395 
1396 	root_item = &root->fs_info->tree_root->root_item;
1397 	super->root = root_item->bytenr;
1398 	super->generation = root_item->generation;
1399 	super->root_level = root_item->level;
1400 	if (btrfs_test_opt(root, SPACE_CACHE))
1401 		super->cache_generation = root_item->generation;
1402 	if (root->fs_info->update_uuid_tree_gen)
1403 		super->uuid_tree_generation = root_item->generation;
1404 }
1405 
1406 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1407 {
1408 	struct btrfs_transaction *trans;
1409 	int ret = 0;
1410 
1411 	spin_lock(&info->trans_lock);
1412 	trans = info->running_transaction;
1413 	if (trans)
1414 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1415 	spin_unlock(&info->trans_lock);
1416 	return ret;
1417 }
1418 
1419 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1420 {
1421 	struct btrfs_transaction *trans;
1422 	int ret = 0;
1423 
1424 	spin_lock(&info->trans_lock);
1425 	trans = info->running_transaction;
1426 	if (trans)
1427 		ret = is_transaction_blocked(trans);
1428 	spin_unlock(&info->trans_lock);
1429 	return ret;
1430 }
1431 
1432 /*
1433  * wait for the current transaction commit to start and block subsequent
1434  * transaction joins
1435  */
1436 static void wait_current_trans_commit_start(struct btrfs_root *root,
1437 					    struct btrfs_transaction *trans)
1438 {
1439 	wait_event(root->fs_info->transaction_blocked_wait,
1440 		   trans->state >= TRANS_STATE_COMMIT_START ||
1441 		   trans->aborted);
1442 }
1443 
1444 /*
1445  * wait for the current transaction to start and then become unblocked.
1446  * caller holds ref.
1447  */
1448 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1449 					 struct btrfs_transaction *trans)
1450 {
1451 	wait_event(root->fs_info->transaction_wait,
1452 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1453 		   trans->aborted);
1454 }
1455 
1456 /*
1457  * commit transactions asynchronously. once btrfs_commit_transaction_async
1458  * returns, any subsequent transaction will not be allowed to join.
1459  */
1460 struct btrfs_async_commit {
1461 	struct btrfs_trans_handle *newtrans;
1462 	struct btrfs_root *root;
1463 	struct work_struct work;
1464 };
1465 
1466 static void do_async_commit(struct work_struct *work)
1467 {
1468 	struct btrfs_async_commit *ac =
1469 		container_of(work, struct btrfs_async_commit, work);
1470 
1471 	/*
1472 	 * We've got freeze protection passed with the transaction.
1473 	 * Tell lockdep about it.
1474 	 */
1475 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1476 		rwsem_acquire_read(
1477 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1478 		     0, 1, _THIS_IP_);
1479 
1480 	current->journal_info = ac->newtrans;
1481 
1482 	btrfs_commit_transaction(ac->newtrans, ac->root);
1483 	kfree(ac);
1484 }
1485 
1486 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1487 				   struct btrfs_root *root,
1488 				   int wait_for_unblock)
1489 {
1490 	struct btrfs_async_commit *ac;
1491 	struct btrfs_transaction *cur_trans;
1492 
1493 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1494 	if (!ac)
1495 		return -ENOMEM;
1496 
1497 	INIT_WORK(&ac->work, do_async_commit);
1498 	ac->root = root;
1499 	ac->newtrans = btrfs_join_transaction(root);
1500 	if (IS_ERR(ac->newtrans)) {
1501 		int err = PTR_ERR(ac->newtrans);
1502 		kfree(ac);
1503 		return err;
1504 	}
1505 
1506 	/* take transaction reference */
1507 	cur_trans = trans->transaction;
1508 	atomic_inc(&cur_trans->use_count);
1509 
1510 	btrfs_end_transaction(trans, root);
1511 
1512 	/*
1513 	 * Tell lockdep we've released the freeze rwsem, since the
1514 	 * async commit thread will be the one to unlock it.
