xref: /openbmc/linux/fs/btrfs/transaction.c (revision 2eb0f624b709e78ec8e2f4c3412947703db99301)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		=  __TRANS_START,
41 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
42 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
43 					   __TRANS_ATTACH |
44 					   __TRANS_JOIN),
45 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
46 					   __TRANS_ATTACH |
47 					   __TRANS_JOIN |
48 					   __TRANS_JOIN_NOLOCK),
49 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
50 					   __TRANS_ATTACH |
51 					   __TRANS_JOIN |
52 					   __TRANS_JOIN_NOLOCK),
53 };
54 
55 void btrfs_put_transaction(struct btrfs_transaction *transaction)
56 {
57 	WARN_ON(refcount_read(&transaction->use_count) == 0);
58 	if (refcount_dec_and_test(&transaction->use_count)) {
59 		BUG_ON(!list_empty(&transaction->list));
60 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
61 		if (transaction->delayed_refs.pending_csums)
62 			btrfs_err(transaction->fs_info,
63 				  "pending csums is %llu",
64 				  transaction->delayed_refs.pending_csums);
65 		while (!list_empty(&transaction->pending_chunks)) {
66 			struct extent_map *em;
67 
68 			em = list_first_entry(&transaction->pending_chunks,
69 					      struct extent_map, list);
70 			list_del_init(&em->list);
71 			free_extent_map(em);
72 		}
73 		/*
74 		 * If any block groups are found in ->deleted_bgs then it's
75 		 * because the transaction was aborted and a commit did not
76 		 * happen (things failed before writing the new superblock
77 		 * and calling btrfs_finish_extent_commit()), so we can not
78 		 * discard the physical locations of the block groups.
79 		 */
80 		while (!list_empty(&transaction->deleted_bgs)) {
81 			struct btrfs_block_group_cache *cache;
82 
83 			cache = list_first_entry(&transaction->deleted_bgs,
84 						 struct btrfs_block_group_cache,
85 						 bg_list);
86 			list_del_init(&cache->bg_list);
87 			btrfs_put_block_group_trimming(cache);
88 			btrfs_put_block_group(cache);
89 		}
90 		kfree(transaction);
91 	}
92 }
93 
94 static void clear_btree_io_tree(struct extent_io_tree *tree)
95 {
96 	spin_lock(&tree->lock);
97 	/*
98 	 * Do a single barrier for the waitqueue_active check here, the state
99 	 * of the waitqueue should not change once clear_btree_io_tree is
100 	 * called.
101 	 */
102 	smp_mb();
103 	while (!RB_EMPTY_ROOT(&tree->state)) {
104 		struct rb_node *node;
105 		struct extent_state *state;
106 
107 		node = rb_first(&tree->state);
108 		state = rb_entry(node, struct extent_state, rb_node);
109 		rb_erase(&state->rb_node, &tree->state);
110 		RB_CLEAR_NODE(&state->rb_node);
111 		/*
112 		 * btree io trees aren't supposed to have tasks waiting for
113 		 * changes in the flags of extent states ever.
114 		 */
115 		ASSERT(!waitqueue_active(&state->wq));
116 		free_extent_state(state);
117 
118 		cond_resched_lock(&tree->lock);
119 	}
120 	spin_unlock(&tree->lock);
121 }
122 
123 static noinline void switch_commit_roots(struct btrfs_transaction *trans)
124 {
125 	struct btrfs_fs_info *fs_info = trans->fs_info;
126 	struct btrfs_root *root, *tmp;
127 
128 	down_write(&fs_info->commit_root_sem);
129 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
130 				 dirty_list) {
131 		list_del_init(&root->dirty_list);
132 		free_extent_buffer(root->commit_root);
133 		root->commit_root = btrfs_root_node(root);
134 		if (is_fstree(root->objectid))
135 			btrfs_unpin_free_ino(root);
136 		clear_btree_io_tree(&root->dirty_log_pages);
137 	}
138 
139 	/* We can free old roots now. */
140 	spin_lock(&trans->dropped_roots_lock);
141 	while (!list_empty(&trans->dropped_roots)) {
142 		root = list_first_entry(&trans->dropped_roots,
143 					struct btrfs_root, root_list);
144 		list_del_init(&root->root_list);
145 		spin_unlock(&trans->dropped_roots_lock);
146 		btrfs_drop_and_free_fs_root(fs_info, root);
147 		spin_lock(&trans->dropped_roots_lock);
148 	}
149 	spin_unlock(&trans->dropped_roots_lock);
150 	up_write(&fs_info->commit_root_sem);
151 }
152 
153 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
154 					 unsigned int type)
155 {
156 	if (type & TRANS_EXTWRITERS)
157 		atomic_inc(&trans->num_extwriters);
158 }
159 
160 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
161 					 unsigned int type)
162 {
163 	if (type & TRANS_EXTWRITERS)
164 		atomic_dec(&trans->num_extwriters);
165 }
166 
167 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
168 					  unsigned int type)
169 {
170 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
171 }
172 
173 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
174 {
175 	return atomic_read(&trans->num_extwriters);
176 }
177 
178 /*
179  * either allocate a new transaction or hop into the existing one
180  */
181 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
182 				     unsigned int type)
183 {
184 	struct btrfs_transaction *cur_trans;
185 
186 	spin_lock(&fs_info->trans_lock);
187 loop:
188 	/* The file system has been taken offline. No new transactions. */
189 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
190 		spin_unlock(&fs_info->trans_lock);
191 		return -EROFS;
192 	}
193 
194 	cur_trans = fs_info->running_transaction;
195 	if (cur_trans) {
196 		if (cur_trans->aborted) {
197 			spin_unlock(&fs_info->trans_lock);
198 			return cur_trans->aborted;
199 		}
200 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
201 			spin_unlock(&fs_info->trans_lock);
202 			return -EBUSY;
203 		}
204 		refcount_inc(&cur_trans->use_count);
205 		atomic_inc(&cur_trans->num_writers);
206 		extwriter_counter_inc(cur_trans, type);
207 		spin_unlock(&fs_info->trans_lock);
208 		return 0;
209 	}
210 	spin_unlock(&fs_info->trans_lock);
211 
212 	/*
213 	 * If we are ATTACH, we just want to catch the current transaction,
214 	 * and commit it. If there is no transaction, just return ENOENT.
215 	 */
216 	if (type == TRANS_ATTACH)
217 		return -ENOENT;
218 
219 	/*
220 	 * JOIN_NOLOCK only happens during the transaction commit, so
221 	 * it is impossible that ->running_transaction is NULL
222 	 */
223 	BUG_ON(type == TRANS_JOIN_NOLOCK);
224 
225 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
226 	if (!cur_trans)
227 		return -ENOMEM;
228 
229 	spin_lock(&fs_info->trans_lock);
230 	if (fs_info->running_transaction) {
231 		/*
232 		 * someone started a transaction after we unlocked.  Make sure
233 		 * to redo the checks above
234 		 */
235 		kfree(cur_trans);
236 		goto loop;
237 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
238 		spin_unlock(&fs_info->trans_lock);
239 		kfree(cur_trans);
240 		return -EROFS;
241 	}
242 
243 	cur_trans->fs_info = fs_info;
244 	atomic_set(&cur_trans->num_writers, 1);
245 	extwriter_counter_init(cur_trans, type);
246 	init_waitqueue_head(&cur_trans->writer_wait);
247 	init_waitqueue_head(&cur_trans->commit_wait);
248 	init_waitqueue_head(&cur_trans->pending_wait);
249 	cur_trans->state = TRANS_STATE_RUNNING;
250 	/*
251 	 * One for this trans handle, one so it will live on until we
252 	 * commit the transaction.
253 	 */
254 	refcount_set(&cur_trans->use_count, 2);
255 	atomic_set(&cur_trans->pending_ordered, 0);
256 	cur_trans->flags = 0;
257 	cur_trans->start_time = get_seconds();
258 
259 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
260 
261 	cur_trans->delayed_refs.href_root = RB_ROOT;
262 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
263 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
264 
265 	/*
266 	 * although the tree mod log is per file system and not per transaction,
267 	 * the log must never go across transaction boundaries.
268 	 */
269 	smp_mb();
270 	if (!list_empty(&fs_info->tree_mod_seq_list))
271 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
272 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
273 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
274 	atomic64_set(&fs_info->tree_mod_seq, 0);
275 
276 	spin_lock_init(&cur_trans->delayed_refs.lock);
277 
278 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
279 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
280 	INIT_LIST_HEAD(&cur_trans->switch_commits);
281 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
282 	INIT_LIST_HEAD(&cur_trans->io_bgs);
283 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
284 	mutex_init(&cur_trans->cache_write_mutex);
285 	cur_trans->num_dirty_bgs = 0;
286 	spin_lock_init(&cur_trans->dirty_bgs_lock);
287 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
288 	spin_lock_init(&cur_trans->dropped_roots_lock);
289 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
290 	extent_io_tree_init(&cur_trans->dirty_pages,
291 			     fs_info->btree_inode);
292 	fs_info->generation++;
293 	cur_trans->transid = fs_info->generation;
294 	fs_info->running_transaction = cur_trans;
295 	cur_trans->aborted = 0;
296 	spin_unlock(&fs_info->trans_lock);
297 
298 	return 0;
299 }
300 
301 /*
302  * this does all the record keeping required to make sure that a reference
303  * counted root is properly recorded in a given transaction.  This is required
304  * to make sure the old root from before we joined the transaction is deleted
305  * when the transaction commits
306  */
307 static int record_root_in_trans(struct btrfs_trans_handle *trans,
308 			       struct btrfs_root *root,
309 			       int force)
310 {
311 	struct btrfs_fs_info *fs_info = root->fs_info;
312 
313 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
314 	    root->last_trans < trans->transid) || force) {
315 		WARN_ON(root == fs_info->extent_root);
316 		WARN_ON(!force && root->commit_root != root->node);
317 
318 		/*
319 		 * see below for IN_TRANS_SETUP usage rules
320 		 * we have the reloc mutex held now, so there
321 		 * is only one writer in this function
322 		 */
323 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
324 
325 		/* make sure readers find IN_TRANS_SETUP before
326 		 * they find our root->last_trans update
327 		 */
328 		smp_wmb();
329 
330 		spin_lock(&fs_info->fs_roots_radix_lock);
331 		if (root->last_trans == trans->transid && !force) {
332 			spin_unlock(&fs_info->fs_roots_radix_lock);
333 			return 0;
334 		}
335 		radix_tree_tag_set(&fs_info->fs_roots_radix,
336 				   (unsigned long)root->root_key.objectid,
337 				   BTRFS_ROOT_TRANS_TAG);
338 		spin_unlock(&fs_info->fs_roots_radix_lock);
339 		root->last_trans = trans->transid;
340 
341 		/* this is pretty tricky.  We don't want to
342 		 * take the relocation lock in btrfs_record_root_in_trans
343 		 * unless we're really doing the first setup for this root in
344 		 * this transaction.
