1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 #include "qgroup.h" 35 36 #define BTRFS_ROOT_TRANS_TAG 0 37 38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 39 [TRANS_STATE_RUNNING] = 0U, 40 [TRANS_STATE_BLOCKED] = __TRANS_START, 41 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 42 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 43 __TRANS_ATTACH | 44 __TRANS_JOIN), 45 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 46 __TRANS_ATTACH | 47 __TRANS_JOIN | 48 __TRANS_JOIN_NOLOCK), 49 [TRANS_STATE_COMPLETED] = (__TRANS_START | 50 __TRANS_ATTACH | 51 __TRANS_JOIN | 52 __TRANS_JOIN_NOLOCK), 53 }; 54 55 void btrfs_put_transaction(struct btrfs_transaction *transaction) 56 { 57 WARN_ON(refcount_read(&transaction->use_count) == 0); 58 if (refcount_dec_and_test(&transaction->use_count)) { 59 BUG_ON(!list_empty(&transaction->list)); 60 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 61 if (transaction->delayed_refs.pending_csums) 62 btrfs_err(transaction->fs_info, 63 "pending csums is %llu", 64 transaction->delayed_refs.pending_csums); 65 while (!list_empty(&transaction->pending_chunks)) { 66 struct extent_map *em; 67 68 em = list_first_entry(&transaction->pending_chunks, 69 struct extent_map, list); 70 list_del_init(&em->list); 71 free_extent_map(em); 72 } 73 /* 74 * If any block groups are found in ->deleted_bgs then it's 75 * because the transaction was aborted and a commit did not 76 * happen (things failed before writing the new superblock 77 * and calling btrfs_finish_extent_commit()), so we can not 78 * discard the physical locations of the block groups. 79 */ 80 while (!list_empty(&transaction->deleted_bgs)) { 81 struct btrfs_block_group_cache *cache; 82 83 cache = list_first_entry(&transaction->deleted_bgs, 84 struct btrfs_block_group_cache, 85 bg_list); 86 list_del_init(&cache->bg_list); 87 btrfs_put_block_group_trimming(cache); 88 btrfs_put_block_group(cache); 89 } 90 kfree(transaction); 91 } 92 } 93 94 static void clear_btree_io_tree(struct extent_io_tree *tree) 95 { 96 spin_lock(&tree->lock); 97 /* 98 * Do a single barrier for the waitqueue_active check here, the state 99 * of the waitqueue should not change once clear_btree_io_tree is 100 * called. 101 */ 102 smp_mb(); 103 while (!RB_EMPTY_ROOT(&tree->state)) { 104 struct rb_node *node; 105 struct extent_state *state; 106 107 node = rb_first(&tree->state); 108 state = rb_entry(node, struct extent_state, rb_node); 109 rb_erase(&state->rb_node, &tree->state); 110 RB_CLEAR_NODE(&state->rb_node); 111 /* 112 * btree io trees aren't supposed to have tasks waiting for 113 * changes in the flags of extent states ever. 114 */ 115 ASSERT(!waitqueue_active(&state->wq)); 116 free_extent_state(state); 117 118 cond_resched_lock(&tree->lock); 119 } 120 spin_unlock(&tree->lock); 121 } 122 123 static noinline void switch_commit_roots(struct btrfs_transaction *trans) 124 { 125 struct btrfs_fs_info *fs_info = trans->fs_info; 126 struct btrfs_root *root, *tmp; 127 128 down_write(&fs_info->commit_root_sem); 129 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 130 dirty_list) { 131 list_del_init(&root->dirty_list); 132 free_extent_buffer(root->commit_root); 133 root->commit_root = btrfs_root_node(root); 134 if (is_fstree(root->objectid)) 135 btrfs_unpin_free_ino(root); 136 clear_btree_io_tree(&root->dirty_log_pages); 137 } 138 139 /* We can free old roots now. */ 140 spin_lock(&trans->dropped_roots_lock); 141 while (!list_empty(&trans->dropped_roots)) { 142 root = list_first_entry(&trans->dropped_roots, 143 struct btrfs_root, root_list); 144 list_del_init(&root->root_list); 145 spin_unlock(&trans->dropped_roots_lock); 146 btrfs_drop_and_free_fs_root(fs_info, root); 147 spin_lock(&trans->dropped_roots_lock); 148 } 149 spin_unlock(&trans->dropped_roots_lock); 150 up_write(&fs_info->commit_root_sem); 151 } 152 153 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 154 unsigned int type) 155 { 156 if (type & TRANS_EXTWRITERS) 157 atomic_inc(&trans->num_extwriters); 158 } 159 160 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 161 unsigned int type) 162 { 163 if (type & TRANS_EXTWRITERS) 164 atomic_dec(&trans->num_extwriters); 165 } 166 167 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 168 unsigned int type) 169 { 170 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 171 } 172 173 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 174 { 175 return atomic_read(&trans->num_extwriters); 176 } 177 178 /* 179 * either allocate a new transaction or hop into the existing one 180 */ 181 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 182 unsigned int type) 183 { 184 struct btrfs_transaction *cur_trans; 185 186 spin_lock(&fs_info->trans_lock); 187 loop: 188 /* The file system has been taken offline. No new transactions. */ 189 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 190 spin_unlock(&fs_info->trans_lock); 191 return -EROFS; 192 } 193 194 cur_trans = fs_info->running_transaction; 195 if (cur_trans) { 196 if (cur_trans->aborted) { 197 spin_unlock(&fs_info->trans_lock); 198 return cur_trans->aborted; 199 } 200 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 201 spin_unlock(&fs_info->trans_lock); 202 return -EBUSY; 203 } 204 refcount_inc(&cur_trans->use_count); 205 atomic_inc(&cur_trans->num_writers); 206 extwriter_counter_inc(cur_trans, type); 207 spin_unlock(&fs_info->trans_lock); 208 return 0; 209 } 210 spin_unlock(&fs_info->trans_lock); 211 212 /* 213 * If we are ATTACH, we just want to catch the current transaction, 214 * and commit it. If there is no transaction, just return ENOENT. 215 */ 216 if (type == TRANS_ATTACH) 217 return -ENOENT; 218 219 /* 220 * JOIN_NOLOCK only happens during the transaction commit, so 221 * it is impossible that ->running_transaction is NULL 222 */ 223 BUG_ON(type == TRANS_JOIN_NOLOCK); 224 225 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 226 if (!cur_trans) 227 return -ENOMEM; 228 229 spin_lock(&fs_info->trans_lock); 230 if (fs_info->running_transaction) { 231 /* 232 * someone started a transaction after we unlocked. Make sure 233 * to redo the checks above 234 */ 235 kfree(cur_trans); 236 goto loop; 237 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 238 spin_unlock(&fs_info->trans_lock); 239 kfree(cur_trans); 240 return -EROFS; 241 } 242 243 cur_trans->fs_info = fs_info; 244 atomic_set(&cur_trans->num_writers, 1); 245 extwriter_counter_init(cur_trans, type); 246 init_waitqueue_head(&cur_trans->writer_wait); 247 init_waitqueue_head(&cur_trans->commit_wait); 248 init_waitqueue_head(&cur_trans->pending_wait); 249 cur_trans->state = TRANS_STATE_RUNNING; 250 /* 251 * One for this trans handle, one so it will live on until we 252 * commit the transaction. 253 */ 254 refcount_set(&cur_trans->use_count, 2); 255 atomic_set(&cur_trans->pending_ordered, 0); 256 cur_trans->flags = 0; 257 cur_trans->start_time = get_seconds(); 258 259 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 260 261 cur_trans->delayed_refs.href_root = RB_ROOT; 262 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 263 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 264 265 /* 266 * although the tree mod log is per file system and not per transaction, 267 * the log must never go across transaction boundaries. 268 */ 269 smp_mb(); 270 if (!list_empty(&fs_info->tree_mod_seq_list)) 271 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 272 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 273 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 274 atomic64_set(&fs_info->tree_mod_seq, 0); 275 276 spin_lock_init(&cur_trans->delayed_refs.lock); 277 278 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 279 INIT_LIST_HEAD(&cur_trans->pending_chunks); 280 INIT_LIST_HEAD(&cur_trans->switch_commits); 281 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 282 INIT_LIST_HEAD(&cur_trans->io_bgs); 283 INIT_LIST_HEAD(&cur_trans->dropped_roots); 284 mutex_init(&cur_trans->cache_write_mutex); 285 cur_trans->num_dirty_bgs = 0; 286 spin_lock_init(&cur_trans->dirty_bgs_lock); 287 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 288 spin_lock_init(&cur_trans->dropped_roots_lock); 289 list_add_tail(&cur_trans->list, &fs_info->trans_list); 290 extent_io_tree_init(&cur_trans->dirty_pages, 291 fs_info->btree_inode); 292 fs_info->generation++; 293 cur_trans->transid = fs_info->generation; 294 fs_info->running_transaction = cur_trans; 295 cur_trans->aborted = 0; 296 spin_unlock(&fs_info->trans_lock); 297 298 return 0; 299 } 300 301 /* 302 * this does all the record keeping required to make sure that a reference 303 * counted root is properly recorded in a given transaction. This is required 304 * to make sure the old root from before we joined the transaction is deleted 305 * when the transaction commits 306 */ 307 static int record_root_in_trans(struct btrfs_trans_handle *trans, 308 struct btrfs_root *root, 309 int force) 310 { 311 struct btrfs_fs_info *fs_info = root->fs_info; 312 313 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 314 root->last_trans < trans->transid) || force) { 315 WARN_ON(root == fs_info->extent_root); 316 WARN_ON(!force && root->commit_root != root->node); 317 318 /* 319 * see below for IN_TRANS_SETUP usage rules 320 * we have the reloc mutex held now, so there 321 * is only one writer in this function 322 */ 323 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 324 325 /* make sure readers find IN_TRANS_SETUP before 326 * they find our root->last_trans update 327 */ 328 smp_wmb(); 329 330 spin_lock(&fs_info->fs_roots_radix_lock); 331 if (root->last_trans == trans->transid && !force) { 332 spin_unlock(&fs_info->fs_roots_radix_lock); 333 return 0; 334 } 335 radix_tree_tag_set(&fs_info->fs_roots_radix, 336 (unsigned long)root->root_key.objectid, 337 BTRFS_ROOT_TRANS_TAG); 338 spin_unlock(&fs_info->fs_roots_radix_lock); 339 root->last_trans = trans->transid; 340 341 /* this is pretty tricky. We don't want to 342 * take the relocation lock in btrfs_record_root_in_trans 343 * unless we're really doing the first setup for this root in 344 * this transaction. 