1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "tree-log.h" 19 #include "inode-map.h" 20 #include "volumes.h" 21 #include "dev-replace.h" 22 #include "qgroup.h" 23 #include "block-group.h" 24 25 #define BTRFS_ROOT_TRANS_TAG 0 26 27 /* 28 * Transaction states and transitions 29 * 30 * No running transaction (fs tree blocks are not modified) 31 * | 32 * | To next stage: 33 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 34 * V 35 * Transaction N [[TRANS_STATE_RUNNING]] 36 * | 37 * | New trans handles can be attached to transaction N by calling all 38 * | start_transaction() variants. 39 * | 40 * | To next stage: 41 * | Call btrfs_commit_transaction() on any trans handle attached to 42 * | transaction N 43 * V 44 * Transaction N [[TRANS_STATE_COMMIT_START]] 45 * | 46 * | Will wait for previous running transaction to completely finish if there 47 * | is one 48 * | 49 * | Then one of the following happes: 50 * | - Wait for all other trans handle holders to release. 51 * | The btrfs_commit_transaction() caller will do the commit work. 52 * | - Wait for current transaction to be committed by others. 53 * | Other btrfs_commit_transaction() caller will do the commit work. 54 * | 55 * | At this stage, only btrfs_join_transaction*() variants can attach 56 * | to this running transaction. 57 * | All other variants will wait for current one to finish and attach to 58 * | transaction N+1. 59 * | 60 * | To next stage: 61 * | Caller is chosen to commit transaction N, and all other trans handle 62 * | haven been released. 63 * V 64 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 65 * | 66 * | The heavy lifting transaction work is started. 67 * | From running delayed refs (modifying extent tree) to creating pending 68 * | snapshots, running qgroups. 69 * | In short, modify supporting trees to reflect modifications of subvolume 70 * | trees. 71 * | 72 * | At this stage, all start_transaction() calls will wait for this 73 * | transaction to finish and attach to transaction N+1. 74 * | 75 * | To next stage: 76 * | Until all supporting trees are updated. 77 * V 78 * Transaction N [[TRANS_STATE_UNBLOCKED]] 79 * | Transaction N+1 80 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 81 * | need to write them back to disk and update | 82 * | super blocks. | 83 * | | 84 * | At this stage, new transaction is allowed to | 85 * | start. | 86 * | All new start_transaction() calls will be | 87 * | attached to transid N+1. | 88 * | | 89 * | To next stage: | 90 * | Until all tree blocks are super blocks are | 91 * | written to block devices | 92 * V | 93 * Transaction N [[TRANS_STATE_COMPLETED]] V 94 * All tree blocks and super blocks are written. Transaction N+1 95 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 96 * data structures will be cleaned up. | Life goes on 97 */ 98 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 99 [TRANS_STATE_RUNNING] = 0U, 100 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 101 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 102 __TRANS_ATTACH | 103 __TRANS_JOIN | 104 __TRANS_JOIN_NOSTART), 105 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 106 __TRANS_ATTACH | 107 __TRANS_JOIN | 108 __TRANS_JOIN_NOLOCK | 109 __TRANS_JOIN_NOSTART), 110 [TRANS_STATE_COMPLETED] = (__TRANS_START | 111 __TRANS_ATTACH | 112 __TRANS_JOIN | 113 __TRANS_JOIN_NOLOCK | 114 __TRANS_JOIN_NOSTART), 115 }; 116 117 void btrfs_put_transaction(struct btrfs_transaction *transaction) 118 { 119 WARN_ON(refcount_read(&transaction->use_count) == 0); 120 if (refcount_dec_and_test(&transaction->use_count)) { 121 BUG_ON(!list_empty(&transaction->list)); 122 WARN_ON(!RB_EMPTY_ROOT( 123 &transaction->delayed_refs.href_root.rb_root)); 124 WARN_ON(!RB_EMPTY_ROOT( 125 &transaction->delayed_refs.dirty_extent_root)); 126 if (transaction->delayed_refs.pending_csums) 127 btrfs_err(transaction->fs_info, 128 "pending csums is %llu", 129 transaction->delayed_refs.pending_csums); 130 /* 131 * If any block groups are found in ->deleted_bgs then it's 132 * because the transaction was aborted and a commit did not 133 * happen (things failed before writing the new superblock 134 * and calling btrfs_finish_extent_commit()), so we can not 135 * discard the physical locations of the block groups. 136 */ 137 while (!list_empty(&transaction->deleted_bgs)) { 138 struct btrfs_block_group *cache; 139 140 cache = list_first_entry(&transaction->deleted_bgs, 141 struct btrfs_block_group, 142 bg_list); 143 list_del_init(&cache->bg_list); 144 btrfs_put_block_group_trimming(cache); 145 btrfs_put_block_group(cache); 146 } 147 WARN_ON(!list_empty(&transaction->dev_update_list)); 148 kfree(transaction); 149 } 150 } 151 152 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 153 { 154 struct btrfs_transaction *cur_trans = trans->transaction; 155 struct btrfs_fs_info *fs_info = trans->fs_info; 156 struct btrfs_root *root, *tmp; 157 158 down_write(&fs_info->commit_root_sem); 159 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 160 dirty_list) { 161 list_del_init(&root->dirty_list); 162 free_extent_buffer(root->commit_root); 163 root->commit_root = btrfs_root_node(root); 164 if (is_fstree(root->root_key.objectid)) 165 btrfs_unpin_free_ino(root); 166 extent_io_tree_release(&root->dirty_log_pages); 167 btrfs_qgroup_clean_swapped_blocks(root); 168 } 169 170 /* We can free old roots now. */ 171 spin_lock(&cur_trans->dropped_roots_lock); 172 while (!list_empty(&cur_trans->dropped_roots)) { 173 root = list_first_entry(&cur_trans->dropped_roots, 174 struct btrfs_root, root_list); 175 list_del_init(&root->root_list); 176 spin_unlock(&cur_trans->dropped_roots_lock); 177 btrfs_free_log(trans, root); 178 btrfs_drop_and_free_fs_root(fs_info, root); 179 spin_lock(&cur_trans->dropped_roots_lock); 180 } 181 spin_unlock(&cur_trans->dropped_roots_lock); 182 up_write(&fs_info->commit_root_sem); 183 } 184 185 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 186 unsigned int type) 187 { 188 if (type & TRANS_EXTWRITERS) 189 atomic_inc(&trans->num_extwriters); 190 } 191 192 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 193 unsigned int type) 194 { 195 if (type & TRANS_EXTWRITERS) 196 atomic_dec(&trans->num_extwriters); 197 } 198 199 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 200 unsigned int type) 201 { 202 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 203 } 204 205 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 206 { 207 return atomic_read(&trans->num_extwriters); 208 } 209 210 /* 211 * To be called after all the new block groups attached to the transaction 212 * handle have been created (btrfs_create_pending_block_groups()). 213 */ 214 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 215 { 216 struct btrfs_fs_info *fs_info = trans->fs_info; 217 218 if (!trans->chunk_bytes_reserved) 219 return; 220 221 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 222 223 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 224 trans->chunk_bytes_reserved, NULL); 225 trans->chunk_bytes_reserved = 0; 226 } 227 228 /* 229 * either allocate a new transaction or hop into the existing one 230 */ 231 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 232 unsigned int type) 233 { 234 struct btrfs_transaction *cur_trans; 235 236 spin_lock(&fs_info->trans_lock); 237 loop: 238 /* The file system has been taken offline. No new transactions. */ 239 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 240 spin_unlock(&fs_info->trans_lock); 241 return -EROFS; 242 } 243 244 cur_trans = fs_info->running_transaction; 245 if (cur_trans) { 246 if (TRANS_ABORTED(cur_trans)) { 247 spin_unlock(&fs_info->trans_lock); 248 return cur_trans->aborted; 249 } 250 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 251 spin_unlock(&fs_info->trans_lock); 252 return -EBUSY; 253 } 254 refcount_inc(&cur_trans->use_count); 255 atomic_inc(&cur_trans->num_writers); 256 extwriter_counter_inc(cur_trans, type); 257 spin_unlock(&fs_info->trans_lock); 258 return 0; 259 } 260 spin_unlock(&fs_info->trans_lock); 261 262 /* 263 * If we are ATTACH, we just want to catch the current transaction, 264 * and commit it. If there is no transaction, just return ENOENT. 265 */ 266 if (type == TRANS_ATTACH) 267 return -ENOENT; 268 269 /* 270 * JOIN_NOLOCK only happens during the transaction commit, so 271 * it is impossible that ->running_transaction is NULL 272 */ 273 BUG_ON(type == TRANS_JOIN_NOLOCK); 274 275 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 276 if (!cur_trans) 277 return -ENOMEM; 278 279 spin_lock(&fs_info->trans_lock); 280 if (fs_info->running_transaction) { 281 /* 282 * someone started a transaction after we unlocked. Make sure 283 * to redo the checks above 284 */ 285 kfree(cur_trans); 286 goto loop; 287 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 288 spin_unlock(&fs_info->trans_lock); 289 kfree(cur_trans); 290 return -EROFS; 291 } 292 293 cur_trans->fs_info = fs_info; 294 atomic_set(&cur_trans->num_writers, 1); 295 extwriter_counter_init(cur_trans, type); 296 init_waitqueue_head(&cur_trans->writer_wait); 297 init_waitqueue_head(&cur_trans->commit_wait); 298 cur_trans->state = TRANS_STATE_RUNNING; 299 /* 300 * One for this trans handle, one so it will live on until we 301 * commit the transaction. 302 */ 303 refcount_set(&cur_trans->use_count, 2); 304 cur_trans->flags = 0; 305 cur_trans->start_time = ktime_get_seconds(); 306 307 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 308 309 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 310 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 311 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 312 313 /* 314 * although the tree mod log is per file system and not per transaction, 315 * the log must never go across transaction boundaries. 