345 		 *
346 		 * Normally we'd use root->last_trans as a flag to decide
347 		 * if we want to take the expensive mutex.
348 		 *
349 		 * But, we have to set root->last_trans before we
350 		 * init the relocation root, otherwise, we trip over warnings
351 		 * in ctree.c.  The solution used here is to flag ourselves
352 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
353 		 * fixing up the reloc trees and everyone must wait.
354 		 *
355 		 * When this is zero, they can trust root->last_trans and fly
356 		 * through btrfs_record_root_in_trans without having to take the
357 		 * lock.  smp_wmb() makes sure that all the writes above are
358 		 * done before we pop in the zero below
359 		 */
360 		btrfs_init_reloc_root(trans, root);
361 		smp_mb__before_atomic();
362 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
363 	}
364 	return 0;
365 }
366 
367 
368 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
369 			    struct btrfs_root *root)
370 {
371 	struct btrfs_fs_info *fs_info = root->fs_info;
372 	struct btrfs_transaction *cur_trans = trans->transaction;
373 
374 	/* Add ourselves to the transaction dropped list */
375 	spin_lock(&cur_trans->dropped_roots_lock);
376 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
377 	spin_unlock(&cur_trans->dropped_roots_lock);
378 
379 	/* Make sure we don't try to update the root at commit time */
380 	spin_lock(&fs_info->fs_roots_radix_lock);
381 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
382 			     (unsigned long)root->root_key.objectid,
383 			     BTRFS_ROOT_TRANS_TAG);
384 	spin_unlock(&fs_info->fs_roots_radix_lock);
385 }
386 
387 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
388 			       struct btrfs_root *root)
389 {
390 	struct btrfs_fs_info *fs_info = root->fs_info;
391 
392 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
393 		return 0;
394 
395 	/*
396 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
397 	 * and barriers
398 	 */
399 	smp_rmb();
400 	if (root->last_trans == trans->transid &&
401 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
402 		return 0;
403 
404 	mutex_lock(&fs_info->reloc_mutex);
405 	record_root_in_trans(trans, root, 0);
406 	mutex_unlock(&fs_info->reloc_mutex);
407 
408 	return 0;
409 }
410 
411 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
412 {
413 	return (trans->state >= TRANS_STATE_BLOCKED &&
414 		trans->state < TRANS_STATE_UNBLOCKED &&
415 		!trans->aborted);
416 }
417 
418 /* wait for commit against the current transaction to become unblocked
419  * when this is done, it is safe to start a new transaction, but the current
420  * transaction might not be fully on disk.
421  */
422 static void wait_current_trans(struct btrfs_fs_info *fs_info)
423 {
424 	struct btrfs_transaction *cur_trans;
425 
426 	spin_lock(&fs_info->trans_lock);
427 	cur_trans = fs_info->running_transaction;
428 	if (cur_trans && is_transaction_blocked(cur_trans)) {
429 		refcount_inc(&cur_trans->use_count);
430 		spin_unlock(&fs_info->trans_lock);
431 
432 		wait_event(fs_info->transaction_wait,
433 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
434 			   cur_trans->aborted);
435 		btrfs_put_transaction(cur_trans);
436 	} else {
437 		spin_unlock(&fs_info->trans_lock);
438 	}
439 }
440 
441 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
442 {
443 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
444 		return 0;
445 
446 	if (type == TRANS_START)
447 		return 1;
448 
449 	return 0;
450 }
451 
452 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
453 {
454 	struct btrfs_fs_info *fs_info = root->fs_info;
455 
456 	if (!fs_info->reloc_ctl ||
457 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
458 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
459 	    root->reloc_root)
460 		return false;
461 
462 	return true;
463 }
464 
465 static struct btrfs_trans_handle *
466 start_transaction(struct btrfs_root *root, unsigned int num_items,
467 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
468 		  bool enforce_qgroups)
469 {
470 	struct btrfs_fs_info *fs_info = root->fs_info;
471 
472 	struct btrfs_trans_handle *h;
473 	struct btrfs_transaction *cur_trans;
474 	u64 num_bytes = 0;
475 	u64 qgroup_reserved = 0;
476 	bool reloc_reserved = false;
477 	int ret;
478 
479 	/* Send isn't supposed to start transactions. */
480 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
481 
482 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
483 		return ERR_PTR(-EROFS);
484 
485 	if (current->journal_info) {
486 		WARN_ON(type & TRANS_EXTWRITERS);
487 		h = current->journal_info;
488 		refcount_inc(&h->use_count);
489 		WARN_ON(refcount_read(&h->use_count) > 2);
490 		h->orig_rsv = h->block_rsv;
491 		h->block_rsv = NULL;
492 		goto got_it;
493 	}
494 
495 	/*
496 	 * Do the reservation before we join the transaction so we can do all
497 	 * the appropriate flushing if need be.
498 	 */
499 	if (num_items && root != fs_info->chunk_root) {
500 		qgroup_reserved = num_items * fs_info->nodesize;
501 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
502 				enforce_qgroups);
503 		if (ret)
504 			return ERR_PTR(ret);
505 
506 		num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
507 		/*
508 		 * Do the reservation for the relocation root creation
509 		 */
510 		if (need_reserve_reloc_root(root)) {
511 			num_bytes += fs_info->nodesize;
512 			reloc_reserved = true;
513 		}
514 
515 		ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
516 					  num_bytes, flush);
517 		if (ret)
518 			goto reserve_fail;
519 	}
520 again:
521 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
522 	if (!h) {
523 		ret = -ENOMEM;
524 		goto alloc_fail;
525 	}
526 
527 	/*
528 	 * If we are JOIN_NOLOCK we're already committing a transaction and
529 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
530 	 * because we're already holding a ref.  We need this because we could
531 	 * have raced in and did an fsync() on a file which can kick a commit
532 	 * and then we deadlock with somebody doing a freeze.
533 	 *
534 	 * If we are ATTACH, it means we just want to catch the current
535 	 * transaction and commit it, so we needn't do sb_start_intwrite().
536 	 */
537 	if (type & __TRANS_FREEZABLE)
538 		sb_start_intwrite(fs_info->sb);
539 
540 	if (may_wait_transaction(fs_info, type))
541 		wait_current_trans(fs_info);
542 
543 	do {
544 		ret = join_transaction(fs_info, type);
545 		if (ret == -EBUSY) {
546 			wait_current_trans(fs_info);
547 			if (unlikely(type == TRANS_ATTACH))
548 				ret = -ENOENT;
549 		}
550 	} while (ret == -EBUSY);
551 
552 	if (ret < 0)
553 		goto join_fail;
554 
555 	cur_trans = fs_info->running_transaction;
556 
557 	h->transid = cur_trans->transid;
558 	h->transaction = cur_trans;
559 	h->root = root;
560 	refcount_set(&h->use_count, 1);
561 	h->fs_info = root->fs_info;
562 
563 	h->type = type;
564 	h->can_flush_pending_bgs = true;
565 	INIT_LIST_HEAD(&h->new_bgs);
566 
567 	smp_mb();
568 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
569 	    may_wait_transaction(fs_info, type)) {
570 		current->journal_info = h;
571 		btrfs_commit_transaction(h);
572 		goto again;
573 	}
574 
575 	if (num_bytes) {
576 		trace_btrfs_space_reservation(fs_info, "transaction",
577 					      h->transid, num_bytes, 1);
578 		h->block_rsv = &fs_info->trans_block_rsv;
579 		h->bytes_reserved = num_bytes;
580 		h->reloc_reserved = reloc_reserved;
581 	}
582 
583 got_it:
584 	btrfs_record_root_in_trans(h, root);
585 
586 	if (!current->journal_info)
587 		current->journal_info = h;
588 	return h;
589 
590 join_fail:
591 	if (type & __TRANS_FREEZABLE)
592 		sb_end_intwrite(fs_info->sb);
593 	kmem_cache_free(btrfs_trans_handle_cachep, h);
594 alloc_fail:
595 	if (num_bytes)
596 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
597 					num_bytes);
598 reserve_fail:
599 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
600 	return ERR_PTR(ret);
601 }
602 
603 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
604 						   unsigned int num_items)
605 {
606 	return start_transaction(root, num_items, TRANS_START,
607 				 BTRFS_RESERVE_FLUSH_ALL, true);
608 }
609 
610 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
611 					struct btrfs_root *root,
612 					unsigned int num_items,
613 					int min_factor)
614 {
615 	struct btrfs_fs_info *fs_info = root->fs_info;
616 	struct btrfs_trans_handle *trans;
617 	u64 num_bytes;
618 	int ret;
619 
620 	/*
621 	 * We have two callers: unlink and block group removal.  The
622 	 * former should succeed even if we will temporarily exceed
623 	 * quota and the latter operates on the extent root so
624 	 * qgroup enforcement is ignored anyway.