345 * 346 * Normally we'd use root->last_trans as a flag to decide 347 * if we want to take the expensive mutex. 348 * 349 * But, we have to set root->last_trans before we 350 * init the relocation root, otherwise, we trip over warnings 351 * in ctree.c. The solution used here is to flag ourselves 352 * with root IN_TRANS_SETUP. When this is 1, we're still 353 * fixing up the reloc trees and everyone must wait. 354 * 355 * When this is zero, they can trust root->last_trans and fly 356 * through btrfs_record_root_in_trans without having to take the 357 * lock. smp_wmb() makes sure that all the writes above are 358 * done before we pop in the zero below 359 */ 360 btrfs_init_reloc_root(trans, root); 361 smp_mb__before_atomic(); 362 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 363 } 364 return 0; 365 } 366 367 368 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 369 struct btrfs_root *root) 370 { 371 struct btrfs_fs_info *fs_info = root->fs_info; 372 struct btrfs_transaction *cur_trans = trans->transaction; 373 374 /* Add ourselves to the transaction dropped list */ 375 spin_lock(&cur_trans->dropped_roots_lock); 376 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 377 spin_unlock(&cur_trans->dropped_roots_lock); 378 379 /* Make sure we don't try to update the root at commit time */ 380 spin_lock(&fs_info->fs_roots_radix_lock); 381 radix_tree_tag_clear(&fs_info->fs_roots_radix, 382 (unsigned long)root->root_key.objectid, 383 BTRFS_ROOT_TRANS_TAG); 384 spin_unlock(&fs_info->fs_roots_radix_lock); 385 } 386 387 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 388 struct btrfs_root *root) 389 { 390 struct btrfs_fs_info *fs_info = root->fs_info; 391 392 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 393 return 0; 394 395 /* 396 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 397 * and barriers 398 */ 399 smp_rmb(); 400 if (root->last_trans == trans->transid && 401 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 402 return 0; 403 404 mutex_lock(&fs_info->reloc_mutex); 405 record_root_in_trans(trans, root, 0); 406 mutex_unlock(&fs_info->reloc_mutex); 407 408 return 0; 409 } 410 411 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 412 { 413 return (trans->state >= TRANS_STATE_BLOCKED && 414 trans->state < TRANS_STATE_UNBLOCKED && 415 !trans->aborted); 416 } 417 418 /* wait for commit against the current transaction to become unblocked 419 * when this is done, it is safe to start a new transaction, but the current 420 * transaction might not be fully on disk. 421 */ 422 static void wait_current_trans(struct btrfs_fs_info *fs_info) 423 { 424 struct btrfs_transaction *cur_trans; 425 426 spin_lock(&fs_info->trans_lock); 427 cur_trans = fs_info->running_transaction; 428 if (cur_trans && is_transaction_blocked(cur_trans)) { 429 refcount_inc(&cur_trans->use_count); 430 spin_unlock(&fs_info->trans_lock); 431 432 wait_event(fs_info->transaction_wait, 433 cur_trans->state >= TRANS_STATE_UNBLOCKED || 434 cur_trans->aborted); 435 btrfs_put_transaction(cur_trans); 436 } else { 437 spin_unlock(&fs_info->trans_lock); 438 } 439 } 440 441 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 442 { 443 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 444 return 0; 445 446 if (type == TRANS_START) 447 return 1; 448 449 return 0; 450 } 451 452 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 453 { 454 struct btrfs_fs_info *fs_info = root->fs_info; 455 456 if (!fs_info->reloc_ctl || 457 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 458 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 459 root->reloc_root) 460 return false; 461 462 return true; 463 } 464 465 static struct btrfs_trans_handle * 466 start_transaction(struct btrfs_root *root, unsigned int num_items, 467 unsigned int type, enum btrfs_reserve_flush_enum flush, 468 bool enforce_qgroups) 469 { 470 struct btrfs_fs_info *fs_info = root->fs_info; 471 472 struct btrfs_trans_handle *h; 473 struct btrfs_transaction *cur_trans; 474 u64 num_bytes = 0; 475 u64 qgroup_reserved = 0; 476 bool reloc_reserved = false; 477 int ret; 478 479 /* Send isn't supposed to start transactions. */ 480 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 481 482 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 483 return ERR_PTR(-EROFS); 484 485 if (current->journal_info) { 486 WARN_ON(type & TRANS_EXTWRITERS); 487 h = current->journal_info; 488 refcount_inc(&h->use_count); 489 WARN_ON(refcount_read(&h->use_count) > 2); 490 h->orig_rsv = h->block_rsv; 491 h->block_rsv = NULL; 492 goto got_it; 493 } 494 495 /* 496 * Do the reservation before we join the transaction so we can do all 497 * the appropriate flushing if need be. 498 */ 499 if (num_items && root != fs_info->chunk_root) { 500 qgroup_reserved = num_items * fs_info->nodesize; 501 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 502 enforce_qgroups); 503 if (ret) 504 return ERR_PTR(ret); 505 506 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 507 /* 508 * Do the reservation for the relocation root creation 509 */ 510 if (need_reserve_reloc_root(root)) { 511 num_bytes += fs_info->nodesize; 512 reloc_reserved = true; 513 } 514 515 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 516 num_bytes, flush); 517 if (ret) 518 goto reserve_fail; 519 } 520 again: 521 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 522 if (!h) { 523 ret = -ENOMEM; 524 goto alloc_fail; 525 } 526 527 /* 528 * If we are JOIN_NOLOCK we're already committing a transaction and 529 * waiting on this guy, so we don't need to do the sb_start_intwrite 530 * because we're already holding a ref. We need this because we could 531 * have raced in and did an fsync() on a file which can kick a commit 532 * and then we deadlock with somebody doing a freeze. 533 * 534 * If we are ATTACH, it means we just want to catch the current 535 * transaction and commit it, so we needn't do sb_start_intwrite(). 536 */ 537 if (type & __TRANS_FREEZABLE) 538 sb_start_intwrite(fs_info->sb); 539 540 if (may_wait_transaction(fs_info, type)) 541 wait_current_trans(fs_info); 542 543 do { 544 ret = join_transaction(fs_info, type); 545 if (ret == -EBUSY) { 546 wait_current_trans(fs_info); 547 if (unlikely(type == TRANS_ATTACH)) 548 ret = -ENOENT; 549 } 550 } while (ret == -EBUSY); 551 552 if (ret < 0) 553 goto join_fail; 554 555 cur_trans = fs_info->running_transaction; 556 557 h->transid = cur_trans->transid; 558 h->transaction = cur_trans; 559 h->root = root; 560 refcount_set(&h->use_count, 1); 561 h->fs_info = root->fs_info; 562 563 h->type = type; 564 h->can_flush_pending_bgs = true; 565 INIT_LIST_HEAD(&h->new_bgs); 566 567 smp_mb(); 568 if (cur_trans->state >= TRANS_STATE_BLOCKED && 569 may_wait_transaction(fs_info, type)) { 570 current->journal_info = h; 571 btrfs_commit_transaction(h); 572 goto again; 573 } 574 575 if (num_bytes) { 576 trace_btrfs_space_reservation(fs_info, "transaction", 577 h->transid, num_bytes, 1); 578 h->block_rsv = &fs_info->trans_block_rsv; 579 h->bytes_reserved = num_bytes; 580 h->reloc_reserved = reloc_reserved; 581 } 582 583 got_it: 584 btrfs_record_root_in_trans(h, root); 585 586 if (!current->journal_info) 587 current->journal_info = h; 588 return h; 589 590 join_fail: 591 if (type & __TRANS_FREEZABLE) 592 sb_end_intwrite(fs_info->sb); 593 kmem_cache_free(btrfs_trans_handle_cachep, h); 594 alloc_fail: 595 if (num_bytes) 596 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 597 num_bytes); 598 reserve_fail: 599 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 600 return ERR_PTR(ret); 601 } 602 603 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 604 unsigned int num_items) 605 { 606 return start_transaction(root, num_items, TRANS_START, 607 BTRFS_RESERVE_FLUSH_ALL, true); 608 } 609 610 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 611 struct btrfs_root *root, 612 unsigned int num_items, 613 int min_factor) 614 { 615 struct btrfs_fs_info *fs_info = root->fs_info; 616 struct btrfs_trans_handle *trans; 617 u64 num_bytes; 618 int ret; 619 620 /* 621 * We have two callers: unlink and block group removal. The 622 * former should succeed even if we will temporarily exceed 623 * quota and the latter operates on the extent root so 624 * qgroup enforcement is ignored anyway. 