316 */ 317 smp_mb(); 318 if (!list_empty(&fs_info->tree_mod_seq_list)) 319 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 320 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 321 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 322 atomic64_set(&fs_info->tree_mod_seq, 0); 323 324 spin_lock_init(&cur_trans->delayed_refs.lock); 325 326 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 327 INIT_LIST_HEAD(&cur_trans->dev_update_list); 328 INIT_LIST_HEAD(&cur_trans->switch_commits); 329 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 330 INIT_LIST_HEAD(&cur_trans->io_bgs); 331 INIT_LIST_HEAD(&cur_trans->dropped_roots); 332 mutex_init(&cur_trans->cache_write_mutex); 333 spin_lock_init(&cur_trans->dirty_bgs_lock); 334 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 335 spin_lock_init(&cur_trans->dropped_roots_lock); 336 list_add_tail(&cur_trans->list, &fs_info->trans_list); 337 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 338 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 339 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 340 IO_TREE_FS_PINNED_EXTENTS, NULL); 341 fs_info->generation++; 342 cur_trans->transid = fs_info->generation; 343 fs_info->running_transaction = cur_trans; 344 cur_trans->aborted = 0; 345 spin_unlock(&fs_info->trans_lock); 346 347 return 0; 348 } 349 350 /* 351 * this does all the record keeping required to make sure that a reference 352 * counted root is properly recorded in a given transaction. This is required 353 * to make sure the old root from before we joined the transaction is deleted 354 * when the transaction commits 355 */ 356 static int record_root_in_trans(struct btrfs_trans_handle *trans, 357 struct btrfs_root *root, 358 int force) 359 { 360 struct btrfs_fs_info *fs_info = root->fs_info; 361 362 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 363 root->last_trans < trans->transid) || force) { 364 WARN_ON(root == fs_info->extent_root); 365 WARN_ON(!force && root->commit_root != root->node); 366 367 /* 368 * see below for IN_TRANS_SETUP usage rules 369 * we have the reloc mutex held now, so there 370 * is only one writer in this function 371 */ 372 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 373 374 /* make sure readers find IN_TRANS_SETUP before 375 * they find our root->last_trans update 376 */ 377 smp_wmb(); 378 379 spin_lock(&fs_info->fs_roots_radix_lock); 380 if (root->last_trans == trans->transid && !force) { 381 spin_unlock(&fs_info->fs_roots_radix_lock); 382 return 0; 383 } 384 radix_tree_tag_set(&fs_info->fs_roots_radix, 385 (unsigned long)root->root_key.objectid, 386 BTRFS_ROOT_TRANS_TAG); 387 spin_unlock(&fs_info->fs_roots_radix_lock); 388 root->last_trans = trans->transid; 389 390 /* this is pretty tricky. We don't want to 391 * take the relocation lock in btrfs_record_root_in_trans 392 * unless we're really doing the first setup for this root in 393 * this transaction. 394 * 395 * Normally we'd use root->last_trans as a flag to decide 396 * if we want to take the expensive mutex. 397 * 398 * But, we have to set root->last_trans before we 399 * init the relocation root, otherwise, we trip over warnings 400 * in ctree.c. The solution used here is to flag ourselves 401 * with root IN_TRANS_SETUP. When this is 1, we're still 402 * fixing up the reloc trees and everyone must wait. 403 * 404 * When this is zero, they can trust root->last_trans and fly 405 * through btrfs_record_root_in_trans without having to take the 406 * lock. smp_wmb() makes sure that all the writes above are 407 * done before we pop in the zero below 408 */ 409 btrfs_init_reloc_root(trans, root); 410 smp_mb__before_atomic(); 411 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 412 } 413 return 0; 414 } 415 416 417 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 418 struct btrfs_root *root) 419 { 420 struct btrfs_fs_info *fs_info = root->fs_info; 421 struct btrfs_transaction *cur_trans = trans->transaction; 422 423 /* Add ourselves to the transaction dropped list */ 424 spin_lock(&cur_trans->dropped_roots_lock); 425 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 426 spin_unlock(&cur_trans->dropped_roots_lock); 427 428 /* Make sure we don't try to update the root at commit time */ 429 spin_lock(&fs_info->fs_roots_radix_lock); 430 radix_tree_tag_clear(&fs_info->fs_roots_radix, 431 (unsigned long)root->root_key.objectid, 432 BTRFS_ROOT_TRANS_TAG); 433 spin_unlock(&fs_info->fs_roots_radix_lock); 434 } 435 436 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 437 struct btrfs_root *root) 438 { 439 struct btrfs_fs_info *fs_info = root->fs_info; 440 441 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 442 return 0; 443 444 /* 445 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 446 * and barriers 447 */ 448 smp_rmb(); 449 if (root->last_trans == trans->transid && 450 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 451 return 0; 452 453 mutex_lock(&fs_info->reloc_mutex); 454 record_root_in_trans(trans, root, 0); 455 mutex_unlock(&fs_info->reloc_mutex); 456 457 return 0; 458 } 459 460 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 461 { 462 return (trans->state >= TRANS_STATE_COMMIT_START && 463 trans->state < TRANS_STATE_UNBLOCKED && 464 !TRANS_ABORTED(trans)); 465 } 466 467 /* wait for commit against the current transaction to become unblocked 468 * when this is done, it is safe to start a new transaction, but the current 469 * transaction might not be fully on disk. 470 */ 471 static void wait_current_trans(struct btrfs_fs_info *fs_info) 472 { 473 struct btrfs_transaction *cur_trans; 474 475 spin_lock(&fs_info->trans_lock); 476 cur_trans = fs_info->running_transaction; 477 if (cur_trans && is_transaction_blocked(cur_trans)) { 478 refcount_inc(&cur_trans->use_count); 479 spin_unlock(&fs_info->trans_lock); 480 481 wait_event(fs_info->transaction_wait, 482 cur_trans->state >= TRANS_STATE_UNBLOCKED || 483 TRANS_ABORTED(cur_trans)); 484 btrfs_put_transaction(cur_trans); 485 } else { 486 spin_unlock(&fs_info->trans_lock); 487 } 488 } 489 490 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 491 { 492 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 493 return 0; 494 495 if (type == TRANS_START) 496 return 1; 497 498 return 0; 499 } 500 501 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 502 { 503 struct btrfs_fs_info *fs_info = root->fs_info; 504 505 if (!fs_info->reloc_ctl || 506 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 507 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 508 root->reloc_root) 509 return false; 510 511 return true; 512 } 513 514 static struct btrfs_trans_handle * 515 start_transaction(struct btrfs_root *root, unsigned int num_items, 516 unsigned int type, enum btrfs_reserve_flush_enum flush, 517 bool enforce_qgroups) 518 { 519 struct btrfs_fs_info *fs_info = root->fs_info; 520 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 521 struct btrfs_trans_handle *h; 522 struct btrfs_transaction *cur_trans; 523 u64 num_bytes = 0; 524 u64 qgroup_reserved = 0; 525 bool reloc_reserved = false; 526 int ret; 527 528 /* Send isn't supposed to start transactions. */ 529 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 530 531 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 532 return ERR_PTR(-EROFS); 533 534 if (current->journal_info) { 535 WARN_ON(type & TRANS_EXTWRITERS); 536 h = current->journal_info; 537 refcount_inc(&h->use_count); 538 WARN_ON(refcount_read(&h->use_count) > 2); 539 h->orig_rsv = h->block_rsv; 540 h->block_rsv = NULL; 541 goto got_it; 542 } 543 544 /* 545 * Do the reservation before we join the transaction so we can do all 546 * the appropriate flushing if need be. 547 */ 548 if (num_items && root != fs_info->chunk_root) { 549 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 550 u64 delayed_refs_bytes = 0; 551 552 qgroup_reserved = num_items * fs_info->nodesize; 553 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 554 enforce_qgroups); 555 if (ret) 556 return ERR_PTR(ret); 557 558 /* 559 * We want to reserve all the bytes we may need all at once, so 560 * we only do 1 enospc flushing cycle per transaction start. We 561 * accomplish this by simply assuming we'll do 2 x num_items 562 * worth of delayed refs updates in this trans handle, and 563 * refill that amount for whatever is missing in the reserve. 564 */ 565 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 566 if (delayed_refs_rsv->full == 0) { 567 delayed_refs_bytes = num_bytes; 568 num_bytes <<= 1; 569 } 570 571 /* 572 * Do the reservation for the relocation root creation 573 */ 574 if (need_reserve_reloc_root(root)) { 575 num_bytes += fs_info->nodesize; 576 reloc_reserved = true; 577 } 578 579 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 580 if (ret) 581 goto reserve_fail; 582 if (delayed_refs_bytes) { 583 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 584 delayed_refs_bytes); 585 num_bytes -= delayed_refs_bytes; 586 } 587 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 588 !delayed_refs_rsv->full) { 589 /* 590 * Some people call with btrfs_start_transaction(root, 0) 591 * because they can be throttled, but have some other mechanism 592 * for reserving space. We still want these guys to refill the 593 * delayed block_rsv so just add 1 items worth of reservation 594 * here. 595 */ 596 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 597 if (ret) 598 goto reserve_fail; 599 } 600 again: 601 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 602 if (!h) { 603 ret = -ENOMEM; 604 goto alloc_fail; 605 } 606 607 /* 608 * If we are JOIN_NOLOCK we're already committing a transaction and 609 * waiting on this guy, so we don't need to do the sb_start_intwrite 610 * because we're already holding a ref. We need this because we could 611 * have raced in and did an fsync() on a file which can kick a commit 612 * and then we deadlock with somebody doing a freeze. 