1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "tree-log.h" 19 #include "volumes.h" 20 #include "dev-replace.h" 21 #include "qgroup.h" 22 #include "block-group.h" 23 #include "space-info.h" 24 #include "zoned.h" 25 26 #define BTRFS_ROOT_TRANS_TAG 0 27 28 /* 29 * Transaction states and transitions 30 * 31 * No running transaction (fs tree blocks are not modified) 32 * | 33 * | To next stage: 34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 35 * V 36 * Transaction N [[TRANS_STATE_RUNNING]] 37 * | 38 * | New trans handles can be attached to transaction N by calling all 39 * | start_transaction() variants. 40 * | 41 * | To next stage: 42 * | Call btrfs_commit_transaction() on any trans handle attached to 43 * | transaction N 44 * V 45 * Transaction N [[TRANS_STATE_COMMIT_START]] 46 * | 47 * | Will wait for previous running transaction to completely finish if there 48 * | is one 49 * | 50 * | Then one of the following happes: 51 * | - Wait for all other trans handle holders to release. 52 * | The btrfs_commit_transaction() caller will do the commit work. 53 * | - Wait for current transaction to be committed by others. 54 * | Other btrfs_commit_transaction() caller will do the commit work. 55 * | 56 * | At this stage, only btrfs_join_transaction*() variants can attach 57 * | to this running transaction. 58 * | All other variants will wait for current one to finish and attach to 59 * | transaction N+1. 60 * | 61 * | To next stage: 62 * | Caller is chosen to commit transaction N, and all other trans handle 63 * | haven been released. 64 * V 65 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 66 * | 67 * | The heavy lifting transaction work is started. 68 * | From running delayed refs (modifying extent tree) to creating pending 69 * | snapshots, running qgroups. 70 * | In short, modify supporting trees to reflect modifications of subvolume 71 * | trees. 72 * | 73 * | At this stage, all start_transaction() calls will wait for this 74 * | transaction to finish and attach to transaction N+1. 75 * | 76 * | To next stage: 77 * | Until all supporting trees are updated. 78 * V 79 * Transaction N [[TRANS_STATE_UNBLOCKED]] 80 * | Transaction N+1 81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 82 * | need to write them back to disk and update | 83 * | super blocks. | 84 * | | 85 * | At this stage, new transaction is allowed to | 86 * | start. | 87 * | All new start_transaction() calls will be | 88 * | attached to transid N+1. | 89 * | | 90 * | To next stage: | 91 * | Until all tree blocks are super blocks are | 92 * | written to block devices | 93 * V | 94 * Transaction N [[TRANS_STATE_COMPLETED]] V 95 * All tree blocks and super blocks are written. Transaction N+1 96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 97 * data structures will be cleaned up. | Life goes on 98 */ 99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 100 [TRANS_STATE_RUNNING] = 0U, 101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 103 __TRANS_ATTACH | 104 __TRANS_JOIN | 105 __TRANS_JOIN_NOSTART), 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 107 __TRANS_ATTACH | 108 __TRANS_JOIN | 109 __TRANS_JOIN_NOLOCK | 110 __TRANS_JOIN_NOSTART), 111 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 112 __TRANS_ATTACH | 113 __TRANS_JOIN | 114 __TRANS_JOIN_NOLOCK | 115 __TRANS_JOIN_NOSTART), 116 [TRANS_STATE_COMPLETED] = (__TRANS_START | 117 __TRANS_ATTACH | 118 __TRANS_JOIN | 119 __TRANS_JOIN_NOLOCK | 120 __TRANS_JOIN_NOSTART), 121 }; 122 123 void btrfs_put_transaction(struct btrfs_transaction *transaction) 124 { 125 WARN_ON(refcount_read(&transaction->use_count) == 0); 126 if (refcount_dec_and_test(&transaction->use_count)) { 127 BUG_ON(!list_empty(&transaction->list)); 128 WARN_ON(!RB_EMPTY_ROOT( 129 &transaction->delayed_refs.href_root.rb_root)); 130 WARN_ON(!RB_EMPTY_ROOT( 131 &transaction->delayed_refs.dirty_extent_root)); 132 if (transaction->delayed_refs.pending_csums) 133 btrfs_err(transaction->fs_info, 134 "pending csums is %llu", 135 transaction->delayed_refs.pending_csums); 136 /* 137 * If any block groups are found in ->deleted_bgs then it's 138 * because the transaction was aborted and a commit did not 139 * happen (things failed before writing the new superblock 140 * and calling btrfs_finish_extent_commit()), so we can not 141 * discard the physical locations of the block groups. 142 */ 143 while (!list_empty(&transaction->deleted_bgs)) { 144 struct btrfs_block_group *cache; 145 146 cache = list_first_entry(&transaction->deleted_bgs, 147 struct btrfs_block_group, 148 bg_list); 149 list_del_init(&cache->bg_list); 150 btrfs_unfreeze_block_group(cache); 151 btrfs_put_block_group(cache); 152 } 153 WARN_ON(!list_empty(&transaction->dev_update_list)); 154 kfree(transaction); 155 } 156 } 157 158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 159 { 160 struct btrfs_transaction *cur_trans = trans->transaction; 161 struct btrfs_fs_info *fs_info = trans->fs_info; 162 struct btrfs_root *root, *tmp; 163 struct btrfs_caching_control *caching_ctl, *next; 164 165 down_write(&fs_info->commit_root_sem); 166 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 167 dirty_list) { 168 list_del_init(&root->dirty_list); 169 free_extent_buffer(root->commit_root); 170 root->commit_root = btrfs_root_node(root); 171 extent_io_tree_release(&root->dirty_log_pages); 172 btrfs_qgroup_clean_swapped_blocks(root); 173 } 174 175 /* We can free old roots now. */ 176 spin_lock(&cur_trans->dropped_roots_lock); 177 while (!list_empty(&cur_trans->dropped_roots)) { 178 root = list_first_entry(&cur_trans->dropped_roots, 179 struct btrfs_root, root_list); 180 list_del_init(&root->root_list); 181 spin_unlock(&cur_trans->dropped_roots_lock); 182 btrfs_free_log(trans, root); 183 btrfs_drop_and_free_fs_root(fs_info, root); 184 spin_lock(&cur_trans->dropped_roots_lock); 185 } 186 spin_unlock(&cur_trans->dropped_roots_lock); 187 188 /* 189 * We have to update the last_byte_to_unpin under the commit_root_sem, 190 * at the same time we swap out the commit roots. 191 * 192 * This is because we must have a real view of the last spot the caching 193 * kthreads were while caching. Consider the following views of the 194 * extent tree for a block group 195 * 196 * commit root 197 * +----+----+----+----+----+----+----+ 198 * |\\\\| |\\\\|\\\\| |\\\\|\\\\| 199 * +----+----+----+----+----+----+----+ 200 * 0 1 2 3 4 5 6 7 201 * 202 * new commit root 203 * +----+----+----+----+----+----+----+ 204 * | | | |\\\\| | |\\\\| 205 * +----+----+----+----+----+----+----+ 206 * 0 1 2 3 4 5 6 7 207 * 208 * If the cache_ctl->progress was at 3, then we are only allowed to 209 * unpin [0,1) and [2,3], because the caching thread has already 210 * processed those extents. We are not allowed to unpin [5,6), because 211 * the caching thread will re-start it's search from 3, and thus find 212 * the hole from [4,6) to add to the free space cache. 213 */ 214 spin_lock(&fs_info->block_group_cache_lock); 215 list_for_each_entry_safe(caching_ctl, next, 216 &fs_info->caching_block_groups, list) { 217 struct btrfs_block_group *cache = caching_ctl->block_group; 218 219 if (btrfs_block_group_done(cache)) { 220 cache->last_byte_to_unpin = (u64)-1; 221 list_del_init(&caching_ctl->list); 222 btrfs_put_caching_control(caching_ctl); 223 } else { 224 cache->last_byte_to_unpin = caching_ctl->progress; 225 } 226 } 227 spin_unlock(&fs_info->block_group_cache_lock); 228 up_write(&fs_info->commit_root_sem); 229 } 230 231 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 232 unsigned int type) 233 { 234 if (type & TRANS_EXTWRITERS) 235 atomic_inc(&trans->num_extwriters); 236 } 237 238 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 239 unsigned int type) 240 { 241 if (type & TRANS_EXTWRITERS) 242 atomic_dec(&trans->num_extwriters); 243 } 244 245 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 246 unsigned int type) 247 { 248 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 249 } 250 251 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 252 { 253 return atomic_read(&trans->num_extwriters); 254 } 255 256 /* 257 * To be called after doing the chunk btree updates right after allocating a new 258 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a 259 * chunk after all chunk btree updates and after finishing the second phase of 260 * chunk allocation (btrfs_create_pending_block_groups()) in case some block 261 * group had its chunk item insertion delayed to the second phase. 262 */ 263 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 264 { 265 struct btrfs_fs_info *fs_info = trans->fs_info; 266 267 if (!trans->chunk_bytes_reserved) 268 return; 269 270 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 271 trans->chunk_bytes_reserved, NULL); 272 trans->chunk_bytes_reserved = 0; 273 } 274 275 /* 276 * either allocate a new transaction or hop into the existing one 277 */ 278 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 279 unsigned int type) 280 { 281 struct btrfs_transaction *cur_trans; 282 283 spin_lock(&fs_info->trans_lock); 284 loop: 285 /* The file system has been taken offline. No new transactions. */ 286 if (BTRFS_FS_ERROR(fs_info)) { 287 spin_unlock(&fs_info->trans_lock); 288 return -EROFS; 289 } 290 291 cur_trans = fs_info->running_transaction; 292 if (cur_trans) { 293 if (TRANS_ABORTED(cur_trans)) { 294 spin_unlock(&fs_info->trans_lock); 295 return cur_trans->aborted; 296 } 297 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 298 spin_unlock(&fs_info->trans_lock); 299 return -EBUSY; 300 } 301 refcount_inc(&cur_trans->use_count); 302 atomic_inc(&cur_trans->num_writers); 303 extwriter_counter_inc(cur_trans, type); 304 spin_unlock(&fs_info->trans_lock); 305 return 0; 306 } 307 spin_unlock(&fs_info->trans_lock); 308 309 /* 310 * If we are ATTACH, we just want to catch the current transaction, 311 * and commit it. If there is no transaction, just return ENOENT. 