625 */ 626 trans = start_transaction(root, num_items, TRANS_START, 627 BTRFS_RESERVE_FLUSH_ALL, false); 628 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 629 return trans; 630 631 trans = btrfs_start_transaction(root, 0); 632 if (IS_ERR(trans)) 633 return trans; 634 635 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 636 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv, 637 num_bytes, min_factor); 638 if (ret) { 639 btrfs_end_transaction(trans); 640 return ERR_PTR(ret); 641 } 642 643 trans->block_rsv = &fs_info->trans_block_rsv; 644 trans->bytes_reserved = num_bytes; 645 trace_btrfs_space_reservation(fs_info, "transaction", 646 trans->transid, num_bytes, 1); 647 648 return trans; 649 } 650 651 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 652 { 653 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 654 true); 655 } 656 657 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 658 { 659 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 660 BTRFS_RESERVE_NO_FLUSH, true); 661 } 662 663 /* 664 * btrfs_attach_transaction() - catch the running transaction 665 * 666 * It is used when we want to commit the current the transaction, but 667 * don't want to start a new one. 668 * 669 * Note: If this function return -ENOENT, it just means there is no 670 * running transaction. But it is possible that the inactive transaction 671 * is still in the memory, not fully on disk. If you hope there is no 672 * inactive transaction in the fs when -ENOENT is returned, you should 673 * invoke 674 * btrfs_attach_transaction_barrier() 675 */ 676 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 677 { 678 return start_transaction(root, 0, TRANS_ATTACH, 679 BTRFS_RESERVE_NO_FLUSH, true); 680 } 681 682 /* 683 * btrfs_attach_transaction_barrier() - catch the running transaction 684 * 685 * It is similar to the above function, the differentia is this one 686 * will wait for all the inactive transactions until they fully 687 * complete. 688 */ 689 struct btrfs_trans_handle * 690 btrfs_attach_transaction_barrier(struct btrfs_root *root) 691 { 692 struct btrfs_trans_handle *trans; 693 694 trans = start_transaction(root, 0, TRANS_ATTACH, 695 BTRFS_RESERVE_NO_FLUSH, true); 696 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 697 btrfs_wait_for_commit(root->fs_info, 0); 698 699 return trans; 700 } 701 702 /* wait for a transaction commit to be fully complete */ 703 static noinline void wait_for_commit(struct btrfs_transaction *commit) 704 { 705 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 706 } 707 708 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 709 { 710 struct btrfs_transaction *cur_trans = NULL, *t; 711 int ret = 0; 712 713 if (transid) { 714 if (transid <= fs_info->last_trans_committed) 715 goto out; 716 717 /* find specified transaction */ 718 spin_lock(&fs_info->trans_lock); 719 list_for_each_entry(t, &fs_info->trans_list, list) { 720 if (t->transid == transid) { 721 cur_trans = t; 722 refcount_inc(&cur_trans->use_count); 723 ret = 0; 724 break; 725 } 726 if (t->transid > transid) { 727 ret = 0; 728 break; 729 } 730 } 731 spin_unlock(&fs_info->trans_lock); 732 733 /* 734 * The specified transaction doesn't exist, or we 735 * raced with btrfs_commit_transaction 736 */ 737 if (!cur_trans) { 738 if (transid > fs_info->last_trans_committed) 739 ret = -EINVAL; 740 goto out; 741 } 742 } else { 743 /* find newest transaction that is committing | committed */ 744 spin_lock(&fs_info->trans_lock); 745 list_for_each_entry_reverse(t, &fs_info->trans_list, 746 list) { 747 if (t->state >= TRANS_STATE_COMMIT_START) { 748 if (t->state == TRANS_STATE_COMPLETED) 749 break; 750 cur_trans = t; 751 refcount_inc(&cur_trans->use_count); 752 break; 753 } 754 } 755 spin_unlock(&fs_info->trans_lock); 756 if (!cur_trans) 757 goto out; /* nothing committing|committed */ 758 } 759 760 wait_for_commit(cur_trans); 761 btrfs_put_transaction(cur_trans); 762 out: 763 return ret; 764 } 765 766 void btrfs_throttle(struct btrfs_fs_info *fs_info) 767 { 768 wait_current_trans(fs_info); 769 } 770 771 static int should_end_transaction(struct btrfs_trans_handle *trans) 772 { 773 struct btrfs_fs_info *fs_info = trans->fs_info; 774 775 if (btrfs_check_space_for_delayed_refs(trans, fs_info)) 776 return 1; 777 778 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 779 } 780 781 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 782 { 783 struct btrfs_transaction *cur_trans = trans->transaction; 784 int updates; 785 int err; 786 787 smp_mb(); 788 if (cur_trans->state >= TRANS_STATE_BLOCKED || 789 cur_trans->delayed_refs.flushing) 790 return 1; 791 792 updates = trans->delayed_ref_updates; 793 trans->delayed_ref_updates = 0; 794 if (updates) { 795 err = btrfs_run_delayed_refs(trans, updates * 2); 796 if (err) /* Error code will also eval true */ 797 return err; 798 } 799 800 return should_end_transaction(trans); 801 } 802 803 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 804 805 { 806 struct btrfs_fs_info *fs_info = trans->fs_info; 807 808 if (!trans->block_rsv) { 809 ASSERT(!trans->bytes_reserved); 810 return; 811 } 812 813 if (!trans->bytes_reserved) 814 return; 815 816 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 817 trace_btrfs_space_reservation(fs_info, "transaction", 818 trans->transid, trans->bytes_reserved, 0); 819 btrfs_block_rsv_release(fs_info, trans->block_rsv, 820 trans->bytes_reserved); 821 trans->bytes_reserved = 0; 822 } 823 824 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 825 int throttle) 826 { 827 struct btrfs_fs_info *info = trans->fs_info; 828 struct btrfs_transaction *cur_trans = trans->transaction; 829 u64 transid = trans->transid; 830 unsigned long cur = trans->delayed_ref_updates; 831 int lock = (trans->type != TRANS_JOIN_NOLOCK); 832 int err = 0; 833 int must_run_delayed_refs = 0; 834 835 if (refcount_read(&trans->use_count) > 1) { 836 refcount_dec(&trans->use_count); 837 trans->block_rsv = trans->orig_rsv; 838 return 0; 839 } 840 841 btrfs_trans_release_metadata(trans); 842 trans->block_rsv = NULL; 843 844 if (!list_empty(&trans->new_bgs)) 845 btrfs_create_pending_block_groups(trans); 846 847 trans->delayed_ref_updates = 0; 848 if (!trans->sync) { 849 must_run_delayed_refs = 850 btrfs_should_throttle_delayed_refs(trans, info); 851 cur = max_t(unsigned long, cur, 32); 852 853 /* 854 * don't make the caller wait if they are from a NOLOCK 855 * or ATTACH transaction, it will deadlock with commit 856 */ 857 if (must_run_delayed_refs == 1 && 858 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 859 must_run_delayed_refs = 2; 860 } 861 862 btrfs_trans_release_metadata(trans); 863 trans->block_rsv = NULL; 864 865 if (!list_empty(&trans->new_bgs)) 866 btrfs_create_pending_block_groups(trans); 867 868 btrfs_trans_release_chunk_metadata(trans); 869 870 if (lock && should_end_transaction(trans) && 871 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 872 spin_lock(&info->trans_lock); 873 if (cur_trans->state == TRANS_STATE_RUNNING) 874 cur_trans->state = TRANS_STATE_BLOCKED; 875 spin_unlock(&info->trans_lock); 876 } 877 878 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 879 if (throttle) 880 return btrfs_commit_transaction(trans); 881 else 882 wake_up_process(info->transaction_kthread); 883 } 884 885 if (trans->type & __TRANS_FREEZABLE) 886 sb_end_intwrite(info->sb); 887 888 WARN_ON(cur_trans != info->running_transaction); 889 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 890 atomic_dec(&cur_trans->num_writers); 891 extwriter_counter_dec(cur_trans, trans->type); 892 893 /* 894 * Make sure counter is updated before we wake up waiters. 