613 * 614 * If we are ATTACH, it means we just want to catch the current 615 * transaction and commit it, so we needn't do sb_start_intwrite(). 616 */ 617 if (type & __TRANS_FREEZABLE) 618 sb_start_intwrite(fs_info->sb); 619 620 if (may_wait_transaction(fs_info, type)) 621 wait_current_trans(fs_info); 622 623 do { 624 ret = join_transaction(fs_info, type); 625 if (ret == -EBUSY) { 626 wait_current_trans(fs_info); 627 if (unlikely(type == TRANS_ATTACH || 628 type == TRANS_JOIN_NOSTART)) 629 ret = -ENOENT; 630 } 631 } while (ret == -EBUSY); 632 633 if (ret < 0) 634 goto join_fail; 635 636 cur_trans = fs_info->running_transaction; 637 638 h->transid = cur_trans->transid; 639 h->transaction = cur_trans; 640 h->root = root; 641 refcount_set(&h->use_count, 1); 642 h->fs_info = root->fs_info; 643 644 h->type = type; 645 h->can_flush_pending_bgs = true; 646 INIT_LIST_HEAD(&h->new_bgs); 647 648 smp_mb(); 649 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 650 may_wait_transaction(fs_info, type)) { 651 current->journal_info = h; 652 btrfs_commit_transaction(h); 653 goto again; 654 } 655 656 if (num_bytes) { 657 trace_btrfs_space_reservation(fs_info, "transaction", 658 h->transid, num_bytes, 1); 659 h->block_rsv = &fs_info->trans_block_rsv; 660 h->bytes_reserved = num_bytes; 661 h->reloc_reserved = reloc_reserved; 662 } 663 664 got_it: 665 if (!current->journal_info) 666 current->journal_info = h; 667 668 /* 669 * btrfs_record_root_in_trans() needs to alloc new extents, and may 670 * call btrfs_join_transaction() while we're also starting a 671 * transaction. 672 * 673 * Thus it need to be called after current->journal_info initialized, 674 * or we can deadlock. 675 */ 676 btrfs_record_root_in_trans(h, root); 677 678 return h; 679 680 join_fail: 681 if (type & __TRANS_FREEZABLE) 682 sb_end_intwrite(fs_info->sb); 683 kmem_cache_free(btrfs_trans_handle_cachep, h); 684 alloc_fail: 685 if (num_bytes) 686 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 687 num_bytes, NULL); 688 reserve_fail: 689 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 690 return ERR_PTR(ret); 691 } 692 693 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 694 unsigned int num_items) 695 { 696 return start_transaction(root, num_items, TRANS_START, 697 BTRFS_RESERVE_FLUSH_ALL, true); 698 } 699 700 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 701 struct btrfs_root *root, 702 unsigned int num_items, 703 int min_factor) 704 { 705 struct btrfs_fs_info *fs_info = root->fs_info; 706 struct btrfs_trans_handle *trans; 707 u64 num_bytes; 708 int ret; 709 710 /* 711 * We have two callers: unlink and block group removal. The 712 * former should succeed even if we will temporarily exceed 713 * quota and the latter operates on the extent root so 714 * qgroup enforcement is ignored anyway. 715 */ 716 trans = start_transaction(root, num_items, TRANS_START, 717 BTRFS_RESERVE_FLUSH_ALL, false); 718 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 719 return trans; 720 721 trans = btrfs_start_transaction(root, 0); 722 if (IS_ERR(trans)) 723 return trans; 724 725 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 726 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv, 727 num_bytes, min_factor); 728 if (ret) { 729 btrfs_end_transaction(trans); 730 return ERR_PTR(ret); 731 } 732 733 trans->block_rsv = &fs_info->trans_block_rsv; 734 trans->bytes_reserved = num_bytes; 735 trace_btrfs_space_reservation(fs_info, "transaction", 736 trans->transid, num_bytes, 1); 737 738 return trans; 739 } 740 741 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 742 { 743 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 744 true); 745 } 746 747 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 748 { 749 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 750 BTRFS_RESERVE_NO_FLUSH, true); 751 } 752 753 /* 754 * Similar to regular join but it never starts a transaction when none is 755 * running or after waiting for the current one to finish. 756 */ 757 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 758 { 759 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 760 BTRFS_RESERVE_NO_FLUSH, true); 761 } 762 763 /* 764 * btrfs_attach_transaction() - catch the running transaction 765 * 766 * It is used when we want to commit the current the transaction, but 767 * don't want to start a new one. 768 * 769 * Note: If this function return -ENOENT, it just means there is no 770 * running transaction. But it is possible that the inactive transaction 771 * is still in the memory, not fully on disk. If you hope there is no 772 * inactive transaction in the fs when -ENOENT is returned, you should 773 * invoke 774 * btrfs_attach_transaction_barrier() 775 */ 776 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 777 { 778 return start_transaction(root, 0, TRANS_ATTACH, 779 BTRFS_RESERVE_NO_FLUSH, true); 780 } 781 782 /* 783 * btrfs_attach_transaction_barrier() - catch the running transaction 784 * 785 * It is similar to the above function, the difference is this one 786 * will wait for all the inactive transactions until they fully 787 * complete. 788 */ 789 struct btrfs_trans_handle * 790 btrfs_attach_transaction_barrier(struct btrfs_root *root) 791 { 792 struct btrfs_trans_handle *trans; 793 794 trans = start_transaction(root, 0, TRANS_ATTACH, 795 BTRFS_RESERVE_NO_FLUSH, true); 796 if (trans == ERR_PTR(-ENOENT)) 797 btrfs_wait_for_commit(root->fs_info, 0); 798 799 return trans; 800 } 801 802 /* wait for a transaction commit to be fully complete */ 803 static noinline void wait_for_commit(struct btrfs_transaction *commit) 804 { 805 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 806 } 807 808 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 809 { 810 struct btrfs_transaction *cur_trans = NULL, *t; 811 int ret = 0; 812 813 if (transid) { 814 if (transid <= fs_info->last_trans_committed) 815 goto out; 816 817 /* find specified transaction */ 818 spin_lock(&fs_info->trans_lock); 819 list_for_each_entry(t, &fs_info->trans_list, list) { 820 if (t->transid == transid) { 821 cur_trans = t; 822 refcount_inc(&cur_trans->use_count); 823 ret = 0; 824 break; 825 } 826 if (t->transid > transid) { 827 ret = 0; 828 break; 829 } 830 } 831 spin_unlock(&fs_info->trans_lock); 832 833 /* 834 * The specified transaction doesn't exist, or we 835 * raced with btrfs_commit_transaction 836 */ 837 if (!cur_trans) { 838 if (transid > fs_info->last_trans_committed) 839 ret = -EINVAL; 840 goto out; 841 } 842 } else { 843 /* find newest transaction that is committing | committed */ 844 spin_lock(&fs_info->trans_lock); 845 list_for_each_entry_reverse(t, &fs_info->trans_list, 846 list) { 847 if (t->state >= TRANS_STATE_COMMIT_START) { 848 if (t->state == TRANS_STATE_COMPLETED) 849 break; 850 cur_trans = t; 851 refcount_inc(&cur_trans->use_count); 852 break; 853 } 854 } 855 spin_unlock(&fs_info->trans_lock); 856 if (!cur_trans) 857 goto out; /* nothing committing|committed */ 858 } 859 860 wait_for_commit(cur_trans); 861 btrfs_put_transaction(cur_trans); 862 out: 863 return ret; 864 } 865 866 void btrfs_throttle(struct btrfs_fs_info *fs_info) 867 { 868 wait_current_trans(fs_info); 869 } 870 871 static int should_end_transaction(struct btrfs_trans_handle *trans) 872 { 873 struct btrfs_fs_info *fs_info = trans->fs_info; 874 875 if (btrfs_check_space_for_delayed_refs(fs_info)) 876 return 1; 877 878 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 879 } 880 881 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 882 { 883 struct btrfs_transaction *cur_trans = trans->transaction; 884 885 smp_mb(); 886 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 887 cur_trans->delayed_refs.flushing) 888 return 1; 889 890 return should_end_transaction(trans); 891 } 892 893 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 894 895 { 896 struct btrfs_fs_info *fs_info = trans->fs_info; 897 898 if (!trans->block_rsv) { 899 ASSERT(!trans->bytes_reserved); 900 return; 901 } 902 903 if (!trans->bytes_reserved) 904 return; 905 906 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 907 trace_btrfs_space_reservation(fs_info, "transaction", 908 trans->transid, trans->bytes_reserved, 0); 909 btrfs_block_rsv_release(fs_info, trans->block_rsv, 910 trans->bytes_reserved, NULL); 911 trans->bytes_reserved = 0; 912 } 913 914 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 915 int throttle) 916 { 917 struct btrfs_fs_info *info = trans->fs_info; 918 struct btrfs_transaction *cur_trans = trans->transaction; 919 int err = 0; 920 921 if (refcount_read(&trans->use_count) > 1) { 922 refcount_dec(&trans->use_count); 923 trans->block_rsv = trans->orig_rsv; 924 return 0; 925 } 926 927 btrfs_trans_release_metadata(trans); 928 trans->block_rsv = NULL; 929 930 btrfs_create_pending_block_groups(trans); 931 932 btrfs_trans_release_chunk_metadata(trans); 933 934 if (trans->type & __TRANS_FREEZABLE) 935 sb_end_intwrite(info->sb); 936 937 WARN_ON(cur_trans != info->running_transaction); 938 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 939 atomic_dec(&cur_trans->num_writers); 940 extwriter_counter_dec(cur_trans, trans->type); 941 942 cond_wake_up(&cur_trans->writer_wait); 943 btrfs_put_transaction(cur_trans); 944 945 if (current->journal_info == trans) 946 current->journal_info = NULL; 947 948 if (throttle) 949 btrfs_run_delayed_iputs(info); 950 951 if (TRANS_ABORTED(trans) || 952 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 953 wake_up_process(info->transaction_kthread); 954 err = -EIO; 955 } 956 957 kmem_cache_free(btrfs_trans_handle_cachep, trans); 958 return err; 959 } 960 961 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 962 { 963 return __btrfs_end_transaction(trans, 0); 964 } 965 966 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 967 { 968 return __btrfs_end_transaction(trans, 1); 969 } 970 971 /* 972 * when btree blocks are allocated, they have some corresponding bits set for 973 * them in one of two extent_io trees. This is used to make sure all of 974 * those extents are sent to disk but does not wait on them 975 */ 976 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 977 struct extent_io_tree *dirty_pages, int mark) 978 { 979 int err = 0; 980 int werr = 0; 981 struct address_space *mapping = fs_info->btree_inode->i_mapping; 982 struct extent_state *cached_state = NULL; 983 u64 start = 0; 984 u64 end; 985 986 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 987 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 988 mark, &cached_state)) { 989 bool wait_writeback = false; 990 991 err = convert_extent_bit(dirty_pages, start, end, 992 EXTENT_NEED_WAIT, 993 mark, &cached_state); 994 /* 995 * convert_extent_bit can return -ENOMEM, which is most of the 996 * time a temporary error. So when it happens, ignore the error 997 * and wait for writeback of this range to finish - because we 998 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 999 * to __btrfs_wait_marked_extents() would not know that 1000 * writeback for this range started and therefore wouldn't 1001 * wait for it to finish - we don't want to commit a 1002 * superblock that points to btree nodes/leafs for which 1003 * writeback hasn't finished yet (and without errors). 1004 * We cleanup any entries left in the io tree when committing 1005 * the transaction (through extent_io_tree_release()). 1006 */ 1007 if (err == -ENOMEM) { 1008 err = 0; 1009 wait_writeback = true; 1010 } 1011 if (!err) 1012 err = filemap_fdatawrite_range(mapping, start, end); 1013 if (err) 1014 werr = err; 1015 else if (wait_writeback) 1016 werr = filemap_fdatawait_range(mapping, start, end); 1017 free_extent_state(cached_state); 1018 cached_state = NULL; 1019 cond_resched(); 1020 start = end + 1; 1021 } 1022 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1023 return werr; 1024 } 1025 1026 /* 1027 * when btree blocks are allocated, they have some corresponding bits set for 1028 * them in one of two extent_io trees. This is used to make sure all of 1029 * those extents are on disk for transaction or log commit. We wait 1030 * on all the pages and clear them from the dirty pages state tree 1031 */ 1032 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1033 struct extent_io_tree *dirty_pages) 1034 { 1035 int err = 0; 1036 int werr = 0; 1037 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1038 struct extent_state *cached_state = NULL; 1039 u64 start = 0; 1040 u64 end; 1041 1042 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1043 EXTENT_NEED_WAIT, &cached_state)) { 1044 /* 1045 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1046 * When committing the transaction, we'll remove any entries 1047 * left in the io tree. For a log commit, we don't remove them 1048 * after committing the log because the tree can be accessed 1049 * concurrently - we do it only at transaction commit time when 1050 * it's safe to do it (through extent_io_tree_release()). 1051 */ 1052 err = clear_extent_bit(dirty_pages, start, end, 1053 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1054 if (err == -ENOMEM) 1055 err = 0; 1056 if (!err) 1057 err = filemap_fdatawait_range(mapping, start, end); 1058 if (err) 1059 werr = err; 1060 free_extent_state(cached_state); 1061 cached_state = NULL; 1062 cond_resched(); 1063 start = end + 1; 1064 } 1065 if (err) 1066 werr = err; 1067 return werr; 1068 } 1069 1070 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1071 struct extent_io_tree *dirty_pages) 1072 { 1073 bool errors = false; 1074 int err; 1075 1076 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1077 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1078 errors = true; 1079 1080 if (errors && !err) 1081 err = -EIO; 1082 return err; 1083 } 1084 1085 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1086 { 1087 struct btrfs_fs_info *fs_info = log_root->fs_info; 1088 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1089 bool errors = false; 1090 int err; 1091 1092 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1093 1094 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1095 if ((mark & EXTENT_DIRTY) && 1096 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1097 errors = true; 1098 1099 if ((mark & EXTENT_NEW) && 1100 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1101 errors = true; 1102 1103 if (errors && !err) 1104 err = -EIO; 1105 return err; 1106 } 1107 1108 /* 1109 * When btree blocks are allocated the corresponding extents are marked dirty. 1110 * This function ensures such extents are persisted on disk for transaction or 1111 * log commit. 1112 * 1113 * @trans: transaction whose dirty pages we'd like to write 1114 */ 1115 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1116 { 1117 int ret; 1118 int ret2; 1119 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1120 struct btrfs_fs_info *fs_info = trans->fs_info; 1121 struct blk_plug plug; 1122 1123 blk_start_plug(&plug); 1124 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1125 blk_finish_plug(&plug); 1126 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1127 1128 extent_io_tree_release(&trans->transaction->dirty_pages); 1129 1130 if (ret) 1131 return ret; 1132 else if (ret2) 1133 return ret2; 1134 else 1135 return 0; 1136 } 1137 1138 /* 1139 * this is used to update the root pointer in the tree of tree roots. 1140 * 1141 * But, in the case of the extent allocation tree, updating the root 1142 * pointer may allocate blocks which may change the root of the extent 1143 * allocation tree. 1144 * 1145 * So, this loops and repeats and makes sure the cowonly root didn't 1146 * change while the root pointer was being updated in the metadata. 1147 */ 1148 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1149 struct btrfs_root *root) 1150 { 1151 int ret; 1152 u64 old_root_bytenr; 1153 u64 old_root_used; 1154 struct btrfs_fs_info *fs_info = root->fs_info; 1155 struct btrfs_root *tree_root = fs_info->tree_root; 1156 1157 old_root_used = btrfs_root_used(&root->root_item); 1158 1159 while (1) { 1160 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1161 if (old_root_bytenr == root->node->start && 1162 old_root_used == btrfs_root_used(&root->root_item)) 1163 break; 1164 1165 btrfs_set_root_node(&root->root_item, root->node); 1166 ret = btrfs_update_root(trans, tree_root, 1167 &root->root_key, 1168 &root->root_item); 1169 if (ret) 1170 return ret; 1171 1172 old_root_used = btrfs_root_used(&root->root_item); 1173 } 1174 1175 return 0; 1176 } 1177 1178 /* 1179 * update all the cowonly tree roots on disk 1180 * 1181 * The error handling in this function may not be obvious. Any of the 1182 * failures will cause the file system to go offline. We still need 1183 * to clean up the delayed refs. 1184 */ 1185 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1186 { 1187 struct btrfs_fs_info *fs_info = trans->fs_info; 1188 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1189 struct list_head *io_bgs = &trans->transaction->io_bgs; 1190 struct list_head *next; 1191 struct extent_buffer *eb; 1192 int ret; 1193 1194 eb = btrfs_lock_root_node(fs_info->tree_root); 1195 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1196 0, &eb); 1197 btrfs_tree_unlock(eb); 1198 free_extent_buffer(eb); 1199 1200 if (ret) 1201 return ret; 1202 1203 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1204 if (ret) 1205 return ret; 1206 1207 ret = btrfs_run_dev_stats(trans); 1208 if (ret) 1209 return ret; 1210 ret = btrfs_run_dev_replace(trans); 1211 if (ret) 1212 return ret; 1213 ret = btrfs_run_qgroups(trans); 1214 if (ret) 1215 return ret; 1216 1217 ret = btrfs_setup_space_cache(trans); 1218 if (ret) 1219 return ret; 1220 1221 /* run_qgroups might have added some more refs */ 1222 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1223 if (ret) 1224 return ret; 1225 again: 1226 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1227 struct btrfs_root *root; 1228 next = fs_info->dirty_cowonly_roots.next; 1229 list_del_init(next); 1230 root = list_entry(next, struct btrfs_root, dirty_list); 1231 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1232 1233 if (root != fs_info->extent_root) 1234 list_add_tail(&root->dirty_list, 1235 &trans->transaction->switch_commits); 1236 ret = update_cowonly_root(trans, root); 1237 if (ret) 1238 return ret; 1239 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1240 if (ret) 1241 return ret; 1242 } 1243 1244 