1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "locking.h" 17 #include "tree-log.h" 18 #include "inode-map.h" 19 #include "volumes.h" 20 #include "dev-replace.h" 21 #include "qgroup.h" 22 23 #define BTRFS_ROOT_TRANS_TAG 0 24 25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 26 [TRANS_STATE_RUNNING] = 0U, 27 [TRANS_STATE_BLOCKED] = __TRANS_START, 28 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 29 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 30 __TRANS_ATTACH | 31 __TRANS_JOIN), 32 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 33 __TRANS_ATTACH | 34 __TRANS_JOIN | 35 __TRANS_JOIN_NOLOCK), 36 [TRANS_STATE_COMPLETED] = (__TRANS_START | 37 __TRANS_ATTACH | 38 __TRANS_JOIN | 39 __TRANS_JOIN_NOLOCK), 40 }; 41 42 void btrfs_put_transaction(struct btrfs_transaction *transaction) 43 { 44 WARN_ON(refcount_read(&transaction->use_count) == 0); 45 if (refcount_dec_and_test(&transaction->use_count)) { 46 BUG_ON(!list_empty(&transaction->list)); 47 WARN_ON(!RB_EMPTY_ROOT( 48 &transaction->delayed_refs.href_root.rb_root)); 49 if (transaction->delayed_refs.pending_csums) 50 btrfs_err(transaction->fs_info, 51 "pending csums is %llu", 52 transaction->delayed_refs.pending_csums); 53 while (!list_empty(&transaction->pending_chunks)) { 54 struct extent_map *em; 55 56 em = list_first_entry(&transaction->pending_chunks, 57 struct extent_map, list); 58 list_del_init(&em->list); 59 free_extent_map(em); 60 } 61 /* 62 * If any block groups are found in ->deleted_bgs then it's 63 * because the transaction was aborted and a commit did not 64 * happen (things failed before writing the new superblock 65 * and calling btrfs_finish_extent_commit()), so we can not 66 * discard the physical locations of the block groups. 67 */ 68 while (!list_empty(&transaction->deleted_bgs)) { 69 struct btrfs_block_group_cache *cache; 70 71 cache = list_first_entry(&transaction->deleted_bgs, 72 struct btrfs_block_group_cache, 73 bg_list); 74 list_del_init(&cache->bg_list); 75 btrfs_put_block_group_trimming(cache); 76 btrfs_put_block_group(cache); 77 } 78 kfree(transaction); 79 } 80 } 81 82 static void clear_btree_io_tree(struct extent_io_tree *tree) 83 { 84 spin_lock(&tree->lock); 85 /* 86 * Do a single barrier for the waitqueue_active check here, the state 87 * of the waitqueue should not change once clear_btree_io_tree is 88 * called. 89 */ 90 smp_mb(); 91 while (!RB_EMPTY_ROOT(&tree->state)) { 92 struct rb_node *node; 93 struct extent_state *state; 94 95 node = rb_first(&tree->state); 96 state = rb_entry(node, struct extent_state, rb_node); 97 rb_erase(&state->rb_node, &tree->state); 98 RB_CLEAR_NODE(&state->rb_node); 99 /* 100 * btree io trees aren't supposed to have tasks waiting for 101 * changes in the flags of extent states ever. 102 */ 103 ASSERT(!waitqueue_active(&state->wq)); 104 free_extent_state(state); 105 106 cond_resched_lock(&tree->lock); 107 } 108 spin_unlock(&tree->lock); 109 } 110 111 static noinline void switch_commit_roots(struct btrfs_transaction *trans) 112 { 113 struct btrfs_fs_info *fs_info = trans->fs_info; 114 struct btrfs_root *root, *tmp; 115 116 down_write(&fs_info->commit_root_sem); 117 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 118 dirty_list) { 119 list_del_init(&root->dirty_list); 120 free_extent_buffer(root->commit_root); 121 root->commit_root = btrfs_root_node(root); 122 if (is_fstree(root->root_key.objectid)) 123 btrfs_unpin_free_ino(root); 124 clear_btree_io_tree(&root->dirty_log_pages); 125 } 126 127 /* We can free old roots now. */ 128 spin_lock(&trans->dropped_roots_lock); 129 while (!list_empty(&trans->dropped_roots)) { 130 root = list_first_entry(&trans->dropped_roots, 131 struct btrfs_root, root_list); 132 list_del_init(&root->root_list); 133 spin_unlock(&trans->dropped_roots_lock); 134 btrfs_drop_and_free_fs_root(fs_info, root); 135 spin_lock(&trans->dropped_roots_lock); 136 } 137 spin_unlock(&trans->dropped_roots_lock); 138 up_write(&fs_info->commit_root_sem); 139 } 140 141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 142 unsigned int type) 143 { 144 if (type & TRANS_EXTWRITERS) 145 atomic_inc(&trans->num_extwriters); 146 } 147 148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 149 unsigned int type) 150 { 151 if (type & TRANS_EXTWRITERS) 152 atomic_dec(&trans->num_extwriters); 153 } 154 155 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 156 unsigned int type) 157 { 158 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 159 } 160 161 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 162 { 163 return atomic_read(&trans->num_extwriters); 164 } 165 166 /* 167 * either allocate a new transaction or hop into the existing one 168 */ 169 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 170 unsigned int type) 171 { 172 struct btrfs_transaction *cur_trans; 173 174 spin_lock(&fs_info->trans_lock); 175 loop: 176 /* The file system has been taken offline. No new transactions. */ 177 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 178 spin_unlock(&fs_info->trans_lock); 179 return -EROFS; 180 } 181 182 cur_trans = fs_info->running_transaction; 183 if (cur_trans) { 184 if (cur_trans->aborted) { 185 spin_unlock(&fs_info->trans_lock); 186 return cur_trans->aborted; 187 } 188 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 189 spin_unlock(&fs_info->trans_lock); 190 return -EBUSY; 191 } 192 refcount_inc(&cur_trans->use_count); 193 atomic_inc(&cur_trans->num_writers); 194 extwriter_counter_inc(cur_trans, type); 195 spin_unlock(&fs_info->trans_lock); 196 return 0; 197 } 198 spin_unlock(&fs_info->trans_lock); 199 200 /* 201 * If we are ATTACH, we just want to catch the current transaction, 202 * and commit it. If there is no transaction, just return ENOENT. 203 */ 204 if (type == TRANS_ATTACH) 205 return -ENOENT; 206 207 /* 208 * JOIN_NOLOCK only happens during the transaction commit, so 209 * it is impossible that ->running_transaction is NULL 210 */ 211 BUG_ON(type == TRANS_JOIN_NOLOCK); 212 213 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 214 if (!cur_trans) 215 return -ENOMEM; 216 217 spin_lock(&fs_info->trans_lock); 218 if (fs_info->running_transaction) { 219 /* 220 * someone started a transaction after we unlocked. Make sure 221 * to redo the checks above 222 */ 223 kfree(cur_trans); 224 goto loop; 225 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 226 spin_unlock(&fs_info->trans_lock); 227 kfree(cur_trans); 228 return -EROFS; 229 } 230 231 cur_trans->fs_info = fs_info; 232 atomic_set(&cur_trans->num_writers, 1); 233 extwriter_counter_init(cur_trans, type); 234 init_waitqueue_head(&cur_trans->writer_wait); 235 init_waitqueue_head(&cur_trans->commit_wait); 236 cur_trans->state = TRANS_STATE_RUNNING; 237 /* 238 * One for this trans handle, one so it will live on until we 239 * commit the transaction. 240 */ 241 refcount_set(&cur_trans->use_count, 2); 242 cur_trans->flags = 0; 243 cur_trans->start_time = ktime_get_seconds(); 244 245 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 246 247 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 248 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 249 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 250 251 /* 252 * although the tree mod log is per file system and not per transaction, 253 * the log must never go across transaction boundaries. 254 */ 255 smp_mb(); 256 if (!list_empty(&fs_info->tree_mod_seq_list)) 257 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 258 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 259 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 260 atomic64_set(&fs_info->tree_mod_seq, 0); 261 262 spin_lock_init(&cur_trans->delayed_refs.lock); 263 264 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 265 INIT_LIST_HEAD(&cur_trans->pending_chunks); 266 INIT_LIST_HEAD(&cur_trans->switch_commits); 267 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 268 INIT_LIST_HEAD(&cur_trans->io_bgs); 269 INIT_LIST_HEAD(&cur_trans->dropped_roots); 270 mutex_init(&cur_trans->cache_write_mutex); 271 cur_trans->num_dirty_bgs = 0; 272 spin_lock_init(&cur_trans->dirty_bgs_lock); 273 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 274 spin_lock_init(&cur_trans->dropped_roots_lock); 275 list_add_tail(&cur_trans->list, &fs_info->trans_list); 276 extent_io_tree_init(&cur_trans->dirty_pages, 277 fs_info->btree_inode); 278 fs_info->generation++; 279 cur_trans->transid = fs_info->generation; 280 fs_info->running_transaction = cur_trans; 281 cur_trans->aborted = 0; 282 spin_unlock(&fs_info->trans_lock); 283 284 return 0; 285 } 286 287 /* 288 * this does all the record keeping required to make sure that a reference 289 * counted root is properly recorded in a given transaction. This is required 290 * to make sure the old root from before we joined the transaction is deleted 291 * when the transaction commits 292 */ 293 static int record_root_in_trans(struct btrfs_trans_handle *trans, 294 struct btrfs_root *root, 295 int force) 296 { 297 struct btrfs_fs_info *fs_info = root->fs_info; 298 299 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 300 root->last_trans < trans->transid) || force) { 301 WARN_ON(root == fs_info->extent_root); 302 WARN_ON(!force && root->commit_root != root->node); 303 304 /* 305 * see below for IN_TRANS_SETUP usage rules 306 * we have the reloc mutex held now, so there 307 * is only one writer in this function 308 */ 309 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 310 311 /* make sure readers find IN_TRANS_SETUP before 312 * they find our root->last_trans update 313 */ 314 smp_wmb(); 315 316 spin_lock(&fs_info->fs_roots_radix_lock); 317 if (root->last_trans == trans->transid && !force) { 318 spin_unlock(&fs_info->fs_roots_radix_lock); 319 return 0; 320 } 321 radix_tree_tag_set(&fs_info->fs_roots_radix, 322 (unsigned long)root->root_key.objectid, 323 BTRFS_ROOT_TRANS_TAG); 324 spin_unlock(&fs_info->fs_roots_radix_lock); 325 root->last_trans = trans->transid; 326 327 /* this is pretty tricky. We don't want to 328 * take the relocation lock in btrfs_record_root_in_trans 329 * unless we're really doing the first setup for this root in 330 * this transaction. 