1515 	 */
1516 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1517 		rwsem_release(
1518 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1519 			1, _THIS_IP_);
1520 
1521 	schedule_work(&ac->work);
1522 
1523 	/* wait for transaction to start and unblock */
1524 	if (wait_for_unblock)
1525 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1526 	else
1527 		wait_current_trans_commit_start(root, cur_trans);
1528 
1529 	if (current->journal_info == trans)
1530 		current->journal_info = NULL;
1531 
1532 	btrfs_put_transaction(cur_trans);
1533 	return 0;
1534 }
1535 
1536 
1537 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1538 				struct btrfs_root *root, int err)
1539 {
1540 	struct btrfs_transaction *cur_trans = trans->transaction;
1541 	DEFINE_WAIT(wait);
1542 
1543 	WARN_ON(trans->use_count > 1);
1544 
1545 	btrfs_abort_transaction(trans, root, err);
1546 
1547 	spin_lock(&root->fs_info->trans_lock);
1548 
1549 	/*
1550 	 * If the transaction is removed from the list, it means this
1551 	 * transaction has been committed successfully, so it is impossible
1552 	 * to call the cleanup function.
1553 	 */
1554 	BUG_ON(list_empty(&cur_trans->list));
1555 
1556 	list_del_init(&cur_trans->list);
1557 	if (cur_trans == root->fs_info->running_transaction) {
1558 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1559 		spin_unlock(&root->fs_info->trans_lock);
1560 		wait_event(cur_trans->writer_wait,
1561 			   atomic_read(&cur_trans->num_writers) == 1);
1562 
1563 		spin_lock(&root->fs_info->trans_lock);
1564 	}
1565 	spin_unlock(&root->fs_info->trans_lock);
1566 
1567 	btrfs_cleanup_one_transaction(trans->transaction, root);
1568 
1569 	spin_lock(&root->fs_info->trans_lock);
1570 	if (cur_trans == root->fs_info->running_transaction)
1571 		root->fs_info->running_transaction = NULL;
1572 	spin_unlock(&root->fs_info->trans_lock);
1573 
1574 	if (trans->type & __TRANS_FREEZABLE)
1575 		sb_end_intwrite(root->fs_info->sb);
1576 	btrfs_put_transaction(cur_trans);
1577 	btrfs_put_transaction(cur_trans);
1578 
1579 	trace_btrfs_transaction_commit(root);
1580 
1581 	btrfs_scrub_continue(root);
1582 
1583 	if (current->journal_info == trans)
1584 		current->journal_info = NULL;
1585 
1586 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1587 }
1588 
1589 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1590 					  struct btrfs_root *root)
1591 {
1592 	int ret;
1593 
1594 	ret = btrfs_run_delayed_items(trans, root);
1595 	/*
1596 	 * running the delayed items may have added new refs. account
1597 	 * them now so that they hinder processing of more delayed refs
1598 	 * as little as possible.
1599 	 */
1600 	if (ret) {
1601 		btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1602 		return ret;
1603 	}
1604 
1605 	ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1606 	if (ret)
1607 		return ret;
1608 
1609 	/*
1610 	 * rename don't use btrfs_join_transaction, so, once we
1611 	 * set the transaction to blocked above, we aren't going
1612 	 * to get any new ordered operations.  We can safely run
1613 	 * it here and no for sure that nothing new will be added
1614 	 * to the list
1615 	 */
1616 	ret = btrfs_run_ordered_operations(trans, root, 1);
1617 
1618 	return ret;
1619 }
1620 
1621 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1622 {
1623 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1624 		return btrfs_start_delalloc_roots(fs_info, 1);
1625 	return 0;
1626 }
1627 
1628 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1629 {
1630 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1631 		btrfs_wait_ordered_roots(fs_info, -1);
1632 }
1633 
1634 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1635 			     struct btrfs_root *root)
1636 {
1637 	struct btrfs_transaction *cur_trans = trans->transaction;
1638 	struct btrfs_transaction *prev_trans = NULL;
1639 	int ret;
1640 
1641 	ret = btrfs_run_ordered_operations(trans, root, 0);
1642 	if (ret) {
1643 		btrfs_abort_transaction(trans, root, ret);
1644 		btrfs_end_transaction(trans, root);
1645 		return ret;
1646 	}
1647 
1648 	/* Stop the commit early if ->aborted is set */
1649 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1650 		ret = cur_trans->aborted;
1651 		btrfs_end_transaction(trans, root);
1652 		return ret;
1653 	}
1654 
1655 	/* make a pass through all the delayed refs we have so far
1656 	 * any runnings procs may add more while we are here
1657 	 */
1658 	ret = btrfs_run_delayed_refs(trans, root, 0);
1659 	if (ret) {
1660 		btrfs_end_transaction(trans, root);
1661 		return ret;
1662 	}
1663 
1664 	btrfs_trans_release_metadata(trans, root);
1665 	trans->block_rsv = NULL;
1666 	if (trans->qgroup_reserved) {
1667 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1668 		trans->qgroup_reserved = 0;
1669 	}
1670 
1671 	cur_trans = trans->transaction;
1672 
1673 	/*
1674 	 * set the flushing flag so procs in this transaction have to
1675 	 * start sending their work down.