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1245 ret = btrfs_write_dirty_block_groups(trans); 1246 if (ret) 1247 return ret; 1248 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1249 if (ret) 1250 return ret; 1251 } 1252 1253 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1254 goto again; 1255 1256 list_add_tail(&fs_info->extent_root->dirty_list, 1257 &trans->transaction->switch_commits); 1258 1259 /* Update dev-replace pointer once everything is committed */ 1260 fs_info->dev_replace.committed_cursor_left = 1261 fs_info->dev_replace.cursor_left_last_write_of_item; 1262 1263 return 0; 1264 } 1265 1266 /* 1267 * dead roots are old snapshots that need to be deleted. This allocates 1268 * a dirty root struct and adds it into the list of dead roots that need to 1269 * be deleted 1270 */ 1271 void btrfs_add_dead_root(struct btrfs_root *root) 1272 { 1273 struct btrfs_fs_info *fs_info = root->fs_info; 1274 1275 spin_lock(&fs_info->trans_lock); 1276 if (list_empty(&root->root_list)) { 1277 btrfs_grab_root(root); 1278 list_add_tail(&root->root_list, &fs_info->dead_roots); 1279 } 1280 spin_unlock(&fs_info->trans_lock); 1281 } 1282 1283 /* 1284 * update all the cowonly tree roots on disk 1285 */ 1286 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1287 { 1288 struct btrfs_fs_info *fs_info = trans->fs_info; 1289 struct btrfs_root *gang[8]; 1290 int i; 1291 int ret; 1292 int err = 0; 1293 1294 spin_lock(&fs_info->fs_roots_radix_lock); 1295 while (1) { 1296 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1297 (void **)gang, 0, 1298 ARRAY_SIZE(gang), 1299 BTRFS_ROOT_TRANS_TAG); 1300 if (ret == 0) 1301 break; 1302 for (i = 0; i < ret; i++) { 1303 struct btrfs_root *root = gang[i]; 1304 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1305 (unsigned long)root->root_key.objectid, 1306 BTRFS_ROOT_TRANS_TAG); 1307 spin_unlock(&fs_info->fs_roots_radix_lock); 1308 1309 btrfs_free_log(trans, root); 1310 btrfs_update_reloc_root(trans, root); 1311 1312 btrfs_save_ino_cache(root, trans); 1313 1314 /* see comments in should_cow_block() */ 1315 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1316 smp_mb__after_atomic(); 1317 1318 if (root->commit_root != root->node) { 1319 list_add_tail(&root->dirty_list, 1320 &trans->transaction->switch_commits); 1321 btrfs_set_root_node(&root->root_item, 1322 root->node); 1323 } 1324 1325 err = btrfs_update_root(trans, fs_info->tree_root, 1326 &root->root_key, 1327 &root->root_item); 1328 spin_lock(&fs_info->fs_roots_radix_lock); 1329 if (err) 1330 break; 1331 btrfs_qgroup_free_meta_all_pertrans(root); 1332 } 1333 } 1334 spin_unlock(&fs_info->fs_roots_radix_lock); 1335 return err; 1336 } 1337 1338 /* 1339 * defrag a given btree. 1340 * Every leaf in the btree is read and defragged. 1341 */ 1342 int btrfs_defrag_root(struct btrfs_root *root) 1343 { 1344 struct btrfs_fs_info *info = root->fs_info; 1345 struct btrfs_trans_handle *trans; 1346 int ret; 1347 1348 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1349 return 0; 1350 1351 while (1) { 1352 trans = btrfs_start_transaction(root, 0); 1353 if (IS_ERR(trans)) 1354 return PTR_ERR(trans); 1355 1356 ret = btrfs_defrag_leaves(trans, root); 1357 1358 btrfs_end_transaction(trans); 1359 btrfs_btree_balance_dirty(info); 1360 cond_resched(); 1361 1362 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1363 break; 1364 1365 if (btrfs_defrag_cancelled(info)) { 1366 btrfs_debug(info, "defrag_root cancelled"); 1367 ret = -EAGAIN; 1368 break; 1369 } 1370 } 1371 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1372 return ret; 1373 } 1374 1375 /* 1376 * Do all special snapshot related qgroup dirty hack. 1377 * 1378 * Will do all needed qgroup inherit and dirty hack like switch commit 1379 * roots inside one transaction and write all btree into disk, to make 1380 * qgroup works. 1381 */ 1382 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1383 struct btrfs_root *src, 1384 struct btrfs_root *parent, 1385 struct btrfs_qgroup_inherit *inherit, 1386 u64 dst_objectid) 1387 { 1388 struct btrfs_fs_info *fs_info = src->fs_info; 1389 int ret; 1390 1391 /* 1392 * Save some performance in the case that qgroups are not 1393 * enabled. If this check races with the ioctl, rescan will 1394 * kick in anyway. 1395 */ 1396 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1397 return 0; 1398 1399 /* 1400 * Ensure dirty @src will be committed. Or, after coming 1401 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1402 * recorded root will never be updated again, causing an outdated root 1403 * item. 1404 */ 1405 record_root_in_trans(trans, src, 1); 1406 1407 /* 1408 * We are going to commit transaction, see btrfs_commit_transaction() 1409 * comment for reason locking tree_log_mutex 1410 */ 1411 mutex_lock(&fs_info->tree_log_mutex); 1412 1413 ret = commit_fs_roots(trans); 1414 if (ret) 1415 goto out; 1416 ret = btrfs_qgroup_account_extents(trans); 1417 if (ret < 0) 1418 goto out; 1419 1420 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1421 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1422 inherit); 1423 if (ret < 0) 1424 goto out; 1425 1426 /* 1427 * Now we do a simplified commit transaction, which will: 1428 * 1) commit all subvolume and extent tree 1429 * To ensure all subvolume and extent tree have a valid 1430 * commit_root to accounting later insert_dir_item() 1431 * 2) write all btree blocks onto disk 1432 * This is to make sure later btree modification will be cowed 1433 * Or commit_root can be populated and cause wrong qgroup numbers 1434 * In this simplified commit, we don't really care about other trees 1435 * like chunk and root tree, as they won't affect qgroup. 1436 * And we don't write super to avoid half committed status. 1437 */ 1438 ret = commit_cowonly_roots(trans); 1439 if (ret) 1440 goto out; 1441 switch_commit_roots(trans); 1442 ret = btrfs_write_and_wait_transaction(trans); 1443 if (ret) 1444 btrfs_handle_fs_error(fs_info, ret, 1445 "Error while writing out transaction for qgroup"); 1446 1447 out: 1448 mutex_unlock(&fs_info->tree_log_mutex); 1449 1450 /* 1451 * Force parent root to be updated, as we recorded it before so its 1452 * last_trans == cur_transid. 1453 * Or it won't be committed again onto disk after later 1454 * insert_dir_item() 1455 */ 1456 if (!ret) 1457 record_root_in_trans(trans, parent, 1); 1458 return ret; 1459 } 1460 1461 /* 1462 * new snapshots need to be created at a very specific time in the 1463 * transaction commit. This does the actual creation. 1464 * 1465 * Note: 1466 * If the error which may affect the commitment of the current transaction 1467 * happens, we should return the error number. If the error which just affect 1468 * the creation of the pending snapshots, just return 0. 1469 */ 1470 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1471 struct btrfs_pending_snapshot *pending) 1472 { 1473 1474 struct btrfs_fs_info *fs_info = trans->fs_info; 1475 struct btrfs_key key; 1476 struct btrfs_root_item *new_root_item; 1477 struct btrfs_root *tree_root = fs_info->tree_root; 1478 struct btrfs_root *root = pending->root; 1479 struct btrfs_root *parent_root; 1480 struct btrfs_block_rsv *rsv; 1481 struct inode *parent_inode; 1482 struct btrfs_path *path; 1483 struct btrfs_dir_item *dir_item; 1484 struct dentry *dentry; 1485 struct extent_buffer *tmp; 1486 struct extent_buffer *old; 1487 struct timespec64 cur_time; 1488 int ret = 0; 1489 u64 to_reserve = 0; 1490 u64 index = 0; 1491 u64 objectid; 1492 u64 root_flags; 1493 1494 ASSERT(pending->path); 1495 path = pending->path; 1496 1497 ASSERT(pending->root_item); 1498 new_root_item = pending->root_item; 1499 1500 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1501 if (pending->error) 1502 goto no_free_objectid; 1503 1504 /* 1505 * Make qgroup to skip current new snapshot's qgroupid, as it is 1506 * accounted by later btrfs_qgroup_inherit(). 1507 */ 1508 btrfs_set_skip_qgroup(trans, objectid); 1509 1510 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1511 1512 if (to_reserve > 0) { 1513 pending->error = btrfs_block_rsv_add(root, 1514 &pending->block_rsv, 1515 to_reserve, 1516 BTRFS_RESERVE_NO_FLUSH); 1517 if (pending->error) 1518 goto clear_skip_qgroup; 1519 } 1520 1521 key.objectid = objectid; 1522 key.offset = (u64)-1; 1523 key.type = BTRFS_ROOT_ITEM_KEY; 1524 1525 rsv = trans->block_rsv; 1526 trans->block_rsv = &pending->block_rsv; 1527 trans->bytes_reserved = trans->block_rsv->reserved; 1528 trace_btrfs_space_reservation(fs_info, "transaction", 1529 trans->transid, 1530 trans->bytes_reserved, 1); 1531 dentry = pending->dentry; 1532 parent_inode = pending->dir; 1533 parent_root = BTRFS_I(parent_inode)->root; 1534 record_root_in_trans(trans, parent_root, 0); 1535 1536 cur_time = current_time(parent_inode); 1537 1538 /* 1539 * insert the directory item 1540 */ 1541 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1542 BUG_ON(ret); /* -ENOMEM */ 1543 1544 /* check if there is a file/dir which has the same name. */ 1545 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1546 btrfs_ino(BTRFS_I(parent_inode)), 1547 dentry->d_name.name, 1548 dentry->d_name.len, 0); 1549 if (dir_item != NULL && !IS_ERR(dir_item)) { 1550 pending->error = -EEXIST; 1551 goto dir_item_existed; 1552 } else if (IS_ERR(dir_item)) { 1553 ret = PTR_ERR(dir_item); 1554 btrfs_abort_transaction(trans, ret); 1555 goto fail; 1556 } 1557 btrfs_release_path(path); 1558 1559 /* 1560 * pull in the delayed directory update 1561 * and the delayed inode item 1562 * otherwise