895 */ 896 smp_mb(); 897 if (waitqueue_active(&cur_trans->writer_wait)) 898 wake_up(&cur_trans->writer_wait); 899 btrfs_put_transaction(cur_trans); 900 901 if (current->journal_info == trans) 902 current->journal_info = NULL; 903 904 if (throttle) 905 btrfs_run_delayed_iputs(info); 906 907 if (trans->aborted || 908 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 909 wake_up_process(info->transaction_kthread); 910 err = -EIO; 911 } 912 913 kmem_cache_free(btrfs_trans_handle_cachep, trans); 914 if (must_run_delayed_refs) { 915 btrfs_async_run_delayed_refs(info, cur, transid, 916 must_run_delayed_refs == 1); 917 } 918 return err; 919 } 920 921 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 922 { 923 return __btrfs_end_transaction(trans, 0); 924 } 925 926 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 927 { 928 return __btrfs_end_transaction(trans, 1); 929 } 930 931 /* 932 * when btree blocks are allocated, they have some corresponding bits set for 933 * them in one of two extent_io trees. This is used to make sure all of 934 * those extents are sent to disk but does not wait on them 935 */ 936 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 937 struct extent_io_tree *dirty_pages, int mark) 938 { 939 int err = 0; 940 int werr = 0; 941 struct address_space *mapping = fs_info->btree_inode->i_mapping; 942 struct extent_state *cached_state = NULL; 943 u64 start = 0; 944 u64 end; 945 946 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 947 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 948 mark, &cached_state)) { 949 bool wait_writeback = false; 950 951 err = convert_extent_bit(dirty_pages, start, end, 952 EXTENT_NEED_WAIT, 953 mark, &cached_state); 954 /* 955 * convert_extent_bit can return -ENOMEM, which is most of the 956 * time a temporary error. So when it happens, ignore the error 957 * and wait for writeback of this range to finish - because we 958 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 959 * to __btrfs_wait_marked_extents() would not know that 960 * writeback for this range started and therefore wouldn't 961 * wait for it to finish - we don't want to commit a 962 * superblock that points to btree nodes/leafs for which 963 * writeback hasn't finished yet (and without errors). 964 * We cleanup any entries left in the io tree when committing 965 * the transaction (through clear_btree_io_tree()). 966 */ 967 if (err == -ENOMEM) { 968 err = 0; 969 wait_writeback = true; 970 } 971 if (!err) 972 err = filemap_fdatawrite_range(mapping, start, end); 973 if (err) 974 werr = err; 975 else if (wait_writeback) 976 werr = filemap_fdatawait_range(mapping, start, end); 977 free_extent_state(cached_state); 978 cached_state = NULL; 979 cond_resched(); 980 start = end + 1; 981 } 982 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 983 return werr; 984 } 985 986 /* 987 * when btree blocks are allocated, they have some corresponding bits set for 988 * them in one of two extent_io trees. This is used to make sure all of 989 * those extents are on disk for transaction or log commit. We wait 990 * on all the pages and clear them from the dirty pages state tree 991 */ 992 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 993 struct extent_io_tree *dirty_pages) 994 { 995 int err = 0; 996 int werr = 0; 997 struct address_space *mapping = fs_info->btree_inode->i_mapping; 998 struct extent_state *cached_state = NULL; 999 u64 start = 0; 1000 u64 end; 1001 1002 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1003 EXTENT_NEED_WAIT, &cached_state)) { 1004 /* 1005 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1006 * When committing the transaction, we'll remove any entries 1007 * left in the io tree. For a log commit, we don't remove them 1008 * after committing the log because the tree can be accessed 1009 * concurrently - we do it only at transaction commit time when 1010 * it's safe to do it (through clear_btree_io_tree()). 1011 */ 1012 err = clear_extent_bit(dirty_pages, start, end, 1013 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1014 if (err == -ENOMEM) 1015 err = 0; 1016 if (!err) 1017 err = filemap_fdatawait_range(mapping, start, end); 1018 if (err) 1019 werr = err; 1020 free_extent_state(cached_state); 1021 cached_state = NULL; 1022 cond_resched(); 1023 start = end + 1; 1024 } 1025 if (err) 1026 werr = err; 1027 return werr; 1028 } 1029 1030 int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1031 struct extent_io_tree *dirty_pages) 1032 { 1033 bool errors = false; 1034 int err; 1035 1036 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1037 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1038 errors = true; 1039 1040 if (errors && !err) 1041 err = -EIO; 1042 return err; 1043 } 1044 1045 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1046 { 1047 struct btrfs_fs_info *fs_info = log_root->fs_info; 1048 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1049 bool errors = false; 1050 int err; 1051 1052 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1053 1054 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1055 if ((mark & EXTENT_DIRTY) && 1056 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1057 errors = true; 1058 1059 if ((mark & EXTENT_NEW) && 1060 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1061 errors = true; 1062 1063 if (errors && !err) 1064 err = -EIO; 1065 return err; 1066 } 1067 1068 /* 1069 * When btree blocks are allocated the corresponding extents are marked dirty. 1070 * This function ensures such extents are persisted on disk for transaction or 1071 * log commit. 1072 * 1073 * @trans: transaction whose dirty pages we'd like to write 1074 */ 1075 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1076 { 1077 int ret; 1078 int ret2; 1079 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1080 struct btrfs_fs_info *fs_info = trans->fs_info; 1081 struct blk_plug plug; 1082 1083 blk_start_plug(&plug); 1084 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1085 blk_finish_plug(&plug); 1086 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1087 1088 clear_btree_io_tree(&trans->transaction->dirty_pages); 1089 1090 if (ret) 1091 return ret; 1092 else if (ret2) 1093 return ret2; 1094 else 1095 return 0; 1096 } 1097 1098 /* 1099 * this is used to update the root pointer in the tree of tree roots. 1100 * 1101 * But, in the case of the extent allocation tree, updating the root 1102 * pointer may allocate blocks which may change the root of the extent 1103 * allocation tree. 1104 * 1105 * So, this loops and repeats and makes sure the cowonly root didn't 1106 * change while the root pointer was being updated in the metadata. 1107 */ 1108 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1109 struct btrfs_root *root) 1110 { 1111 int ret; 1112 u64 old_root_bytenr; 1113 u64 old_root_used; 1114 struct btrfs_fs_info *fs_info = root->fs_info; 1115 struct btrfs_root *tree_root = fs_info->tree_root; 1116 1117 old_root_used = btrfs_root_used(&root->root_item); 1118 1119 while (1) { 1120 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1121 if (old_root_bytenr == root->node->start && 1122 old_root_used == btrfs_root_used(&root->root_item)) 1123 break; 1124 1125 btrfs_set_root_node(&root->root_item, root->node); 1126 ret = btrfs_update_root(trans, tree_root, 1127 &root->root_key, 1128 &root->root_item); 1129 if (ret) 1130 return ret; 1131 1132 old_root_used = btrfs_root_used(&root->root_item); 1133 } 1134 1135 return 0; 1136 } 1137 1138 /* 1139 * update all the cowonly tree roots on disk 1140 * 1141 * The error handling in this function may not be obvious. Any of the 1142 * failures will cause the file system to go offline. We still need 1143 * to clean up the delayed refs. 1144 */ 1145 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1146 { 1147 struct btrfs_fs_info *fs_info = trans->fs_info; 1148 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1149 struct list_head *io_bgs = &trans->transaction->io_bgs; 1150 struct list_head *next; 1151 struct extent_buffer *eb; 1152 int ret; 1153 1154 eb = btrfs_lock_root_node(fs_info->tree_root); 1155 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1156 0, &eb); 1157 btrfs_tree_unlock(eb); 1158 free_extent_buffer(eb); 1159 1160 if (ret) 1161 return ret; 1162 1163 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1164 if (ret) 1165 return ret; 1166 1167 ret = btrfs_run_dev_stats(trans, fs_info); 1168 if (ret) 1169 return ret; 1170 ret = btrfs_run_dev_replace(trans, fs_info); 1171 if (ret) 1172 return ret; 1173 ret = btrfs_run_qgroups(trans, fs_info); 1174 if (ret) 1175 return ret; 1176 1177 ret = btrfs_setup_space_cache(trans, fs_info); 1178 if (ret) 1179 return ret; 1180 1181 /* run_qgroups might have added some more refs */ 1182 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1183 if (ret) 1184 return ret; 1185 again: 1186 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1187 struct btrfs_root *root; 1188 next = fs_info->dirty_cowonly_roots.next; 1189 list_del_init(next); 1190 root = list_entry(next, struct btrfs_root, dirty_list); 1191 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1192 1193 if (root != fs_info->extent_root) 1194 list_add_tail(&root->dirty_list, 1195 &trans->transaction->switch_commits); 1196 ret = update_cowonly_root(trans, root); 1197 if (ret) 1198 return ret; 1199 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1200 if (ret) 1201 return ret; 1202 } 1203 1204 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1205 ret = btrfs_write_dirty_block_groups(trans, fs_info); 1206 if (ret) 1207 return ret; 1208 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1209 if (ret) 1210 return ret; 1211 } 1212 1213 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1214 goto again; 1215 1216 list_add_tail(&fs_info->extent_root->dirty_list, 1217 &trans->transaction->switch_commits); 1218 btrfs_after_dev_replace_commit(fs_info); 1219 1220 return 0; 1221 } 1222 1223 /* 1224 * dead roots are old