331 * 332 * Normally we'd use root->last_trans as a flag to decide 333 * if we want to take the expensive mutex. 334 * 335 * But, we have to set root->last_trans before we 336 * init the relocation root, otherwise, we trip over warnings 337 * in ctree.c. The solution used here is to flag ourselves 338 * with root IN_TRANS_SETUP. When this is 1, we're still 339 * fixing up the reloc trees and everyone must wait. 340 * 341 * When this is zero, they can trust root->last_trans and fly 342 * through btrfs_record_root_in_trans without having to take the 343 * lock. smp_wmb() makes sure that all the writes above are 344 * done before we pop in the zero below 345 */ 346 btrfs_init_reloc_root(trans, root); 347 smp_mb__before_atomic(); 348 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 349 } 350 return 0; 351 } 352 353 354 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 355 struct btrfs_root *root) 356 { 357 struct btrfs_fs_info *fs_info = root->fs_info; 358 struct btrfs_transaction *cur_trans = trans->transaction; 359 360 /* Add ourselves to the transaction dropped list */ 361 spin_lock(&cur_trans->dropped_roots_lock); 362 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 363 spin_unlock(&cur_trans->dropped_roots_lock); 364 365 /* Make sure we don't try to update the root at commit time */ 366 spin_lock(&fs_info->fs_roots_radix_lock); 367 radix_tree_tag_clear(&fs_info->fs_roots_radix, 368 (unsigned long)root->root_key.objectid, 369 BTRFS_ROOT_TRANS_TAG); 370 spin_unlock(&fs_info->fs_roots_radix_lock); 371 } 372 373 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 374 struct btrfs_root *root) 375 { 376 struct btrfs_fs_info *fs_info = root->fs_info; 377 378 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 379 return 0; 380 381 /* 382 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 383 * and barriers 384 */ 385 smp_rmb(); 386 if (root->last_trans == trans->transid && 387 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 388 return 0; 389 390 mutex_lock(&fs_info->reloc_mutex); 391 record_root_in_trans(trans, root, 0); 392 mutex_unlock(&fs_info->reloc_mutex); 393 394 return 0; 395 } 396 397 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 398 { 399 return (trans->state >= TRANS_STATE_BLOCKED && 400 trans->state < TRANS_STATE_UNBLOCKED && 401 !trans->aborted); 402 } 403 404 /* wait for commit against the current transaction to become unblocked 405 * when this is done, it is safe to start a new transaction, but the current 406 * transaction might not be fully on disk. 407 */ 408 static void wait_current_trans(struct btrfs_fs_info *fs_info) 409 { 410 struct btrfs_transaction *cur_trans; 411 412 spin_lock(&fs_info->trans_lock); 413 cur_trans = fs_info->running_transaction; 414 if (cur_trans && is_transaction_blocked(cur_trans)) { 415 refcount_inc(&cur_trans->use_count); 416 spin_unlock(&fs_info->trans_lock); 417 418 wait_event(fs_info->transaction_wait, 419 cur_trans->state >= TRANS_STATE_UNBLOCKED || 420 cur_trans->aborted); 421 btrfs_put_transaction(cur_trans); 422 } else { 423 spin_unlock(&fs_info->trans_lock); 424 } 425 } 426 427 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 428 { 429 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 430 return 0; 431 432 if (type == TRANS_START) 433 return 1; 434 435 return 0; 436 } 437 438 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 439 { 440 struct btrfs_fs_info *fs_info = root->fs_info; 441 442 if (!fs_info->reloc_ctl || 443 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 444 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 445 root->reloc_root) 446 return false; 447 448 return true; 449 } 450 451 static struct btrfs_trans_handle * 452 start_transaction(struct btrfs_root *root, unsigned int num_items, 453 unsigned int type, enum btrfs_reserve_flush_enum flush, 454 bool enforce_qgroups) 455 { 456 struct btrfs_fs_info *fs_info = root->fs_info; 457 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 458 struct btrfs_trans_handle *h; 459 struct btrfs_transaction *cur_trans; 460 u64 num_bytes = 0; 461 u64 qgroup_reserved = 0; 462 bool reloc_reserved = false; 463 int ret; 464 465 /* Send isn't supposed to start transactions. */ 466 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 467 468 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 469 return ERR_PTR(-EROFS); 470 471 if (current->journal_info) { 472 WARN_ON(type & TRANS_EXTWRITERS); 473 h = current->journal_info; 474 refcount_inc(&h->use_count); 475 WARN_ON(refcount_read(&h->use_count) > 2); 476 h->orig_rsv = h->block_rsv; 477 h->block_rsv = NULL; 478 goto got_it; 479 } 480 481 /* 482 * Do the reservation before we join the transaction so we can do all 483 * the appropriate flushing if need be. 484 */ 485 if (num_items && root != fs_info->chunk_root) { 486 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 487 u64 delayed_refs_bytes = 0; 488 489 qgroup_reserved = num_items * fs_info->nodesize; 490 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 491 enforce_qgroups); 492 if (ret) 493 return ERR_PTR(ret); 494 495 /* 496 * We want to reserve all the bytes we may need all at once, so 497 * we only do 1 enospc flushing cycle per transaction start. We 498 * accomplish this by simply assuming we'll do 2 x num_items 499 * worth of delayed refs updates in this trans handle, and 500 * refill that amount for whatever is missing in the reserve. 501 */ 502 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 503 if (delayed_refs_rsv->full == 0) { 504 delayed_refs_bytes = num_bytes; 505 num_bytes <<= 1; 506 } 507 508 /* 509 * Do the reservation for the relocation root creation 510 */ 511 if (need_reserve_reloc_root(root)) { 512 num_bytes += fs_info->nodesize; 513 reloc_reserved = true; 514 } 515 516 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 517 if (ret) 518 goto reserve_fail; 519 if (delayed_refs_bytes) { 520 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 521 delayed_refs_bytes); 522 num_bytes -= delayed_refs_bytes; 523 } 524 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 525 !delayed_refs_rsv->full) { 526 /* 527 * Some people call with btrfs_start_transaction(root, 0) 528 * because they can be throttled, but have some other mechanism 529 * for reserving space. We still want these guys to refill the 530 * delayed block_rsv so just add 1 items worth of reservation 531 * here. 532 */ 533 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 534 if (ret) 535 goto reserve_fail; 536 } 537 again: 538 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 539 if (!h) { 540 ret = -ENOMEM; 541 goto alloc_fail; 542 } 543 544 /* 545 * If we are JOIN_NOLOCK we're already committing a transaction and 546 * waiting on this guy, so we don't need to do the sb_start_intwrite 547 * because we're already holding a ref. We need this because we could 548 * have raced in and did an fsync() on a file which can kick a commit 549 * and then we deadlock with somebody doing a freeze. 550 * 551 * If we are ATTACH, it means we just want to catch the current 552 * transaction and commit it, so we needn't do sb_start_intwrite(). 