we corrupt the FS during 1563 * snapshot 1564 */ 1565 ret = btrfs_run_delayed_items(trans); 1566 if (ret) { /* Transaction aborted */ 1567 btrfs_abort_transaction(trans, ret); 1568 goto fail; 1569 } 1570 1571 record_root_in_trans(trans, root, 0); 1572 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1573 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1574 btrfs_check_and_init_root_item(new_root_item); 1575 1576 root_flags = btrfs_root_flags(new_root_item); 1577 if (pending->readonly) 1578 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1579 else 1580 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1581 btrfs_set_root_flags(new_root_item, root_flags); 1582 1583 btrfs_set_root_generation_v2(new_root_item, 1584 trans->transid); 1585 generate_random_guid(new_root_item->uuid); 1586 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1587 BTRFS_UUID_SIZE); 1588 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1589 memset(new_root_item->received_uuid, 0, 1590 sizeof(new_root_item->received_uuid)); 1591 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1592 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1593 btrfs_set_root_stransid(new_root_item, 0); 1594 btrfs_set_root_rtransid(new_root_item, 0); 1595 } 1596 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1597 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1598 btrfs_set_root_otransid(new_root_item, trans->transid); 1599 1600 old = btrfs_lock_root_node(root); 1601 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1602 if (ret) { 1603 btrfs_tree_unlock(old); 1604 free_extent_buffer(old); 1605 btrfs_abort_transaction(trans, ret); 1606 goto fail; 1607 } 1608 1609 btrfs_set_lock_blocking_write(old); 1610 1611 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1612 /* clean up in any case */ 1613 btrfs_tree_unlock(old); 1614 free_extent_buffer(old); 1615 if (ret) { 1616 btrfs_abort_transaction(trans, ret); 1617 goto fail; 1618 } 1619 /* see comments in should_cow_block() */ 1620 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1621 smp_wmb(); 1622 1623 btrfs_set_root_node(new_root_item, tmp); 1624 /* record when the snapshot was created in key.offset */ 1625 key.offset = trans->transid; 1626 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1627 btrfs_tree_unlock(tmp); 1628 free_extent_buffer(tmp); 1629 if (ret) { 1630 btrfs_abort_transaction(trans, ret); 1631 goto fail; 1632 } 1633 1634 /* 1635 * insert root back/forward references 1636 */ 1637 ret = btrfs_add_root_ref(trans, objectid, 1638 parent_root->root_key.objectid, 1639 btrfs_ino(BTRFS_I(parent_inode)), index, 1640 dentry->d_name.name, dentry->d_name.len); 1641 if (ret) { 1642 btrfs_abort_transaction(trans, ret); 1643 goto fail; 1644 } 1645 1646 key.offset = (u64)-1; 1647 pending->snap = btrfs_get_fs_root(fs_info, &key, true); 1648 if (IS_ERR(pending->snap)) { 1649 ret = PTR_ERR(pending->snap); 1650 btrfs_abort_transaction(trans, ret); 1651 goto fail; 1652 } 1653 1654 ret = btrfs_reloc_post_snapshot(trans, pending); 1655 if (ret) { 1656 btrfs_abort_transaction(trans, ret); 1657 goto fail; 1658 } 1659 1660 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1661 if (ret) { 1662 btrfs_abort_transaction(trans, ret); 1663 goto fail; 1664 } 1665 1666 /* 1667 * Do special qgroup accounting for snapshot, as we do some qgroup 1668 * snapshot hack to do fast snapshot. 1669 * To co-operate with that hack, we do hack again. 1670 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1671 */ 1672 ret = qgroup_account_snapshot(trans, root, parent_root, 1673 pending->inherit, objectid); 1674 if (ret < 0) 1675 goto fail; 1676 1677 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1678 dentry->d_name.len, BTRFS_I(parent_inode), 1679 &key, BTRFS_FT_DIR, index); 1680 /* We have check then name at the beginning, so it is impossible. */ 1681 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1682 if (ret) { 1683 btrfs_abort_transaction(trans, ret); 1684 goto fail; 1685 } 1686 1687 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1688 dentry->d_name.len * 2); 1689 parent_inode->i_mtime = parent_inode->i_ctime = 1690 current_time(parent_inode); 1691 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1692 if (ret) { 1693 btrfs_abort_transaction(trans, ret); 1694 goto fail; 1695 } 1696 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1697 BTRFS_UUID_KEY_SUBVOL, 1698 objectid); 1699 if (ret) { 1700 btrfs_abort_transaction(trans, ret); 1701 goto fail; 1702 } 1703 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1704 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1705 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1706 objectid); 1707 if (ret && ret != -EEXIST) { 1708 btrfs_abort_transaction(trans, ret); 1709 goto fail; 1710 } 1711 } 1712 1713 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1714 if (ret) { 1715 btrfs_abort_transaction(trans, ret); 1716 goto fail; 1717 } 1718 1719 fail: 1720 pending->error = ret; 1721 dir_item_existed: 1722 trans->block_rsv = rsv; 1723 trans->bytes_reserved = 0; 1724 clear_skip_qgroup: 1725 btrfs_clear_skip_qgroup(trans); 1726 no_free_objectid: 1727 kfree(new_root_item); 1728 pending->root_item = NULL; 1729 btrfs_free_path(path); 1730 pending->path = NULL; 1731 1732 return ret; 1733 } 1734 1735 /* 1736 * create all the snapshots we've scheduled for creation 1737 */ 1738 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1739 { 1740 struct btrfs_pending_snapshot *pending, *next; 1741 struct list_head *head = &trans->transaction->pending_snapshots; 1742 int ret = 0; 1743 1744 list_for_each_entry_safe(pending, next, head, list) { 1745 list_del(&pending->list); 1746 ret = create_pending_snapshot(trans, pending); 1747 if (ret) 1748 break; 1749 } 1750 return ret; 1751 } 1752 1753 static void update_super_roots(struct btrfs_fs_info *fs_info) 1754 { 1755 struct btrfs_root_item *root_item; 1756 struct btrfs_super_block *super; 1757 1758 super = fs_info->super_copy; 1759 1760 root_item = &fs_info->chunk_root->root_item; 1761 super->chunk_root = root_item->bytenr; 1762 super->chunk_root_generation = root_item->generation; 1763 super->chunk_root_level = root_item->level; 1764 1765 root_item = &fs_info->tree_root->root_item; 1766 super->root = root_item->bytenr; 1767 super->generation = root_item->generation; 1768 super->root_level = root_item->level; 1769 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1770 super->cache_generation = root_item->generation; 1771 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1772 super->uuid_tree_generation = root_item->generation; 1773 } 1774 1775 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1776 { 1777 struct btrfs_transaction *trans; 1778 int ret = 0; 1779 1780 spin_lock(&info->trans_lock); 1781 trans = info->running_transaction; 1782 if (trans) 1783 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1784 spin_unlock(&info->trans_lock); 1785 return ret; 1786 } 1787 1788 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1789 { 1790 struct btrfs_transaction *trans; 1791 int ret = 0; 1792 1793 spin_lock(&info->trans_lock); 1794 trans = info->running_transaction; 1795 if (trans) 1796 ret = is_transaction_blocked(trans); 1797 spin_unlock(&info->trans_lock); 1798 return ret; 1799 } 1800 1801 /* 1802 * wait for the current transaction commit to start and block subsequent 1803 * transaction joins 1804 */ 1805 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1806 struct btrfs_transaction *trans) 1807 { 1808 wait_event(fs_info->transaction_blocked_wait, 1809 trans->state >= TRANS_STATE_COMMIT_START || 1810 TRANS_ABORTED(trans)); 1811 } 1812 1813 /* 1814 * wait for the current transaction to start and then become unblocked. 1815 * caller holds ref. 1816 */ 1817 static void wait_current_trans_commit_start_and_unblock( 1818 struct btrfs_fs_info *fs_info, 1819 struct btrfs_transaction *trans) 1820 { 1821 wait_event(fs_info->transaction_wait, 1822 trans->state >= TRANS_STATE_UNBLOCKED || 1823 TRANS_ABORTED(trans)); 1824 } 1825 1826 /* 1827 * commit transactions asynchronously. once btrfs_commit_transaction_async 1828 * returns, any subsequent transaction will not be allowed to join. 1829 */ 1830 struct btrfs_async_commit { 1831 struct btrfs_trans_handle *newtrans; 1832 struct work_struct work; 1833 }; 1834 1835 static void do_async_commit(struct work_struct *work) 1836 { 1837 struct btrfs_async_commit *ac = 1838 container_of(work, struct btrfs_async_commit, work); 1839 1840 /* 1841 * We've got freeze protection passed with the transaction. 