snapshots that need to be deleted. This allocates 1225 * a dirty root struct and adds it into the list of dead roots that need to 1226 * be deleted 1227 */ 1228 void btrfs_add_dead_root(struct btrfs_root *root) 1229 { 1230 struct btrfs_fs_info *fs_info = root->fs_info; 1231 1232 spin_lock(&fs_info->trans_lock); 1233 if (list_empty(&root->root_list)) 1234 list_add_tail(&root->root_list, &fs_info->dead_roots); 1235 spin_unlock(&fs_info->trans_lock); 1236 } 1237 1238 /* 1239 * update all the cowonly tree roots on disk 1240 */ 1241 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1242 { 1243 struct btrfs_fs_info *fs_info = trans->fs_info; 1244 struct btrfs_root *gang[8]; 1245 int i; 1246 int ret; 1247 int err = 0; 1248 1249 spin_lock(&fs_info->fs_roots_radix_lock); 1250 while (1) { 1251 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1252 (void **)gang, 0, 1253 ARRAY_SIZE(gang), 1254 BTRFS_ROOT_TRANS_TAG); 1255 if (ret == 0) 1256 break; 1257 for (i = 0; i < ret; i++) { 1258 struct btrfs_root *root = gang[i]; 1259 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1260 (unsigned long)root->root_key.objectid, 1261 BTRFS_ROOT_TRANS_TAG); 1262 spin_unlock(&fs_info->fs_roots_radix_lock); 1263 1264 btrfs_free_log(trans, root); 1265 btrfs_update_reloc_root(trans, root); 1266 btrfs_orphan_commit_root(trans, root); 1267 1268 btrfs_save_ino_cache(root, trans); 1269 1270 /* see comments in should_cow_block() */ 1271 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1272 smp_mb__after_atomic(); 1273 1274 if (root->commit_root != root->node) { 1275 list_add_tail(&root->dirty_list, 1276 &trans->transaction->switch_commits); 1277 btrfs_set_root_node(&root->root_item, 1278 root->node); 1279 } 1280 1281 err = btrfs_update_root(trans, fs_info->tree_root, 1282 &root->root_key, 1283 &root->root_item); 1284 spin_lock(&fs_info->fs_roots_radix_lock); 1285 if (err) 1286 break; 1287 btrfs_qgroup_free_meta_all_pertrans(root); 1288 } 1289 } 1290 spin_unlock(&fs_info->fs_roots_radix_lock); 1291 return err; 1292 } 1293 1294 /* 1295 * defrag a given btree. 1296 * Every leaf in the btree is read and defragged. 1297 */ 1298 int btrfs_defrag_root(struct btrfs_root *root) 1299 { 1300 struct btrfs_fs_info *info = root->fs_info; 1301 struct btrfs_trans_handle *trans; 1302 int ret; 1303 1304 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1305 return 0; 1306 1307 while (1) { 1308 trans = btrfs_start_transaction(root, 0); 1309 if (IS_ERR(trans)) 1310 return PTR_ERR(trans); 1311 1312 ret = btrfs_defrag_leaves(trans, root); 1313 1314 btrfs_end_transaction(trans); 1315 btrfs_btree_balance_dirty(info); 1316 cond_resched(); 1317 1318 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1319 break; 1320 1321 if (btrfs_defrag_cancelled(info)) { 1322 btrfs_debug(info, "defrag_root cancelled"); 1323 ret = -EAGAIN; 1324 break; 1325 } 1326 } 1327 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1328 return ret; 1329 } 1330 1331 /* 1332 * Do all special snapshot related qgroup dirty hack. 1333 * 1334 * Will do all needed qgroup inherit and dirty hack like switch commit 1335 * roots inside one transaction and write all btree into disk, to make 1336 * qgroup works. 1337 */ 1338 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1339 struct btrfs_root *src, 1340 struct btrfs_root *parent, 1341 struct btrfs_qgroup_inherit *inherit, 1342 u64 dst_objectid) 1343 { 1344 struct btrfs_fs_info *fs_info = src->fs_info; 1345 int ret; 1346 1347 /* 1348 * Save some performance in the case that qgroups are not 1349 * enabled. If this check races with the ioctl, rescan will 1350 * kick in anyway. 1351 */ 1352 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1353 return 0; 1354 1355 /* 1356 * Ensure dirty @src will be commited. Or, after comming 1357 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1358 * recorded root will never be updated again, causing an outdated root 1359 * item. 1360 */ 1361 record_root_in_trans(trans, src, 1); 1362 1363 /* 1364 * We are going to commit transaction, see btrfs_commit_transaction() 1365 * comment for reason locking tree_log_mutex 1366 */ 1367 mutex_lock(&fs_info->tree_log_mutex); 1368 1369 ret = commit_fs_roots(trans); 1370 if (ret) 1371 goto out; 1372 ret = btrfs_qgroup_account_extents(trans); 1373 if (ret < 0) 1374 goto out; 1375 1376 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1377 ret = btrfs_qgroup_inherit(trans, fs_info, 1378 src->root_key.objectid, dst_objectid, 1379 inherit); 1380 if (ret < 0) 1381 goto out; 1382 1383 /* 1384 * Now we do a simplified commit transaction, which will: 1385 * 1) commit all subvolume and extent tree 1386 * To ensure all subvolume and extent tree have a valid 1387 * commit_root to accounting later insert_dir_item() 1388 * 2) write all btree blocks onto disk 1389 * This is to make sure later btree modification will be cowed 1390 * Or commit_root can be populated and cause wrong qgroup numbers 1391 * In this simplified commit, we don't really care about other trees 1392 * like chunk and root tree, as they won't affect qgroup. 1393 * And we don't write super to avoid half committed status. 1394 */ 1395 ret = commit_cowonly_roots(trans); 1396 if (ret) 1397 goto out; 1398 switch_commit_roots(trans->transaction); 1399 ret = btrfs_write_and_wait_transaction(trans); 1400 if (ret) 1401 btrfs_handle_fs_error(fs_info, ret, 1402 "Error while writing out transaction for qgroup"); 1403 1404 out: 1405 mutex_unlock(&fs_info->tree_log_mutex); 1406 1407 /* 1408 * Force parent root to be updated, as we recorded it before so its 1409 * last_trans == cur_transid. 1410 * Or it won't be committed again onto disk after later 1411 * insert_dir_item() 1412 */ 1413 if (!ret) 1414 record_root_in_trans(trans, parent, 1); 1415 return ret; 1416 } 1417 1418 /* 1419 * new snapshots need to be created at a very specific time in the 1420 * transaction commit. This does the actual creation. 1421 * 1422 * Note: 1423 * If the error which may affect the commitment of the current transaction 1424 * happens, we should return the error number. If the error which just affect 1425 * the creation of the pending snapshots, just return 0. 1426 */ 1427 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1428 struct btrfs_pending_snapshot *pending) 1429 { 1430 1431 struct btrfs_fs_info *fs_info = trans->fs_info; 1432 struct btrfs_key key; 1433 struct btrfs_root_item *new_root_item; 1434 struct btrfs_root *tree_root = fs_info->tree_root; 1435 struct btrfs_root *root = pending->root; 1436 struct btrfs_root *parent_root; 1437 struct btrfs_block_rsv *rsv; 1438 struct inode *parent_inode; 1439 struct btrfs_path *path; 1440 struct btrfs_dir_item *dir_item; 1441 struct dentry *dentry; 1442 struct extent_buffer *tmp; 1443 struct extent_buffer *old; 1444 struct timespec cur_time; 1445 int ret = 0; 1446 u64 to_reserve = 0; 1447 u64 index = 0; 1448 u64 objectid; 1449 u64 root_flags; 1450 uuid_le new_uuid; 1451 1452 ASSERT(pending->path); 1453 path = pending->path; 1454 1455 ASSERT(pending->root_item); 1456 new_root_item = pending->root_item; 1457 1458 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1459 if (pending->error) 1460 goto no_free_objectid; 1461 1462 /* 1463 * Make qgroup to skip current new snapshot's qgroupid, as it is 1464 * accounted by later btrfs_qgroup_inherit(). 1465 */ 1466 btrfs_set_skip_qgroup(trans, objectid); 1467 1468 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1469 1470 if (to_reserve > 0) { 1471 pending->error = btrfs_block_rsv_add(root, 1472 &pending->block_rsv, 1473 to_reserve, 1474 BTRFS_RESERVE_NO_FLUSH); 1475 if (pending->error) 1476 goto clear_skip_qgroup; 1477 } 1478 1479 key.objectid = objectid; 1480 key.offset = (u64)-1; 1481 key.type = BTRFS_ROOT_ITEM_KEY; 1482 1483 rsv = trans->block_rsv; 1484 trans->block_rsv = &pending->block_rsv; 1485 trans->bytes_reserved = trans->block_rsv->reserved; 1486 trace_btrfs_space_reservation(fs_info, "transaction", 1487 trans->transid, 1488 trans->bytes_reserved, 1); 1489 dentry = pending->dentry; 1490 parent_inode = pending->dir; 1491 parent_root = BTRFS_I(parent_inode)->root; 1492 record_root_in_trans(trans, parent_root, 0); 1493 1494 cur_time = current_time(parent_inode); 1495 1496 /* 1497 * insert the directory item 1498 */ 1499 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1500 BUG_ON(ret); /* -ENOMEM */ 1501 1502 /* check if there is a file/dir which has the same name. */ 1503 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1504 btrfs_ino(BTRFS_I(parent_inode)), 1505 dentry->d_name.name, 1506 dentry->d_name.len, 0); 1507 if (dir_item != NULL && !IS_ERR(dir_item)) { 1508 pending->error = -EEXIST; 1509 goto dir_item_existed; 1510 } else if (IS_ERR(dir_item)) { 1511 ret = PTR_ERR(dir_item); 1512 btrfs_abort_transaction(trans, ret); 1513 goto fail; 1514 } 1515 btrfs_release_path(path); 1516 1517 /* 1518 * pull in the delayed directory update 1519 * and the delayed inode item 1520 * otherwise we corrupt the FS during 1521 * snapshot 1522 */ 1523 