625 	 */
626 	trans = start_transaction(root, num_items, TRANS_START,
627 				  BTRFS_RESERVE_FLUSH_ALL, false);
628 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
629 		return trans;
630 
631 	trans = btrfs_start_transaction(root, 0);
632 	if (IS_ERR(trans))
633 		return trans;
634 
635 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
636 	ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
637 				       num_bytes, min_factor);
638 	if (ret) {
639 		btrfs_end_transaction(trans);
640 		return ERR_PTR(ret);
641 	}
642 
643 	trans->block_rsv = &fs_info->trans_block_rsv;
644 	trans->bytes_reserved = num_bytes;
645 	trace_btrfs_space_reservation(fs_info, "transaction",
646 				      trans->transid, num_bytes, 1);
647 
648 	return trans;
649 }
650 
651 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
652 {
653 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
654 				 true);
655 }
656 
657 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
658 {
659 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
660 				 BTRFS_RESERVE_NO_FLUSH, true);
661 }
662 
663 /*
664  * btrfs_attach_transaction() - catch the running transaction
665  *
666  * It is used when we want to commit the current the transaction, but
667  * don't want to start a new one.
668  *
669  * Note: If this function return -ENOENT, it just means there is no
670  * running transaction. But it is possible that the inactive transaction
671  * is still in the memory, not fully on disk. If you hope there is no
672  * inactive transaction in the fs when -ENOENT is returned, you should
673  * invoke
674  *     btrfs_attach_transaction_barrier()
675  */
676 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
677 {
678 	return start_transaction(root, 0, TRANS_ATTACH,
679 				 BTRFS_RESERVE_NO_FLUSH, true);
680 }
681 
682 /*
683  * btrfs_attach_transaction_barrier() - catch the running transaction
684  *
685  * It is similar to the above function, the differentia is this one
686  * will wait for all the inactive transactions until they fully
687  * complete.
688  */
689 struct btrfs_trans_handle *
690 btrfs_attach_transaction_barrier(struct btrfs_root *root)
691 {
692 	struct btrfs_trans_handle *trans;
693 
694 	trans = start_transaction(root, 0, TRANS_ATTACH,
695 				  BTRFS_RESERVE_NO_FLUSH, true);
696 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
697 		btrfs_wait_for_commit(root->fs_info, 0);
698 
699 	return trans;
700 }
701 
702 /* wait for a transaction commit to be fully complete */
703 static noinline void wait_for_commit(struct btrfs_transaction *commit)
704 {
705 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
706 }
707 
708 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
709 {
710 	struct btrfs_transaction *cur_trans = NULL, *t;
711 	int ret = 0;
712 
713 	if (transid) {
714 		if (transid <= fs_info->last_trans_committed)
715 			goto out;
716 
717 		/* find specified transaction */
718 		spin_lock(&fs_info->trans_lock);
719 		list_for_each_entry(t, &fs_info->trans_list, list) {
720 			if (t->transid == transid) {
721 				cur_trans = t;
722 				refcount_inc(&cur_trans->use_count);
723 				ret = 0;
724 				break;
725 			}
726 			if (t->transid > transid) {
727 				ret = 0;
728 				break;
729 			}
730 		}
731 		spin_unlock(&fs_info->trans_lock);
732 
733 		/*
734 		 * The specified transaction doesn't exist, or we
735 		 * raced with btrfs_commit_transaction
736 		 */
737 		if (!cur_trans) {
738 			if (transid > fs_info->last_trans_committed)
739 				ret = -EINVAL;
740 			goto out;
741 		}
742 	} else {
743 		/* find newest transaction that is committing | committed */
744 		spin_lock(&fs_info->trans_lock);
745 		list_for_each_entry_reverse(t, &fs_info->trans_list,
746 					    list) {
747 			if (t->state >= TRANS_STATE_COMMIT_START) {
748 				if (t->state == TRANS_STATE_COMPLETED)
749 					break;
750 				cur_trans = t;
751 				refcount_inc(&cur_trans->use_count);
752 				break;
753 			}
754 		}
755 		spin_unlock(&fs_info->trans_lock);
756 		if (!cur_trans)
757 			goto out;  /* nothing committing|committed */
758 	}
759 
760 	wait_for_commit(cur_trans);
761 	btrfs_put_transaction(cur_trans);
762 out:
763 	return ret;
764 }
765 
766 void btrfs_throttle(struct btrfs_fs_info *fs_info)
767 {
768 	wait_current_trans(fs_info);
769 }
770 
771 static int should_end_transaction(struct btrfs_trans_handle *trans)
772 {
773 	struct btrfs_fs_info *fs_info = trans->fs_info;
774 
775 	if (btrfs_check_space_for_delayed_refs(trans, fs_info))
776 		return 1;
777 
778 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
779 }
780 
781 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
782 {
783 	struct btrfs_transaction *cur_trans = trans->transaction;
784 	int updates;
785 	int err;
786 
787 	smp_mb();
788 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
789 	    cur_trans->delayed_refs.flushing)
790 		return 1;
791 
792 	updates = trans->delayed_ref_updates;
793 	trans->delayed_ref_updates = 0;
794 	if (updates) {
795 		err = btrfs_run_delayed_refs(trans, updates * 2);
796 		if (err) /* Error code will also eval true */
797 			return err;
798 	}
799 
800 	return should_end_transaction(trans);
801 }
802 
803 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
804 
805 {
806 	struct btrfs_fs_info *fs_info = trans->fs_info;
807 
808 	if (!trans->block_rsv) {
809 		ASSERT(!trans->bytes_reserved);
810 		return;
811 	}
812 
813 	if (!trans->bytes_reserved)
814 		return;
815 
816 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
817 	trace_btrfs_space_reservation(fs_info, "transaction",
818 				      trans->transid, trans->bytes_reserved, 0);
819 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
820 				trans->bytes_reserved);
821 	trans->bytes_reserved = 0;
822 }
823 
824 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
825 				   int throttle)
826 {
827 	struct btrfs_fs_info *info = trans->fs_info;
828 	struct btrfs_transaction *cur_trans = trans->transaction;
829 	u64 transid = trans->transid;
830 	unsigned long cur = trans->delayed_ref_updates;
831 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
832 	int err = 0;
833 	int must_run_delayed_refs = 0;
834 
835 	if (refcount_read(&trans->use_count) > 1) {
836 		refcount_dec(&trans->use_count);
837 		trans->block_rsv = trans->orig_rsv;
838 		return 0;
839 	}
840 
841 	btrfs_trans_release_metadata(trans);
842 	trans->block_rsv = NULL;
843 
844 	if (!list_empty(&trans->new_bgs))
845 		btrfs_create_pending_block_groups(trans);
846 
847 	trans->delayed_ref_updates = 0;
848 	if (!trans->sync) {
849 		must_run_delayed_refs =
850 			btrfs_should_throttle_delayed_refs(trans, info);
851 		cur = max_t(unsigned long, cur, 32);
852 
853 		/*
854 		 * don't make the caller wait if they are from a NOLOCK
855 		 * or ATTACH transaction, it will deadlock with commit
856 		 */
857 		if (must_run_delayed_refs == 1 &&
858 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
859 			must_run_delayed_refs = 2;
860 	}
861 
862 	btrfs_trans_release_metadata(trans);
863 	trans->block_rsv = NULL;
864 
865 	if (!list_empty(&trans->new_bgs))
866 		btrfs_create_pending_block_groups(trans);
867 
868 	btrfs_trans_release_chunk_metadata(trans);
869 
870 	if (lock && should_end_transaction(trans) &&
871 	    READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
872 		spin_lock(&info->trans_lock);
873 		if (cur_trans->state == TRANS_STATE_RUNNING)
874 			cur_trans->state = TRANS_STATE_BLOCKED;
875 		spin_unlock(&info->trans_lock);
876 	}
877 
878 	if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
879 		if (throttle)
880 			return btrfs_commit_transaction(trans);
881 		else
882 			wake_up_process(info->transaction_kthread);
883 	}
884 
885 	if (trans->type & __TRANS_FREEZABLE)
886 		sb_end_intwrite(info->sb);
887 
888 	WARN_ON(cur_trans != info->running_transaction);
889 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
890 	atomic_dec(&cur_trans->num_writers);
891 	extwriter_counter_dec(cur_trans, trans->type);
892 
893 	/*
894 	 * Make sure counter is updated before we wake up waiters.