1842 * Tell lockdep about it. 1843 */ 1844 if (ac->newtrans->type & __TRANS_FREEZABLE) 1845 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1846 1847 current->journal_info = ac->newtrans; 1848 1849 btrfs_commit_transaction(ac->newtrans); 1850 kfree(ac); 1851 } 1852 1853 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1854 int wait_for_unblock) 1855 { 1856 struct btrfs_fs_info *fs_info = trans->fs_info; 1857 struct btrfs_async_commit *ac; 1858 struct btrfs_transaction *cur_trans; 1859 1860 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1861 if (!ac) 1862 return -ENOMEM; 1863 1864 INIT_WORK(&ac->work, do_async_commit); 1865 ac->newtrans = btrfs_join_transaction(trans->root); 1866 if (IS_ERR(ac->newtrans)) { 1867 int err = PTR_ERR(ac->newtrans); 1868 kfree(ac); 1869 return err; 1870 } 1871 1872 /* take transaction reference */ 1873 cur_trans = trans->transaction; 1874 refcount_inc(&cur_trans->use_count); 1875 1876 btrfs_end_transaction(trans); 1877 1878 /* 1879 * Tell lockdep we've released the freeze rwsem, since the 1880 * async commit thread will be the one to unlock it. 1881 */ 1882 if (ac->newtrans->type & __TRANS_FREEZABLE) 1883 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1884 1885 schedule_work(&ac->work); 1886 1887 /* wait for transaction to start and unblock */ 1888 if (wait_for_unblock) 1889 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1890 else 1891 wait_current_trans_commit_start(fs_info, cur_trans); 1892 1893 if (current->journal_info == trans) 1894 current->journal_info = NULL; 1895 1896 btrfs_put_transaction(cur_trans); 1897 return 0; 1898 } 1899 1900 1901 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1902 { 1903 struct btrfs_fs_info *fs_info = trans->fs_info; 1904 struct btrfs_transaction *cur_trans = trans->transaction; 1905 1906 WARN_ON(refcount_read(&trans->use_count) > 1); 1907 1908 btrfs_abort_transaction(trans, err); 1909 1910 spin_lock(&fs_info->trans_lock); 1911 1912 /* 1913 * If the transaction is removed from the list, it means this 1914 * transaction has been committed successfully, so it is impossible 1915 * to call the cleanup function. 1916 */ 1917 BUG_ON(list_empty(&cur_trans->list)); 1918 1919 list_del_init(&cur_trans->list); 1920 if (cur_trans == fs_info->running_transaction) { 1921 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1922 spin_unlock(&fs_info->trans_lock); 1923 wait_event(cur_trans->writer_wait, 1924 atomic_read(&cur_trans->num_writers) == 1); 1925 1926 spin_lock(&fs_info->trans_lock); 1927 } 1928 spin_unlock(&fs_info->trans_lock); 1929 1930 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1931 1932 spin_lock(&fs_info->trans_lock); 1933 if (cur_trans == fs_info->running_transaction) 1934 fs_info->running_transaction = NULL; 1935 spin_unlock(&fs_info->trans_lock); 1936 1937 if (trans->type & __TRANS_FREEZABLE) 1938 sb_end_intwrite(fs_info->sb); 1939 btrfs_put_transaction(cur_trans); 1940 btrfs_put_transaction(cur_trans); 1941 1942 trace_btrfs_transaction_commit(trans->root); 1943 1944 if (current->journal_info == trans) 1945 current->journal_info = NULL; 1946 btrfs_scrub_cancel(fs_info); 1947 1948 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1949 } 1950 1951 /* 1952 * Release reserved delayed ref space of all pending block groups of the 1953 * transaction and remove them from the list 1954 */ 1955 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 1956 { 1957 struct btrfs_fs_info *fs_info = trans->fs_info; 1958 struct btrfs_block_group *block_group, *tmp; 1959 1960 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 1961 btrfs_delayed_refs_rsv_release(fs_info, 1); 1962 list_del_init(&block_group->bg_list); 1963 } 1964 } 1965 1966 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans) 1967 { 1968 struct btrfs_fs_info *fs_info = trans->fs_info; 1969 1970 /* 1971 * We use writeback_inodes_sb here because if we used 1972 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 1973 * Currently are holding the fs freeze lock, if we do an async flush 1974 * we'll do btrfs_join_transaction() and deadlock because we need to 1975 * wait for the fs freeze lock. Using the direct flushing we benefit 1976 * from already being in a transaction and our join_transaction doesn't 1977 * have to re-take the fs freeze lock. 1978 */ 1979 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 1980 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 1981 } else { 1982 struct btrfs_pending_snapshot *pending; 1983 struct list_head *head = &trans->transaction->pending_snapshots; 1984 1985 /* 1986 * Flush dellaloc for any root that is going to be snapshotted. 1987 * This is done to avoid a corrupted version of files, in the 1988 * snapshots, that had both buffered and direct IO writes (even 1989 * if they were done sequentially) due to an unordered update of 1990 * the inode's size on disk. 1991 */ 1992 list_for_each_entry(pending, head, list) { 1993 int ret; 1994 1995 ret = btrfs_start_delalloc_snapshot(pending->root); 1996 if (ret) 1997 return ret; 1998 } 1999 } 2000 return 0; 2001 } 2002 2003 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans) 2004 { 2005 struct btrfs_fs_info *fs_info = trans->fs_info; 2006 2007 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 2008 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2009 } else { 2010 struct btrfs_pending_snapshot *pending; 2011 struct list_head *head = &trans->transaction->pending_snapshots; 2012 2013 /* 2014 * Wait for any dellaloc that we started previously for the roots 2015 * that are going to be snapshotted. This is to avoid a corrupted 2016 * version of files in the snapshots that had both buffered and 2017 * direct IO writes (even if they were done sequentially). 2018 */ 2019 list_for_each_entry(pending, head, list) 2020 btrfs_wait_ordered_extents(pending->root, 2021 U64_MAX, 0, U64_MAX); 2022 } 2023 } 2024 2025 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2026 { 2027 struct btrfs_fs_info *fs_info = trans->fs_info; 2028 struct btrfs_transaction *cur_trans = trans->transaction; 2029 struct btrfs_transaction *prev_trans = NULL; 2030 int ret; 2031 2032 ASSERT(refcount_read(&trans->use_count) == 1); 2033 2034 /* 2035 * Some places just start a transaction to commit it. We need to make 2036 * sure that if this commit fails that the abort code actually marks the 2037 * transaction as failed, so set trans->dirty to make the abort code do 2038 * the right thing. 2039 */ 2040 trans->dirty = true; 2041 2042 /* Stop the commit early if ->aborted is set */ 2043 if (TRANS_ABORTED(cur_trans)) { 2044 ret = cur_trans->aborted; 2045 btrfs_end_transaction(trans); 2046 return ret; 2047 } 2048 2049 btrfs_trans_release_metadata(trans); 2050 trans->block_rsv = NULL; 2051 2052 /* make a pass through all the delayed refs we have so far 2053 * any runnings procs may add more while we are here 2054 */ 2055 ret = btrfs_run_delayed_refs(trans, 0); 2056 if (ret) { 2057 btrfs_end_transaction(trans); 2058 return ret; 2059 } 2060 2061 cur_trans = trans->transaction; 2062 2063 /* 2064 * set the flushing flag so procs in this transaction have to 2065 * start sending their work down. 2066 */ 2067 cur_trans->delayed_refs.flushing = 1; 2068 smp_wmb(); 2069 2070 btrfs_create_pending_block_groups(trans); 2071 2072 ret = btrfs_run_delayed_refs(trans, 0); 2073 if (ret) { 2074 btrfs_end_transaction(trans); 2075 return ret; 2076 } 2077 2078 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2079 int run_it = 0; 2080 2081 /* this mutex is also taken before trying to set 2082 * block groups readonly. We need to make sure 2083 * that nobody has set a block group readonly 2084 * after a extents from that block group have been 2085 * allocated for cache files. btrfs_set_block_group_ro 2086 * will wait for the transaction to commit if it 2087 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2088 * 2089 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2090 * only one process starts all the block group IO. It wouldn't 2091 * hurt to have more than one go through, but there's no 2092 * real advantage to it either. 2093 */ 2094 mutex_lock(&fs_info->ro_block_group_mutex); 2095 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2096 &cur_trans->flags)) 2097 run_it = 1; 2098 mutex_unlock(&fs_info->ro_block_group_mutex); 2099 2100 if (run_it) { 2101 ret = btrfs_start_dirty_block_groups(trans); 2102 if (ret) { 2103 btrfs_end_transaction(trans); 2104 return ret; 2105 } 2106 } 2107 } 2108 2109 spin_lock(&fs_info->trans_lock); 2110 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2111 spin_unlock(&fs_info->trans_lock); 2112 refcount_inc(&cur_trans->use_count); 2113 ret = btrfs_end_transaction(trans); 2114 2115 wait_for_commit(cur_trans); 2116 2117 if (TRANS_ABORTED(cur_trans)) 2118 ret = cur_trans->aborted; 2119 2120 btrfs_put_transaction(cur_trans); 2121 2122 return ret; 2123 } 2124 2125 cur_trans->state = TRANS_STATE_COMMIT_START; 2126 wake_up(&fs_info->transaction_blocked_wait); 2127 2128 if (cur_trans->list.prev != &fs_info->trans_list) { 2129 prev_trans = list_entry(cur_trans->list.prev, 2130 struct btrfs_transaction, list); 2131 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2132 refcount_inc(&prev_trans->use_count); 2133 spin_unlock(&fs_info->trans_lock); 2134 2135 wait_for_commit(prev_trans); 2136 ret = READ_ONCE(prev_trans->aborted); 2137 2138 btrfs_put_transaction(prev_trans); 2139 if (ret) 2140 goto cleanup_transaction; 2141 } else { 2142 spin_unlock(&fs_info->trans_lock); 2143 } 2144 } else { 2145 spin_unlock(&fs_info->trans_lock); 2146 /* 2147 * The previous transaction was aborted and was already removed 2148 * from the list of transactions at fs_info->trans_list. So we 2149 * abort to prevent writing a new superblock that reflects a 2150 * corrupt state (pointing to trees with unwritten nodes/leafs). 