312 */ 313 if (type == TRANS_ATTACH) 314 return -ENOENT; 315 316 /* 317 * JOIN_NOLOCK only happens during the transaction commit, so 318 * it is impossible that ->running_transaction is NULL 319 */ 320 BUG_ON(type == TRANS_JOIN_NOLOCK); 321 322 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 323 if (!cur_trans) 324 return -ENOMEM; 325 326 spin_lock(&fs_info->trans_lock); 327 if (fs_info->running_transaction) { 328 /* 329 * someone started a transaction after we unlocked. Make sure 330 * to redo the checks above 331 */ 332 kfree(cur_trans); 333 goto loop; 334 } else if (BTRFS_FS_ERROR(fs_info)) { 335 spin_unlock(&fs_info->trans_lock); 336 kfree(cur_trans); 337 return -EROFS; 338 } 339 340 cur_trans->fs_info = fs_info; 341 atomic_set(&cur_trans->pending_ordered, 0); 342 init_waitqueue_head(&cur_trans->pending_wait); 343 atomic_set(&cur_trans->num_writers, 1); 344 extwriter_counter_init(cur_trans, type); 345 init_waitqueue_head(&cur_trans->writer_wait); 346 init_waitqueue_head(&cur_trans->commit_wait); 347 cur_trans->state = TRANS_STATE_RUNNING; 348 /* 349 * One for this trans handle, one so it will live on until we 350 * commit the transaction. 351 */ 352 refcount_set(&cur_trans->use_count, 2); 353 cur_trans->flags = 0; 354 cur_trans->start_time = ktime_get_seconds(); 355 356 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 357 358 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 359 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 360 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 361 362 /* 363 * although the tree mod log is per file system and not per transaction, 364 * the log must never go across transaction boundaries. 365 */ 366 smp_mb(); 367 if (!list_empty(&fs_info->tree_mod_seq_list)) 368 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 369 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 370 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 371 atomic64_set(&fs_info->tree_mod_seq, 0); 372 373 spin_lock_init(&cur_trans->delayed_refs.lock); 374 375 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 376 INIT_LIST_HEAD(&cur_trans->dev_update_list); 377 INIT_LIST_HEAD(&cur_trans->switch_commits); 378 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 379 INIT_LIST_HEAD(&cur_trans->io_bgs); 380 INIT_LIST_HEAD(&cur_trans->dropped_roots); 381 mutex_init(&cur_trans->cache_write_mutex); 382 spin_lock_init(&cur_trans->dirty_bgs_lock); 383 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 384 spin_lock_init(&cur_trans->dropped_roots_lock); 385 INIT_LIST_HEAD(&cur_trans->releasing_ebs); 386 spin_lock_init(&cur_trans->releasing_ebs_lock); 387 list_add_tail(&cur_trans->list, &fs_info->trans_list); 388 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 389 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 390 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 391 IO_TREE_FS_PINNED_EXTENTS, NULL); 392 fs_info->generation++; 393 cur_trans->transid = fs_info->generation; 394 fs_info->running_transaction = cur_trans; 395 cur_trans->aborted = 0; 396 spin_unlock(&fs_info->trans_lock); 397 398 return 0; 399 } 400 401 /* 402 * This does all the record keeping required to make sure that a shareable root 403 * is properly recorded in a given transaction. This is required to make sure 404 * the old root from before we joined the transaction is deleted when the 405 * transaction commits. 406 */ 407 static int record_root_in_trans(struct btrfs_trans_handle *trans, 408 struct btrfs_root *root, 409 int force) 410 { 411 struct btrfs_fs_info *fs_info = root->fs_info; 412 int ret = 0; 413 414 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 415 root->last_trans < trans->transid) || force) { 416 WARN_ON(root == fs_info->extent_root); 417 WARN_ON(!force && root->commit_root != root->node); 418 419 /* 420 * see below for IN_TRANS_SETUP usage rules 421 * we have the reloc mutex held now, so there 422 * is only one writer in this function 423 */ 424 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 425 426 /* make sure readers find IN_TRANS_SETUP before 427 * they find our root->last_trans update 428 */ 429 smp_wmb(); 430 431 spin_lock(&fs_info->fs_roots_radix_lock); 432 if (root->last_trans == trans->transid && !force) { 433 spin_unlock(&fs_info->fs_roots_radix_lock); 434 return 0; 435 } 436 radix_tree_tag_set(&fs_info->fs_roots_radix, 437 (unsigned long)root->root_key.objectid, 438 BTRFS_ROOT_TRANS_TAG); 439 spin_unlock(&fs_info->fs_roots_radix_lock); 440 root->last_trans = trans->transid; 441 442 /* this is pretty tricky. We don't want to 443 * take the relocation lock in btrfs_record_root_in_trans 444 * unless we're really doing the first setup for this root in 445 * this transaction. 446 * 447 * Normally we'd use root->last_trans as a flag to decide 448 * if we want to take the expensive mutex. 449 * 450 * But, we have to set root->last_trans before we 451 * init the relocation root, otherwise, we trip over warnings 452 * in ctree.c. The solution used here is to flag ourselves 453 * with root IN_TRANS_SETUP. When this is 1, we're still 454 * fixing up the reloc trees and everyone must wait. 455 * 456 * When this is zero, they can trust root->last_trans and fly 457 * through btrfs_record_root_in_trans without having to take the 458 * lock. smp_wmb() makes sure that all the writes above are 459 * done before we pop in the zero below 460 */ 461 ret = btrfs_init_reloc_root(trans, root); 462 smp_mb__before_atomic(); 463 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 464 } 465 return ret; 466 } 467 468 469 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 470 struct btrfs_root *root) 471 { 472 struct btrfs_fs_info *fs_info = root->fs_info; 473 struct btrfs_transaction *cur_trans = trans->transaction; 474 475 /* Add ourselves to the transaction dropped list */ 476 spin_lock(&cur_trans->dropped_roots_lock); 477 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 478 spin_unlock(&cur_trans->dropped_roots_lock); 479 480 /* Make sure we don't try to update the root at commit time */ 481 spin_lock(&fs_info->fs_roots_radix_lock); 482 radix_tree_tag_clear(&fs_info->fs_roots_radix, 483 (unsigned long)root->root_key.objectid, 484 BTRFS_ROOT_TRANS_TAG); 485 spin_unlock(&fs_info->fs_roots_radix_lock); 486 } 487 488 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 489 struct btrfs_root *root) 490 { 491 struct btrfs_fs_info *fs_info = root->fs_info; 492 int ret; 493 494 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 495 return 0; 496 497 /* 498 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 499 * and barriers 500 */ 501 smp_rmb(); 502 if (root->last_trans == trans->transid && 503 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 504 return 0; 505 506 mutex_lock(&fs_info->reloc_mutex); 507 ret = record_root_in_trans(trans, root, 0); 508 mutex_unlock(&fs_info->reloc_mutex); 509 510 return ret; 511 } 512 513 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 514 { 515 return (trans->state >= TRANS_STATE_COMMIT_START && 516 trans->state < TRANS_STATE_UNBLOCKED && 517 !TRANS_ABORTED(trans)); 518 } 519 520 /* wait for commit against the current transaction to become unblocked 521 * when this is done, it is safe to start a new transaction, but the current 522 * transaction might not be fully on disk. 523 */ 524 static void wait_current_trans(struct btrfs_fs_info *fs_info) 525 { 526 struct btrfs_transaction *cur_trans; 527 528 spin_lock(&fs_info->trans_lock); 529 cur_trans = fs_info->running_transaction; 530 if (cur_trans && is_transaction_blocked(cur_trans)) { 531 refcount_inc(&cur_trans->use_count); 532 spin_unlock(&fs_info->trans_lock); 533 534 wait_event(fs_info->transaction_wait, 535 cur_trans->state >= TRANS_STATE_UNBLOCKED || 536 TRANS_ABORTED(cur_trans)); 537 btrfs_put_transaction(cur_trans); 538 } else { 539 spin_unlock(&fs_info->trans_lock); 540 } 541 } 542 543 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 544 { 545 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 546 return 0; 547 548 if (type == TRANS_START) 549 return 1; 550 551 return 0; 552 } 553 554 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 555 { 556 struct btrfs_fs_info *fs_info = root->fs_info; 557 558 if (!fs_info->reloc_ctl || 559 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 560 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 561 root->reloc_root) 562 return false; 563 564 return true; 565 } 566 567 static struct btrfs_trans_handle * 568 start_transaction(struct btrfs_root *root, unsigned int num_items, 569 unsigned int type, enum btrfs_reserve_flush_enum flush, 570 bool enforce_qgroups) 571 { 572 struct btrfs_fs_info *fs_info = root->fs_info; 573 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 574 struct btrfs_trans_handle *h; 575 struct btrfs_transaction *cur_trans; 576 u64 num_bytes = 0; 577 u64 qgroup_reserved = 0; 578 bool reloc_reserved = false; 579 bool do_chunk_alloc = false; 580 int ret; 581 582 if (BTRFS_FS_ERROR(fs_info)) 583 return ERR_PTR(-EROFS); 584 585 if (current->journal_info) { 586 WARN_ON(type & TRANS_EXTWRITERS); 587 h = current->journal_info; 588 refcount_inc(&h->use_count); 589 WARN_ON(refcount_read(&h->use_count) > 2); 590 h->orig_rsv = h->block_rsv; 591 h->block_rsv = NULL; 592 goto got_it; 593 } 594 595 /* 596 * Do the reservation before we join the transaction so we can do all 597 * the appropriate flushing if need be. 598 */ 599 if (num_items && root != fs_info->chunk_root) { 600 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 601 u64 delayed_refs_bytes = 0; 602 603 qgroup_reserved = num_items * fs_info->nodesize; 604 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 605 enforce_qgroups); 606 if (ret) 607 return ERR_PTR(ret); 608 609 /* 610 * We want to reserve all the bytes we may need all at once, so 611 * we only do 1 enospc flushing cycle per transaction start. We 612 * accomplish this by simply assuming we'll do 2 x num_items 613 * worth of delayed refs updates in this trans handle, and 614 * refill that amount for whatever is missing in the reserve. 