1676 	 */
1677 	cur_trans->delayed_refs.flushing = 1;
1678 	smp_wmb();
1679 
1680 	if (!list_empty(&trans->new_bgs))
1681 		btrfs_create_pending_block_groups(trans, root);
1682 
1683 	ret = btrfs_run_delayed_refs(trans, root, 0);
1684 	if (ret) {
1685 		btrfs_end_transaction(trans, root);
1686 		return ret;
1687 	}
1688 
1689 	spin_lock(&root->fs_info->trans_lock);
1690 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1691 		spin_unlock(&root->fs_info->trans_lock);
1692 		atomic_inc(&cur_trans->use_count);
1693 		ret = btrfs_end_transaction(trans, root);
1694 
1695 		wait_for_commit(root, cur_trans);
1696 
1697 		btrfs_put_transaction(cur_trans);
1698 
1699 		return ret;
1700 	}
1701 
1702 	cur_trans->state = TRANS_STATE_COMMIT_START;
1703 	wake_up(&root->fs_info->transaction_blocked_wait);
1704 
1705 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1706 		prev_trans = list_entry(cur_trans->list.prev,
1707 					struct btrfs_transaction, list);
1708 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1709 			atomic_inc(&prev_trans->use_count);
1710 			spin_unlock(&root->fs_info->trans_lock);
1711 
1712 			wait_for_commit(root, prev_trans);
1713 
1714 			btrfs_put_transaction(prev_trans);
1715 		} else {
1716 			spin_unlock(&root->fs_info->trans_lock);
1717 		}
1718 	} else {
1719 		spin_unlock(&root->fs_info->trans_lock);
1720 	}
1721 
1722 	extwriter_counter_dec(cur_trans, trans->type);
1723 
1724 	ret = btrfs_start_delalloc_flush(root->fs_info);
1725 	if (ret)
1726 		goto cleanup_transaction;
1727 
1728 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1729 	if (ret)
1730 		goto cleanup_transaction;
1731 
1732 	wait_event(cur_trans->writer_wait,
1733 		   extwriter_counter_read(cur_trans) == 0);
1734 
1735 	/* some pending stuffs might be added after the previous flush. */
1736 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1737 	if (ret)
1738 		goto cleanup_transaction;
1739 
1740 	btrfs_wait_delalloc_flush(root->fs_info);
1741 
1742 	btrfs_scrub_pause(root);
1743 	/*
1744 	 * Ok now we need to make sure to block out any other joins while we
1745 	 * commit the transaction.  We could have started a join before setting
1746 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1747 	 */
1748 	spin_lock(&root->fs_info->trans_lock);
1749 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1750 	spin_unlock(&root->fs_info->trans_lock);
1751 	wait_event(cur_trans->writer_wait,
1752 		   atomic_read(&cur_trans->num_writers) == 1);
1753 
1754 	/* ->aborted might be set after the previous check, so check it */
1755 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1756 		ret = cur_trans->aborted;
1757 		goto cleanup_transaction;
1758 	}
1759 	/*
1760 	 * the reloc mutex makes sure that we stop
1761 	 * the balancing code from coming in and moving
1762 	 * extents around in the middle of the commit
1763 	 */
1764 	mutex_lock(&root->fs_info->reloc_mutex);
1765 
1766 	/*
1767 	 * We needn't worry about the delayed items because we will
1768 	 * deal with them in create_pending_snapshot(), which is the
1769 	 * core function of the snapshot creation.
1770 	 */
1771 	ret = create_pending_snapshots(trans, root->fs_info);
1772 	if (ret) {
1773 		mutex_unlock(&root->fs_info->reloc_mutex);
1774 		goto cleanup_transaction;
1775 	}
1776 
1777 	/*
1778 	 * We insert the dir indexes of the snapshots and update the inode
1779 	 * of the snapshots' parents after the snapshot creation, so there
1780 	 * are some delayed items which are not dealt with. Now deal with
1781 	 * them.