2151 */ 2152 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) { 2153 ret = -EROFS; 2154 goto cleanup_transaction; 2155 } 2156 } 2157 2158 extwriter_counter_dec(cur_trans, trans->type); 2159 2160 ret = btrfs_start_delalloc_flush(trans); 2161 if (ret) 2162 goto cleanup_transaction; 2163 2164 ret = btrfs_run_delayed_items(trans); 2165 if (ret) 2166 goto cleanup_transaction; 2167 2168 wait_event(cur_trans->writer_wait, 2169 extwriter_counter_read(cur_trans) == 0); 2170 2171 /* some pending stuffs might be added after the previous flush. */ 2172 ret = btrfs_run_delayed_items(trans); 2173 if (ret) 2174 goto cleanup_transaction; 2175 2176 btrfs_wait_delalloc_flush(trans); 2177 2178 btrfs_scrub_pause(fs_info); 2179 /* 2180 * Ok now we need to make sure to block out any other joins while we 2181 * commit the transaction. We could have started a join before setting 2182 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2183 */ 2184 spin_lock(&fs_info->trans_lock); 2185 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2186 spin_unlock(&fs_info->trans_lock); 2187 wait_event(cur_trans->writer_wait, 2188 atomic_read(&cur_trans->num_writers) == 1); 2189 2190 if (TRANS_ABORTED(cur_trans)) { 2191 ret = cur_trans->aborted; 2192 goto scrub_continue; 2193 } 2194 /* 2195 * the reloc mutex makes sure that we stop 2196 * the balancing code from coming in and moving 2197 * extents around in the middle of the commit 2198 */ 2199 mutex_lock(&fs_info->reloc_mutex); 2200 2201 /* 2202 * We needn't worry about the delayed items because we will 2203 * deal with them in create_pending_snapshot(), which is the 2204 * core function of the snapshot creation. 2205 */ 2206 ret = create_pending_snapshots(trans); 2207 if (ret) 2208 goto unlock_reloc; 2209 2210 /* 2211 * We insert the dir indexes of the snapshots and update the inode 2212 * of the snapshots' parents after the snapshot creation, so there 2213 * are some delayed items which are not dealt with. Now deal with 2214 * them. 2215 * 2216 * We needn't worry that this operation will corrupt the snapshots, 2217 * because all the tree which are snapshoted will be forced to COW 2218 * the nodes and leaves. 2219 */ 2220 ret = btrfs_run_delayed_items(trans); 2221 if (ret) 2222 goto unlock_reloc; 2223 2224 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2225 if (ret) 2226 goto unlock_reloc; 2227 2228 /* 2229 * make sure none of the code above managed to slip in a 2230 * delayed item 2231 */ 2232 btrfs_assert_delayed_root_empty(fs_info); 2233 2234 WARN_ON(cur_trans != trans->transaction); 2235 2236 /* btrfs_commit_tree_roots is responsible for getting the 2237 * various roots consistent with each other. Every pointer 2238 * in the tree of tree roots has to point to the most up to date 2239 * root for every subvolume and other tree. So, we have to keep 2240 * the tree logging code from jumping in and changing any 2241 * of the trees. 2242 * 2243 * At this point in the commit, there can't be any tree-log 2244 * writers, but a little lower down we drop the trans mutex 2245 * and let new people in. By holding the tree_log_mutex 2246 * from now until after the super is written, we avoid races 2247 * with the tree-log code. 2248 */ 2249 mutex_lock(&fs_info->tree_log_mutex); 2250 2251 ret = commit_fs_roots(trans); 2252 if (ret) 2253 goto unlock_tree_log; 2254 2255 /* 2256 * Since the transaction is done, we can apply the pending changes 2257 * before the next transaction. 2258 */ 2259 btrfs_apply_pending_changes(fs_info); 2260 2261 /* commit_fs_roots gets rid of all the tree log roots, it is now 2262 * safe to free the root of tree log roots 2263 */ 2264 btrfs_free_log_root_tree(trans, fs_info); 2265 2266 /* 2267 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2268 * new delayed refs. Must handle them or qgroup can be wrong. 2269 */ 2270 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2271 if (ret) 2272 goto unlock_tree_log; 2273 2274 /* 2275 * Since fs roots are all committed, we can get a quite accurate 2276 * new_roots. So let's do quota accounting. 2277 */ 2278 ret = btrfs_qgroup_account_extents(trans); 2279 if (ret < 0) 2280 goto unlock_tree_log; 2281 2282 ret = commit_cowonly_roots(trans); 2283 if (ret) 2284 goto unlock_tree_log; 2285 2286 /* 2287 * The tasks which save the space cache and inode cache may also 2288 * update ->aborted, check it. 2289 */ 2290 if (TRANS_ABORTED(cur_trans)) { 2291 ret = cur_trans->aborted; 2292 goto unlock_tree_log; 2293 } 2294 2295 btrfs_prepare_extent_commit(fs_info); 2296 2297 cur_trans = fs_info->running_transaction; 2298 2299 btrfs_set_root_node(&fs_info->tree_root->root_item, 2300 fs_info->tree_root->node); 2301 list_add_tail(&fs_info->tree_root->dirty_list, 2302 &cur_trans->switch_commits); 2303 2304 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2305 fs_info->chunk_root->node); 2306 list_add_tail(&fs_info->chunk_root->dirty_list, 2307 &cur_trans->switch_commits); 2308 2309 switch_commit_roots(trans); 2310 2311 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2312 ASSERT(list_empty(&cur_trans->io_bgs)); 2313 update_super_roots(fs_info); 2314 2315 btrfs_set_super_log_root(fs_info->super_copy, 0); 2316 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2317 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2318 sizeof(*fs_info->super_copy)); 2319 2320 btrfs_commit_device_sizes(cur_trans); 2321 2322 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2323 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2324 2325 btrfs_trans_release_chunk_metadata(trans); 2326 2327 spin_lock(&fs_info->trans_lock); 2328 cur_trans->state = TRANS_STATE_UNBLOCKED; 2329 fs_info->running_transaction = NULL; 2330 spin_unlock(&fs_info->trans_lock); 2331 mutex_unlock(&fs_info->reloc_mutex); 2332 2333 wake_up(&fs_info->transaction_wait); 2334 2335 ret = btrfs_write_and_wait_transaction(trans); 2336 if (ret) { 2337 btrfs_handle_fs_error(fs_info, ret, 2338 "Error while writing out transaction"); 2339 /* 2340 * reloc_mutex has been unlocked, tree_log_mutex is still held 2341 * but we can't jump to unlock_tree_log causing double unlock 2342 */ 2343 mutex_unlock(&fs_info->tree_log_mutex); 2344 goto scrub_continue; 2345 } 2346 2347 ret = write_all_supers(fs_info, 0); 2348 /* 2349 * the super is written, we can safely allow the tree-loggers 2350 * to go about their business 2351 */ 2352 mutex_unlock(&fs_info->tree_log_mutex); 2353 if (ret) 2354 goto scrub_continue; 2355 2356 btrfs_finish_extent_commit(trans); 2357 2358 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2359 btrfs_clear_space_info_full(fs_info); 2360 2361 fs_info->last_trans_committed = cur_trans->transid; 2362 /* 2363 * We needn't acquire the lock here because there is no other task 2364 * which can change it. 2365 */ 2366 cur_trans->state = TRANS_STATE_COMPLETED; 2367 wake_up(&cur_trans->commit_wait); 2368 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags); 2369 2370 spin_lock(&fs_info->trans_lock); 2371 list_del_init(&cur_trans->list); 2372 spin_unlock(&fs_info->trans_lock); 2373 2374 btrfs_put_transaction(cur_trans); 2375 btrfs_put_transaction(cur_trans); 2376 2377 if (trans->type & __TRANS_FREEZABLE) 2378 sb_end_intwrite(fs_info->sb); 2379 2380 trace_btrfs_transaction_commit(trans->root); 2381 2382 btrfs_scrub_continue(fs_info); 2383 2384 if (current->journal_info == trans) 2385 current->journal_info = NULL; 2386 2387 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2388 2389 return ret; 2390 2391 unlock_tree_log: 2392 mutex_unlock(&fs_info->tree_log_mutex); 2393 unlock_reloc: 2394 mutex_unlock(&fs_info->reloc_mutex); 2395 scrub_continue: 2396 btrfs_scrub_continue(fs_info); 2397 cleanup_transaction: 2398 btrfs_trans_release_metadata(trans); 2399 btrfs_cleanup_pending_block_groups(trans); 2400 btrfs_trans_release_chunk_metadata(trans); 2401 trans->block_rsv = NULL; 2402 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2403 if (current->journal_info == trans) 2404 current->journal_info = NULL; 2405 cleanup_transaction(trans, ret); 2406 2407 return ret; 2408 } 2409 2410 /* 2411 * return < 0 if error 2412 * 0 if there are no more dead_roots at the time of call 2413 * 1 there are more to be processed, call me again 2414 * 2415 * The return value indicates there are certainly more snapshots to delete, but 2416 * if there comes a new one during processing, it may return 0. We don't mind, 2417 * because btrfs_commit_super will poke cleaner thread and it will process it a 2418 * few seconds later. 2419 */ 2420 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2421 { 2422 int ret; 2423 struct btrfs_fs_info *fs_info = root->fs_info; 2424 2425 spin_lock(&fs_info->trans_lock); 2426 if (list_empty(&fs_info->dead_roots)) { 2427 spin_unlock(&fs_info->trans_lock); 2428 return 0; 2429 } 2430 root = list_first_entry(&fs_info->dead_roots, 2431 struct btrfs_root, root_list); 2432 list_del_init(&root->root_list); 2433 spin_unlock(&fs_info->trans_lock); 2434 2435 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2436 2437 btrfs_kill_all_delayed_nodes(root); 2438 if (root->ino_cache_inode) { 2439 iput(root->ino_cache_inode); 2440 root->ino_cache_inode = NULL; 2441 } 2442 2443 if (btrfs_header_backref_rev(root->node) < 2444 BTRFS_MIXED_BACKREF_REV) 2445 ret = btrfs_drop_snapshot(root, 0, 0); 2446 else 2447 ret = btrfs_drop_snapshot(root, 1, 0); 2448 2449 btrfs_put_root(root); 2450 return (ret < 0) ? 0 : 1; 2451 } 2452 2453 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2454 { 2455 unsigned long prev; 2456 unsigned long bit; 2457 2458 prev = xchg(&fs_info->pending_changes, 0); 2459 if (!prev) 2460 return; 2461 2462 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2463 if (prev & bit) 2464 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2465 prev &= ~bit; 2466 2467 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2468 if (prev & bit) 2469 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2470 prev &= ~bit; 2471 2472 bit = 1 << BTRFS_PENDING_COMMIT; 2473 if (prev & bit) 2474 btrfs_debug(fs_info, "pending commit done"); 2475 prev &= ~bit; 2476 2477 if (prev) 2478 btrfs_warn(fs_info, 2479 "unknown pending changes left 0x%lx, ignoring", prev); 2480 } 2481