615 */ 616 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 617 if (flush == BTRFS_RESERVE_FLUSH_ALL && 618 delayed_refs_rsv->full == 0) { 619 delayed_refs_bytes = num_bytes; 620 num_bytes <<= 1; 621 } 622 623 /* 624 * Do the reservation for the relocation root creation 625 */ 626 if (need_reserve_reloc_root(root)) { 627 num_bytes += fs_info->nodesize; 628 reloc_reserved = true; 629 } 630 631 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 632 if (ret) 633 goto reserve_fail; 634 if (delayed_refs_bytes) { 635 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 636 delayed_refs_bytes); 637 num_bytes -= delayed_refs_bytes; 638 } 639 640 if (rsv->space_info->force_alloc) 641 do_chunk_alloc = true; 642 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 643 !delayed_refs_rsv->full) { 644 /* 645 * Some people call with btrfs_start_transaction(root, 0) 646 * because they can be throttled, but have some other mechanism 647 * for reserving space. We still want these guys to refill the 648 * delayed block_rsv so just add 1 items worth of reservation 649 * here. 650 */ 651 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 652 if (ret) 653 goto reserve_fail; 654 } 655 again: 656 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 657 if (!h) { 658 ret = -ENOMEM; 659 goto alloc_fail; 660 } 661 662 /* 663 * If we are JOIN_NOLOCK we're already committing a transaction and 664 * waiting on this guy, so we don't need to do the sb_start_intwrite 665 * because we're already holding a ref. We need this because we could 666 * have raced in and did an fsync() on a file which can kick a commit 667 * and then we deadlock with somebody doing a freeze. 668 * 669 * If we are ATTACH, it means we just want to catch the current 670 * transaction and commit it, so we needn't do sb_start_intwrite(). 671 */ 672 if (type & __TRANS_FREEZABLE) 673 sb_start_intwrite(fs_info->sb); 674 675 if (may_wait_transaction(fs_info, type)) 676 wait_current_trans(fs_info); 677 678 do { 679 ret = join_transaction(fs_info, type); 680 if (ret == -EBUSY) { 681 wait_current_trans(fs_info); 682 if (unlikely(type == TRANS_ATTACH || 683 type == TRANS_JOIN_NOSTART)) 684 ret = -ENOENT; 685 } 686 } while (ret == -EBUSY); 687 688 if (ret < 0) 689 goto join_fail; 690 691 cur_trans = fs_info->running_transaction; 692 693 h->transid = cur_trans->transid; 694 h->transaction = cur_trans; 695 h->root = root; 696 refcount_set(&h->use_count, 1); 697 h->fs_info = root->fs_info; 698 699 h->type = type; 700 INIT_LIST_HEAD(&h->new_bgs); 701 702 smp_mb(); 703 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 704 may_wait_transaction(fs_info, type)) { 705 current->journal_info = h; 706 btrfs_commit_transaction(h); 707 goto again; 708 } 709 710 if (num_bytes) { 711 trace_btrfs_space_reservation(fs_info, "transaction", 712 h->transid, num_bytes, 1); 713 h->block_rsv = &fs_info->trans_block_rsv; 714 h->bytes_reserved = num_bytes; 715 h->reloc_reserved = reloc_reserved; 716 } 717 718 got_it: 719 if (!current->journal_info) 720 current->journal_info = h; 721 722 /* 723 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 724 * ALLOC_FORCE the first run through, and then we won't allocate for 725 * anybody else who races in later. We don't care about the return 726 * value here. 727 */ 728 if (do_chunk_alloc && num_bytes) { 729 u64 flags = h->block_rsv->space_info->flags; 730 731 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 732 CHUNK_ALLOC_NO_FORCE); 733 } 734 735 /* 736 * btrfs_record_root_in_trans() needs to alloc new extents, and may 737 * call btrfs_join_transaction() while we're also starting a 738 * transaction. 739 * 740 * Thus it need to be called after current->journal_info initialized, 741 * or we can deadlock. 742 */ 743 ret = btrfs_record_root_in_trans(h, root); 744 if (ret) { 745 /* 746 * The transaction handle is fully initialized and linked with 747 * other structures so it needs to be ended in case of errors, 748 * not just freed. 749 */ 750 btrfs_end_transaction(h); 751 return ERR_PTR(ret); 752 } 753 754 return h; 755 756 join_fail: 757 if (type & __TRANS_FREEZABLE) 758 sb_end_intwrite(fs_info->sb); 759 kmem_cache_free(btrfs_trans_handle_cachep, h); 760 alloc_fail: 761 if (num_bytes) 762 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 763 num_bytes, NULL); 764 reserve_fail: 765 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 766 return ERR_PTR(ret); 767 } 768 769 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 770 unsigned int num_items) 771 { 772 return start_transaction(root, num_items, TRANS_START, 773 BTRFS_RESERVE_FLUSH_ALL, true); 774 } 775 776 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 777 struct btrfs_root *root, 778 unsigned int num_items) 779 { 780 return start_transaction(root, num_items, TRANS_START, 781 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 782 } 783 784 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 785 { 786 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 787 true); 788 } 789 790 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 791 { 792 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 793 BTRFS_RESERVE_NO_FLUSH, true); 794 } 795 796 /* 797 * Similar to regular join but it never starts a transaction when none is 798 * running or after waiting for the current one to finish. 799 */ 800 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 801 { 802 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 803 BTRFS_RESERVE_NO_FLUSH, true); 804 } 805 806 /* 807 * btrfs_attach_transaction() - catch the running transaction 808 * 809 * It is used when we want to commit the current the transaction, but 810 * don't want to start a new one. 811 * 812 * Note: If this function return -ENOENT, it just means there is no 813 * running transaction. But it is possible that the inactive transaction 814 * is still in the memory, not fully on disk. If you hope there is no 815 * inactive transaction in the fs when -ENOENT is returned, you should 816 * invoke 817 * btrfs_attach_transaction_barrier() 818 */ 819 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 820 { 821 return start_transaction(root, 0, TRANS_ATTACH, 822 BTRFS_RESERVE_NO_FLUSH, true); 823 } 824 825 /* 826 * btrfs_attach_transaction_barrier() - catch the running transaction 827 * 828 * It is similar to the above function, the difference is this one 829 * will wait for all the inactive transactions until they fully 830 * complete. 831 */ 832 struct btrfs_trans_handle * 833 btrfs_attach_transaction_barrier(struct btrfs_root *root) 834 { 835 struct btrfs_trans_handle *trans; 836 837 trans = start_transaction(root, 0, TRANS_ATTACH, 838 BTRFS_RESERVE_NO_FLUSH, true); 839 if (trans == ERR_PTR(-ENOENT)) 840 btrfs_wait_for_commit(root->fs_info, 0); 841 842 return trans; 843 } 844 845 /* Wait for a transaction commit to reach at least the given state. */ 846 static noinline void wait_for_commit(struct btrfs_transaction *commit, 847 const enum btrfs_trans_state min_state) 848 { 849 wait_event(commit->commit_wait, commit->state >= min_state); 850 } 851 852 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 853 { 854 struct btrfs_transaction *cur_trans = NULL, *t; 855 int ret = 0; 856 857 if (transid) { 858 if (transid <= fs_info->last_trans_committed) 859 goto out; 860 861 /* find specified transaction */ 862 spin_lock(&fs_info->trans_lock); 863 list_for_each_entry(t, &fs_info->trans_list, list) { 864 if (t->transid == transid) { 865 cur_trans = t; 866 refcount_inc(&cur_trans->use_count); 867 ret = 0; 868 break; 869 } 870 if (t->transid > transid) { 871 ret = 0; 872 break; 873 } 874 } 875 spin_unlock(&fs_info->trans_lock); 876 877 /* 878 * The specified transaction doesn't exist, or we 879 * raced with btrfs_commit_transaction 880 */ 881 if (!cur_trans) { 882 if (transid > fs_info->last_trans_committed) 883 ret = -EINVAL; 884 goto out; 885 } 886 } else { 887 /* find newest transaction that is committing | committed */ 888 spin_lock(&fs_info->trans_lock); 889 list_for_each_entry_reverse(t, &fs_info->trans_list, 890 list) { 891 if (t->state >= TRANS_STATE_COMMIT_START) { 892 if (t->state == TRANS_STATE_COMPLETED) 893 break; 894 cur_trans = t; 895 refcount_inc(&cur_trans->use_count); 896 break; 897 } 898 } 899 spin_unlock(&fs_info->trans_lock); 900 if (!cur_trans) 901 goto out; /* nothing committing|committed */ 902 } 903 904 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 905 btrfs_put_transaction(cur_trans); 906 out: 907 return ret; 908 } 909 910 void btrfs_throttle(struct btrfs_fs_info *fs_info) 911 { 912 wait_current_trans(fs_info); 913 } 914 915 static bool should_end_transaction(struct btrfs_trans_handle *trans) 916 { 917 struct btrfs_fs_info *fs_info = trans->fs_info; 918 919 if (btrfs_check_space_for_delayed_refs(fs_info)) 920 return true; 921 922 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 923 } 924 925 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 