ret = btrfs_run_delayed_items(trans); 1524 if (ret) { /* Transaction aborted */ 1525 btrfs_abort_transaction(trans, ret); 1526 goto fail; 1527 } 1528 1529 record_root_in_trans(trans, root, 0); 1530 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1531 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1532 btrfs_check_and_init_root_item(new_root_item); 1533 1534 root_flags = btrfs_root_flags(new_root_item); 1535 if (pending->readonly) 1536 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1537 else 1538 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1539 btrfs_set_root_flags(new_root_item, root_flags); 1540 1541 btrfs_set_root_generation_v2(new_root_item, 1542 trans->transid); 1543 uuid_le_gen(&new_uuid); 1544 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1545 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1546 BTRFS_UUID_SIZE); 1547 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1548 memset(new_root_item->received_uuid, 0, 1549 sizeof(new_root_item->received_uuid)); 1550 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1551 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1552 btrfs_set_root_stransid(new_root_item, 0); 1553 btrfs_set_root_rtransid(new_root_item, 0); 1554 } 1555 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1556 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1557 btrfs_set_root_otransid(new_root_item, trans->transid); 1558 1559 old = btrfs_lock_root_node(root); 1560 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1561 if (ret) { 1562 btrfs_tree_unlock(old); 1563 free_extent_buffer(old); 1564 btrfs_abort_transaction(trans, ret); 1565 goto fail; 1566 } 1567 1568 btrfs_set_lock_blocking(old); 1569 1570 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1571 /* clean up in any case */ 1572 btrfs_tree_unlock(old); 1573 free_extent_buffer(old); 1574 if (ret) { 1575 btrfs_abort_transaction(trans, ret); 1576 goto fail; 1577 } 1578 /* see comments in should_cow_block() */ 1579 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1580 smp_wmb(); 1581 1582 btrfs_set_root_node(new_root_item, tmp); 1583 /* record when the snapshot was created in key.offset */ 1584 key.offset = trans->transid; 1585 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1586 btrfs_tree_unlock(tmp); 1587 free_extent_buffer(tmp); 1588 if (ret) { 1589 btrfs_abort_transaction(trans, ret); 1590 goto fail; 1591 } 1592 1593 /* 1594 * insert root back/forward references 1595 */ 1596 ret = btrfs_add_root_ref(trans, fs_info, objectid, 1597 parent_root->root_key.objectid, 1598 btrfs_ino(BTRFS_I(parent_inode)), index, 1599 dentry->d_name.name, dentry->d_name.len); 1600 if (ret) { 1601 btrfs_abort_transaction(trans, ret); 1602 goto fail; 1603 } 1604 1605 key.offset = (u64)-1; 1606 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key); 1607 if (IS_ERR(pending->snap)) { 1608 ret = PTR_ERR(pending->snap); 1609 btrfs_abort_transaction(trans, ret); 1610 goto fail; 1611 } 1612 1613 ret = btrfs_reloc_post_snapshot(trans, pending); 1614 if (ret) { 1615 btrfs_abort_transaction(trans, ret); 1616 goto fail; 1617 } 1618 1619 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1620 if (ret) { 1621 btrfs_abort_transaction(trans, ret); 1622 goto fail; 1623 } 1624 1625 /* 1626 * Do special qgroup accounting for snapshot, as we do some qgroup 1627 * snapshot hack to do fast snapshot. 1628 * To co-operate with that hack, we do hack again. 1629 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1630 */ 1631 ret = qgroup_account_snapshot(trans, root, parent_root, 1632 pending->inherit, objectid); 1633 if (ret < 0) 1634 goto fail; 1635 1636 ret = btrfs_insert_dir_item(trans, parent_root, 1637 dentry->d_name.name, dentry->d_name.len, 1638 BTRFS_I(parent_inode), &key, 1639 BTRFS_FT_DIR, index); 1640 /* We have check then name at the beginning, so it is impossible. */ 1641 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1642 if (ret) { 1643 btrfs_abort_transaction(trans, ret); 1644 goto fail; 1645 } 1646 1647 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1648 dentry->d_name.len * 2); 1649 parent_inode->i_mtime = parent_inode->i_ctime = 1650 current_time(parent_inode); 1651 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1652 if (ret) { 1653 btrfs_abort_transaction(trans, ret); 1654 goto fail; 1655 } 1656 ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b, 1657 BTRFS_UUID_KEY_SUBVOL, objectid); 1658 if (ret) { 1659 btrfs_abort_transaction(trans, ret); 1660 goto fail; 1661 } 1662 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1663 ret = btrfs_uuid_tree_add(trans, fs_info, 1664 new_root_item->received_uuid, 1665 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1666 objectid); 1667 if (ret && ret != -EEXIST) { 1668 btrfs_abort_transaction(trans, ret); 1669 goto fail; 1670 } 1671 } 1672 1673 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1674 if (ret) { 1675 btrfs_abort_transaction(trans, ret); 1676 goto fail; 1677 } 1678 1679 fail: 1680 pending->error = ret; 1681 dir_item_existed: 1682 trans->block_rsv = rsv; 1683 trans->bytes_reserved = 0; 1684 clear_skip_qgroup: 1685 btrfs_clear_skip_qgroup(trans); 1686 no_free_objectid: 1687 kfree(new_root_item); 1688 pending->root_item = NULL; 1689 btrfs_free_path(path); 1690 pending->path = NULL; 1691 1692 return ret; 1693 } 1694 1695 /* 1696 * create all the snapshots we've scheduled for creation 1697 */ 1698 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1699 { 1700 struct btrfs_pending_snapshot *pending, *next; 1701 struct list_head *head = &trans->transaction->pending_snapshots; 1702 int ret = 0; 1703 1704 list_for_each_entry_safe(pending, next, head, list) { 1705 list_del(&pending->list); 1706 ret = create_pending_snapshot(trans, pending); 1707 if (ret) 1708 break; 1709 } 1710 return ret; 1711 } 1712 1713 static void update_super_roots(struct btrfs_fs_info *fs_info) 1714 { 1715 struct btrfs_root_item *root_item; 1716 struct btrfs_super_block *super; 1717 1718 super = fs_info->super_copy; 1719 1720 root_item = &fs_info->chunk_root->root_item; 1721 super->chunk_root = root_item->bytenr; 1722 super->chunk_root_generation = root_item->generation; 1723 super->chunk_root_level = root_item->level; 1724 1725 root_item = &fs_info->tree_root->root_item; 1726 super->root = root_item->bytenr; 1727 super->generation = root_item->generation; 1728 super->root_level = root_item->level; 1729 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1730 super->cache_generation = root_item->generation; 1731 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1732 super->uuid_tree_generation = root_item->generation; 1733 } 1734 1735 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1736 { 1737 struct btrfs_transaction *trans; 1738 int ret = 0; 1739 1740 spin_lock(&info->trans_lock); 1741 trans = info->running_transaction; 1742 if (trans) 1743 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1744 spin_unlock(&info->trans_lock); 1745 return ret; 1746 } 1747 1748 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1749 { 1750 struct btrfs_transaction *trans; 1751 int ret = 0; 1752 1753 spin_lock(&info->trans_lock); 1754 trans = info->running_transaction; 1755 if (trans) 1756 ret = is_transaction_blocked(trans); 1757 spin_unlock(&info->trans_lock); 1758 return ret; 1759 } 1760 1761 /* 1762 * wait for the current transaction commit to start and block subsequent 1763 * transaction joins 1764 */ 1765 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1766 struct btrfs_transaction *trans) 1767 { 1768 wait_event(fs_info->transaction_blocked_wait, 1769 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted); 1770 } 1771 1772 /* 1773 * wait for the current transaction to start and then become unblocked. 1774 * caller holds ref. 1775 */ 1776 static void wait_current_trans_commit_start_and_unblock( 1777 struct btrfs_fs_info *fs_info, 1778 struct btrfs_transaction *trans) 1779 { 1780 wait_event(fs_info->transaction_wait, 1781 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted); 1782 } 1783 1784 /* 1785 * commit transactions asynchronously. once btrfs_commit_transaction_async 1786 * returns, any subsequent transaction will not be allowed to join. 1787 */ 1788 struct btrfs_async_commit { 1789 struct btrfs_trans_handle *newtrans; 1790 struct work_struct work; 1791 }; 1792 1793 static void do_async_commit(struct work_struct *work) 1794 { 1795 struct btrfs_async_commit *ac = 1796 container_of(work, struct btrfs_async_commit, work); 1797 1798 /* 1799 * We've got freeze protection passed with the transaction. 