553 */ 554 if (type & __TRANS_FREEZABLE) 555 sb_start_intwrite(fs_info->sb); 556 557 if (may_wait_transaction(fs_info, type)) 558 wait_current_trans(fs_info); 559 560 do { 561 ret = join_transaction(fs_info, type); 562 if (ret == -EBUSY) { 563 wait_current_trans(fs_info); 564 if (unlikely(type == TRANS_ATTACH)) 565 ret = -ENOENT; 566 } 567 } while (ret == -EBUSY); 568 569 if (ret < 0) 570 goto join_fail; 571 572 cur_trans = fs_info->running_transaction; 573 574 h->transid = cur_trans->transid; 575 h->transaction = cur_trans; 576 h->root = root; 577 refcount_set(&h->use_count, 1); 578 h->fs_info = root->fs_info; 579 580 h->type = type; 581 h->can_flush_pending_bgs = true; 582 INIT_LIST_HEAD(&h->new_bgs); 583 584 smp_mb(); 585 if (cur_trans->state >= TRANS_STATE_BLOCKED && 586 may_wait_transaction(fs_info, type)) { 587 current->journal_info = h; 588 btrfs_commit_transaction(h); 589 goto again; 590 } 591 592 if (num_bytes) { 593 trace_btrfs_space_reservation(fs_info, "transaction", 594 h->transid, num_bytes, 1); 595 h->block_rsv = &fs_info->trans_block_rsv; 596 h->bytes_reserved = num_bytes; 597 h->reloc_reserved = reloc_reserved; 598 } 599 600 got_it: 601 btrfs_record_root_in_trans(h, root); 602 603 if (!current->journal_info) 604 current->journal_info = h; 605 return h; 606 607 join_fail: 608 if (type & __TRANS_FREEZABLE) 609 sb_end_intwrite(fs_info->sb); 610 kmem_cache_free(btrfs_trans_handle_cachep, h); 611 alloc_fail: 612 if (num_bytes) 613 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 614 num_bytes); 615 reserve_fail: 616 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 617 return ERR_PTR(ret); 618 } 619 620 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 621 unsigned int num_items) 622 { 623 return start_transaction(root, num_items, TRANS_START, 624 BTRFS_RESERVE_FLUSH_ALL, true); 625 } 626 627 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 628 struct btrfs_root *root, 629 unsigned int num_items, 630 int min_factor) 631 { 632 struct btrfs_fs_info *fs_info = root->fs_info; 633 struct btrfs_trans_handle *trans; 634 u64 num_bytes; 635 int ret; 636 637 /* 638 * We have two callers: unlink and block group removal. The 639 * former should succeed even if we will temporarily exceed 640 * quota and the latter operates on the extent root so 641 * qgroup enforcement is ignored anyway. 642 */ 643 trans = start_transaction(root, num_items, TRANS_START, 644 BTRFS_RESERVE_FLUSH_ALL, false); 645 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 646 return trans; 647 648 trans = btrfs_start_transaction(root, 0); 649 if (IS_ERR(trans)) 650 return trans; 651 652 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 653 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv, 654 num_bytes, min_factor); 655 if (ret) { 656 btrfs_end_transaction(trans); 657 return ERR_PTR(ret); 658 } 659 660 trans->block_rsv = &fs_info->trans_block_rsv; 661 trans->bytes_reserved = num_bytes; 662 trace_btrfs_space_reservation(fs_info, "transaction", 663 trans->transid, num_bytes, 1); 664 665 return trans; 666 } 667 668 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 669 { 670 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 671 true); 672 } 673 674 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 675 { 676 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 677 BTRFS_RESERVE_NO_FLUSH, true); 678 } 679 680 /* 681 * btrfs_attach_transaction() - catch the running transaction 682 * 683 * It is used when we want to commit the current the transaction, but 684 * don't want to start a new one. 685 * 686 * Note: If this function return -ENOENT, it just means there is no 687 * running transaction. But it is possible that the inactive transaction 688 * is still in the memory, not fully on disk. If you hope there is no 689 * inactive transaction in the fs when -ENOENT is returned, you should 690 * invoke 691 * btrfs_attach_transaction_barrier() 692 */ 693 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 694 { 695 return start_transaction(root, 0, TRANS_ATTACH, 696 BTRFS_RESERVE_NO_FLUSH, true); 697 } 698 699 /* 700 * btrfs_attach_transaction_barrier() - catch the running transaction 701 * 702 * It is similar to the above function, the difference is this one 703 * will wait for all the inactive transactions until they fully 704 * complete. 705 */ 706 struct btrfs_trans_handle * 707 btrfs_attach_transaction_barrier(struct btrfs_root *root) 708 { 709 struct btrfs_trans_handle *trans; 710 711 trans = start_transaction(root, 0, TRANS_ATTACH, 712 BTRFS_RESERVE_NO_FLUSH, true); 713 if (trans == ERR_PTR(-ENOENT)) 714 btrfs_wait_for_commit(root->fs_info, 0); 715 716 return trans; 717 } 718 719 /* wait for a transaction commit to be fully complete */ 720 static noinline void wait_for_commit(struct btrfs_transaction *commit) 721 { 722 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 723 } 724 725 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 726 { 727 struct btrfs_transaction *cur_trans = NULL, *t; 728 int ret = 0; 729 730 if (transid) { 731 if (transid <= fs_info->last_trans_committed) 732 goto out; 733 734 /* find specified transaction */ 735 spin_lock(&fs_info->trans_lock); 736 list_for_each_entry(t, &fs_info->trans_list, list) { 737 if (t->transid == transid) { 738 cur_trans = t; 739 refcount_inc(&cur_trans->use_count); 740 ret = 0; 741 break; 742 } 743 if (t->transid > transid) { 744 ret = 0; 745 break; 746 } 747 } 748 spin_unlock(&fs_info->trans_lock); 749 750 /* 751 * The specified transaction doesn't exist, or we 752 * raced with btrfs_commit_transaction 753 */ 754 if (!cur_trans) { 755 if (transid > fs_info->last_trans_committed) 756 ret = -EINVAL; 757 goto out; 758 } 759 } else { 760 /* find newest transaction that is committing | committed */ 761 spin_lock(&fs_info->trans_lock); 762 list_for_each_entry_reverse(t, &fs_info->trans_list, 763 list) { 764 if (t->state >= TRANS_STATE_COMMIT_START) { 765 if (t->state == TRANS_STATE_COMPLETED) 766 break; 767 cur_trans = t; 768 refcount_inc(&cur_trans->use_count); 769 break; 770 } 771 } 772 spin_unlock(&fs_info->trans_lock); 773 if (!cur_trans) 774 goto out; /* nothing committing|committed */ 775 } 776 777 wait_for_commit(cur_trans); 778 btrfs_put_transaction(cur_trans); 779 out: 780 return ret; 781 } 782 783 void btrfs_throttle(struct btrfs_fs_info *fs_info) 784 { 785 wait_current_trans(fs_info); 786 } 787 788 static int should_end_transaction(struct btrfs_trans_handle *trans) 789 { 790 struct btrfs_fs_info *fs_info = trans->fs_info; 791 792 if (btrfs_check_space_for_delayed_refs(fs_info)) 793 return 1; 794 795 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 796 } 797 798 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 799 { 800 struct btrfs_transaction *cur_trans = trans->transaction; 801 802 smp_mb(); 803 if (cur_trans->state >= TRANS_STATE_BLOCKED || 804 cur_trans->delayed_refs.flushing) 805 return 1; 806 807 return should_end_transaction(trans); 808 } 809 810 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 811 812 { 813 struct btrfs_fs_info *fs_info = trans->fs_info; 814 815 if (!trans->block_rsv) { 816 ASSERT(!trans->bytes_reserved); 817 return; 818 } 819 820 if (!trans->bytes_reserved) 821 return; 822 823 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 824 trace_btrfs_space_reservation(fs_info, "transaction", 825 trans->transid, trans->bytes_reserved, 0); 826 btrfs_block_rsv_release(fs_info, trans->block_rsv, 827 trans->bytes_reserved); 828 trans->bytes_reserved = 0; 829 } 830 831 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 832 int throttle) 833 { 834 struct btrfs_fs_info *info = trans->fs_info; 835 struct btrfs_transaction *cur_trans = trans->transaction; 836 int lock = (trans->type != TRANS_JOIN_NOLOCK); 837 int err = 0; 838 839 if (refcount_read(&trans->use_count) > 1) { 840 refcount_dec(&trans->use_count); 841 trans->block_rsv = trans->orig_rsv; 842 return 0; 843 } 844 845 btrfs_trans_release_metadata(trans); 846 trans->block_rsv = NULL; 847 848 if (!list_empty(&trans->new_bgs)) 849 btrfs_create_pending_block_groups(trans); 850 851 btrfs_trans_release_chunk_metadata(trans); 852 853 if (lock && should_end_transaction(trans) && 854 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 855 spin_lock(&info->trans_lock); 856 if (cur_trans->state == TRANS_STATE_RUNNING) 857 cur_trans->state = TRANS_STATE_BLOCKED; 858 spin_unlock(&info->trans_lock); 859 } 860 861 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 862 if (throttle) 863 return btrfs_commit_transaction(trans); 864 else 865 wake_up_process(info->transaction_kthread); 866 } 867 868 if (trans->type & __TRANS_FREEZABLE) 869 sb_end_intwrite(info->sb); 870 871 WARN_ON(cur_trans != info->running_transaction); 872 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 873 atomic_dec(&cur_trans->num_writers); 874 extwriter_counter_dec(cur_trans, trans->type); 875 876 cond_wake_up(&cur_trans->writer_wait); 877 btrfs_put_transaction(cur_trans); 878 879 if (current->journal_info == trans) 880 current->journal_info = NULL; 881 882 if (throttle) 883 btrfs_run_delayed_iputs(info); 884 885 if (trans->aborted || 886 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 887 wake_up_process(info->transaction_kthread); 888 err = -EIO; 889 } 890 891 kmem_cache_free(btrfs_trans_handle_cachep, trans); 892 return err; 893 } 894 895 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 896 { 897 return __btrfs_end_transaction(trans, 0); 898 } 899 900 