926 { 927 struct btrfs_transaction *cur_trans = trans->transaction; 928 929 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 930 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 931 return true; 932 933 return should_end_transaction(trans); 934 } 935 936 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 937 938 { 939 struct btrfs_fs_info *fs_info = trans->fs_info; 940 941 if (!trans->block_rsv) { 942 ASSERT(!trans->bytes_reserved); 943 return; 944 } 945 946 if (!trans->bytes_reserved) 947 return; 948 949 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 950 trace_btrfs_space_reservation(fs_info, "transaction", 951 trans->transid, trans->bytes_reserved, 0); 952 btrfs_block_rsv_release(fs_info, trans->block_rsv, 953 trans->bytes_reserved, NULL); 954 trans->bytes_reserved = 0; 955 } 956 957 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 958 int throttle) 959 { 960 struct btrfs_fs_info *info = trans->fs_info; 961 struct btrfs_transaction *cur_trans = trans->transaction; 962 int err = 0; 963 964 if (refcount_read(&trans->use_count) > 1) { 965 refcount_dec(&trans->use_count); 966 trans->block_rsv = trans->orig_rsv; 967 return 0; 968 } 969 970 btrfs_trans_release_metadata(trans); 971 trans->block_rsv = NULL; 972 973 btrfs_create_pending_block_groups(trans); 974 975 btrfs_trans_release_chunk_metadata(trans); 976 977 if (trans->type & __TRANS_FREEZABLE) 978 sb_end_intwrite(info->sb); 979 980 WARN_ON(cur_trans != info->running_transaction); 981 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 982 atomic_dec(&cur_trans->num_writers); 983 extwriter_counter_dec(cur_trans, trans->type); 984 985 cond_wake_up(&cur_trans->writer_wait); 986 btrfs_put_transaction(cur_trans); 987 988 if (current->journal_info == trans) 989 current->journal_info = NULL; 990 991 if (throttle) 992 btrfs_run_delayed_iputs(info); 993 994 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) { 995 wake_up_process(info->transaction_kthread); 996 if (TRANS_ABORTED(trans)) 997 err = trans->aborted; 998 else 999 err = -EROFS; 1000 } 1001 1002 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1003 return err; 1004 } 1005 1006 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1007 { 1008 return __btrfs_end_transaction(trans, 0); 1009 } 1010 1011 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1012 { 1013 return __btrfs_end_transaction(trans, 1); 1014 } 1015 1016 /* 1017 * when btree blocks are allocated, they have some corresponding bits set for 1018 * them in one of two extent_io trees. This is used to make sure all of 1019 * those extents are sent to disk but does not wait on them 1020 */ 1021 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1022 struct extent_io_tree *dirty_pages, int mark) 1023 { 1024 int err = 0; 1025 int werr = 0; 1026 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1027 struct extent_state *cached_state = NULL; 1028 u64 start = 0; 1029 u64 end; 1030 1031 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1032 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1033 mark, &cached_state)) { 1034 bool wait_writeback = false; 1035 1036 err = convert_extent_bit(dirty_pages, start, end, 1037 EXTENT_NEED_WAIT, 1038 mark, &cached_state); 1039 /* 1040 * convert_extent_bit can return -ENOMEM, which is most of the 1041 * time a temporary error. So when it happens, ignore the error 1042 * and wait for writeback of this range to finish - because we 1043 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1044 * to __btrfs_wait_marked_extents() would not know that 1045 * writeback for this range started and therefore wouldn't 1046 * wait for it to finish - we don't want to commit a 1047 * superblock that points to btree nodes/leafs for which 1048 * writeback hasn't finished yet (and without errors). 1049 * We cleanup any entries left in the io tree when committing 1050 * the transaction (through extent_io_tree_release()). 1051 */ 1052 if (err == -ENOMEM) { 1053 err = 0; 1054 wait_writeback = true; 1055 } 1056 if (!err) 1057 err = filemap_fdatawrite_range(mapping, start, end); 1058 if (err) 1059 werr = err; 1060 else if (wait_writeback) 1061 werr = filemap_fdatawait_range(mapping, start, end); 1062 free_extent_state(cached_state); 1063 cached_state = NULL; 1064 cond_resched(); 1065 start = end + 1; 1066 } 1067 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1068 return werr; 1069 } 1070 1071 /* 1072 * when btree blocks are allocated, they have some corresponding bits set for 1073 * them in one of two extent_io trees. This is used to make sure all of 1074 * those extents are on disk for transaction or log commit. We wait 1075 * on all the pages and clear them from the dirty pages state tree 1076 */ 1077 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1078 struct extent_io_tree *dirty_pages) 1079 { 1080 int err = 0; 1081 int werr = 0; 1082 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1083 struct extent_state *cached_state = NULL; 1084 u64 start = 0; 1085 u64 end; 1086 1087 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1088 EXTENT_NEED_WAIT, &cached_state)) { 1089 /* 1090 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1091 * When committing the transaction, we'll remove any entries 1092 * left in the io tree. For a log commit, we don't remove them 1093 * after committing the log because the tree can be accessed 1094 * concurrently - we do it only at transaction commit time when 1095 * it's safe to do it (through extent_io_tree_release()). 1096 */ 1097 err = clear_extent_bit(dirty_pages, start, end, 1098 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1099 if (err == -ENOMEM) 1100 err = 0; 1101 if (!err) 1102 err = filemap_fdatawait_range(mapping, start, end); 1103 if (err) 1104 werr = err; 1105 free_extent_state(cached_state); 1106 cached_state = NULL; 1107 cond_resched(); 1108 start = end + 1; 1109 } 1110 if (err) 1111 werr = err; 1112 return werr; 1113 } 1114 1115 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1116 struct extent_io_tree *dirty_pages) 1117 { 1118 bool errors = false; 1119 int err; 1120 1121 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1122 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1123 errors = true; 1124 1125 if (errors && !err) 1126 err = -EIO; 1127 return err; 1128 } 1129 1130 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1131 { 1132 struct btrfs_fs_info *fs_info = log_root->fs_info; 1133 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1134 bool errors = false; 1135 int err; 1136 1137 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1138 1139 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1140 if ((mark & EXTENT_DIRTY) && 1141 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1142 errors = true; 1143 1144 if ((mark & EXTENT_NEW) && 1145 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1146 errors = true; 1147 1148 if (errors && !err) 1149 err = -EIO; 1150 return err; 1151 } 1152 1153 /* 1154 * When btree blocks are allocated the corresponding extents are marked dirty. 1155 * This function ensures such extents are persisted on disk for transaction or 1156 * log commit. 1157 * 1158 * @trans: transaction whose dirty pages we'd like to write 1159 */ 1160 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1161 { 1162 int ret; 1163 int ret2; 1164 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1165 struct btrfs_fs_info *fs_info = trans->fs_info; 1166 struct blk_plug plug; 1167 1168 blk_start_plug(&plug); 1169 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1170 blk_finish_plug(&plug); 1171 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1172 1173 extent_io_tree_release(&trans->transaction->dirty_pages); 1174 1175 if (ret) 1176 return ret; 1177 else if (ret2) 1178 return ret2; 1179 else 1180 return 0; 1181 } 1182 1183 /* 1184 * this is used to update the root pointer in the tree of tree roots. 1185 * 1186 * But, in the case of the extent allocation tree, updating the root 1187 * pointer may allocate blocks which may change the root of the extent 1188 * allocation tree. 1189 * 1190 * So, this loops and repeats and makes sure the cowonly root didn't 1191 * change while the root pointer was being updated in the metadata. 