895 	 */
896 	smp_mb();
897 	if (waitqueue_active(&cur_trans->writer_wait))
898 		wake_up(&cur_trans->writer_wait);
899 	btrfs_put_transaction(cur_trans);
900 
901 	if (current->journal_info == trans)
902 		current->journal_info = NULL;
903 
904 	if (throttle)
905 		btrfs_run_delayed_iputs(info);
906 
907 	if (trans->aborted ||
908 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
909 		wake_up_process(info->transaction_kthread);
910 		err = -EIO;
911 	}
912 
913 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
914 	if (must_run_delayed_refs) {
915 		btrfs_async_run_delayed_refs(info, cur, transid,
916 					     must_run_delayed_refs == 1);
917 	}
918 	return err;
919 }
920 
921 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
922 {
923 	return __btrfs_end_transaction(trans, 0);
924 }
925 
926 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
927 {
928 	return __btrfs_end_transaction(trans, 1);
929 }
930 
931 /*
932  * when btree blocks are allocated, they have some corresponding bits set for
933  * them in one of two extent_io trees.  This is used to make sure all of
934  * those extents are sent to disk but does not wait on them
935  */
936 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
937 			       struct extent_io_tree *dirty_pages, int mark)
938 {
939 	int err = 0;
940 	int werr = 0;
941 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
942 	struct extent_state *cached_state = NULL;
943 	u64 start = 0;
944 	u64 end;
945 
946 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
947 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
948 				      mark, &cached_state)) {
949 		bool wait_writeback = false;
950 
951 		err = convert_extent_bit(dirty_pages, start, end,
952 					 EXTENT_NEED_WAIT,
953 					 mark, &cached_state);
954 		/*
955 		 * convert_extent_bit can return -ENOMEM, which is most of the
956 		 * time a temporary error. So when it happens, ignore the error
957 		 * and wait for writeback of this range to finish - because we
958 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
959 		 * to __btrfs_wait_marked_extents() would not know that
960 		 * writeback for this range started and therefore wouldn't
961 		 * wait for it to finish - we don't want to commit a
962 		 * superblock that points to btree nodes/leafs for which
963 		 * writeback hasn't finished yet (and without errors).
964 		 * We cleanup any entries left in the io tree when committing
965 		 * the transaction (through clear_btree_io_tree()).
966 		 */
967 		if (err == -ENOMEM) {
968 			err = 0;
969 			wait_writeback = true;
970 		}
971 		if (!err)
972 			err = filemap_fdatawrite_range(mapping, start, end);
973 		if (err)
974 			werr = err;
975 		else if (wait_writeback)
976 			werr = filemap_fdatawait_range(mapping, start, end);
977 		free_extent_state(cached_state);
978 		cached_state = NULL;
979 		cond_resched();
980 		start = end + 1;
981 	}
982 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
983 	return werr;
984 }
985 
986 /*
987  * when btree blocks are allocated, they have some corresponding bits set for
988  * them in one of two extent_io trees.  This is used to make sure all of
989  * those extents are on disk for transaction or log commit.  We wait
990  * on all the pages and clear them from the dirty pages state tree
991  */
992 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
993 				       struct extent_io_tree *dirty_pages)
994 {
995 	int err = 0;
996 	int werr = 0;
997 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
998 	struct extent_state *cached_state = NULL;
999 	u64 start = 0;
1000 	u64 end;
1001 
1002 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1003 				      EXTENT_NEED_WAIT, &cached_state)) {
1004 		/*
1005 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1006 		 * When committing the transaction, we'll remove any entries
1007 		 * left in the io tree. For a log commit, we don't remove them
1008 		 * after committing the log because the tree can be accessed
1009 		 * concurrently - we do it only at transaction commit time when
1010 		 * it's safe to do it (through clear_btree_io_tree()).
1011 		 */
1012 		err = clear_extent_bit(dirty_pages, start, end,
1013 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1014 		if (err == -ENOMEM)
1015 			err = 0;
1016 		if (!err)
1017 			err = filemap_fdatawait_range(mapping, start, end);
1018 		if (err)
1019 			werr = err;
1020 		free_extent_state(cached_state);
1021 		cached_state = NULL;
1022 		cond_resched();
1023 		start = end + 1;
1024 	}
1025 	if (err)
1026 		werr = err;
1027 	return werr;
1028 }
1029 
1030 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1031 		       struct extent_io_tree *dirty_pages)
1032 {
1033 	bool errors = false;
1034 	int err;
1035 
1036 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1037 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1038 		errors = true;
1039 
1040 	if (errors && !err)
1041 		err = -EIO;
1042 	return err;
1043 }
1044 
1045 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1046 {
1047 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1048 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1049 	bool errors = false;
1050 	int err;
1051 
1052 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1053 
1054 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1055 	if ((mark & EXTENT_DIRTY) &&
1056 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1057 		errors = true;
1058 
1059 	if ((mark & EXTENT_NEW) &&
1060 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1061 		errors = true;
1062 
1063 	if (errors && !err)
1064 		err = -EIO;
1065 	return err;
1066 }
1067 
1068 /*
1069  * When btree blocks are allocated the corresponding extents are marked dirty.
1070  * This function ensures such extents are persisted on disk for transaction or
1071  * log commit.
1072  *
1073  * @trans: transaction whose dirty pages we'd like to write
1074  */
1075 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1076 {
1077 	int ret;
1078 	int ret2;
1079 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1080 	struct btrfs_fs_info *fs_info = trans->fs_info;
1081 	struct blk_plug plug;
1082 
1083 	blk_start_plug(&plug);
1084 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1085 	blk_finish_plug(&plug);
1086 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1087 
1088 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1089 
1090 	if (ret)
1091 		return ret;
1092 	else if (ret2)
1093 		return ret2;
1094 	else
1095 		return 0;
1096 }
1097 
1098 /*
1099  * this is used to update the root pointer in the tree of tree roots.
1100  *
1101  * But, in the case of the extent allocation tree, updating the root
1102  * pointer may allocate blocks which may change the root of the extent
1103  * allocation tree.
1104  *
1105  * So, this loops and repeats and makes sure the cowonly root didn't
1106  * change while the root pointer was being updated in the metadata.
1107  */
1108 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1109 			       struct btrfs_root *root)
1110 {
1111 	int ret;
1112 	u64 old_root_bytenr;
1113 	u64 old_root_used;
1114 	struct btrfs_fs_info *fs_info = root->fs_info;
1115 	struct btrfs_root *tree_root = fs_info->tree_root;
1116 
1117 	old_root_used = btrfs_root_used(&root->root_item);
1118 
1119 	while (1) {
1120 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1121 		if (old_root_bytenr == root->node->start &&
1122 		    old_root_used == btrfs_root_used(&root->root_item))
1123 			break;
1124 
1125 		btrfs_set_root_node(&root->root_item, root->node);
1126 		ret = btrfs_update_root(trans, tree_root,
1127 					&root->root_key,
1128 					&root->root_item);
1129 		if (ret)
1130 			return ret;
1131 
1132 		old_root_used = btrfs_root_used(&root->root_item);
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 /*
1139  * update all the cowonly tree roots on disk
1140  *
1141  * The error handling in this function may not be obvious. Any of the
1142  * failures will cause the file system to go offline. We still need
1143  * to clean up the delayed refs.
1144  */
1145 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1146 {
1147 	struct btrfs_fs_info *fs_info = trans->fs_info;
1148 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1149 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1150 	struct list_head *next;
1151 	struct extent_buffer *eb;
1152 	int ret;
1153 
1154 	eb = btrfs_lock_root_node(fs_info->tree_root);
1155 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1156 			      0, &eb);
1157 	btrfs_tree_unlock(eb);
1158 	free_extent_buffer(eb);
1159 
1160 	if (ret)
1161 		return ret;
1162 
1163 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1164 	if (ret)
1165 		return ret;
1166 
1167 	ret = btrfs_run_dev_stats(trans, fs_info);
1168 	if (ret)
1169 		return ret;
1170 	ret = btrfs_run_dev_replace(trans, fs_info);
1171 	if (ret)
1172 		return ret;
1173 	ret = btrfs_run_qgroups(trans, fs_info);
1174 	if (ret)
1175 		return ret;
1176 
1177 	ret = btrfs_setup_space_cache(trans, fs_info);
1178 	if (ret)
1179 		return ret;
1180 
1181 	/* run_qgroups might have added some more refs */
1182 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1183 	if (ret)
1184 		return ret;
1185 again:
1186 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1187 		struct btrfs_root *root;
1188 		next = fs_info->dirty_cowonly_roots.next;
1189 		list_del_init(next);
1190 		root = list_entry(next, struct btrfs_root, dirty_list);
1191 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1192 
1193 		if (root != fs_info->extent_root)
1194 			list_add_tail(&root->dirty_list,
1195 				      &trans->transaction->switch_commits);
1196 		ret = update_cowonly_root(trans, root);
1197 		if (ret)
1198 			return ret;
1199 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1200 		if (ret)
1201 			return ret;
1202 	}
1203 
1204 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1205 		ret = btrfs_write_dirty_block_groups(trans, fs_info);
1206 		if (ret)
1207 			return ret;
1208 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1209 		if (ret)
1210 			return ret;
1211 	}
1212 
1213 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1214 		goto again;
1215 
1216 	list_add_tail(&fs_info->extent_root->dirty_list,
1217 		      &trans->transaction->switch_commits);
1218 	btrfs_after_dev_replace_commit(fs_info);
1219 
1220 	return 0;
1221 }
1222 
1223 /*
1224  * dead roots are old snapshots that need to be deleted.  This allocates
1225  * a dirty root struct and adds it into the list of dead roots that need to
1226  * be deleted
1227  */
1228 void btrfs_add_dead_root(struct btrfs_root *root)
1229 {
1230 	struct btrfs_fs_info *fs_info = root->fs_info;
1231 
1232 	spin_lock(&fs_info->trans_lock);
1233 	if (list_empty(&root->root_list))
1234 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1235 	spin_unlock(&fs_info->trans_lock);
1236 }
1237 
1238 /*
1239  * update all the cowonly tree roots on disk
1240  */
1241 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1242 {
1243 	struct btrfs_fs_info *fs_info = trans->fs_info;
1244 	struct btrfs_root *gang[8];
1245 	int i;
1246 	int ret;
1247 	int err = 0;
1248 
1249 	spin_lock(&fs_info->fs_roots_radix_lock);
1250 	while (1) {
1251 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1252 						 (void **)gang, 0,
1253 						 ARRAY_SIZE(gang),
1254 						 BTRFS_ROOT_TRANS_TAG);
1255 		if (ret == 0)
1256 			break;
1257 		for (i = 0; i < ret; i++) {
1258 			struct btrfs_root *root = gang[i];
1259 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1260 					(unsigned long)root->root_key.objectid,
1261 					BTRFS_ROOT_TRANS_TAG);
1262 			spin_unlock(&fs_info->fs_roots_radix_lock);
1263 
1264 			btrfs_free_log(trans, root);
1265 			btrfs_update_reloc_root(trans, root);
1266 			btrfs_orphan_commit_root(trans, root);
1267 
1268 			btrfs_save_ino_cache(root, trans);
1269 
1270 			/* see comments in should_cow_block() */
1271 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1272 			smp_mb__after_atomic();
1273 
1274 			if (root->commit_root != root->node) {
1275 				list_add_tail(&root->dirty_list,
1276 					&trans->transaction->switch_commits);
1277 				btrfs_set_root_node(&root->root_item,
1278 						    root->node);
1279 			}
1280 
1281 			err = btrfs_update_root(trans, fs_info->tree_root,
1282 						&root->root_key,
1283 						&root->root_item);
1284 			spin_lock(&fs_info->fs_roots_radix_lock);
1285 			if (err)
1286 				break;
1287 			btrfs_qgroup_free_meta_all_pertrans(root);
1288 		}
1289 	}
1290 	spin_unlock(&fs_info->fs_roots_radix_lock);
1291 	return err;
1292 }
1293 
1294 /*
1295  * defrag a given btree.