1800 * Tell lockdep about it. 1801 */ 1802 if (ac->newtrans->type & __TRANS_FREEZABLE) 1803 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1804 1805 current->journal_info = ac->newtrans; 1806 1807 btrfs_commit_transaction(ac->newtrans); 1808 kfree(ac); 1809 } 1810 1811 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1812 int wait_for_unblock) 1813 { 1814 struct btrfs_fs_info *fs_info = trans->fs_info; 1815 struct btrfs_async_commit *ac; 1816 struct btrfs_transaction *cur_trans; 1817 1818 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1819 if (!ac) 1820 return -ENOMEM; 1821 1822 INIT_WORK(&ac->work, do_async_commit); 1823 ac->newtrans = btrfs_join_transaction(trans->root); 1824 if (IS_ERR(ac->newtrans)) { 1825 int err = PTR_ERR(ac->newtrans); 1826 kfree(ac); 1827 return err; 1828 } 1829 1830 /* take transaction reference */ 1831 cur_trans = trans->transaction; 1832 refcount_inc(&cur_trans->use_count); 1833 1834 btrfs_end_transaction(trans); 1835 1836 /* 1837 * Tell lockdep we've released the freeze rwsem, since the 1838 * async commit thread will be the one to unlock it. 1839 */ 1840 if (ac->newtrans->type & __TRANS_FREEZABLE) 1841 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1842 1843 schedule_work(&ac->work); 1844 1845 /* wait for transaction to start and unblock */ 1846 if (wait_for_unblock) 1847 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1848 else 1849 wait_current_trans_commit_start(fs_info, cur_trans); 1850 1851 if (current->journal_info == trans) 1852 current->journal_info = NULL; 1853 1854 btrfs_put_transaction(cur_trans); 1855 return 0; 1856 } 1857 1858 1859 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1860 { 1861 struct btrfs_fs_info *fs_info = trans->fs_info; 1862 struct btrfs_transaction *cur_trans = trans->transaction; 1863 DEFINE_WAIT(wait); 1864 1865 WARN_ON(refcount_read(&trans->use_count) > 1); 1866 1867 btrfs_abort_transaction(trans, err); 1868 1869 spin_lock(&fs_info->trans_lock); 1870 1871 /* 1872 * If the transaction is removed from the list, it means this 1873 * transaction has been committed successfully, so it is impossible 1874 * to call the cleanup function. 1875 */ 1876 BUG_ON(list_empty(&cur_trans->list)); 1877 1878 list_del_init(&cur_trans->list); 1879 if (cur_trans == fs_info->running_transaction) { 1880 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1881 spin_unlock(&fs_info->trans_lock); 1882 wait_event(cur_trans->writer_wait, 1883 atomic_read(&cur_trans->num_writers) == 1); 1884 1885 spin_lock(&fs_info->trans_lock); 1886 } 1887 spin_unlock(&fs_info->trans_lock); 1888 1889 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1890 1891 spin_lock(&fs_info->trans_lock); 1892 if (cur_trans == fs_info->running_transaction) 1893 fs_info->running_transaction = NULL; 1894 spin_unlock(&fs_info->trans_lock); 1895 1896 if (trans->type & __TRANS_FREEZABLE) 1897 sb_end_intwrite(fs_info->sb); 1898 btrfs_put_transaction(cur_trans); 1899 btrfs_put_transaction(cur_trans); 1900 1901 trace_btrfs_transaction_commit(trans->root); 1902 1903 if (current->journal_info == trans) 1904 current->journal_info = NULL; 1905 btrfs_scrub_cancel(fs_info); 1906 1907 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1908 } 1909 1910 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1911 { 1912 /* 1913 * We use writeback_inodes_sb here because if we used 1914 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 1915 * Currently are holding the fs freeze lock, if we do an async flush 1916 * we'll do btrfs_join_transaction() and deadlock because we need to 1917 * wait for the fs freeze lock. Using the direct flushing we benefit 1918 * from already being in a transaction and our join_transaction doesn't 1919 * have to re-take the fs freeze lock. 1920 */ 1921 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1922 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 1923 return 0; 1924 } 1925 1926 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1927 { 1928 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1929 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1930 } 1931 1932 static inline void 1933 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans) 1934 { 1935 wait_event(cur_trans->pending_wait, 1936 atomic_read(&cur_trans->pending_ordered) == 0); 1937 } 1938 1939 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 1940 { 1941 struct btrfs_fs_info *fs_info = trans->fs_info; 1942 struct btrfs_transaction *cur_trans = trans->transaction; 1943 struct btrfs_transaction *prev_trans = NULL; 1944 int ret; 1945 1946 /* Stop the commit early if ->aborted is set */ 1947 if (unlikely(READ_ONCE(cur_trans->aborted))) { 1948 ret = cur_trans->aborted; 1949 btrfs_end_transaction(trans); 1950 return ret; 1951 } 1952 1953 /* make a pass through all the delayed refs we have so far 1954 * any runnings procs may add more while we are here 1955 */ 1956 ret = btrfs_run_delayed_refs(trans, 0); 1957 if (ret) { 1958 btrfs_end_transaction(trans); 1959 return ret; 1960 } 1961 1962 btrfs_trans_release_metadata(trans); 1963 trans->block_rsv = NULL; 1964 1965 cur_trans = trans->transaction; 1966 1967 /* 1968 * set the flushing flag so procs in this transaction have to 1969 * start sending their work down. 1970 */ 1971 cur_trans->delayed_refs.flushing = 1; 1972 smp_wmb(); 1973 1974 if (!list_empty(&trans->new_bgs)) 1975 btrfs_create_pending_block_groups(trans); 1976 1977 ret = btrfs_run_delayed_refs(trans, 0); 1978 if (ret) { 1979 btrfs_end_transaction(trans); 1980 return ret; 1981 } 1982 1983 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 1984 int run_it = 0; 1985 1986 /* this mutex is also taken before trying to set 1987 * block groups readonly. We need to make sure 1988 * that nobody has set a block group readonly 1989 * after a extents from that block group have been 1990 * allocated for cache files. btrfs_set_block_group_ro 1991 * will wait for the transaction to commit if it 1992 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 1993 * 1994 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 1995 * only one process starts all the block group IO. It wouldn't 1996 * hurt to have more than one go through, but there's no 1997 * real advantage to it either. 1998 */ 1999 mutex_lock(&fs_info->ro_block_group_mutex); 2000 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2001 &cur_trans->flags)) 2002 run_it = 1; 2003 mutex_unlock(&fs_info->ro_block_group_mutex); 2004 2005 if (run_it) { 2006 ret = btrfs_start_dirty_block_groups(trans); 2007 if (ret) { 2008 btrfs_end_transaction(trans); 2009 return ret; 2010 } 2011 } 2012 } 2013 2014 spin_lock(&fs_info->trans_lock); 2015 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2016 spin_unlock(&fs_info->trans_lock); 2017 refcount_inc(&cur_trans->use_count); 2018 ret = btrfs_end_transaction(trans); 2019 2020 wait_for_commit(cur_trans); 2021 2022 if (unlikely(cur_trans->aborted)) 2023 ret = cur_trans->aborted; 2024 2025 btrfs_put_transaction(cur_trans); 2026 2027 return ret; 2028 } 2029 2030 cur_trans->state = TRANS_STATE_COMMIT_START; 2031 wake_up(&fs_info->transaction_blocked_wait); 2032 2033 if (cur_trans->list.prev != &fs_info->trans_list) { 2034 prev_trans = list_entry(cur_trans->list.prev, 2035 struct btrfs_transaction, list); 2036 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2037 refcount_inc(&prev_trans->use_count); 2038 spin_unlock(&fs_info->trans_lock); 2039 2040 wait_for_commit(prev_trans); 2041 ret = prev_trans->aborted; 2042 2043 btrfs_put_transaction(prev_trans); 2044 if (ret) 2045 goto cleanup_transaction; 2046 } else { 2047 spin_unlock(&fs_info->trans_lock); 2048 } 2049 } else { 2050 spin_unlock(&fs_info->trans_lock); 2051 } 2052 2053 extwriter_counter_dec(cur_trans, trans->type); 2054 2055 ret = btrfs_start_delalloc_flush(fs_info); 2056 if (ret) 2057 goto cleanup_transaction; 2058 2059 ret = btrfs_run_delayed_items(trans); 2060 if (ret) 2061 goto cleanup_transaction; 2062 2063 wait_event(cur_trans->writer_wait, 2064 extwriter_counter_read(cur_trans) == 0); 2065 2066 /* some pending stuffs might be added after the previous flush. */ 2067 ret = btrfs_run_delayed_items(trans); 2068 if (ret) 2069 goto cleanup_transaction; 2070 2071 btrfs_wait_delalloc_flush(fs_info); 2072 2073 btrfs_wait_pending_ordered(cur_trans); 2074 2075 btrfs_scrub_pause(fs_info); 2076 /* 2077 * Ok now we need to make sure to block out any other joins while we 2078 * commit the transaction. We could have started a join before setting 2079 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2080 */ 2081 spin_lock(&fs_info->trans_lock); 2082 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2083 spin_unlock(&fs_info->trans_lock); 2084 wait_event(cur_trans->writer_wait, 2085 atomic_read(&cur_trans->num_writers) == 1); 2086 2087 /* ->aborted might be set after the previous check, so check it */ 2088 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2089 ret = cur_trans->aborted; 2090 goto scrub_continue; 2091 } 2092 /* 2093 * the reloc mutex makes sure that we stop 2094 * the balancing code from coming in and moving 2095 * extents around in the middle of the commit 2096 */ 2097 mutex_lock(&fs_info->reloc_mutex); 2098 2099 /* 2100 * We needn't worry about the delayed items because we will 2101 * deal with them in create_pending_snapshot(), which is the 2102 * core function of the snapshot creation. 