1192 */ 1193 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1194 struct btrfs_root *root) 1195 { 1196 int ret; 1197 u64 old_root_bytenr; 1198 u64 old_root_used; 1199 struct btrfs_fs_info *fs_info = root->fs_info; 1200 struct btrfs_root *tree_root = fs_info->tree_root; 1201 1202 old_root_used = btrfs_root_used(&root->root_item); 1203 1204 while (1) { 1205 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1206 if (old_root_bytenr == root->node->start && 1207 old_root_used == btrfs_root_used(&root->root_item)) 1208 break; 1209 1210 btrfs_set_root_node(&root->root_item, root->node); 1211 ret = btrfs_update_root(trans, tree_root, 1212 &root->root_key, 1213 &root->root_item); 1214 if (ret) 1215 return ret; 1216 1217 old_root_used = btrfs_root_used(&root->root_item); 1218 } 1219 1220 return 0; 1221 } 1222 1223 /* 1224 * update all the cowonly tree roots on disk 1225 * 1226 * The error handling in this function may not be obvious. Any of the 1227 * failures will cause the file system to go offline. We still need 1228 * to clean up the delayed refs. 1229 */ 1230 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1231 { 1232 struct btrfs_fs_info *fs_info = trans->fs_info; 1233 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1234 struct list_head *io_bgs = &trans->transaction->io_bgs; 1235 struct list_head *next; 1236 struct extent_buffer *eb; 1237 int ret; 1238 1239 eb = btrfs_lock_root_node(fs_info->tree_root); 1240 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1241 0, &eb, BTRFS_NESTING_COW); 1242 btrfs_tree_unlock(eb); 1243 free_extent_buffer(eb); 1244 1245 if (ret) 1246 return ret; 1247 1248 ret = btrfs_run_dev_stats(trans); 1249 if (ret) 1250 return ret; 1251 ret = btrfs_run_dev_replace(trans); 1252 if (ret) 1253 return ret; 1254 ret = btrfs_run_qgroups(trans); 1255 if (ret) 1256 return ret; 1257 1258 ret = btrfs_setup_space_cache(trans); 1259 if (ret) 1260 return ret; 1261 1262 again: 1263 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1264 struct btrfs_root *root; 1265 next = fs_info->dirty_cowonly_roots.next; 1266 list_del_init(next); 1267 root = list_entry(next, struct btrfs_root, dirty_list); 1268 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1269 1270 if (root != fs_info->extent_root) 1271 list_add_tail(&root->dirty_list, 1272 &trans->transaction->switch_commits); 1273 ret = update_cowonly_root(trans, root); 1274 if (ret) 1275 return ret; 1276 } 1277 1278 /* Now flush any delayed refs generated by updating all of the roots */ 1279 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1280 if (ret) 1281 return ret; 1282 1283 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1284 ret = btrfs_write_dirty_block_groups(trans); 1285 if (ret) 1286 return ret; 1287 1288 /* 1289 * We're writing the dirty block groups, which could generate 1290 * delayed refs, which could generate more dirty block groups, 1291 * so we want to keep this flushing in this loop to make sure 1292 * everything gets run. 1293 */ 1294 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1295 if (ret) 1296 return ret; 1297 } 1298 1299 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1300 goto again; 1301 1302 list_add_tail(&fs_info->extent_root->dirty_list, 1303 &trans->transaction->switch_commits); 1304 1305 /* Update dev-replace pointer once everything is committed */ 1306 fs_info->dev_replace.committed_cursor_left = 1307 fs_info->dev_replace.cursor_left_last_write_of_item; 1308 1309 return 0; 1310 } 1311 1312 /* 1313 * dead roots are old snapshots that need to be deleted. This allocates 1314 * a dirty root struct and adds it into the list of dead roots that need to 1315 * be deleted 1316 */ 1317 void btrfs_add_dead_root(struct btrfs_root *root) 1318 { 1319 struct btrfs_fs_info *fs_info = root->fs_info; 1320 1321 spin_lock(&fs_info->trans_lock); 1322 if (list_empty(&root->root_list)) { 1323 btrfs_grab_root(root); 1324 list_add_tail(&root->root_list, &fs_info->dead_roots); 1325 } 1326 spin_unlock(&fs_info->trans_lock); 1327 } 1328 1329 /* 1330 * update all the cowonly tree roots on disk 1331 */ 1332 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1333 { 1334 struct btrfs_fs_info *fs_info = trans->fs_info; 1335 struct btrfs_root *gang[8]; 1336 int i; 1337 int ret; 1338 1339 spin_lock(&fs_info->fs_roots_radix_lock); 1340 while (1) { 1341 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1342 (void **)gang, 0, 1343 ARRAY_SIZE(gang), 1344 BTRFS_ROOT_TRANS_TAG); 1345 if (ret == 0) 1346 break; 1347 for (i = 0; i < ret; i++) { 1348 struct btrfs_root *root = gang[i]; 1349 int ret2; 1350 1351 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1352 (unsigned long)root->root_key.objectid, 1353 BTRFS_ROOT_TRANS_TAG); 1354 spin_unlock(&fs_info->fs_roots_radix_lock); 1355 1356 btrfs_free_log(trans, root); 1357 ret2 = btrfs_update_reloc_root(trans, root); 1358 if (ret2) 1359 return ret2; 1360 1361 /* see comments in should_cow_block() */ 1362 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1363 smp_mb__after_atomic(); 1364 1365 if (root->commit_root != root->node) { 1366 list_add_tail(&root->dirty_list, 1367 &trans->transaction->switch_commits); 1368 btrfs_set_root_node(&root->root_item, 1369 root->node); 1370 } 1371 1372 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1373 &root->root_key, 1374 &root->root_item); 1375 if (ret2) 1376 return ret2; 1377 spin_lock(&fs_info->fs_roots_radix_lock); 1378 btrfs_qgroup_free_meta_all_pertrans(root); 1379 } 1380 } 1381 spin_unlock(&fs_info->fs_roots_radix_lock); 1382 return 0; 1383 } 1384 1385 /* 1386 * defrag a given btree. 1387 * Every leaf in the btree is read and defragged. 1388 */ 1389 int btrfs_defrag_root(struct btrfs_root *root) 1390 { 1391 struct btrfs_fs_info *info = root->fs_info; 1392 struct btrfs_trans_handle *trans; 1393 int ret; 1394 1395 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1396 return 0; 1397 1398 while (1) { 1399 trans = btrfs_start_transaction(root, 0); 1400 if (IS_ERR(trans)) { 1401 ret = PTR_ERR(trans); 1402 break; 1403 } 1404 1405 ret = btrfs_defrag_leaves(trans, root); 1406 1407 btrfs_end_transaction(trans); 1408 btrfs_btree_balance_dirty(info); 1409 cond_resched(); 1410 1411 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1412 break; 1413 1414 if (btrfs_defrag_cancelled(info)) { 1415 btrfs_debug(info, "defrag_root cancelled"); 1416 ret = -EAGAIN; 1417 break; 1418 } 1419 } 1420 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1421 return ret; 1422 } 1423 1424 /* 1425 * Do all special snapshot related qgroup dirty hack. 1426 * 1427 * Will do all needed qgroup inherit and dirty hack like switch commit 1428 * roots inside one transaction and write all btree into disk, to make 1429 * qgroup works. 1430 */ 1431 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1432 struct btrfs_root *src, 1433 struct btrfs_root *parent, 1434 struct btrfs_qgroup_inherit *inherit, 1435 u64 dst_objectid) 1436 { 1437 struct btrfs_fs_info *fs_info = src->fs_info; 1438 int ret; 1439 1440 /* 1441 * Save some performance in the case that qgroups are not 1442 * enabled. If this check races with the ioctl, rescan will 1443 * kick in anyway. 1444 */ 1445 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1446 return 0; 1447 1448 /* 1449 * Ensure dirty @src will be committed. Or, after coming 1450 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1451 * recorded root will never be updated again, causing an outdated root 1452 * item. 1453 */ 1454 ret = record_root_in_trans(trans, src, 1); 1455 if (ret) 1456 return ret; 1457 1458 /* 1459 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1460 * src root, so we must run the delayed refs here. 1461 * 1462 * However this isn't particularly fool proof, because there's no 1463 * synchronization keeping us from changing the tree after this point 1464 * before we do the qgroup_inherit, or even from making changes while 1465 * we're doing the qgroup_inherit. But that's a problem for the future, 1466 * for now flush the delayed refs to narrow the race window where the 1467 * qgroup counters could end up wrong. 1468 */ 1469 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1470 if (ret) { 1471 btrfs_abort_transaction(trans, ret); 1472 return ret; 1473 } 1474 1475 /* 1476 * We are going to commit transaction, see btrfs_commit_transaction() 1477 * comment for reason locking tree_log_mutex 1478 */ 1479 mutex_lock(&fs_info->tree_log_mutex); 1480 1481 ret = commit_fs_roots(trans); 1482 if (ret) 1483 goto out; 1484 ret = btrfs_qgroup_account_extents(trans); 1485 if (ret < 0) 1486 goto out; 1487 1488 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1489 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1490 inherit); 1491 if (ret < 0) 1492 goto out; 1493 1494 /* 1495 * Now we do a simplified commit transaction, which will: 1496 * 1) commit all subvolume and extent tree 1497 * To ensure all subvolume and extent tree have a valid 1498 * commit_root to accounting later insert_dir_item() 1499 * 2) write all btree blocks onto disk 1500 * This is to make sure later btree modification will be cowed 1501 * Or commit_root can be populated and cause wrong qgroup numbers 1502 * In this simplified commit, we don't really care about other trees 1503 * like chunk and root tree, as they won't affect qgroup. 1504 * And we don't write super to avoid half committed status. 1505 */ 1506 ret = commit_cowonly_roots(trans); 1507 if (ret) 1508 goto out; 1509 switch_commit_roots(trans); 1510 ret = btrfs_write_and_wait_transaction(trans); 1511 if (ret) 1512 btrfs_handle_fs_error(fs_info, ret, 1513 "Error while writing out transaction for qgroup"); 1514 1515 out: 1516 mutex_unlock(&fs_info->tree_log_mutex); 1517 1518 /* 1519 * Force parent root to be updated, as we recorded it before so its 1520 * last_trans == cur_transid. 1521 * Or it won't be committed again onto disk after later 1522 * insert_dir_item() 1523 */ 1524 if (!ret) 1525 ret = record_root_in_trans(trans, parent, 1); 1526 return ret; 1527 } 1528 1529 /* 1530 * new snapshots need to be created at a very specific time in the 1531 * transaction commit. This does the actual creation. 1532 * 1533 * Note: 1534 * If the error which may affect the commitment of the current transaction 1535 * happens, we should return the error number. If the error which just affect 1536 * the creation of the pending snapshots, just return 0. 1537 */ 1538 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1539 struct btrfs_pending_snapshot *pending) 1540 { 1541 1542 struct btrfs_fs_info *fs_info = trans->fs_info; 1543 struct btrfs_key key; 1544 struct btrfs_root_item *new_root_item; 1545 struct btrfs_root *tree_root = fs_info->tree_root; 1546 struct btrfs_root *root = pending->root; 1547 struct btrfs_root *parent_root; 1548 struct btrfs_block_rsv *rsv; 1549 struct inode *parent_inode; 1550 struct btrfs_path *path; 1551 struct btrfs_dir_item *dir_item; 1552 struct dentry *dentry; 1553 struct extent_buffer *tmp; 1554 struct extent_buffer *old; 1555 struct timespec64 cur_time; 1556 int ret = 0; 1557 u64 to_reserve = 0; 1558 u64 index = 0; 1559 u64 objectid; 1560 u64 root_flags; 1561 1562 ASSERT(pending->path); 1563 path = pending->path; 1564 1565 ASSERT(pending->root_item); 1566 new_root_item = pending->root_item; 1567 1568 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1569 if (pending->error) 1570 goto no_free_objectid; 1571 1572 /* 1573 * Make qgroup to skip current new snapshot's qgroupid, as it is 1574 * accounted by later btrfs_qgroup_inherit(). 