1782 	 *
1783 	 * We needn't worry that this operation will corrupt the snapshots,
1784 	 * because all the tree which are snapshoted will be forced to COW
1785 	 * the nodes and leaves.
1786 	 */
1787 	ret = btrfs_run_delayed_items(trans, root);
1788 	if (ret) {
1789 		mutex_unlock(&root->fs_info->reloc_mutex);
1790 		goto cleanup_transaction;
1791 	}
1792 
1793 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1794 	if (ret) {
1795 		mutex_unlock(&root->fs_info->reloc_mutex);
1796 		goto cleanup_transaction;
1797 	}
1798 
1799 	/*
1800 	 * make sure none of the code above managed to slip in a
1801 	 * delayed item
1802 	 */
1803 	btrfs_assert_delayed_root_empty(root);
1804 
1805 	WARN_ON(cur_trans != trans->transaction);
1806 
1807 	/* btrfs_commit_tree_roots is responsible for getting the
1808 	 * various roots consistent with each other.  Every pointer
1809 	 * in the tree of tree roots has to point to the most up to date
1810 	 * root for every subvolume and other tree.  So, we have to keep
1811 	 * the tree logging code from jumping in and changing any
1812 	 * of the trees.
1813 	 *
1814 	 * At this point in the commit, there can't be any tree-log
1815 	 * writers, but a little lower down we drop the trans mutex
1816 	 * and let new people in.  By holding the tree_log_mutex
1817 	 * from now until after the super is written, we avoid races
1818 	 * with the tree-log code.
1819 	 */
1820 	mutex_lock(&root->fs_info->tree_log_mutex);
1821 
1822 	ret = commit_fs_roots(trans, root);
1823 	if (ret) {
1824 		mutex_unlock(&root->fs_info->tree_log_mutex);
1825 		mutex_unlock(&root->fs_info->reloc_mutex);
1826 		goto cleanup_transaction;
1827 	}
1828 
1829 	/*
1830 	 * Since the transaction is done, we should set the inode map cache flag
1831 	 * before any other comming transaction.
1832 	 */
1833 	if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1834 		btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1835 	else
1836 		btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1837 
1838 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1839 	 * safe to free the root of tree log roots
1840 	 */
1841 	btrfs_free_log_root_tree(trans, root->fs_info);
1842 
1843 	ret = commit_cowonly_roots(trans, root);
1844 	if (ret) {
1845 		mutex_unlock(&root->fs_info->tree_log_mutex);
1846 		mutex_unlock(&root->fs_info->reloc_mutex);
1847 		goto cleanup_transaction;
1848 	}
1849 
1850 	/*
1851 	 * The tasks which save the space cache and inode cache may also
1852 	 * update ->aborted, check it.
1853 	 */
1854 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1855 		ret = cur_trans->aborted;
1856 		mutex_unlock(&root->fs_info->tree_log_mutex);
1857 		mutex_unlock(&root->fs_info->reloc_mutex);
1858 		goto cleanup_transaction;
1859 	}
1860 
1861 	btrfs_prepare_extent_commit(trans, root);
1862 
1863 	cur_trans = root->fs_info->running_transaction;
1864 
1865 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1866 			    root->fs_info->tree_root->node);
1867 	switch_commit_root(root->fs_info->tree_root);
1868 
1869 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1870 			    root->fs_info->chunk_root->node);
1871 	switch_commit_root(root->fs_info->chunk_root);
1872 
1873 	assert_qgroups_uptodate(trans);
1874 	update_super_roots(root);
1875 
1876 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1877 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1878 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1879 	       sizeof(*root->fs_info->super_copy));
1880 
1881 	spin_lock(&root->fs_info->trans_lock);
1882 	cur_trans->state = TRANS_STATE_UNBLOCKED;
1883 	root->fs_info->running_transaction = NULL;
1884 	spin_unlock(&root->fs_info->trans_lock);
1885 	mutex_unlock(&root->fs_info->reloc_mutex);
1886 
1887 	wake_up(&root->fs_info->transaction_wait);
1888 
1889 	ret = btrfs_write_and_wait_transaction(trans, root);
1890 	if (ret) {
1891 		btrfs_error(root->fs_info, ret,
1892 			    "Error while writing out transaction");
1893 		mutex_unlock(&root->fs_info->tree_log_mutex);
1894 		goto cleanup_transaction;
1895 	}
1896 
1897 	ret = write_ctree_super(trans, root, 0);
1898 	if (ret) {
1899 		mutex_unlock(&root->fs_info->tree_log_mutex);
1900 		goto cleanup_transaction;
1901 	}
1902 
1903 	/*
1904 	 * the super is written, we can safely allow the tree-loggers
1905 	 * to go about their business
1906 	 */
1907 	mutex_unlock(&root->fs_info->tree_log_mutex);
1908 
1909 	btrfs_finish_extent_commit(trans, root);
1910 
1911 	root->fs_info->last_trans_committed = cur_trans->transid;
1912 	/*
1913 	 * We needn't acquire the lock here because there is no other task
1914 	 * which can change it.