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 901 { 902 return __btrfs_end_transaction(trans, 1); 903 } 904 905 /* 906 * when btree blocks are allocated, they have some corresponding bits set for 907 * them in one of two extent_io trees. This is used to make sure all of 908 * those extents are sent to disk but does not wait on them 909 */ 910 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 911 struct extent_io_tree *dirty_pages, int mark) 912 { 913 int err = 0; 914 int werr = 0; 915 struct address_space *mapping = fs_info->btree_inode->i_mapping; 916 struct extent_state *cached_state = NULL; 917 u64 start = 0; 918 u64 end; 919 920 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 921 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 922 mark, &cached_state)) { 923 bool wait_writeback = false; 924 925 err = convert_extent_bit(dirty_pages, start, end, 926 EXTENT_NEED_WAIT, 927 mark, &cached_state); 928 /* 929 * convert_extent_bit can return -ENOMEM, which is most of the 930 * time a temporary error. So when it happens, ignore the error 931 * and wait for writeback of this range to finish - because we 932 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 933 * to __btrfs_wait_marked_extents() would not know that 934 * writeback for this range started and therefore wouldn't 935 * wait for it to finish - we don't want to commit a 936 * superblock that points to btree nodes/leafs for which 937 * writeback hasn't finished yet (and without errors). 938 * We cleanup any entries left in the io tree when committing 939 * the transaction (through clear_btree_io_tree()). 940 */ 941 if (err == -ENOMEM) { 942 err = 0; 943 wait_writeback = true; 944 } 945 if (!err) 946 err = filemap_fdatawrite_range(mapping, start, end); 947 if (err) 948 werr = err; 949 else if (wait_writeback) 950 werr = filemap_fdatawait_range(mapping, start, end); 951 free_extent_state(cached_state); 952 cached_state = NULL; 953 cond_resched(); 954 start = end + 1; 955 } 956 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 957 return werr; 958 } 959 960 /* 961 * when btree blocks are allocated, they have some corresponding bits set for 962 * them in one of two extent_io trees. This is used to make sure all of 963 * those extents are on disk for transaction or log commit. We wait 964 * on all the pages and clear them from the dirty pages state tree 965 */ 966 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 967 struct extent_io_tree *dirty_pages) 968 { 969 int err = 0; 970 int werr = 0; 971 struct address_space *mapping = fs_info->btree_inode->i_mapping; 972 struct extent_state *cached_state = NULL; 973 u64 start = 0; 974 u64 end; 975 976 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 977 EXTENT_NEED_WAIT, &cached_state)) { 978 /* 979 * Ignore -ENOMEM errors returned by clear_extent_bit(). 980 * When committing the transaction, we'll remove any entries 981 * left in the io tree. For a log commit, we don't remove them 982 * after committing the log because the tree can be accessed 983 * concurrently - we do it only at transaction commit time when 984 * it's safe to do it (through clear_btree_io_tree()). 985 */ 986 err = clear_extent_bit(dirty_pages, start, end, 987 EXTENT_NEED_WAIT, 0, 0, &cached_state); 988 if (err == -ENOMEM) 989 err = 0; 990 if (!err) 991 err = filemap_fdatawait_range(mapping, start, end); 992 if (err) 993 werr = err; 994 free_extent_state(cached_state); 995 cached_state = NULL; 996 cond_resched(); 997 start = end + 1; 998 } 999 if (err) 1000 werr = err; 1001 return werr; 1002 } 1003 1004 int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1005 struct extent_io_tree *dirty_pages) 1006 { 1007 bool errors = false; 1008 int err; 1009 1010 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1011 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1012 errors = true; 1013 1014 if (errors && !err) 1015 err = -EIO; 1016 return err; 1017 } 1018 1019 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1020 { 1021 struct btrfs_fs_info *fs_info = log_root->fs_info; 1022 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1023 bool errors = false; 1024 int err; 1025 1026 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1027 1028 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1029 if ((mark & EXTENT_DIRTY) && 1030 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1031 errors = true; 1032 1033 if ((mark & EXTENT_NEW) && 1034 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1035 errors = true; 1036 1037 if (errors && !err) 1038 err = -EIO; 1039 return err; 1040 } 1041 1042 /* 1043 * When btree blocks are allocated the corresponding extents are marked dirty. 1044 * This function ensures such extents are persisted on disk for transaction or 1045 * log commit. 1046 * 1047 * @trans: transaction whose dirty pages we'd like to write 1048 */ 1049 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1050 { 1051 int ret; 1052 int ret2; 1053 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1054 struct btrfs_fs_info *fs_info = trans->fs_info; 1055 struct blk_plug plug; 1056 1057 blk_start_plug(&plug); 1058 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1059 blk_finish_plug(&plug); 1060 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1061 1062 clear_btree_io_tree(&trans->transaction->dirty_pages); 1063 1064 if (ret) 1065 return ret; 1066 else if (ret2) 1067 return ret2; 1068 else 1069 return 0; 1070 } 1071 1072 /* 1073 * this is used to update the root pointer in the tree of tree roots. 1074 * 1075 * But, in the case of the extent allocation tree, updating the root 1076 * pointer may allocate blocks which may change the root of the extent 1077 * allocation tree. 1078 * 1079 * So, this loops and repeats and makes sure the cowonly root didn't 1080 * change while the root pointer was being updated in the metadata. 1081 */ 1082 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1083 struct btrfs_root *root) 1084 { 1085 int ret; 1086 u64 old_root_bytenr; 1087 u64 old_root_used; 1088 struct btrfs_fs_info *fs_info = root->fs_info; 1089 struct btrfs_root *tree_root = fs_info->tree_root; 1090 1091 old_root_used = btrfs_root_used(&root->root_item); 1092 1093 while (1) { 1094 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1095 if (old_root_bytenr == root->node->start && 1096 old_root_used == btrfs_root_used(&root->root_item)) 1097 break; 1098 1099 btrfs_set_root_node(&root->root_item, root->node); 1100 ret = btrfs_update_root(trans, tree_root, 1101 &root->root_key, 1102 &root->root_item); 1103 if (ret) 1104 return ret; 1105 1106 old_root_used = btrfs_root_used(&root->root_item); 1107 } 1108 1109 return 0; 1110 } 1111 1112 /* 1113 * update all the cowonly tree roots on disk 1114 * 1115 * The error handling in this function may not be obvious. Any of the 1116 * failures will cause the file system to go offline. We still need 1117 * to clean up the delayed refs. 1118 */ 1119 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1120 { 1121 struct btrfs_fs_info *fs_info = trans->fs_info; 1122 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1123 struct list_head *io_bgs = &trans->transaction->io_bgs; 1124 struct list_head *next; 1125 struct extent_buffer *eb; 1126 int ret; 1127 1128 eb = btrfs_lock_root_node(fs_info->tree_root); 1129 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1130 0, &eb); 1131 btrfs_tree_unlock(eb); 1132 free_extent_buffer(eb); 1133 1134 if (ret) 1135 return ret; 1136 1137 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1138 if (ret) 1139 return ret; 1140 1141 ret = btrfs_run_dev_stats(trans, fs_info); 1142 if (ret) 1143 return ret; 1144 ret = btrfs_run_dev_replace(trans, fs_info); 1145 if (ret) 1146 return ret; 1147 ret = btrfs_run_qgroups(trans); 1148 if (ret) 1149 return ret; 1150 1151 ret = btrfs_setup_space_cache(trans, fs_info); 1152 if (ret) 1153 return ret; 1154 1155 /* run_qgroups might have added some more refs */ 1156 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1157 if (ret) 1158 return ret; 1159 again: 1160 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1161 struct btrfs_root *root; 1162 next = fs_info->dirty_cowonly_roots.next; 1163 list_del_init(next); 1164 root = list_entry(next, struct btrfs_root, dirty_list); 1165 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1166 1167 if (root != fs_info->extent_root) 1168 list_add_tail(&root->dirty_list, 1169 &trans->transaction->switch_commits); 1170 ret = update_cowonly_root(trans, root); 1171 if (ret) 1172 return ret; 1173 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1174 if (ret) 1175 return ret; 1176 } 1177 1178 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1179 ret = btrfs_write_dirty_block_groups(trans, fs_info); 1180 if (ret) 1181 return ret; 1182 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1183 if (ret) 1184 return ret; 1185 } 1186 1187 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1188 