1296  * Every leaf in the btree is read and defragged.
1297  */
1298 int btrfs_defrag_root(struct btrfs_root *root)
1299 {
1300 	struct btrfs_fs_info *info = root->fs_info;
1301 	struct btrfs_trans_handle *trans;
1302 	int ret;
1303 
1304 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1305 		return 0;
1306 
1307 	while (1) {
1308 		trans = btrfs_start_transaction(root, 0);
1309 		if (IS_ERR(trans))
1310 			return PTR_ERR(trans);
1311 
1312 		ret = btrfs_defrag_leaves(trans, root);
1313 
1314 		btrfs_end_transaction(trans);
1315 		btrfs_btree_balance_dirty(info);
1316 		cond_resched();
1317 
1318 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1319 			break;
1320 
1321 		if (btrfs_defrag_cancelled(info)) {
1322 			btrfs_debug(info, "defrag_root cancelled");
1323 			ret = -EAGAIN;
1324 			break;
1325 		}
1326 	}
1327 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1328 	return ret;
1329 }
1330 
1331 /*
1332  * Do all special snapshot related qgroup dirty hack.
1333  *
1334  * Will do all needed qgroup inherit and dirty hack like switch commit
1335  * roots inside one transaction and write all btree into disk, to make
1336  * qgroup works.
1337  */
1338 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1339 				   struct btrfs_root *src,
1340 				   struct btrfs_root *parent,
1341 				   struct btrfs_qgroup_inherit *inherit,
1342 				   u64 dst_objectid)
1343 {
1344 	struct btrfs_fs_info *fs_info = src->fs_info;
1345 	int ret;
1346 
1347 	/*
1348 	 * Save some performance in the case that qgroups are not
1349 	 * enabled. If this check races with the ioctl, rescan will
1350 	 * kick in anyway.
1351 	 */
1352 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1353 		return 0;
1354 
1355 	/*
1356 	 * Ensure dirty @src will be commited.  Or, after comming
1357 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1358 	 * recorded root will never be updated again, causing an outdated root
1359 	 * item.
1360 	 */
1361 	record_root_in_trans(trans, src, 1);
1362 
1363 	/*
1364 	 * We are going to commit transaction, see btrfs_commit_transaction()
1365 	 * comment for reason locking tree_log_mutex
1366 	 */
1367 	mutex_lock(&fs_info->tree_log_mutex);
1368 
1369 	ret = commit_fs_roots(trans);
1370 	if (ret)
1371 		goto out;
1372 	ret = btrfs_qgroup_account_extents(trans);
1373 	if (ret < 0)
1374 		goto out;
1375 
1376 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1377 	ret = btrfs_qgroup_inherit(trans, fs_info,
1378 				   src->root_key.objectid, dst_objectid,
1379 				   inherit);
1380 	if (ret < 0)
1381 		goto out;
1382 
1383 	/*
1384 	 * Now we do a simplified commit transaction, which will:
1385 	 * 1) commit all subvolume and extent tree
1386 	 *    To ensure all subvolume and extent tree have a valid
1387 	 *    commit_root to accounting later insert_dir_item()
1388 	 * 2) write all btree blocks onto disk
1389 	 *    This is to make sure later btree modification will be cowed
1390 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1391 	 * In this simplified commit, we don't really care about other trees
1392 	 * like chunk and root tree, as they won't affect qgroup.
1393 	 * And we don't write super to avoid half committed status.
1394 	 */
1395 	ret = commit_cowonly_roots(trans);
1396 	if (ret)
1397 		goto out;
1398 	switch_commit_roots(trans->transaction);
1399 	ret = btrfs_write_and_wait_transaction(trans);
1400 	if (ret)
1401 		btrfs_handle_fs_error(fs_info, ret,
1402 			"Error while writing out transaction for qgroup");
1403 
1404 out:
1405 	mutex_unlock(&fs_info->tree_log_mutex);
1406 
1407 	/*
1408 	 * Force parent root to be updated, as we recorded it before so its
1409 	 * last_trans == cur_transid.
1410 	 * Or it won't be committed again onto disk after later
1411 	 * insert_dir_item()
1412 	 */
1413 	if (!ret)
1414 		record_root_in_trans(trans, parent, 1);
1415 	return ret;
1416 }
1417 
1418 /*
1419  * new snapshots need to be created at a very specific time in the
1420  * transaction commit.  This does the actual creation.
1421  *
1422  * Note:
1423  * If the error which may affect the commitment of the current transaction
1424  * happens, we should return the error number. If the error which just affect
1425  * the creation of the pending snapshots, just return 0.
1426  */
1427 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1428 				   struct btrfs_pending_snapshot *pending)
1429 {
1430 
1431 	struct btrfs_fs_info *fs_info = trans->fs_info;
1432 	struct btrfs_key key;
1433 	struct btrfs_root_item *new_root_item;
1434 	struct btrfs_root *tree_root = fs_info->tree_root;
1435 	struct btrfs_root *root = pending->root;
1436 	struct btrfs_root *parent_root;
1437 	struct btrfs_block_rsv *rsv;
1438 	struct inode *parent_inode;
1439 	struct btrfs_path *path;
1440 	struct btrfs_dir_item *dir_item;
1441 	struct dentry *dentry;
1442 	struct extent_buffer *tmp;
1443 	struct extent_buffer *old;
1444 	struct timespec cur_time;
1445 	int ret = 0;
1446 	u64 to_reserve = 0;
1447 	u64 index = 0;
1448 	u64 objectid;
1449 	u64 root_flags;
1450 	uuid_le new_uuid;
1451 
1452 	ASSERT(pending->path);
1453 	path = pending->path;
1454 
1455 	ASSERT(pending->root_item);
1456 	new_root_item = pending->root_item;
1457 
1458 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1459 	if (pending->error)
1460 		goto no_free_objectid;
1461 
1462 	/*
1463 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1464 	 * accounted by later btrfs_qgroup_inherit().