1915 	 */
1916 	cur_trans->state = TRANS_STATE_COMPLETED;
1917 	wake_up(&cur_trans->commit_wait);
1918 
1919 	spin_lock(&root->fs_info->trans_lock);
1920 	list_del_init(&cur_trans->list);
1921 	spin_unlock(&root->fs_info->trans_lock);
1922 
1923 	btrfs_put_transaction(cur_trans);
1924 	btrfs_put_transaction(cur_trans);
1925 
1926 	if (trans->type & __TRANS_FREEZABLE)
1927 		sb_end_intwrite(root->fs_info->sb);
1928 
1929 	trace_btrfs_transaction_commit(root);
1930 
1931 	btrfs_scrub_continue(root);
1932 
1933 	if (current->journal_info == trans)
1934 		current->journal_info = NULL;
1935 
1936 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1937 
1938 	if (current != root->fs_info->transaction_kthread)
1939 		btrfs_run_delayed_iputs(root);
1940 
1941 	return ret;
1942 
1943 cleanup_transaction:
1944 	btrfs_trans_release_metadata(trans, root);
1945 	trans->block_rsv = NULL;
1946 	if (trans->qgroup_reserved) {
1947 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1948 		trans->qgroup_reserved = 0;
1949 	}
1950 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1951 	if (current->journal_info == trans)
1952 		current->journal_info = NULL;
1953 	cleanup_transaction(trans, root, ret);
1954 
1955 	return ret;
1956 }
1957 
1958 /*
1959  * return < 0 if error
1960  * 0 if there are no more dead_roots at the time of call
1961  * 1 there are more to be processed, call me again
1962  *
1963  * The return value indicates there are certainly more snapshots to delete, but
1964  * if there comes a new one during processing, it may return 0. We don't mind,
1965  * because btrfs_commit_super will poke cleaner thread and it will process it a
1966  * few seconds later.
1967  */
1968 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1969 {
1970 	int ret;
1971 	struct btrfs_fs_info *fs_info = root->fs_info;
1972 
1973 	spin_lock(&fs_info->trans_lock);
1974 	if (list_empty(&fs_info->dead_roots)) {
1975 		spin_unlock(&fs_info->trans_lock);
1976 		return 0;
1977 	}
1978 	root = list_first_entry(&fs_info->dead_roots,
1979 			struct btrfs_root, root_list);
1980 	/*
1981 	 * Make sure root is not involved in send,
1982 	 * if we fail with first root, we return
1983 	 * directly rather than continue.
1984 	 */
1985 	spin_lock(&root->root_item_lock);
1986 	if (root->send_in_progress) {
1987 		spin_unlock(&fs_info->trans_lock);
1988 		spin_unlock(&root->root_item_lock);
1989 		return 0;
1990 	}
1991 	spin_unlock(&root->root_item_lock);
1992 
1993 	list_del_init(&root->root_list);
1994 	spin_unlock(&fs_info->trans_lock);
1995 
1996 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
1997 
1998 	btrfs_kill_all_delayed_nodes(root);
1999 
2000 	if (btrfs_header_backref_rev(root->node) <
2001 			BTRFS_MIXED_BACKREF_REV)
2002 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2003 	else
2004 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2005 	/*
2006 	 * If we encounter a transaction abort during snapshot cleaning, we
2007 	 * don't want to crash here
2008 	 */
2009 	return (ret < 0) ? 0 : 1;
2010 }
2011