goto again; 1189 1190 list_add_tail(&fs_info->extent_root->dirty_list, 1191 &trans->transaction->switch_commits); 1192 1193 /* Update dev-replace pointer once everything is committed */ 1194 fs_info->dev_replace.committed_cursor_left = 1195 fs_info->dev_replace.cursor_left_last_write_of_item; 1196 1197 return 0; 1198 } 1199 1200 /* 1201 * dead roots are old snapshots that need to be deleted. This allocates 1202 * a dirty root struct and adds it into the list of dead roots that need to 1203 * be deleted 1204 */ 1205 void btrfs_add_dead_root(struct btrfs_root *root) 1206 { 1207 struct btrfs_fs_info *fs_info = root->fs_info; 1208 1209 spin_lock(&fs_info->trans_lock); 1210 if (list_empty(&root->root_list)) 1211 list_add_tail(&root->root_list, &fs_info->dead_roots); 1212 spin_unlock(&fs_info->trans_lock); 1213 } 1214 1215 /* 1216 * update all the cowonly tree roots on disk 1217 */ 1218 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1219 { 1220 struct btrfs_fs_info *fs_info = trans->fs_info; 1221 struct btrfs_root *gang[8]; 1222 int i; 1223 int ret; 1224 int err = 0; 1225 1226 spin_lock(&fs_info->fs_roots_radix_lock); 1227 while (1) { 1228 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1229 (void **)gang, 0, 1230 ARRAY_SIZE(gang), 1231 BTRFS_ROOT_TRANS_TAG); 1232 if (ret == 0) 1233 break; 1234 for (i = 0; i < ret; i++) { 1235 struct btrfs_root *root = gang[i]; 1236 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1237 (unsigned long)root->root_key.objectid, 1238 BTRFS_ROOT_TRANS_TAG); 1239 spin_unlock(&fs_info->fs_roots_radix_lock); 1240 1241 btrfs_free_log(trans, root); 1242 btrfs_update_reloc_root(trans, root); 1243 1244 btrfs_save_ino_cache(root, trans); 1245 1246 /* see comments in should_cow_block() */ 1247 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1248 smp_mb__after_atomic(); 1249 1250 if (root->commit_root != root->node) { 1251 list_add_tail(&root->dirty_list, 1252 &trans->transaction->switch_commits); 1253 btrfs_set_root_node(&root->root_item, 1254 root->node); 1255 } 1256 1257 err = btrfs_update_root(trans, fs_info->tree_root, 1258 &root->root_key, 1259 &root->root_item); 1260 spin_lock(&fs_info->fs_roots_radix_lock); 1261 if (err) 1262 break; 1263 btrfs_qgroup_free_meta_all_pertrans(root); 1264 } 1265 } 1266 spin_unlock(&fs_info->fs_roots_radix_lock); 1267 return err; 1268 } 1269 1270 /* 1271 * defrag a given btree. 1272 * Every leaf in the btree is read and defragged. 1273 */ 1274 int btrfs_defrag_root(struct btrfs_root *root) 1275 { 1276 struct btrfs_fs_info *info = root->fs_info; 1277 struct btrfs_trans_handle *trans; 1278 int ret; 1279 1280 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1281 return 0; 1282 1283 while (1) { 1284 trans = btrfs_start_transaction(root, 0); 1285 if (IS_ERR(trans)) 1286 return PTR_ERR(trans); 1287 1288 ret = btrfs_defrag_leaves(trans, root); 1289 1290 btrfs_end_transaction(trans); 1291 btrfs_btree_balance_dirty(info); 1292 cond_resched(); 1293 1294 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1295 break; 1296 1297 if (btrfs_defrag_cancelled(info)) { 1298 btrfs_debug(info, "defrag_root cancelled"); 1299 ret = -EAGAIN; 1300 break; 1301 } 1302 } 1303 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1304 return ret; 1305 } 1306 1307 /* 1308 * Do all special snapshot related qgroup dirty hack. 1309 * 1310 * Will do all needed qgroup inherit and dirty hack like switch commit 1311 * roots inside one transaction and write all btree into disk, to make 1312 * qgroup works. 1313 */ 1314 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1315 struct btrfs_root *src, 1316 struct btrfs_root *parent, 1317 struct btrfs_qgroup_inherit *inherit, 1318 u64 dst_objectid) 1319 { 1320 struct btrfs_fs_info *fs_info = src->fs_info; 1321 int ret; 1322 1323 /* 1324 * Save some performance in the case that qgroups are not 1325 * enabled. If this check races with the ioctl, rescan will 1326 * kick in anyway. 1327 */ 1328 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1329 return 0; 1330 1331 /* 1332 * Ensure dirty @src will be committed. Or, after coming 1333 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1334 * recorded root will never be updated again, causing an outdated root 1335 * item. 1336 */ 1337 record_root_in_trans(trans, src, 1); 1338 1339 /* 1340 * We are going to commit transaction, see btrfs_commit_transaction() 1341 * comment for reason locking tree_log_mutex 1342 */ 1343 mutex_lock(&fs_info->tree_log_mutex); 1344 1345 ret = commit_fs_roots(trans); 1346 if (ret) 1347 goto out; 1348 ret = btrfs_qgroup_account_extents(trans); 1349 if (ret < 0) 1350 goto out; 1351 1352 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1353 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1354 inherit); 1355 if (ret < 0) 1356 goto out; 1357 1358 /* 1359 * Now we do a simplified commit transaction, which will: 1360 * 1) commit all subvolume and extent tree 1361 * To ensure all subvolume and extent tree have a valid 1362 * commit_root to accounting later insert_dir_item() 1363 * 2) write all btree blocks onto disk 1364 * This is to make sure later btree modification will be cowed 1365 * Or commit_root can be populated and cause wrong qgroup numbers 1366 * In this simplified commit, we don't really care about other trees 1367 * like chunk and root tree, as they won't affect qgroup. 1368 * And we don't write super to avoid half committed status. 1369 */ 1370 ret = commit_cowonly_roots(trans); 1371 if (ret) 1372 goto out; 1373 switch_commit_roots(trans->transaction); 1374 ret = btrfs_write_and_wait_transaction(trans); 1375 if (ret) 1376 btrfs_handle_fs_error(fs_info, ret, 1377 "Error while writing out transaction for qgroup"); 1378 1379 out: 1380 mutex_unlock(&fs_info->tree_log_mutex); 1381 1382 /* 1383 * Force parent root to be updated, as we recorded it before so its 1384 * last_trans == cur_transid. 1385 * Or it won't be committed again onto disk after later 1386 * insert_dir_item() 1387 */ 1388 if (!ret) 1389 record_root_in_trans(trans, parent, 1); 1390 return ret; 1391 } 1392 1393 /* 1394 * new snapshots need to be created at a very specific time in the 1395 * transaction commit. This does the actual creation. 1396 * 1397 * Note: 1398 * If the error which may affect the commitment of the current transaction 1399 * happens, we should return the error number. If the error which just affect 1400 * the creation of the pending snapshots, just return 0. 1401 */ 1402 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1403 struct btrfs_pending_snapshot *pending) 1404 { 1405 1406 struct btrfs_fs_info *fs_info = trans->fs_info; 1407 struct btrfs_key key; 1408 struct btrfs_root_item *new_root_item; 1409 struct btrfs_root *tree_root = fs_info->tree_root; 1410 struct btrfs_root *root = pending->root; 1411 struct btrfs_root *parent_root; 1412 struct btrfs_block_rsv *rsv; 1413 struct inode *parent_inode; 1414 struct btrfs_path *path; 1415 struct btrfs_dir_item *dir_item; 1416 struct dentry *dentry; 1417 struct extent_buffer *tmp; 1418 struct extent_buffer *old; 1419 struct timespec64 cur_time; 1420 int ret = 0; 1421 u64 to_reserve = 0; 1422 u64 index = 0; 1423 u64 objectid; 1424 u64 root_flags; 1425 uuid_le new_uuid; 1426 1427 ASSERT(pending->path); 1428 path = pending->path; 1429 1430 ASSERT(pending->root_item); 1431 new_root_item = pending->root_item; 1432 1433 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1434 if (pending->error) 1435 goto no_free_objectid; 1436 1437 /* 1438 * Make qgroup to skip current new snapshot's qgroupid, as it is 1439 * accounted by later btrfs_qgroup_inherit(). 