1575 */ 1576 btrfs_set_skip_qgroup(trans, objectid); 1577 1578 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1579 1580 if (to_reserve > 0) { 1581 pending->error = btrfs_block_rsv_add(root, 1582 &pending->block_rsv, 1583 to_reserve, 1584 BTRFS_RESERVE_NO_FLUSH); 1585 if (pending->error) 1586 goto clear_skip_qgroup; 1587 } 1588 1589 key.objectid = objectid; 1590 key.offset = (u64)-1; 1591 key.type = BTRFS_ROOT_ITEM_KEY; 1592 1593 rsv = trans->block_rsv; 1594 trans->block_rsv = &pending->block_rsv; 1595 trans->bytes_reserved = trans->block_rsv->reserved; 1596 trace_btrfs_space_reservation(fs_info, "transaction", 1597 trans->transid, 1598 trans->bytes_reserved, 1); 1599 dentry = pending->dentry; 1600 parent_inode = pending->dir; 1601 parent_root = BTRFS_I(parent_inode)->root; 1602 ret = record_root_in_trans(trans, parent_root, 0); 1603 if (ret) 1604 goto fail; 1605 cur_time = current_time(parent_inode); 1606 1607 /* 1608 * insert the directory item 1609 */ 1610 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1611 BUG_ON(ret); /* -ENOMEM */ 1612 1613 /* check if there is a file/dir which has the same name. */ 1614 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1615 btrfs_ino(BTRFS_I(parent_inode)), 1616 dentry->d_name.name, 1617 dentry->d_name.len, 0); 1618 if (dir_item != NULL && !IS_ERR(dir_item)) { 1619 pending->error = -EEXIST; 1620 goto dir_item_existed; 1621 } else if (IS_ERR(dir_item)) { 1622 ret = PTR_ERR(dir_item); 1623 btrfs_abort_transaction(trans, ret); 1624 goto fail; 1625 } 1626 btrfs_release_path(path); 1627 1628 /* 1629 * pull in the delayed directory update 1630 * and the delayed inode item 1631 * otherwise we corrupt the FS during 1632 * snapshot 1633 */ 1634 ret = btrfs_run_delayed_items(trans); 1635 if (ret) { /* Transaction aborted */ 1636 btrfs_abort_transaction(trans, ret); 1637 goto fail; 1638 } 1639 1640 ret = record_root_in_trans(trans, root, 0); 1641 if (ret) { 1642 btrfs_abort_transaction(trans, ret); 1643 goto fail; 1644 } 1645 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1646 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1647 btrfs_check_and_init_root_item(new_root_item); 1648 1649 root_flags = btrfs_root_flags(new_root_item); 1650 if (pending->readonly) 1651 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1652 else 1653 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1654 btrfs_set_root_flags(new_root_item, root_flags); 1655 1656 btrfs_set_root_generation_v2(new_root_item, 1657 trans->transid); 1658 generate_random_guid(new_root_item->uuid); 1659 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1660 BTRFS_UUID_SIZE); 1661 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1662 memset(new_root_item->received_uuid, 0, 1663 sizeof(new_root_item->received_uuid)); 1664 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1665 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1666 btrfs_set_root_stransid(new_root_item, 0); 1667 btrfs_set_root_rtransid(new_root_item, 0); 1668 } 1669 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1670 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1671 btrfs_set_root_otransid(new_root_item, trans->transid); 1672 1673 old = btrfs_lock_root_node(root); 1674 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1675 BTRFS_NESTING_COW); 1676 if (ret) { 1677 btrfs_tree_unlock(old); 1678 free_extent_buffer(old); 1679 btrfs_abort_transaction(trans, ret); 1680 goto fail; 1681 } 1682 1683 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1684 /* clean up in any case */ 1685 btrfs_tree_unlock(old); 1686 free_extent_buffer(old); 1687 if (ret) { 1688 btrfs_abort_transaction(trans, ret); 1689 goto fail; 1690 } 1691 /* see comments in should_cow_block() */ 1692 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1693 smp_wmb(); 1694 1695 btrfs_set_root_node(new_root_item, tmp); 1696 /* record when the snapshot was created in key.offset */ 1697 key.offset = trans->transid; 1698 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1699 btrfs_tree_unlock(tmp); 1700 free_extent_buffer(tmp); 1701 if (ret) { 1702 btrfs_abort_transaction(trans, ret); 1703 goto fail; 1704 } 1705 1706 /* 1707 * insert root back/forward references 1708 */ 1709 ret = btrfs_add_root_ref(trans, objectid, 1710 parent_root->root_key.objectid, 1711 btrfs_ino(BTRFS_I(parent_inode)), index, 1712 dentry->d_name.name, dentry->d_name.len); 1713 if (ret) { 1714 btrfs_abort_transaction(trans, ret); 1715 goto fail; 1716 } 1717 1718 key.offset = (u64)-1; 1719 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1720 if (IS_ERR(pending->snap)) { 1721 ret = PTR_ERR(pending->snap); 1722 pending->snap = NULL; 1723 btrfs_abort_transaction(trans, ret); 1724 goto fail; 1725 } 1726 1727 ret = btrfs_reloc_post_snapshot(trans, pending); 1728 if (ret) { 1729 btrfs_abort_transaction(trans, ret); 1730 goto fail; 1731 } 1732 1733 /* 1734 * Do special qgroup accounting for snapshot, as we do some qgroup 1735 * snapshot hack to do fast snapshot. 1736 * To co-operate with that hack, we do hack again. 1737 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1738 */ 1739 ret = qgroup_account_snapshot(trans, root, parent_root, 1740 pending->inherit, objectid); 1741 if (ret < 0) 1742 goto fail; 1743 1744 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1745 dentry->d_name.len, BTRFS_I(parent_inode), 1746 &key, BTRFS_FT_DIR, index); 1747 /* We have check then name at the beginning, so it is impossible. */ 1748 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1749 if (ret) { 1750 btrfs_abort_transaction(trans, ret); 1751 goto fail; 1752 } 1753 1754 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1755 dentry->d_name.len * 2); 1756 parent_inode->i_mtime = parent_inode->i_ctime = 1757 current_time(parent_inode); 1758 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode)); 1759 if (ret) { 1760 btrfs_abort_transaction(trans, ret); 1761 goto fail; 1762 } 1763 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1764 BTRFS_UUID_KEY_SUBVOL, 1765 objectid); 1766 if (ret) { 1767 btrfs_abort_transaction(trans, ret); 1768 goto fail; 1769 } 1770 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1771 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1772 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1773 objectid); 1774 if (ret && ret != -EEXIST) { 1775 btrfs_abort_transaction(trans, ret); 1776 goto fail; 1777 } 1778 } 1779 1780 fail: 1781 pending->error = ret; 1782 dir_item_existed: 1783 trans->block_rsv = rsv; 1784 trans->bytes_reserved = 0; 1785 clear_skip_qgroup: 1786 btrfs_clear_skip_qgroup(trans); 1787 no_free_objectid: 1788 kfree(new_root_item); 1789 pending->root_item = NULL; 1790 btrfs_free_path(path); 1791 pending->path = NULL; 1792 1793 return ret; 1794 } 1795 1796 /* 1797 * create all the snapshots we've scheduled for creation 1798 */ 1799 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1800 { 1801 struct btrfs_pending_snapshot *pending, *next; 1802 struct list_head *head = &trans->transaction->pending_snapshots; 1803 int ret = 0; 1804 1805 list_for_each_entry_safe(pending, next, head, list) { 1806 list_del(&pending->list); 1807 ret = create_pending_snapshot(trans, pending); 1808 if (ret) 1809 break; 1810 } 1811 return ret; 1812 } 1813 1814 static void update_super_roots(struct btrfs_fs_info *fs_info) 1815 { 1816 struct btrfs_root_item *root_item; 1817 struct btrfs_super_block *super; 1818 1819 super = fs_info->super_copy; 1820 1821 root_item = &fs_info->chunk_root->root_item; 1822 super->chunk_root = root_item->bytenr; 1823 super->chunk_root_generation = root_item->generation; 1824 super->chunk_root_level = root_item->level; 1825 1826 root_item = &fs_info->tree_root->root_item; 1827 super->root = root_item->bytenr; 1828 super->generation = root_item->generation; 1829 super->root_level = root_item->level; 1830 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1831 super->cache_generation = root_item->generation; 1832 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1833 super->cache_generation = 0; 1834 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1835 super->uuid_tree_generation = root_item->generation; 1836 } 1837 1838 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1839 { 1840 struct btrfs_transaction *trans; 1841 int ret = 0; 1842 1843 spin_lock(&info->trans_lock); 1844 trans = info->running_transaction; 1845 if (trans) 1846 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1847 spin_unlock(&info->trans_lock); 1848 return ret; 1849 } 1850 1851 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1852 { 1853 struct btrfs_transaction *trans; 1854 int ret = 0; 1855 1856 spin_lock(&info->trans_lock); 1857 trans = info->running_transaction; 1858 if (trans) 1859 ret = is_transaction_blocked(trans); 1860 spin_unlock(&info->trans_lock); 1861 return ret; 1862 } 1863 1864 /* 1865 * commit transactions asynchronously. once btrfs_commit_transaction_async 1866 * returns, any subsequent transaction will not be allowed to join. 1867 */ 1868 struct btrfs_async_commit { 1869 struct btrfs_trans_handle *newtrans; 1870 struct work_struct work; 1871 }; 1872 1873 static void do_async_commit(struct work_struct *work) 1874 { 1875 struct btrfs_async_commit *ac = 1876 container_of(work, struct btrfs_async_commit, work); 1877 1878 /* 1879 * We've got freeze protection passed with the transaction. 