1465 	 */
1466 	btrfs_set_skip_qgroup(trans, objectid);
1467 
1468 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1469 
1470 	if (to_reserve > 0) {
1471 		pending->error = btrfs_block_rsv_add(root,
1472 						     &pending->block_rsv,
1473 						     to_reserve,
1474 						     BTRFS_RESERVE_NO_FLUSH);
1475 		if (pending->error)
1476 			goto clear_skip_qgroup;
1477 	}
1478 
1479 	key.objectid = objectid;
1480 	key.offset = (u64)-1;
1481 	key.type = BTRFS_ROOT_ITEM_KEY;
1482 
1483 	rsv = trans->block_rsv;
1484 	trans->block_rsv = &pending->block_rsv;
1485 	trans->bytes_reserved = trans->block_rsv->reserved;
1486 	trace_btrfs_space_reservation(fs_info, "transaction",
1487 				      trans->transid,
1488 				      trans->bytes_reserved, 1);
1489 	dentry = pending->dentry;
1490 	parent_inode = pending->dir;
1491 	parent_root = BTRFS_I(parent_inode)->root;
1492 	record_root_in_trans(trans, parent_root, 0);
1493 
1494 	cur_time = current_time(parent_inode);
1495 
1496 	/*
1497 	 * insert the directory item
1498 	 */
1499 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1500 	BUG_ON(ret); /* -ENOMEM */
1501 
1502 	/* check if there is a file/dir which has the same name. */
1503 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1504 					 btrfs_ino(BTRFS_I(parent_inode)),
1505 					 dentry->d_name.name,
1506 					 dentry->d_name.len, 0);
1507 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1508 		pending->error = -EEXIST;
1509 		goto dir_item_existed;
1510 	} else if (IS_ERR(dir_item)) {
1511 		ret = PTR_ERR(dir_item);
1512 		btrfs_abort_transaction(trans, ret);
1513 		goto fail;
1514 	}
1515 	btrfs_release_path(path);
1516 
1517 	/*
1518 	 * pull in the delayed directory update
1519 	 * and the delayed inode item
1520 	 * otherwise we corrupt the FS during
1521 	 * snapshot
1522 	 */
1523 	ret = btrfs_run_delayed_items(trans);
1524 	if (ret) {	/* Transaction aborted */
1525 		btrfs_abort_transaction(trans, ret);
1526 		goto fail;
1527 	}
1528 
1529 	record_root_in_trans(trans, root, 0);
1530 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1531 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1532 	btrfs_check_and_init_root_item(new_root_item);
1533 
1534 	root_flags = btrfs_root_flags(new_root_item);
1535 	if (pending->readonly)
1536 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1537 	else
1538 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1539 	btrfs_set_root_flags(new_root_item, root_flags);
1540 
1541 	btrfs_set_root_generation_v2(new_root_item,
1542 			trans->transid);
1543 	uuid_le_gen(&new_uuid);
1544 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1545 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1546 			BTRFS_UUID_SIZE);
1547 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1548 		memset(new_root_item->received_uuid, 0,
1549 		       sizeof(new_root_item->received_uuid));
1550 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1551 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1552 		btrfs_set_root_stransid(new_root_item, 0);
1553 		btrfs_set_root_rtransid(new_root_item, 0);
1554 	}
1555 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1556 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1557 	btrfs_set_root_otransid(new_root_item, trans->transid);
1558 
1559 	old = btrfs_lock_root_node(root);
1560 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1561 	if (ret) {
1562 		btrfs_tree_unlock(old);
1563 		free_extent_buffer(old);
1564 		btrfs_abort_transaction(trans, ret);
1565 		goto fail;
1566 	}
1567 
1568 	btrfs_set_lock_blocking(old);
1569 
1570 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1571 	/* clean up in any case */
1572 	btrfs_tree_unlock(old);
1573 	free_extent_buffer(old);
1574 	if (ret) {
1575 		btrfs_abort_transaction(trans, ret);
1576 		goto fail;
1577 	}
1578 	/* see comments in should_cow_block() */
1579 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1580 	smp_wmb();
1581 
1582 	btrfs_set_root_node(new_root_item, tmp);
1583 	/* record when the snapshot was created in key.offset */
1584 	key.offset = trans->transid;
1585 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1586 	btrfs_tree_unlock(tmp);
1587 	free_extent_buffer(tmp);
1588 	if (ret) {
1589 		btrfs_abort_transaction(trans, ret);
1590 		goto fail;
1591 	}
1592 
1593 	/*
1594 	 * insert root back/forward references
1595 	 */
1596 	ret = btrfs_add_root_ref(trans, fs_info, objectid,
1597 				 parent_root->root_key.objectid,
1598 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1599 				 dentry->d_name.name, dentry->d_name.len);
1600 	if (ret) {
1601 		btrfs_abort_transaction(trans, ret);
1602 		goto fail;
1603 	}
1604 
1605 	key.offset = (u64)-1;
1606 	pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1607 	if (IS_ERR(pending->snap)) {
1608 		ret = PTR_ERR(pending->snap);
1609 		btrfs_abort_transaction(trans, ret);
1610 		goto fail;
1611 	}
1612 
1613 	ret = btrfs_reloc_post_snapshot(trans, pending);
1614 	if (ret) {
1615 		btrfs_abort_transaction(trans, ret);
1616 		goto fail;
1617 	}
1618 
1619 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1620 	if (ret) {
1621 		btrfs_abort_transaction(trans, ret);
1622 		goto fail;
1623 	}
1624 
1625 	/*
1626 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1627 	 * snapshot hack to do fast snapshot.
1628 	 * To co-operate with that hack, we do hack again.
1629 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1630 	 */
1631 	ret = qgroup_account_snapshot(trans, root, parent_root,
1632 				      pending->inherit, objectid);
1633 	if (ret < 0)
1634 		goto fail;
1635 
1636 	ret = btrfs_insert_dir_item(trans, parent_root,
1637 				    dentry->d_name.name, dentry->d_name.len,
1638 				    BTRFS_I(parent_inode), &key,
1639 				    BTRFS_FT_DIR, index);
1640 	/* We have check then name at the beginning, so it is impossible. */
1641 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1642 	if (ret) {
1643 		btrfs_abort_transaction(trans, ret);
1644 		goto fail;
1645 	}
1646 
1647 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1648 					 dentry->d_name.len * 2);
1649 	parent_inode->i_mtime = parent_inode->i_ctime =
1650 		current_time(parent_inode);
1651 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1652 	if (ret) {
1653 		btrfs_abort_transaction(trans, ret);
1654 		goto fail;
1655 	}
1656 	ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1657 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1658 	if (ret) {
1659 		btrfs_abort_transaction(trans, ret);
1660 		goto fail;
1661 	}
1662 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1663 		ret = btrfs_uuid_tree_add(trans, fs_info,
1664 					  new_root_item->received_uuid,
1665 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1666 					  objectid);
1667 		if (ret && ret != -EEXIST) {
1668 			btrfs_abort_transaction(trans, ret);
1669 			goto fail;
1670 		}
1671 	}
1672 
1673 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1674 	if (ret) {
1675 		btrfs_abort_transaction(trans, ret);
1676 		goto fail;
1677 	}
1678 
1679 fail:
1680 	pending->error = ret;
1681 dir_item_existed:
1682 	trans->block_rsv = rsv;
1683 	trans->bytes_reserved = 0;
1684 clear_skip_qgroup:
1685 	btrfs_clear_skip_qgroup(trans);
1686 no_free_objectid:
1687 	kfree(new_root_item);
1688 	pending->root_item = NULL;
1689 	btrfs_free_path(path);
1690 	pending->path = NULL;
1691 
1692 	return ret;
1693 }
1694 
1695 /*
1696  * create all the snapshots we've scheduled for creation
1697  */
1698 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1699 {
1700 	struct btrfs_pending_snapshot *pending, *next;
1701 	struct list_head *head = &trans->transaction->pending_snapshots;
1702 	int ret = 0;
1703 
1704 	list_for_each_entry_safe(pending, next, head, list) {
1705 		list_del(&pending->list);
1706 		ret = create_pending_snapshot(trans, pending);
1707 		if (ret)
1708 			break;
1709 	}
1710 	return ret;
1711 }
1712 
1713 static void update_super_roots(struct btrfs_fs_info *fs_info)
1714 {
1715 	struct btrfs_root_item *root_item;
1716 	struct btrfs_super_block *super;
1717 
1718 	super = fs_info->super_copy;
1719 
1720 	root_item = &fs_info->chunk_root->root_item;
1721 	super->chunk_root = root_item->bytenr;
1722 	super->chunk_root_generation = root_item->generation;
1723 	super->chunk_root_level = root_item->level;
1724 
1725 	root_item = &fs_info->tree_root->root_item;
1726 	super->root = root_item->bytenr;
1727 	super->generation = root_item->generation;
1728 	super->root_level = root_item->level;
1729 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1730 		super->cache_generation = root_item->generation;
1731 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1732 		super->uuid_tree_generation = root_item->generation;
1733 }
1734 
1735 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1736 {
1737 	struct btrfs_transaction *trans;
1738 	int ret = 0;
1739 
1740 	spin_lock(&info->trans_lock);
1741 	trans = info->running_transaction;
1742 	if (trans)
1743 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1744 	spin_unlock(&info->trans_lock);
1745 	return ret;
1746 }
1747 
1748 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1749 {
1750 	struct btrfs_transaction *trans;
1751 	int ret = 0;
1752 
1753 	spin_lock(&info->trans_lock);
1754 	trans = info->running_transaction;
1755 	if (trans)
1756 		ret = is_transaction_blocked(trans);
1757 	spin_unlock(&info->trans_lock);
1758 	return ret;
1759 }
1760 
1761 /*
1762  * wait for the current transaction commit to start and block subsequent
1763  * transaction joins
1764  */
1765 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1766 					    struct btrfs_transaction *trans)
1767 {
1768 	wait_event(fs_info->transaction_blocked_wait,
1769 		   trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1770 }
1771 
1772 /*
1773  * wait for the current transaction to start and then become unblocked.
1774  * caller holds ref.
1775  */
1776 static void wait_current_trans_commit_start_and_unblock(
1777 					struct btrfs_fs_info *fs_info,
1778 					struct btrfs_transaction *trans)
1779 {
1780 	wait_event(fs_info->transaction_wait,
1781 		   trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1782 }
1783 
1784 /*
1785  * commit transactions asynchronously. once btrfs_commit_transaction_async
1786  * returns, any subsequent transaction will not be allowed to join.
1787  */
1788 struct btrfs_async_commit {
1789 	struct btrfs_trans_handle *newtrans;
1790 	struct work_struct work;
1791 };
1792 
1793 static void do_async_commit(struct work_struct *work)
1794 {
1795 	struct btrfs_async_commit *ac =
1796 		container_of(work, struct btrfs_async_commit, work);
1797 
1798 	/*
1799 	 * We've got freeze protection passed with the transaction.
1800 	 * Tell lockdep about it.
1801 	 */
1802 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1803 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1804 
1805 	current->journal_info = ac->newtrans;
1806 
1807 	btrfs_commit_transaction(ac->newtrans);
1808 	kfree(ac);
1809 }
1810 
1811 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1812 				   int wait_for_unblock)
1813 {
1814 	struct btrfs_fs_info *fs_info = trans->fs_info;
1815 	struct btrfs_async_commit *ac;
1816 	struct btrfs_transaction *cur_trans;
1817 
1818 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1819 	if (!ac)
1820 		return -ENOMEM;
1821 
1822 	INIT_WORK(&ac->work, do_async_commit);
1823 	ac->newtrans = btrfs_join_transaction(trans->root);
1824 	if (IS_ERR(ac->newtrans)) {
1825 		int err = PTR_ERR(ac->newtrans);
1826 		kfree(ac);
1827 		return err;
1828 	}
1829 
1830 	/* take transaction reference */
1831 	cur_trans = trans->transaction;
1832 	refcount_inc(&cur_trans->use_count);
1833 
1834 	btrfs_end_transaction(trans);
1835 
1836 	/*
1837 	 * Tell lockdep we've released the freeze rwsem, since the
1838 	 * async commit thread will be the one to unlock it.