1440 */ 1441 btrfs_set_skip_qgroup(trans, objectid); 1442 1443 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1444 1445 if (to_reserve > 0) { 1446 pending->error = btrfs_block_rsv_add(root, 1447 &pending->block_rsv, 1448 to_reserve, 1449 BTRFS_RESERVE_NO_FLUSH); 1450 if (pending->error) 1451 goto clear_skip_qgroup; 1452 } 1453 1454 key.objectid = objectid; 1455 key.offset = (u64)-1; 1456 key.type = BTRFS_ROOT_ITEM_KEY; 1457 1458 rsv = trans->block_rsv; 1459 trans->block_rsv = &pending->block_rsv; 1460 trans->bytes_reserved = trans->block_rsv->reserved; 1461 trace_btrfs_space_reservation(fs_info, "transaction", 1462 trans->transid, 1463 trans->bytes_reserved, 1); 1464 dentry = pending->dentry; 1465 parent_inode = pending->dir; 1466 parent_root = BTRFS_I(parent_inode)->root; 1467 record_root_in_trans(trans, parent_root, 0); 1468 1469 cur_time = current_time(parent_inode); 1470 1471 /* 1472 * insert the directory item 1473 */ 1474 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1475 BUG_ON(ret); /* -ENOMEM */ 1476 1477 /* check if there is a file/dir which has the same name. */ 1478 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1479 btrfs_ino(BTRFS_I(parent_inode)), 1480 dentry->d_name.name, 1481 dentry->d_name.len, 0); 1482 if (dir_item != NULL && !IS_ERR(dir_item)) { 1483 pending->error = -EEXIST; 1484 goto dir_item_existed; 1485 } else if (IS_ERR(dir_item)) { 1486 ret = PTR_ERR(dir_item); 1487 btrfs_abort_transaction(trans, ret); 1488 goto fail; 1489 } 1490 btrfs_release_path(path); 1491 1492 /* 1493 * pull in the delayed directory update 1494 * and the delayed inode item 1495 * otherwise we corrupt the FS during 1496 * snapshot 1497 */ 1498 ret = btrfs_run_delayed_items(trans); 1499 if (ret) { /* Transaction aborted */ 1500 btrfs_abort_transaction(trans, ret); 1501 goto fail; 1502 } 1503 1504 record_root_in_trans(trans, root, 0); 1505 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1506 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1507 btrfs_check_and_init_root_item(new_root_item); 1508 1509 root_flags = btrfs_root_flags(new_root_item); 1510 if (pending->readonly) 1511 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1512 else 1513 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1514 btrfs_set_root_flags(new_root_item, root_flags); 1515 1516 btrfs_set_root_generation_v2(new_root_item, 1517 trans->transid); 1518 uuid_le_gen(&new_uuid); 1519 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1520 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1521 BTRFS_UUID_SIZE); 1522 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1523 memset(new_root_item->received_uuid, 0, 1524 sizeof(new_root_item->received_uuid)); 1525 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1526 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1527 btrfs_set_root_stransid(new_root_item, 0); 1528 btrfs_set_root_rtransid(new_root_item, 0); 1529 } 1530 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1531 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1532 btrfs_set_root_otransid(new_root_item, trans->transid); 1533 1534 old = btrfs_lock_root_node(root); 1535 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1536 if (ret) { 1537 btrfs_tree_unlock(old); 1538 free_extent_buffer(old); 1539 btrfs_abort_transaction(trans, ret); 1540 goto fail; 1541 } 1542 1543 btrfs_set_lock_blocking(old); 1544 1545 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1546 /* clean up in any case */ 1547 btrfs_tree_unlock(old); 1548 free_extent_buffer(old); 1549 if (ret) { 1550 btrfs_abort_transaction(trans, ret); 1551 goto fail; 1552 } 1553 /* see comments in should_cow_block() */ 1554 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1555 smp_wmb(); 1556 1557 btrfs_set_root_node(new_root_item, tmp); 1558 /* record when the snapshot was created in key.offset */ 1559 key.offset = trans->transid; 1560 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1561 btrfs_tree_unlock(tmp); 1562 free_extent_buffer(tmp); 1563 if (ret) { 1564 btrfs_abort_transaction(trans, ret); 1565 goto fail; 1566 } 1567 1568 /* 1569 * insert root back/forward references 1570 */ 1571 ret = btrfs_add_root_ref(trans, objectid, 1572 parent_root->root_key.objectid, 1573 btrfs_ino(BTRFS_I(parent_inode)), index, 1574 dentry->d_name.name, dentry->d_name.len); 1575 if (ret) { 1576 btrfs_abort_transaction(trans, ret); 1577 goto fail; 1578 } 1579 1580 key.offset = (u64)-1; 1581 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key); 1582 if (IS_ERR(pending->snap)) { 1583 ret = PTR_ERR(pending->snap); 1584 btrfs_abort_transaction(trans, ret); 1585 goto fail; 1586 } 1587 1588 ret = btrfs_reloc_post_snapshot(trans, pending); 1589 if (ret) { 1590 btrfs_abort_transaction(trans, ret); 1591 goto fail; 1592 } 1593 1594 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1595 if (ret) { 1596 btrfs_abort_transaction(trans, ret); 1597 goto fail; 1598 } 1599 1600 /* 1601 * Do special qgroup accounting for snapshot, as we do some qgroup 1602 * snapshot hack to do fast snapshot. 1603 * To co-operate with that hack, we do hack again. 1604 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1605 */ 1606 ret = qgroup_account_snapshot(trans, root, parent_root, 1607 pending->inherit, objectid); 1608 if (ret < 0) 1609 goto fail; 1610 1611 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1612 dentry->d_name.len, BTRFS_I(parent_inode), 1613 &key, BTRFS_FT_DIR, index); 1614 /* We have check then name at the beginning, so it is impossible. */ 1615 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1616 if (ret) { 1617 btrfs_abort_transaction(trans, ret); 1618 goto fail; 1619 } 1620 1621 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1622 dentry->d_name.len * 2); 1623 parent_inode->i_mtime = parent_inode->i_ctime = 1624 current_time(parent_inode); 1625 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1626 if (ret) { 1627 btrfs_abort_transaction(trans, ret); 1628 goto fail; 1629 } 1630 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL, 1631 objectid); 1632 if (ret) { 1633 btrfs_abort_transaction(trans, ret); 1634 goto fail; 1635 } 1636 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1637 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1638 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1639 objectid); 1640 if (ret && ret != -EEXIST) { 1641 btrfs_abort_transaction(trans, ret); 1642 goto fail; 1643 } 1644 } 1645 1646 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1647 if (ret) { 1648 btrfs_abort_transaction(trans, ret); 1649 goto fail; 1650 } 1651 1652 fail: 1653 pending->error = ret; 1654 dir_item_existed: 1655 trans->block_rsv = rsv; 1656 trans->bytes_reserved = 0; 1657 clear_skip_qgroup: 1658 btrfs_clear_skip_qgroup(trans); 1659 no_free_objectid: 1660 kfree(new_root_item); 1661 pending->root_item = NULL; 1662 btrfs_free_path(path); 1663 pending->path = NULL; 1664 1665 return ret; 1666 } 1667 1668 /* 1669 * create all the snapshots we've scheduled for creation 1670 */ 1671 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1672 { 1673 struct btrfs_pending_snapshot *pending, *next; 1674 struct list_head *head = &trans->transaction->pending_snapshots; 1675 int ret = 0; 1676 1677 list_for_each_entry_safe(pending, next, head, list) { 1678 list_del(&pending->list); 1679 ret = create_pending_snapshot(trans, pending); 1680 if (ret) 1681 break; 1682 } 1683 return ret; 1684 } 1685 1686 static void update_super_roots(struct btrfs_fs_info *fs_info) 1687 { 1688 struct btrfs_root_item *root_item; 1689 struct btrfs_super_block *super; 1690 1691 super = fs_info->super_copy; 1692 1693 root_item = &fs_info->chunk_root->root_item; 1694 super->chunk_root = root_item->bytenr; 1695 super->chunk_root_generation = root_item->generation; 1696 super->chunk_root_level = root_item->level; 1697 1698 root_item = &fs_info->tree_root->root_item; 1699 super->root = root_item->bytenr; 1700 super->generation = root_item->generation; 1701 super->root_level = root_item->level; 1702 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1703 super->cache_generation = root_item->generation; 1704 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1705 super->uuid_tree_generation = root_item->generation; 1706 } 1707 1708 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1709 { 1710 struct btrfs_transaction *trans; 1711 int ret = 0; 1712 1713 spin_lock(&info->trans_lock); 1714 trans = info->running_transaction; 1715 if (trans) 1716 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1717 spin_unlock(&info->trans_lock); 1718 return ret; 1719 } 1720 1721 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1722 { 1723 struct btrfs_transaction *trans; 1724 int ret = 0; 1725 1726 spin_lock(&info->trans_lock); 1727 trans = info->running_transaction; 1728 if (trans) 1729 ret = is_transaction_blocked(trans); 1730 spin_unlock(&info->trans_lock); 1731 return ret; 1732 } 1733 1734 /* 1735 * wait for the current transaction commit to start and block subsequent 1736 * transaction joins 1737 */ 1738 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1739 struct btrfs_transaction *trans) 1740 { 1741 wait_event(fs_info->transaction_blocked_wait, 1742 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted); 1743 } 1744 1745 /* 1746 * wait for the current transaction to start and then become unblocked. 1747 * caller holds ref. 1748 */ 1749 static void wait_current_trans_commit_start_and_unblock( 1750 struct btrfs_fs_info *fs_info, 1751 struct btrfs_transaction *trans) 1752 { 1753 wait_event(fs_info->transaction_wait, 1754 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted); 1755 } 1756 1757 /* 1758 * commit transactions asynchronously. once btrfs_commit_transaction_async 1759 * returns, any subsequent transaction will not be allowed to join. 1760 */ 1761 struct btrfs_async_commit { 1762 struct btrfs_trans_handle *newtrans; 1763 struct work_struct work; 1764 }; 1765 1766 static void do_async_commit(struct work_struct *work) 1767 { 1768 struct btrfs_async_commit *ac = 1769 container_of(work, struct btrfs_async_commit, work); 1770 1771 /* 1772 * We've got freeze protection passed with the transaction. 