2103 */ 2104 ret = create_pending_snapshots(trans); 2105 if (ret) { 2106 mutex_unlock(&fs_info->reloc_mutex); 2107 goto scrub_continue; 2108 } 2109 2110 /* 2111 * We insert the dir indexes of the snapshots and update the inode 2112 * of the snapshots' parents after the snapshot creation, so there 2113 * are some delayed items which are not dealt with. Now deal with 2114 * them. 2115 * 2116 * We needn't worry that this operation will corrupt the snapshots, 2117 * because all the tree which are snapshoted will be forced to COW 2118 * the nodes and leaves. 2119 */ 2120 ret = btrfs_run_delayed_items(trans); 2121 if (ret) { 2122 mutex_unlock(&fs_info->reloc_mutex); 2123 goto scrub_continue; 2124 } 2125 2126 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2127 if (ret) { 2128 mutex_unlock(&fs_info->reloc_mutex); 2129 goto scrub_continue; 2130 } 2131 2132 /* 2133 * make sure none of the code above managed to slip in a 2134 * delayed item 2135 */ 2136 btrfs_assert_delayed_root_empty(fs_info); 2137 2138 WARN_ON(cur_trans != trans->transaction); 2139 2140 /* btrfs_commit_tree_roots is responsible for getting the 2141 * various roots consistent with each other. Every pointer 2142 * in the tree of tree roots has to point to the most up to date 2143 * root for every subvolume and other tree. So, we have to keep 2144 * the tree logging code from jumping in and changing any 2145 * of the trees. 2146 * 2147 * At this point in the commit, there can't be any tree-log 2148 * writers, but a little lower down we drop the trans mutex 2149 * and let new people in. By holding the tree_log_mutex 2150 * from now until after the super is written, we avoid races 2151 * with the tree-log code. 2152 */ 2153 mutex_lock(&fs_info->tree_log_mutex); 2154 2155 ret = commit_fs_roots(trans); 2156 if (ret) { 2157 mutex_unlock(&fs_info->tree_log_mutex); 2158 mutex_unlock(&fs_info->reloc_mutex); 2159 goto scrub_continue; 2160 } 2161 2162 /* 2163 * Since the transaction is done, we can apply the pending changes 2164 * before the next transaction. 2165 */ 2166 btrfs_apply_pending_changes(fs_info); 2167 2168 /* commit_fs_roots gets rid of all the tree log roots, it is now 2169 * safe to free the root of tree log roots 2170 */ 2171 btrfs_free_log_root_tree(trans, fs_info); 2172 2173 /* 2174 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2175 * new delayed refs. Must handle them or qgroup can be wrong. 2176 */ 2177 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2178 if (ret) { 2179 mutex_unlock(&fs_info->tree_log_mutex); 2180 mutex_unlock(&fs_info->reloc_mutex); 2181 goto scrub_continue; 2182 } 2183 2184 /* 2185 * Since fs roots are all committed, we can get a quite accurate 2186 * new_roots. So let's do quota accounting. 2187 */ 2188 ret = btrfs_qgroup_account_extents(trans); 2189 if (ret < 0) { 2190 mutex_unlock(&fs_info->tree_log_mutex); 2191 mutex_unlock(&fs_info->reloc_mutex); 2192 goto scrub_continue; 2193 } 2194 2195 ret = commit_cowonly_roots(trans); 2196 if (ret) { 2197 mutex_unlock(&fs_info->tree_log_mutex); 2198 mutex_unlock(&fs_info->reloc_mutex); 2199 goto scrub_continue; 2200 } 2201 2202 /* 2203 * The tasks which save the space cache and inode cache may also 2204 * update ->aborted, check it. 2205 */ 2206 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2207 ret = cur_trans->aborted; 2208 mutex_unlock(&fs_info->tree_log_mutex); 2209 mutex_unlock(&fs_info->reloc_mutex); 2210 goto scrub_continue; 2211 } 2212 2213 btrfs_prepare_extent_commit(fs_info); 2214 2215 cur_trans = fs_info->running_transaction; 2216 2217 btrfs_set_root_node(&fs_info->tree_root->root_item, 2218 fs_info->tree_root->node); 2219 list_add_tail(&fs_info->tree_root->dirty_list, 2220 &cur_trans->switch_commits); 2221 2222 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2223 fs_info->chunk_root->node); 2224 list_add_tail(&fs_info->chunk_root->dirty_list, 2225 &cur_trans->switch_commits); 2226 2227 switch_commit_roots(cur_trans); 2228 2229 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2230 ASSERT(list_empty(&cur_trans->io_bgs)); 2231 update_super_roots(fs_info); 2232 2233 btrfs_set_super_log_root(fs_info->super_copy, 0); 2234 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2235 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2236 sizeof(*fs_info->super_copy)); 2237 2238 btrfs_update_commit_device_size(fs_info); 2239 btrfs_update_commit_device_bytes_used(cur_trans); 2240 2241 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2242 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2243 2244 btrfs_trans_release_chunk_metadata(trans); 2245 2246 spin_lock(&fs_info->trans_lock); 2247 cur_trans->state = TRANS_STATE_UNBLOCKED; 2248 fs_info->running_transaction = NULL; 2249 spin_unlock(&fs_info->trans_lock); 2250 mutex_unlock(&fs_info->reloc_mutex); 2251 2252 wake_up(&fs_info->transaction_wait); 2253 2254 ret = btrfs_write_and_wait_transaction(trans); 2255 if (ret) { 2256 btrfs_handle_fs_error(fs_info, ret, 2257 "Error while writing out transaction"); 2258 mutex_unlock(&fs_info->tree_log_mutex); 2259 goto scrub_continue; 2260 } 2261 2262 ret = write_all_supers(fs_info, 0); 2263 /* 2264 * the super is written, we can safely allow the tree-loggers 2265 * to go about their business 2266 */ 2267 mutex_unlock(&fs_info->tree_log_mutex); 2268 if (ret) 2269 goto scrub_continue; 2270 2271 btrfs_finish_extent_commit(trans); 2272 2273 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2274 btrfs_clear_space_info_full(fs_info); 2275 2276 fs_info->last_trans_committed = cur_trans->transid; 2277 /* 2278 * We needn't acquire the lock here because there is no other task 2279 * which can change it. 2280 */ 2281 cur_trans->state = TRANS_STATE_COMPLETED; 2282 wake_up(&cur_trans->commit_wait); 2283 2284 spin_lock(&fs_info->trans_lock); 2285 list_del_init(&cur_trans->list); 2286 spin_unlock(&fs_info->trans_lock); 2287 2288 btrfs_put_transaction(cur_trans); 2289 btrfs_put_transaction(cur_trans); 2290 2291 if (trans->type & __TRANS_FREEZABLE) 2292 sb_end_intwrite(fs_info->sb); 2293 2294 trace_btrfs_transaction_commit(trans->root); 2295 2296 btrfs_scrub_continue(fs_info); 2297 2298 if (current->journal_info == trans) 2299 current->journal_info = NULL; 2300 2301 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2302 2303 /* 2304 * If fs has been frozen, we can not handle delayed iputs, otherwise 2305 * it'll result in deadlock about SB_FREEZE_FS. 2306 */ 2307 if (current != fs_info->transaction_kthread && 2308 current != fs_info->cleaner_kthread && 2309 !test_bit(BTRFS_FS_FROZEN, &fs_info->flags)) 2310 btrfs_run_delayed_iputs(fs_info); 2311 2312 return ret; 2313 2314 scrub_continue: 2315 btrfs_scrub_continue(fs_info); 2316 cleanup_transaction: 2317 btrfs_trans_release_metadata(trans); 2318 btrfs_trans_release_chunk_metadata(trans); 2319 trans->block_rsv = NULL; 2320 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2321 if (current->journal_info == trans) 2322 current->journal_info = NULL; 2323 cleanup_transaction(trans, ret); 2324 2325 return ret; 2326 } 2327 2328 /* 2329 * return < 0 if error 2330 * 0 if there are no more dead_roots at the time of call 2331 * 1 there are more to be processed, call me again 2332 * 2333 * The return value indicates there are certainly more snapshots to delete, but 2334 * if there comes a new one during processing, it may return 0. We don't mind, 2335 * because btrfs_commit_super will poke cleaner thread and it will process it a 2336 * few seconds later. 2337 */ 2338 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2339 { 2340 int ret; 2341 struct btrfs_fs_info *fs_info = root->fs_info; 2342 2343 spin_lock(&fs_info->trans_lock); 2344 if (list_empty(&fs_info->dead_roots)) { 2345 spin_unlock(&fs_info->trans_lock); 2346 return 0; 2347 } 2348 root = list_first_entry(&fs_info->dead_roots, 2349 struct btrfs_root, root_list); 2350 list_del_init(&root->root_list); 2351 spin_unlock(&fs_info->trans_lock); 2352 2353 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid); 2354 2355 btrfs_kill_all_delayed_nodes(root); 2356 2357 if (btrfs_header_backref_rev(root->node) < 2358 BTRFS_MIXED_BACKREF_REV) 2359 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2360 else 2361 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2362 2363 return (ret < 0) ? 0 : 1; 2364 } 2365 2366 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2367 { 2368 unsigned long prev; 2369 unsigned long bit; 2370 2371 prev = xchg(&fs_info->pending_changes, 0); 2372 if (!prev) 2373 return; 2374 2375 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2376 if (prev & bit) 2377 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2378 prev &= ~bit; 2379 2380 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2381 if (prev & bit) 2382 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2383 prev &= ~bit; 2384 2385 bit = 1 << BTRFS_PENDING_COMMIT; 2386 if (prev & bit) 2387 btrfs_debug(fs_info, "pending commit done"); 2388 prev &= ~bit; 2389 2390 if (prev) 2391 btrfs_warn(fs_info, 2392 "unknown pending changes left 0x%lx, ignoring", prev); 2393 } 2394