1839 	 */
1840 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1841 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1842 
1843 	schedule_work(&ac->work);
1844 
1845 	/* wait for transaction to start and unblock */
1846 	if (wait_for_unblock)
1847 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1848 	else
1849 		wait_current_trans_commit_start(fs_info, cur_trans);
1850 
1851 	if (current->journal_info == trans)
1852 		current->journal_info = NULL;
1853 
1854 	btrfs_put_transaction(cur_trans);
1855 	return 0;
1856 }
1857 
1858 
1859 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1860 {
1861 	struct btrfs_fs_info *fs_info = trans->fs_info;
1862 	struct btrfs_transaction *cur_trans = trans->transaction;
1863 	DEFINE_WAIT(wait);
1864 
1865 	WARN_ON(refcount_read(&trans->use_count) > 1);
1866 
1867 	btrfs_abort_transaction(trans, err);
1868 
1869 	spin_lock(&fs_info->trans_lock);
1870 
1871 	/*
1872 	 * If the transaction is removed from the list, it means this
1873 	 * transaction has been committed successfully, so it is impossible
1874 	 * to call the cleanup function.
1875 	 */
1876 	BUG_ON(list_empty(&cur_trans->list));
1877 
1878 	list_del_init(&cur_trans->list);
1879 	if (cur_trans == fs_info->running_transaction) {
1880 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1881 		spin_unlock(&fs_info->trans_lock);
1882 		wait_event(cur_trans->writer_wait,
1883 			   atomic_read(&cur_trans->num_writers) == 1);
1884 
1885 		spin_lock(&fs_info->trans_lock);
1886 	}
1887 	spin_unlock(&fs_info->trans_lock);
1888 
1889 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1890 
1891 	spin_lock(&fs_info->trans_lock);
1892 	if (cur_trans == fs_info->running_transaction)
1893 		fs_info->running_transaction = NULL;
1894 	spin_unlock(&fs_info->trans_lock);
1895 
1896 	if (trans->type & __TRANS_FREEZABLE)
1897 		sb_end_intwrite(fs_info->sb);
1898 	btrfs_put_transaction(cur_trans);
1899 	btrfs_put_transaction(cur_trans);
1900 
1901 	trace_btrfs_transaction_commit(trans->root);
1902 
1903 	if (current->journal_info == trans)
1904 		current->journal_info = NULL;
1905 	btrfs_scrub_cancel(fs_info);
1906 
1907 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1908 }
1909 
1910 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1911 {
1912 	/*
1913 	 * We use writeback_inodes_sb here because if we used
1914 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1915 	 * Currently are holding the fs freeze lock, if we do an async flush
1916 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1917 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1918 	 * from already being in a transaction and our join_transaction doesn't
1919 	 * have to re-take the fs freeze lock.
1920 	 */
1921 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1922 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1923 	return 0;
1924 }
1925 
1926 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1927 {
1928 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1929 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1930 }
1931 
1932 static inline void
1933 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1934 {
1935 	wait_event(cur_trans->pending_wait,
1936 		   atomic_read(&cur_trans->pending_ordered) == 0);
1937 }
1938 
1939 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1940 {
1941 	struct btrfs_fs_info *fs_info = trans->fs_info;
1942 	struct btrfs_transaction *cur_trans = trans->transaction;
1943 	struct btrfs_transaction *prev_trans = NULL;
1944 	int ret;
1945 
1946 	/* Stop the commit early if ->aborted is set */
1947 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
1948 		ret = cur_trans->aborted;
1949 		btrfs_end_transaction(trans);
1950 		return ret;
1951 	}
1952 
1953 	/* make a pass through all the delayed refs we have so far
1954 	 * any runnings procs may add more while we are here
1955 	 */
1956 	ret = btrfs_run_delayed_refs(trans, 0);
1957 	if (ret) {
1958 		btrfs_end_transaction(trans);
1959 		return ret;
1960 	}
1961 
1962 	btrfs_trans_release_metadata(trans);
1963 	trans->block_rsv = NULL;
1964 
1965 	cur_trans = trans->transaction;
1966 
1967 	/*
1968 	 * set the flushing flag so procs in this transaction have to
1969 	 * start sending their work down.
1970 	 */
1971 	cur_trans->delayed_refs.flushing = 1;
1972 	smp_wmb();
1973 
1974 	if (!list_empty(&trans->new_bgs))
1975 		btrfs_create_pending_block_groups(trans);
1976 
1977 	ret = btrfs_run_delayed_refs(trans, 0);
1978 	if (ret) {
1979 		btrfs_end_transaction(trans);
1980 		return ret;
1981 	}
1982 
1983 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1984 		int run_it = 0;
1985 
1986 		/* this mutex is also taken before trying to set
1987 		 * block groups readonly.  We need to make sure
1988 		 * that nobody has set a block group readonly
1989 		 * after a extents from that block group have been
1990 		 * allocated for cache files.  btrfs_set_block_group_ro
1991 		 * will wait for the transaction to commit if it
1992 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1993 		 *
1994 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1995 		 * only one process starts all the block group IO.  It wouldn't
1996 		 * hurt to have more than one go through, but there's no
1997 		 * real advantage to it either.
1998 		 */
1999 		mutex_lock(&fs_info->ro_block_group_mutex);
2000 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2001 				      &cur_trans->flags))
2002 			run_it = 1;
2003 		mutex_unlock(&fs_info->ro_block_group_mutex);
2004 
2005 		if (run_it) {
2006 			ret = btrfs_start_dirty_block_groups(trans);
2007 			if (ret) {
2008 				btrfs_end_transaction(trans);
2009 				return ret;
2010 			}
2011 		}
2012 	}
2013 
2014 	spin_lock(&fs_info->trans_lock);
2015 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2016 		spin_unlock(&fs_info->trans_lock);
2017 		refcount_inc(&cur_trans->use_count);
2018 		ret = btrfs_end_transaction(trans);
2019 
2020 		wait_for_commit(cur_trans);
2021 
2022 		if (unlikely(cur_trans->aborted))
2023 			ret = cur_trans->aborted;
2024 
2025 		btrfs_put_transaction(cur_trans);
2026 
2027 		return ret;
2028 	}
2029 
2030 	cur_trans->state = TRANS_STATE_COMMIT_START;
2031 	wake_up(&fs_info->transaction_blocked_wait);
2032 
2033 	if (cur_trans->list.prev != &fs_info->trans_list) {
2034 		prev_trans = list_entry(cur_trans->list.prev,
2035 					struct btrfs_transaction, list);
2036 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2037 			refcount_inc(&prev_trans->use_count);
2038 			spin_unlock(&fs_info->trans_lock);
2039 
2040 			wait_for_commit(prev_trans);
2041 			ret = prev_trans->aborted;
2042 
2043 			btrfs_put_transaction(prev_trans);
2044 			if (ret)
2045 				goto cleanup_transaction;
2046 		} else {
2047 			spin_unlock(&fs_info->trans_lock);
2048 		}
2049 	} else {
2050 		spin_unlock(&fs_info->trans_lock);
2051 	}
2052 
2053 	extwriter_counter_dec(cur_trans, trans->type);
2054 
2055 	ret = btrfs_start_delalloc_flush(fs_info);
2056 	if (ret)
2057 		goto cleanup_transaction;
2058 
2059 	ret = btrfs_run_delayed_items(trans);
2060 	if (ret)
2061 		goto cleanup_transaction;
2062 
2063 	wait_event(cur_trans->writer_wait,
2064 		   extwriter_counter_read(cur_trans) == 0);
2065 
2066 	/* some pending stuffs might be added after the previous flush. */
2067 	ret = btrfs_run_delayed_items(trans);
2068 	if (ret)
2069 		goto cleanup_transaction;
2070 
2071 	btrfs_wait_delalloc_flush(fs_info);
2072 
2073 	btrfs_wait_pending_ordered(cur_trans);
2074 
2075 	btrfs_scrub_pause(fs_info);
2076 	/*
2077 	 * Ok now we need to make sure to block out any other joins while we
2078 	 * commit the transaction.  We could have started a join before setting
2079 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2080 	 */
2081 	spin_lock(&fs_info->trans_lock);
2082 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2083 	spin_unlock(&fs_info->trans_lock);
2084 	wait_event(cur_trans->writer_wait,
2085 		   atomic_read(&cur_trans->num_writers) == 1);
2086 
2087 	/* ->aborted might be set after the previous check, so check it */
2088 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2089 		ret = cur_trans->aborted;
2090 		goto scrub_continue;
2091 	}
2092 	/*
2093 	 * the reloc mutex makes sure that we stop
2094 	 * the balancing code from coming in and moving
2095 	 * extents around in the middle of the commit
2096 	 */
2097 	mutex_lock(&fs_info->reloc_mutex);
2098 
2099 	/*
2100 	 * We needn't worry about the delayed items because we will
2101 	 * deal with them in create_pending_snapshot(), which is the
2102 	 * core function of the snapshot creation.
2103 	 */
2104 	ret = create_pending_snapshots(trans);
2105 	if (ret) {
2106 		mutex_unlock(&fs_info->reloc_mutex);
2107 		goto scrub_continue;
2108 	}
2109 
2110 	/*
2111 	 * We insert the dir indexes of the snapshots and update the inode
2112 	 * of the snapshots' parents after the snapshot creation, so there
2113 	 * are some delayed items which are not dealt with. Now deal with
2114 	 * them.
2115 	 *
2116 	 * We needn't worry that this operation will corrupt the snapshots,
2117 	 * because all the tree which are snapshoted will be forced to COW
2118 	 * the nodes and leaves.