1773 * Tell lockdep about it. 1774 */ 1775 if (ac->newtrans->type & __TRANS_FREEZABLE) 1776 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1777 1778 current->journal_info = ac->newtrans; 1779 1780 btrfs_commit_transaction(ac->newtrans); 1781 kfree(ac); 1782 } 1783 1784 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1785 int wait_for_unblock) 1786 { 1787 struct btrfs_fs_info *fs_info = trans->fs_info; 1788 struct btrfs_async_commit *ac; 1789 struct btrfs_transaction *cur_trans; 1790 1791 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1792 if (!ac) 1793 return -ENOMEM; 1794 1795 INIT_WORK(&ac->work, do_async_commit); 1796 ac->newtrans = btrfs_join_transaction(trans->root); 1797 if (IS_ERR(ac->newtrans)) { 1798 int err = PTR_ERR(ac->newtrans); 1799 kfree(ac); 1800 return err; 1801 } 1802 1803 /* take transaction reference */ 1804 cur_trans = trans->transaction; 1805 refcount_inc(&cur_trans->use_count); 1806 1807 btrfs_end_transaction(trans); 1808 1809 /* 1810 * Tell lockdep we've released the freeze rwsem, since the 1811 * async commit thread will be the one to unlock it. 1812 */ 1813 if (ac->newtrans->type & __TRANS_FREEZABLE) 1814 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1815 1816 schedule_work(&ac->work); 1817 1818 /* wait for transaction to start and unblock */ 1819 if (wait_for_unblock) 1820 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1821 else 1822 wait_current_trans_commit_start(fs_info, cur_trans); 1823 1824 if (current->journal_info == trans) 1825 current->journal_info = NULL; 1826 1827 btrfs_put_transaction(cur_trans); 1828 return 0; 1829 } 1830 1831 1832 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1833 { 1834 struct btrfs_fs_info *fs_info = trans->fs_info; 1835 struct btrfs_transaction *cur_trans = trans->transaction; 1836 1837 WARN_ON(refcount_read(&trans->use_count) > 1); 1838 1839 btrfs_abort_transaction(trans, err); 1840 1841 spin_lock(&fs_info->trans_lock); 1842 1843 /* 1844 * If the transaction is removed from the list, it means this 1845 * transaction has been committed successfully, so it is impossible 1846 * to call the cleanup function. 1847 */ 1848 BUG_ON(list_empty(&cur_trans->list)); 1849 1850 list_del_init(&cur_trans->list); 1851 if (cur_trans == fs_info->running_transaction) { 1852 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1853 spin_unlock(&fs_info->trans_lock); 1854 wait_event(cur_trans->writer_wait, 1855 atomic_read(&cur_trans->num_writers) == 1); 1856 1857 spin_lock(&fs_info->trans_lock); 1858 } 1859 spin_unlock(&fs_info->trans_lock); 1860 1861 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1862 1863 spin_lock(&fs_info->trans_lock); 1864 if (cur_trans == fs_info->running_transaction) 1865 fs_info->running_transaction = NULL; 1866 spin_unlock(&fs_info->trans_lock); 1867 1868 if (trans->type & __TRANS_FREEZABLE) 1869 sb_end_intwrite(fs_info->sb); 1870 btrfs_put_transaction(cur_trans); 1871 btrfs_put_transaction(cur_trans); 1872 1873 trace_btrfs_transaction_commit(trans->root); 1874 1875 if (current->journal_info == trans) 1876 current->journal_info = NULL; 1877 btrfs_scrub_cancel(fs_info); 1878 1879 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1880 } 1881 1882 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1883 { 1884 /* 1885 * We use writeback_inodes_sb here because if we used 1886 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 1887 * Currently are holding the fs freeze lock, if we do an async flush 1888 * we'll do btrfs_join_transaction() and deadlock because we need to 1889 * wait for the fs freeze lock. Using the direct flushing we benefit 1890 * from already being in a transaction and our join_transaction doesn't 1891 * have to re-take the fs freeze lock. 1892 */ 1893 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1894 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 1895 return 0; 1896 } 1897 1898 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1899 { 1900 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1901 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1902 } 1903 1904 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 1905 { 1906 struct btrfs_fs_info *fs_info = trans->fs_info; 1907 struct btrfs_transaction *cur_trans = trans->transaction; 1908 struct btrfs_transaction *prev_trans = NULL; 1909 int ret; 1910 1911 /* Stop the commit early if ->aborted is set */ 1912 if (unlikely(READ_ONCE(cur_trans->aborted))) { 1913 ret = cur_trans->aborted; 1914 btrfs_end_transaction(trans); 1915 return ret; 1916 } 1917 1918 btrfs_trans_release_metadata(trans); 1919 trans->block_rsv = NULL; 1920 1921 /* make a pass through all the delayed refs we have so far 1922 * any runnings procs may add more while we are here 1923 */ 1924 ret = btrfs_run_delayed_refs(trans, 0); 1925 if (ret) { 1926 btrfs_end_transaction(trans); 1927 return ret; 1928 } 1929 1930 cur_trans = trans->transaction; 1931 1932 /* 1933 * set the flushing flag so procs in this transaction have to 1934 * start sending their work down. 1935 */ 1936 cur_trans->delayed_refs.flushing = 1; 1937 smp_wmb(); 1938 1939 if (!list_empty(&trans->new_bgs)) 1940 btrfs_create_pending_block_groups(trans); 1941 1942 ret = btrfs_run_delayed_refs(trans, 0); 1943 if (ret) { 1944 btrfs_end_transaction(trans); 1945 return ret; 1946 } 1947 1948 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 1949 int run_it = 0; 1950 1951 /* this mutex is also taken before trying to set 1952 * block groups readonly. We need to make sure 1953 * that nobody has set a block group readonly 1954 * after a extents from that block group have been 1955 * allocated for cache files. btrfs_set_block_group_ro 1956 * will wait for the transaction to commit if it 1957 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 1958 * 1959 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 1960 * only one process starts all the block group IO. It wouldn't 1961 * hurt to have more than one go through, but there's no 1962 * real advantage to it either. 1963 */ 1964 mutex_lock(&fs_info->ro_block_group_mutex); 1965 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 1966 &cur_trans->flags)) 1967 run_it = 1; 1968 mutex_unlock(&fs_info->ro_block_group_mutex); 1969 1970 if (run_it) { 1971 ret = btrfs_start_dirty_block_groups(trans); 1972 if (ret) { 1973 btrfs_end_transaction(trans); 1974 return ret; 1975 } 1976 } 1977 } 1978 1979 spin_lock(&fs_info->trans_lock); 1980 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1981 spin_unlock(&fs_info->trans_lock); 1982 refcount_inc(&cur_trans->use_count); 1983 ret = btrfs_end_transaction(trans); 1984 1985 wait_for_commit(cur_trans); 1986 1987 if (unlikely(cur_trans->aborted)) 1988 ret = cur_trans->aborted; 1989 1990 btrfs_put_transaction(cur_trans); 1991 1992 return ret; 1993 } 1994 1995 cur_trans->state = TRANS_STATE_COMMIT_START; 1996 wake_up(&fs_info->transaction_blocked_wait); 1997 1998 if (cur_trans->list.prev != &fs_info->trans_list) { 1999 prev_trans = list_entry(cur_trans->list.prev, 2000 struct btrfs_transaction, list); 2001 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2002 refcount_inc(&prev_trans->use_count); 2003 spin_unlock(&fs_info->trans_lock); 2004 2005 wait_for_commit(prev_trans); 2006 ret = prev_trans->aborted; 2007 2008 btrfs_put_transaction(prev_trans); 2009 if (ret) 2010 goto cleanup_transaction; 2011 } else { 2012 spin_unlock(&fs_info->trans_lock); 2013 } 2014 } else { 2015 spin_unlock(&fs_info->trans_lock); 2016 } 2017 2018 extwriter_counter_dec(cur_trans, trans->type); 2019 2020 ret = btrfs_start_delalloc_flush(fs_info); 2021 if (ret) 2022 goto cleanup_transaction; 2023 2024 ret = btrfs_run_delayed_items(trans); 2025 if (ret) 2026 goto cleanup_transaction; 2027 2028 wait_event(cur_trans->writer_wait, 2029 extwriter_counter_read(cur_trans) == 0); 2030 2031 /* some pending stuffs might be added after the previous flush. */ 2032 ret = btrfs_run_delayed_items(trans); 2033 if (ret) 2034 goto cleanup_transaction; 2035 2036 btrfs_wait_delalloc_flush(fs_info); 2037 2038 btrfs_scrub_pause(fs_info); 2039 /* 2040 * Ok now we need to make sure to block out any other joins while we 2041 * commit the transaction. We could have started a join before setting 2042 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2043 */ 2044 spin_lock(&fs_info->trans_lock); 2045 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2046 spin_unlock(&fs_info->trans_lock); 2047 wait_event(cur_trans->writer_wait, 2048 atomic_read(&cur_trans->num_writers) == 1); 2049 2050 /* ->aborted might be set after the previous check, so check it */ 2051 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2052 ret = cur_trans->aborted; 2053 goto scrub_continue; 2054 } 2055 /* 2056 * the reloc mutex makes sure that we stop 2057 * the balancing code from coming in and moving 2058 * extents around in the middle of the commit 2059 */ 2060 mutex_lock(&fs_info->reloc_mutex); 2061 2062 /* 2063 * We needn't worry about the delayed items because we will 2064 * deal with them in create_pending_snapshot(), which is the 2065 * core function of the snapshot creation. 