1880 * Tell lockdep about it. 1881 */ 1882 if (ac->newtrans->type & __TRANS_FREEZABLE) 1883 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1884 1885 current->journal_info = ac->newtrans; 1886 1887 btrfs_commit_transaction(ac->newtrans); 1888 kfree(ac); 1889 } 1890 1891 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 1892 { 1893 struct btrfs_fs_info *fs_info = trans->fs_info; 1894 struct btrfs_async_commit *ac; 1895 struct btrfs_transaction *cur_trans; 1896 1897 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1898 if (!ac) 1899 return -ENOMEM; 1900 1901 INIT_WORK(&ac->work, do_async_commit); 1902 ac->newtrans = btrfs_join_transaction(trans->root); 1903 if (IS_ERR(ac->newtrans)) { 1904 int err = PTR_ERR(ac->newtrans); 1905 kfree(ac); 1906 return err; 1907 } 1908 1909 /* take transaction reference */ 1910 cur_trans = trans->transaction; 1911 refcount_inc(&cur_trans->use_count); 1912 1913 btrfs_end_transaction(trans); 1914 1915 /* 1916 * Tell lockdep we've released the freeze rwsem, since the 1917 * async commit thread will be the one to unlock it. 1918 */ 1919 if (ac->newtrans->type & __TRANS_FREEZABLE) 1920 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1921 1922 schedule_work(&ac->work); 1923 /* 1924 * Wait for the current transaction commit to start and block 1925 * subsequent transaction joins 1926 */ 1927 wait_event(fs_info->transaction_blocked_wait, 1928 cur_trans->state >= TRANS_STATE_COMMIT_START || 1929 TRANS_ABORTED(cur_trans)); 1930 if (current->journal_info == trans) 1931 current->journal_info = NULL; 1932 1933 btrfs_put_transaction(cur_trans); 1934 return 0; 1935 } 1936 1937 1938 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1939 { 1940 struct btrfs_fs_info *fs_info = trans->fs_info; 1941 struct btrfs_transaction *cur_trans = trans->transaction; 1942 1943 WARN_ON(refcount_read(&trans->use_count) > 1); 1944 1945 btrfs_abort_transaction(trans, err); 1946 1947 spin_lock(&fs_info->trans_lock); 1948 1949 /* 1950 * If the transaction is removed from the list, it means this 1951 * transaction has been committed successfully, so it is impossible 1952 * to call the cleanup function. 1953 */ 1954 BUG_ON(list_empty(&cur_trans->list)); 1955 1956 if (cur_trans == fs_info->running_transaction) { 1957 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1958 spin_unlock(&fs_info->trans_lock); 1959 wait_event(cur_trans->writer_wait, 1960 atomic_read(&cur_trans->num_writers) == 1); 1961 1962 spin_lock(&fs_info->trans_lock); 1963 } 1964 1965 /* 1966 * Now that we know no one else is still using the transaction we can 1967 * remove the transaction from the list of transactions. This avoids 1968 * the transaction kthread from cleaning up the transaction while some 1969 * other task is still using it, which could result in a use-after-free 1970 * on things like log trees, as it forces the transaction kthread to 1971 * wait for this transaction to be cleaned up by us. 1972 */ 1973 list_del_init(&cur_trans->list); 1974 1975 spin_unlock(&fs_info->trans_lock); 1976 1977 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1978 1979 spin_lock(&fs_info->trans_lock); 1980 if (cur_trans == fs_info->running_transaction) 1981 fs_info->running_transaction = NULL; 1982 spin_unlock(&fs_info->trans_lock); 1983 1984 if (trans->type & __TRANS_FREEZABLE) 1985 sb_end_intwrite(fs_info->sb); 1986 btrfs_put_transaction(cur_trans); 1987 btrfs_put_transaction(cur_trans); 1988 1989 trace_btrfs_transaction_commit(trans->root); 1990 1991 if (current->journal_info == trans) 1992 current->journal_info = NULL; 1993 btrfs_scrub_cancel(fs_info); 1994 1995 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1996 } 1997 1998 /* 1999 * Release reserved delayed ref space of all pending block groups of the 2000 * transaction and remove them from the list 2001 */ 2002 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2003 { 2004 struct btrfs_fs_info *fs_info = trans->fs_info; 2005 struct btrfs_block_group *block_group, *tmp; 2006 2007 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2008 btrfs_delayed_refs_rsv_release(fs_info, 1); 2009 list_del_init(&block_group->bg_list); 2010 } 2011 } 2012 2013 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2014 { 2015 /* 2016 * We use writeback_inodes_sb here because if we used 2017 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2018 * Currently are holding the fs freeze lock, if we do an async flush 2019 * we'll do btrfs_join_transaction() and deadlock because we need to 2020 * wait for the fs freeze lock. Using the direct flushing we benefit 2021 * from already being in a transaction and our join_transaction doesn't 2022 * have to re-take the fs freeze lock. 2023 */ 2024 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2025 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2026 return 0; 2027 } 2028 2029 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2030 { 2031 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2032 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2033 } 2034 2035 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2036 { 2037 struct btrfs_fs_info *fs_info = trans->fs_info; 2038 struct btrfs_transaction *cur_trans = trans->transaction; 2039 struct btrfs_transaction *prev_trans = NULL; 2040 int ret; 2041 2042 ASSERT(refcount_read(&trans->use_count) == 1); 2043 2044 /* Stop the commit early if ->aborted is set */ 2045 if (TRANS_ABORTED(cur_trans)) { 2046 ret = cur_trans->aborted; 2047 btrfs_end_transaction(trans); 2048 return ret; 2049 } 2050 2051 btrfs_trans_release_metadata(trans); 2052 trans->block_rsv = NULL; 2053 2054 /* 2055 * We only want one transaction commit doing the flushing so we do not 2056 * waste a bunch of time on lock contention on the extent root node. 2057 */ 2058 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2059 &cur_trans->delayed_refs.flags)) { 2060 /* 2061 * Make a pass through all the delayed refs we have so far. 2062 * Any running threads may add more while we are here. 2063 */ 2064 ret = btrfs_run_delayed_refs(trans, 0); 2065 if (ret) { 2066 btrfs_end_transaction(trans); 2067 return ret; 2068 } 2069 } 2070 2071 btrfs_create_pending_block_groups(trans); 2072 2073 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2074 int run_it = 0; 2075 2076 /* this mutex is also taken before trying to set 2077 * block groups readonly. We need to make sure 2078 * that nobody has set a block group readonly 2079 * after a extents from that block group have been 2080 * allocated for cache files. btrfs_set_block_group_ro 2081 * will wait for the transaction to commit if it 2082 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2083 * 2084 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2085 * only one process starts all the block group IO. It wouldn't 2086 * hurt to have more than one go through, but there's no 2087 * real advantage to it either. 2088 */ 2089 mutex_lock(&fs_info->ro_block_group_mutex); 2090 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2091 &cur_trans->flags)) 2092 run_it = 1; 2093 mutex_unlock(&fs_info->ro_block_group_mutex); 2094 2095 if (run_it) { 2096 ret = btrfs_start_dirty_block_groups(trans); 2097 if (ret) { 2098 btrfs_end_transaction(trans); 2099 return ret; 2100 } 2101 } 2102 } 2103 2104 spin_lock(&fs_info->trans_lock); 2105 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2106 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2107 2108 spin_unlock(&fs_info->trans_lock); 2109 refcount_inc(&cur_trans->use_count); 2110 2111 if (trans->in_fsync) 2112 want_state = TRANS_STATE_SUPER_COMMITTED; 2113 ret = btrfs_end_transaction(trans); 2114 wait_for_commit(cur_trans, want_state); 2115 2116 if (TRANS_ABORTED(cur_trans)) 2117 ret = cur_trans->aborted; 2118 2119 btrfs_put_transaction(cur_trans); 2120 2121 return ret; 2122 } 2123 2124 cur_trans->state = TRANS_STATE_COMMIT_START; 2125 wake_up(&fs_info->transaction_blocked_wait); 2126 2127 if (cur_trans->list.prev != &fs_info->trans_list) { 2128 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2129 2130 if (trans->in_fsync) 2131 want_state = TRANS_STATE_SUPER_COMMITTED; 2132 2133 prev_trans = list_entry(cur_trans->list.prev, 2134 struct btrfs_transaction, list); 2135 if (prev_trans->state < want_state) { 2136 refcount_inc(&prev_trans->use_count); 2137 spin_unlock(&fs_info->trans_lock); 2138 2139 wait_for_commit(prev_trans, want_state); 2140 2141 ret = READ_ONCE(prev_trans->aborted); 2142 2143 btrfs_put_transaction(prev_trans); 2144 if (ret) 2145 goto cleanup_transaction; 2146 } else { 2147 spin_unlock(&fs_info->trans_lock); 2148 } 2149 } else { 2150 spin_unlock(&fs_info->trans_lock); 2151 /* 2152 * The previous transaction was aborted and was already removed 2153 * from the list of transactions at fs_info->trans_list. So we 2154 * abort to prevent writing a new superblock that reflects a 2155 * corrupt state (pointing to trees with unwritten nodes/leafs). 2156 */ 2157 if (BTRFS_FS_ERROR(fs_info)) { 2158 ret = -EROFS; 2159 goto cleanup_transaction; 2160 } 2161 } 2162 2163 extwriter_counter_dec(cur_trans, trans->type); 2164 2165 ret = btrfs_start_delalloc_flush(fs_info); 2166 if (ret) 2167 goto cleanup_transaction; 2168 2169 ret = btrfs_run_delayed_items(trans); 2170 if (ret) 2171 goto cleanup_transaction; 2172 2173 wait_event(cur_trans->writer_wait, 2174 extwriter_counter_read(cur_trans) == 0); 2175 2176 /* some pending stuffs might be added after the previous flush. */ 2177 ret = btrfs_run_delayed_items(trans); 2178 if (ret) 2179 goto cleanup_transaction; 2180 2181 btrfs_wait_delalloc_flush(fs_info); 2182 2183 /* 2184 * Wait for all ordered extents started by a fast fsync that joined this 2185 * transaction. Otherwise if this transaction commits before the ordered 2186 * extents complete we lose logged data after a power failure. 