2119 	 */
2120 	ret = btrfs_run_delayed_items(trans);
2121 	if (ret) {
2122 		mutex_unlock(&fs_info->reloc_mutex);
2123 		goto scrub_continue;
2124 	}
2125 
2126 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2127 	if (ret) {
2128 		mutex_unlock(&fs_info->reloc_mutex);
2129 		goto scrub_continue;
2130 	}
2131 
2132 	/*
2133 	 * make sure none of the code above managed to slip in a
2134 	 * delayed item
2135 	 */
2136 	btrfs_assert_delayed_root_empty(fs_info);
2137 
2138 	WARN_ON(cur_trans != trans->transaction);
2139 
2140 	/* btrfs_commit_tree_roots is responsible for getting the
2141 	 * various roots consistent with each other.  Every pointer
2142 	 * in the tree of tree roots has to point to the most up to date
2143 	 * root for every subvolume and other tree.  So, we have to keep
2144 	 * the tree logging code from jumping in and changing any
2145 	 * of the trees.
2146 	 *
2147 	 * At this point in the commit, there can't be any tree-log
2148 	 * writers, but a little lower down we drop the trans mutex
2149 	 * and let new people in.  By holding the tree_log_mutex
2150 	 * from now until after the super is written, we avoid races
2151 	 * with the tree-log code.
2152 	 */
2153 	mutex_lock(&fs_info->tree_log_mutex);
2154 
2155 	ret = commit_fs_roots(trans);
2156 	if (ret) {
2157 		mutex_unlock(&fs_info->tree_log_mutex);
2158 		mutex_unlock(&fs_info->reloc_mutex);
2159 		goto scrub_continue;
2160 	}
2161 
2162 	/*
2163 	 * Since the transaction is done, we can apply the pending changes
2164 	 * before the next transaction.
2165 	 */
2166 	btrfs_apply_pending_changes(fs_info);
2167 
2168 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2169 	 * safe to free the root of tree log roots
2170 	 */
2171 	btrfs_free_log_root_tree(trans, fs_info);
2172 
2173 	/*
2174 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2175 	 * new delayed refs. Must handle them or qgroup can be wrong.
2176 	 */
2177 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2178 	if (ret) {
2179 		mutex_unlock(&fs_info->tree_log_mutex);
2180 		mutex_unlock(&fs_info->reloc_mutex);
2181 		goto scrub_continue;
2182 	}
2183 
2184 	/*
2185 	 * Since fs roots are all committed, we can get a quite accurate
2186 	 * new_roots. So let's do quota accounting.
2187 	 */
2188 	ret = btrfs_qgroup_account_extents(trans);
2189 	if (ret < 0) {
2190 		mutex_unlock(&fs_info->tree_log_mutex);
2191 		mutex_unlock(&fs_info->reloc_mutex);
2192 		goto scrub_continue;
2193 	}
2194 
2195 	ret = commit_cowonly_roots(trans);
2196 	if (ret) {
2197 		mutex_unlock(&fs_info->tree_log_mutex);
2198 		mutex_unlock(&fs_info->reloc_mutex);
2199 		goto scrub_continue;
2200 	}
2201 
2202 	/*
2203 	 * The tasks which save the space cache and inode cache may also
2204 	 * update ->aborted, check it.
2205 	 */
2206 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2207 		ret = cur_trans->aborted;
2208 		mutex_unlock(&fs_info->tree_log_mutex);
2209 		mutex_unlock(&fs_info->reloc_mutex);
2210 		goto scrub_continue;
2211 	}
2212 
2213 	btrfs_prepare_extent_commit(fs_info);
2214 
2215 	cur_trans = fs_info->running_transaction;
2216 
2217 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2218 			    fs_info->tree_root->node);
2219 	list_add_tail(&fs_info->tree_root->dirty_list,
2220 		      &cur_trans->switch_commits);
2221 
2222 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2223 			    fs_info->chunk_root->node);
2224 	list_add_tail(&fs_info->chunk_root->dirty_list,
2225 		      &cur_trans->switch_commits);
2226 
2227 	switch_commit_roots(cur_trans);
2228 
2229 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2230 	ASSERT(list_empty(&cur_trans->io_bgs));
2231 	update_super_roots(fs_info);
2232 
2233 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2234 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2235 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2236 	       sizeof(*fs_info->super_copy));
2237 
2238 	btrfs_update_commit_device_size(fs_info);
2239 	btrfs_update_commit_device_bytes_used(cur_trans);
2240 
2241 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2242 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2243 
2244 	btrfs_trans_release_chunk_metadata(trans);
2245 
2246 	spin_lock(&fs_info->trans_lock);
2247 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2248 	fs_info->running_transaction = NULL;
2249 	spin_unlock(&fs_info->trans_lock);
2250 	mutex_unlock(&fs_info->reloc_mutex);
2251 
2252 	wake_up(&fs_info->transaction_wait);
2253 
2254 	ret = btrfs_write_and_wait_transaction(trans);
2255 	if (ret) {
2256 		btrfs_handle_fs_error(fs_info, ret,
2257 				      "Error while writing out transaction");
2258 		mutex_unlock(&fs_info->tree_log_mutex);
2259 		goto scrub_continue;
2260 	}
2261 
2262 	ret = write_all_supers(fs_info, 0);
2263 	/*
2264 	 * the super is written, we can safely allow the tree-loggers
2265 	 * to go about their business
2266 	 */
2267 	mutex_unlock(&fs_info->tree_log_mutex);
2268 	if (ret)
2269 		goto scrub_continue;
2270 
2271 	btrfs_finish_extent_commit(trans);
2272 
2273 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2274 		btrfs_clear_space_info_full(fs_info);
2275 
2276 	fs_info->last_trans_committed = cur_trans->transid;
2277 	/*
2278 	 * We needn't acquire the lock here because there is no other task
2279 	 * which can change it.
2280 	 */
2281 	cur_trans->state = TRANS_STATE_COMPLETED;
2282 	wake_up(&cur_trans->commit_wait);
2283 
2284 	spin_lock(&fs_info->trans_lock);
2285 	list_del_init(&cur_trans->list);
2286 	spin_unlock(&fs_info->trans_lock);
2287 
2288 	btrfs_put_transaction(cur_trans);
2289 	btrfs_put_transaction(cur_trans);
2290 
2291 	if (trans->type & __TRANS_FREEZABLE)
2292 		sb_end_intwrite(fs_info->sb);
2293 
2294 	trace_btrfs_transaction_commit(trans->root);
2295 
2296 	btrfs_scrub_continue(fs_info);
2297 
2298 	if (current->journal_info == trans)
2299 		current->journal_info = NULL;
2300 
2301 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2302 
2303 	/*
2304 	 * If fs has been frozen, we can not handle delayed iputs, otherwise
2305 	 * it'll result in deadlock about SB_FREEZE_FS.
2306 	 */
2307 	if (current != fs_info->transaction_kthread &&
2308 	    current != fs_info->cleaner_kthread &&
2309 	    !test_bit(BTRFS_FS_FROZEN, &fs_info->flags))
2310 		btrfs_run_delayed_iputs(fs_info);
2311 
2312 	return ret;
2313 
2314 scrub_continue:
2315 	btrfs_scrub_continue(fs_info);
2316 cleanup_transaction:
2317 	btrfs_trans_release_metadata(trans);
2318 	btrfs_trans_release_chunk_metadata(trans);
2319 	trans->block_rsv = NULL;
2320 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2321 	if (current->journal_info == trans)
2322 		current->journal_info = NULL;
2323 	cleanup_transaction(trans, ret);
2324 
2325 	return ret;
2326 }
2327 
2328 /*
2329  * return < 0 if error
2330  * 0 if there are no more dead_roots at the time of call
2331  * 1 there are more to be processed, call me again
2332  *
2333  * The return value indicates there are certainly more snapshots to delete, but
2334  * if there comes a new one during processing, it may return 0. We don't mind,
2335  * because btrfs_commit_super will poke cleaner thread and it will process it a
2336  * few seconds later.
2337  */
2338 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2339 {
2340 	int ret;
2341 	struct btrfs_fs_info *fs_info = root->fs_info;
2342 
2343 	spin_lock(&fs_info->trans_lock);
2344 	if (list_empty(&fs_info->dead_roots)) {
2345 		spin_unlock(&fs_info->trans_lock);
2346 		return 0;
2347 	}
2348 	root = list_first_entry(&fs_info->dead_roots,
2349 			struct btrfs_root, root_list);
2350 	list_del_init(&root->root_list);
2351 	spin_unlock(&fs_info->trans_lock);
2352 
2353 	btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2354 
2355 	btrfs_kill_all_delayed_nodes(root);
2356 
2357 	if (btrfs_header_backref_rev(root->node) <
2358 			BTRFS_MIXED_BACKREF_REV)
2359 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2360 	else
2361 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2362 
2363 	return (ret < 0) ? 0 : 1;
2364 }
2365 
2366 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2367 {
2368 	unsigned long prev;
2369 	unsigned long bit;
2370 
2371 	prev = xchg(&fs_info->pending_changes, 0);
2372 	if (!prev)
2373 		return;
2374 
2375 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2376 	if (prev & bit)
2377 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2378 	prev &= ~bit;
2379 
2380 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2381 	if (prev & bit)
2382 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2383 	prev &= ~bit;
2384 
2385 	bit = 1 << BTRFS_PENDING_COMMIT;
2386 	if (prev & bit)
2387 		btrfs_debug(fs_info, "pending commit done");
2388 	prev &= ~bit;
2389 
2390 	if (prev)
2391 		btrfs_warn(fs_info,
2392 			"unknown pending changes left 0x%lx, ignoring", prev);
2393 }
2394