2066 */ 2067 ret = create_pending_snapshots(trans); 2068 if (ret) { 2069 mutex_unlock(&fs_info->reloc_mutex); 2070 goto scrub_continue; 2071 } 2072 2073 /* 2074 * We insert the dir indexes of the snapshots and update the inode 2075 * of the snapshots' parents after the snapshot creation, so there 2076 * are some delayed items which are not dealt with. Now deal with 2077 * them. 2078 * 2079 * We needn't worry that this operation will corrupt the snapshots, 2080 * because all the tree which are snapshoted will be forced to COW 2081 * the nodes and leaves. 2082 */ 2083 ret = btrfs_run_delayed_items(trans); 2084 if (ret) { 2085 mutex_unlock(&fs_info->reloc_mutex); 2086 goto scrub_continue; 2087 } 2088 2089 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2090 if (ret) { 2091 mutex_unlock(&fs_info->reloc_mutex); 2092 goto scrub_continue; 2093 } 2094 2095 /* 2096 * make sure none of the code above managed to slip in a 2097 * delayed item 2098 */ 2099 btrfs_assert_delayed_root_empty(fs_info); 2100 2101 WARN_ON(cur_trans != trans->transaction); 2102 2103 /* btrfs_commit_tree_roots is responsible for getting the 2104 * various roots consistent with each other. Every pointer 2105 * in the tree of tree roots has to point to the most up to date 2106 * root for every subvolume and other tree. So, we have to keep 2107 * the tree logging code from jumping in and changing any 2108 * of the trees. 2109 * 2110 * At this point in the commit, there can't be any tree-log 2111 * writers, but a little lower down we drop the trans mutex 2112 * and let new people in. By holding the tree_log_mutex 2113 * from now until after the super is written, we avoid races 2114 * with the tree-log code. 2115 */ 2116 mutex_lock(&fs_info->tree_log_mutex); 2117 2118 ret = commit_fs_roots(trans); 2119 if (ret) { 2120 mutex_unlock(&fs_info->tree_log_mutex); 2121 mutex_unlock(&fs_info->reloc_mutex); 2122 goto scrub_continue; 2123 } 2124 2125 /* 2126 * Since the transaction is done, we can apply the pending changes 2127 * before the next transaction. 2128 */ 2129 btrfs_apply_pending_changes(fs_info); 2130 2131 /* commit_fs_roots gets rid of all the tree log roots, it is now 2132 * safe to free the root of tree log roots 2133 */ 2134 btrfs_free_log_root_tree(trans, fs_info); 2135 2136 /* 2137 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2138 * new delayed refs. Must handle them or qgroup can be wrong. 2139 */ 2140 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2141 if (ret) { 2142 mutex_unlock(&fs_info->tree_log_mutex); 2143 mutex_unlock(&fs_info->reloc_mutex); 2144 goto scrub_continue; 2145 } 2146 2147 /* 2148 * Since fs roots are all committed, we can get a quite accurate 2149 * new_roots. So let's do quota accounting. 2150 */ 2151 ret = btrfs_qgroup_account_extents(trans); 2152 if (ret < 0) { 2153 mutex_unlock(&fs_info->tree_log_mutex); 2154 mutex_unlock(&fs_info->reloc_mutex); 2155 goto scrub_continue; 2156 } 2157 2158 ret = commit_cowonly_roots(trans); 2159 if (ret) { 2160 mutex_unlock(&fs_info->tree_log_mutex); 2161 mutex_unlock(&fs_info->reloc_mutex); 2162 goto scrub_continue; 2163 } 2164 2165 /* 2166 * The tasks which save the space cache and inode cache may also 2167 * update ->aborted, check it. 2168 */ 2169 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2170 ret = cur_trans->aborted; 2171 mutex_unlock(&fs_info->tree_log_mutex); 2172 mutex_unlock(&fs_info->reloc_mutex); 2173 goto scrub_continue; 2174 } 2175 2176 btrfs_prepare_extent_commit(fs_info); 2177 2178 cur_trans = fs_info->running_transaction; 2179 2180 btrfs_set_root_node(&fs_info->tree_root->root_item, 2181 fs_info->tree_root->node); 2182 list_add_tail(&fs_info->tree_root->dirty_list, 2183 &cur_trans->switch_commits); 2184 2185 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2186 fs_info->chunk_root->node); 2187 list_add_tail(&fs_info->chunk_root->dirty_list, 2188 &cur_trans->switch_commits); 2189 2190 switch_commit_roots(cur_trans); 2191 2192 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2193 ASSERT(list_empty(&cur_trans->io_bgs)); 2194 update_super_roots(fs_info); 2195 2196 btrfs_set_super_log_root(fs_info->super_copy, 0); 2197 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2198 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2199 sizeof(*fs_info->super_copy)); 2200 2201 btrfs_update_commit_device_size(fs_info); 2202 btrfs_update_commit_device_bytes_used(cur_trans); 2203 2204 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2205 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2206 2207 btrfs_trans_release_chunk_metadata(trans); 2208 2209 spin_lock(&fs_info->trans_lock); 2210 cur_trans->state = TRANS_STATE_UNBLOCKED; 2211 fs_info->running_transaction = NULL; 2212 spin_unlock(&fs_info->trans_lock); 2213 mutex_unlock(&fs_info->reloc_mutex); 2214 2215 wake_up(&fs_info->transaction_wait); 2216 2217 ret = btrfs_write_and_wait_transaction(trans); 2218 if (ret) { 2219 btrfs_handle_fs_error(fs_info, ret, 2220 "Error while writing out transaction"); 2221 mutex_unlock(&fs_info->tree_log_mutex); 2222 goto scrub_continue; 2223 } 2224 2225 ret = write_all_supers(fs_info, 0); 2226 /* 2227 * the super is written, we can safely allow the tree-loggers 2228 * to go about their business 2229 */ 2230 mutex_unlock(&fs_info->tree_log_mutex); 2231 if (ret) 2232 goto scrub_continue; 2233 2234 btrfs_finish_extent_commit(trans); 2235 2236 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2237 btrfs_clear_space_info_full(fs_info); 2238 2239 fs_info->last_trans_committed = cur_trans->transid; 2240 /* 2241 * We needn't acquire the lock here because there is no other task 2242 * which can change it. 2243 */ 2244 cur_trans->state = TRANS_STATE_COMPLETED; 2245 wake_up(&cur_trans->commit_wait); 2246 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags); 2247 2248 spin_lock(&fs_info->trans_lock); 2249 list_del_init(&cur_trans->list); 2250 spin_unlock(&fs_info->trans_lock); 2251 2252 btrfs_put_transaction(cur_trans); 2253 btrfs_put_transaction(cur_trans); 2254 2255 if (trans->type & __TRANS_FREEZABLE) 2256 sb_end_intwrite(fs_info->sb); 2257 2258 trace_btrfs_transaction_commit(trans->root); 2259 2260 btrfs_scrub_continue(fs_info); 2261 2262 if (current->journal_info == trans) 2263 current->journal_info = NULL; 2264 2265 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2266 2267 return ret; 2268 2269 scrub_continue: 2270 btrfs_scrub_continue(fs_info); 2271 cleanup_transaction: 2272 btrfs_trans_release_metadata(trans); 2273 btrfs_trans_release_chunk_metadata(trans); 2274 trans->block_rsv = NULL; 2275 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2276 if (current->journal_info == trans) 2277 current->journal_info = NULL; 2278 cleanup_transaction(trans, ret); 2279 2280 return ret; 2281 } 2282 2283 /* 2284 * return < 0 if error 2285 * 0 if there are no more dead_roots at the time of call 2286 * 1 there are more to be processed, call me again 2287 * 2288 * The return value indicates there are certainly more snapshots to delete, but 2289 * if there comes a new one during processing, it may return 0. We don't mind, 2290 * because btrfs_commit_super will poke cleaner thread and it will process it a 2291 * few seconds later. 2292 */ 2293 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2294 { 2295 int ret; 2296 struct btrfs_fs_info *fs_info = root->fs_info; 2297 2298 spin_lock(&fs_info->trans_lock); 2299 if (list_empty(&fs_info->dead_roots)) { 2300 spin_unlock(&fs_info->trans_lock); 2301 return 0; 2302 } 2303 root = list_first_entry(&fs_info->dead_roots, 2304 struct btrfs_root, root_list); 2305 list_del_init(&root->root_list); 2306 spin_unlock(&fs_info->trans_lock); 2307 2308 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2309 2310 btrfs_kill_all_delayed_nodes(root); 2311 2312 if (btrfs_header_backref_rev(root->node) < 2313 BTRFS_MIXED_BACKREF_REV) 2314 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2315 else 2316 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2317 2318 return (ret < 0) ? 0 : 1; 2319 } 2320 2321 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2322 { 2323 unsigned long prev; 2324 unsigned long bit; 2325 2326 prev = xchg(&fs_info->pending_changes, 0); 2327 if (!prev) 2328 return; 2329 2330 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2331 if (prev & bit) 2332 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2333 prev &= ~bit; 2334 2335 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2336 if (prev & bit) 2337 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2338 prev &= ~bit; 2339 2340 bit = 1 << BTRFS_PENDING_COMMIT; 2341 if (prev & bit) 2342 btrfs_debug(fs_info, "pending commit done"); 2343 prev &= ~bit; 2344 2345 if (prev) 2346 btrfs_warn(fs_info, 2347 "unknown pending changes left 0x%lx, ignoring", prev); 2348 } 2349