2187 */ 2188 wait_event(cur_trans->pending_wait, 2189 atomic_read(&cur_trans->pending_ordered) == 0); 2190 2191 btrfs_scrub_pause(fs_info); 2192 /* 2193 * Ok now we need to make sure to block out any other joins while we 2194 * commit the transaction. We could have started a join before setting 2195 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2196 */ 2197 spin_lock(&fs_info->trans_lock); 2198 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2199 spin_unlock(&fs_info->trans_lock); 2200 wait_event(cur_trans->writer_wait, 2201 atomic_read(&cur_trans->num_writers) == 1); 2202 2203 if (TRANS_ABORTED(cur_trans)) { 2204 ret = cur_trans->aborted; 2205 goto scrub_continue; 2206 } 2207 /* 2208 * the reloc mutex makes sure that we stop 2209 * the balancing code from coming in and moving 2210 * extents around in the middle of the commit 2211 */ 2212 mutex_lock(&fs_info->reloc_mutex); 2213 2214 /* 2215 * We needn't worry about the delayed items because we will 2216 * deal with them in create_pending_snapshot(), which is the 2217 * core function of the snapshot creation. 2218 */ 2219 ret = create_pending_snapshots(trans); 2220 if (ret) 2221 goto unlock_reloc; 2222 2223 /* 2224 * We insert the dir indexes of the snapshots and update the inode 2225 * of the snapshots' parents after the snapshot creation, so there 2226 * are some delayed items which are not dealt with. Now deal with 2227 * them. 2228 * 2229 * We needn't worry that this operation will corrupt the snapshots, 2230 * because all the tree which are snapshoted will be forced to COW 2231 * the nodes and leaves. 2232 */ 2233 ret = btrfs_run_delayed_items(trans); 2234 if (ret) 2235 goto unlock_reloc; 2236 2237 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2238 if (ret) 2239 goto unlock_reloc; 2240 2241 /* 2242 * make sure none of the code above managed to slip in a 2243 * delayed item 2244 */ 2245 btrfs_assert_delayed_root_empty(fs_info); 2246 2247 WARN_ON(cur_trans != trans->transaction); 2248 2249 /* btrfs_commit_tree_roots is responsible for getting the 2250 * various roots consistent with each other. Every pointer 2251 * in the tree of tree roots has to point to the most up to date 2252 * root for every subvolume and other tree. So, we have to keep 2253 * the tree logging code from jumping in and changing any 2254 * of the trees. 2255 * 2256 * At this point in the commit, there can't be any tree-log 2257 * writers, but a little lower down we drop the trans mutex 2258 * and let new people in. By holding the tree_log_mutex 2259 * from now until after the super is written, we avoid races 2260 * with the tree-log code. 2261 */ 2262 mutex_lock(&fs_info->tree_log_mutex); 2263 2264 ret = commit_fs_roots(trans); 2265 if (ret) 2266 goto unlock_tree_log; 2267 2268 /* 2269 * Since the transaction is done, we can apply the pending changes 2270 * before the next transaction. 2271 */ 2272 btrfs_apply_pending_changes(fs_info); 2273 2274 /* commit_fs_roots gets rid of all the tree log roots, it is now 2275 * safe to free the root of tree log roots 2276 */ 2277 btrfs_free_log_root_tree(trans, fs_info); 2278 2279 /* 2280 * Since fs roots are all committed, we can get a quite accurate 2281 * new_roots. So let's do quota accounting. 2282 */ 2283 ret = btrfs_qgroup_account_extents(trans); 2284 if (ret < 0) 2285 goto unlock_tree_log; 2286 2287 ret = commit_cowonly_roots(trans); 2288 if (ret) 2289 goto unlock_tree_log; 2290 2291 /* 2292 * The tasks which save the space cache and inode cache may also 2293 * update ->aborted, check it. 2294 */ 2295 if (TRANS_ABORTED(cur_trans)) { 2296 ret = cur_trans->aborted; 2297 goto unlock_tree_log; 2298 } 2299 2300 cur_trans = fs_info->running_transaction; 2301 2302 btrfs_set_root_node(&fs_info->tree_root->root_item, 2303 fs_info->tree_root->node); 2304 list_add_tail(&fs_info->tree_root->dirty_list, 2305 &cur_trans->switch_commits); 2306 2307 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2308 fs_info->chunk_root->node); 2309 list_add_tail(&fs_info->chunk_root->dirty_list, 2310 &cur_trans->switch_commits); 2311 2312 switch_commit_roots(trans); 2313 2314 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2315 ASSERT(list_empty(&cur_trans->io_bgs)); 2316 update_super_roots(fs_info); 2317 2318 btrfs_set_super_log_root(fs_info->super_copy, 0); 2319 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2320 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2321 sizeof(*fs_info->super_copy)); 2322 2323 btrfs_commit_device_sizes(cur_trans); 2324 2325 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2326 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2327 2328 btrfs_trans_release_chunk_metadata(trans); 2329 2330 spin_lock(&fs_info->trans_lock); 2331 cur_trans->state = TRANS_STATE_UNBLOCKED; 2332 fs_info->running_transaction = NULL; 2333 spin_unlock(&fs_info->trans_lock); 2334 mutex_unlock(&fs_info->reloc_mutex); 2335 2336 wake_up(&fs_info->transaction_wait); 2337 2338 ret = btrfs_write_and_wait_transaction(trans); 2339 if (ret) { 2340 btrfs_handle_fs_error(fs_info, ret, 2341 "Error while writing out transaction"); 2342 /* 2343 * reloc_mutex has been unlocked, tree_log_mutex is still held 2344 * but we can't jump to unlock_tree_log causing double unlock 2345 */ 2346 mutex_unlock(&fs_info->tree_log_mutex); 2347 goto scrub_continue; 2348 } 2349 2350 /* 2351 * At this point, we should have written all the tree blocks allocated 2352 * in this transaction. So it's now safe to free the redirtyied extent 2353 * buffers. 2354 */ 2355 btrfs_free_redirty_list(cur_trans); 2356 2357 ret = write_all_supers(fs_info, 0); 2358 /* 2359 * the super is written, we can safely allow the tree-loggers 2360 * to go about their business 2361 */ 2362 mutex_unlock(&fs_info->tree_log_mutex); 2363 if (ret) 2364 goto scrub_continue; 2365 2366 /* 2367 * We needn't acquire the lock here because there is no other task 2368 * which can change it. 2369 */ 2370 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2371 wake_up(&cur_trans->commit_wait); 2372 2373 btrfs_finish_extent_commit(trans); 2374 2375 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2376 btrfs_clear_space_info_full(fs_info); 2377 2378 fs_info->last_trans_committed = cur_trans->transid; 2379 /* 2380 * We needn't acquire the lock here because there is no other task 2381 * which can change it. 2382 */ 2383 cur_trans->state = TRANS_STATE_COMPLETED; 2384 wake_up(&cur_trans->commit_wait); 2385 2386 spin_lock(&fs_info->trans_lock); 2387 list_del_init(&cur_trans->list); 2388 spin_unlock(&fs_info->trans_lock); 2389 2390 btrfs_put_transaction(cur_trans); 2391 btrfs_put_transaction(cur_trans); 2392 2393 if (trans->type & __TRANS_FREEZABLE) 2394 sb_end_intwrite(fs_info->sb); 2395 2396 trace_btrfs_transaction_commit(trans->root); 2397 2398 btrfs_scrub_continue(fs_info); 2399 2400 if (current->journal_info == trans) 2401 current->journal_info = NULL; 2402 2403 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2404 2405 return ret; 2406 2407 unlock_tree_log: 2408 mutex_unlock(&fs_info->tree_log_mutex); 2409 unlock_reloc: 2410 mutex_unlock(&fs_info->reloc_mutex); 2411 scrub_continue: 2412 btrfs_scrub_continue(fs_info); 2413 cleanup_transaction: 2414 btrfs_trans_release_metadata(trans); 2415 btrfs_cleanup_pending_block_groups(trans); 2416 btrfs_trans_release_chunk_metadata(trans); 2417 trans->block_rsv = NULL; 2418 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2419 if (current->journal_info == trans) 2420 current->journal_info = NULL; 2421 cleanup_transaction(trans, ret); 2422 2423 return ret; 2424 } 2425 2426 /* 2427 * return < 0 if error 2428 * 0 if there are no more dead_roots at the time of call 2429 * 1 there are more to be processed, call me again 2430 * 2431 * The return value indicates there are certainly more snapshots to delete, but 2432 * if there comes a new one during processing, it may return 0. We don't mind, 2433 * because btrfs_commit_super will poke cleaner thread and it will process it a 2434 * few seconds later. 2435 */ 2436 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2437 { 2438 int ret; 2439 struct btrfs_fs_info *fs_info = root->fs_info; 2440 2441 spin_lock(&fs_info->trans_lock); 2442 if (list_empty(&fs_info->dead_roots)) { 2443 spin_unlock(&fs_info->trans_lock); 2444 return 0; 2445 } 2446 root = list_first_entry(&fs_info->dead_roots, 2447 struct btrfs_root, root_list); 2448 list_del_init(&root->root_list); 2449 spin_unlock(&fs_info->trans_lock); 2450 2451 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2452 2453 btrfs_kill_all_delayed_nodes(root); 2454 2455 if (btrfs_header_backref_rev(root->node) < 2456 BTRFS_MIXED_BACKREF_REV) 2457 ret = btrfs_drop_snapshot(root, 0, 0); 2458 else 2459 ret = btrfs_drop_snapshot(root, 1, 0); 2460 2461 btrfs_put_root(root); 2462 return (ret < 0) ? 0 : 1; 2463 } 2464 2465 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2466 { 2467 unsigned long prev; 2468 unsigned long bit; 2469 2470 prev = xchg(&fs_info->pending_changes, 0); 2471 if (!prev) 2472 return; 2473 2474 bit = 1 << BTRFS_PENDING_COMMIT; 2475 if (prev & bit) 2476 btrfs_debug(fs_info, "pending commit done"); 2477 prev &= ~bit; 2478 2479 if (prev) 2480 btrfs_warn(fs_info, 2481 "unknown pending changes left 0x%lx, ignoring", prev); 2482 } 2483