xref: /openbmc/linux/fs/btrfs/transaction.c (revision 29d97219)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 #include "block-group.h"
23 #include "space-info.h"
24 #include "zoned.h"
25 
26 #define BTRFS_ROOT_TRANS_TAG 0
27 
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |						    Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update	    |
83  * | super blocks.				    |
84  * |						    |
85  * | At this stage, new transaction is allowed to   |
86  * | start.					    |
87  * | All new start_transaction() calls will be	    |
88  * | attached to transid N+1.			    |
89  * |						    |
90  * | To next stage:				    |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices			    |
93  * V						    |
94  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.	    | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100 	[TRANS_STATE_RUNNING]		= 0U,
101 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
102 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
103 					   __TRANS_ATTACH |
104 					   __TRANS_JOIN |
105 					   __TRANS_JOIN_NOSTART),
106 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
107 					   __TRANS_ATTACH |
108 					   __TRANS_JOIN |
109 					   __TRANS_JOIN_NOLOCK |
110 					   __TRANS_JOIN_NOSTART),
111 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
112 					   __TRANS_ATTACH |
113 					   __TRANS_JOIN |
114 					   __TRANS_JOIN_NOLOCK |
115 					   __TRANS_JOIN_NOSTART),
116 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
117 					   __TRANS_ATTACH |
118 					   __TRANS_JOIN |
119 					   __TRANS_JOIN_NOLOCK |
120 					   __TRANS_JOIN_NOSTART),
121 };
122 
123 void btrfs_put_transaction(struct btrfs_transaction *transaction)
124 {
125 	WARN_ON(refcount_read(&transaction->use_count) == 0);
126 	if (refcount_dec_and_test(&transaction->use_count)) {
127 		BUG_ON(!list_empty(&transaction->list));
128 		WARN_ON(!RB_EMPTY_ROOT(
129 				&transaction->delayed_refs.href_root.rb_root));
130 		WARN_ON(!RB_EMPTY_ROOT(
131 				&transaction->delayed_refs.dirty_extent_root));
132 		if (transaction->delayed_refs.pending_csums)
133 			btrfs_err(transaction->fs_info,
134 				  "pending csums is %llu",
135 				  transaction->delayed_refs.pending_csums);
136 		/*
137 		 * If any block groups are found in ->deleted_bgs then it's
138 		 * because the transaction was aborted and a commit did not
139 		 * happen (things failed before writing the new superblock
140 		 * and calling btrfs_finish_extent_commit()), so we can not
141 		 * discard the physical locations of the block groups.
142 		 */
143 		while (!list_empty(&transaction->deleted_bgs)) {
144 			struct btrfs_block_group *cache;
145 
146 			cache = list_first_entry(&transaction->deleted_bgs,
147 						 struct btrfs_block_group,
148 						 bg_list);
149 			list_del_init(&cache->bg_list);
150 			btrfs_unfreeze_block_group(cache);
151 			btrfs_put_block_group(cache);
152 		}
153 		WARN_ON(!list_empty(&transaction->dev_update_list));
154 		kfree(transaction);
155 	}
156 }
157 
158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
159 {
160 	struct btrfs_transaction *cur_trans = trans->transaction;
161 	struct btrfs_fs_info *fs_info = trans->fs_info;
162 	struct btrfs_root *root, *tmp;
163 	struct btrfs_caching_control *caching_ctl, *next;
164 
165 	down_write(&fs_info->commit_root_sem);
166 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
167 				 dirty_list) {
168 		list_del_init(&root->dirty_list);
169 		free_extent_buffer(root->commit_root);
170 		root->commit_root = btrfs_root_node(root);
171 		extent_io_tree_release(&root->dirty_log_pages);
172 		btrfs_qgroup_clean_swapped_blocks(root);
173 	}
174 
175 	/* We can free old roots now. */
176 	spin_lock(&cur_trans->dropped_roots_lock);
177 	while (!list_empty(&cur_trans->dropped_roots)) {
178 		root = list_first_entry(&cur_trans->dropped_roots,
179 					struct btrfs_root, root_list);
180 		list_del_init(&root->root_list);
181 		spin_unlock(&cur_trans->dropped_roots_lock);
182 		btrfs_free_log(trans, root);
183 		btrfs_drop_and_free_fs_root(fs_info, root);
184 		spin_lock(&cur_trans->dropped_roots_lock);
185 	}
186 	spin_unlock(&cur_trans->dropped_roots_lock);
187 
188 	/*
189 	 * We have to update the last_byte_to_unpin under the commit_root_sem,
190 	 * at the same time we swap out the commit roots.
191 	 *
192 	 * This is because we must have a real view of the last spot the caching
193 	 * kthreads were while caching.  Consider the following views of the
194 	 * extent tree for a block group
195 	 *
196 	 * commit root
197 	 * +----+----+----+----+----+----+----+
198 	 * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
199 	 * +----+----+----+----+----+----+----+
200 	 * 0    1    2    3    4    5    6    7
201 	 *
202 	 * new commit root
203 	 * +----+----+----+----+----+----+----+
204 	 * |    |    |    |\\\\|    |    |\\\\|
205 	 * +----+----+----+----+----+----+----+
206 	 * 0    1    2    3    4    5    6    7
207 	 *
208 	 * If the cache_ctl->progress was at 3, then we are only allowed to
209 	 * unpin [0,1) and [2,3], because the caching thread has already
210 	 * processed those extents.  We are not allowed to unpin [5,6), because
211 	 * the caching thread will re-start it's search from 3, and thus find
212 	 * the hole from [4,6) to add to the free space cache.
213 	 */
214 	spin_lock(&fs_info->block_group_cache_lock);
215 	list_for_each_entry_safe(caching_ctl, next,
216 				 &fs_info->caching_block_groups, list) {
217 		struct btrfs_block_group *cache = caching_ctl->block_group;
218 
219 		if (btrfs_block_group_done(cache)) {
220 			cache->last_byte_to_unpin = (u64)-1;
221 			list_del_init(&caching_ctl->list);
222 			btrfs_put_caching_control(caching_ctl);
223 		} else {
224 			cache->last_byte_to_unpin = caching_ctl->progress;
225 		}
226 	}
227 	spin_unlock(&fs_info->block_group_cache_lock);
228 	up_write(&fs_info->commit_root_sem);
229 }
230 
231 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
232 					 unsigned int type)
233 {
234 	if (type & TRANS_EXTWRITERS)
235 		atomic_inc(&trans->num_extwriters);
236 }
237 
238 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
239 					 unsigned int type)
240 {
241 	if (type & TRANS_EXTWRITERS)
242 		atomic_dec(&trans->num_extwriters);
243 }
244 
245 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
246 					  unsigned int type)
247 {
248 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
249 }
250 
251 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
252 {
253 	return atomic_read(&trans->num_extwriters);
254 }
255 
256 /*
257  * To be called after all the new block groups attached to the transaction
258  * handle have been created (btrfs_create_pending_block_groups()).
259  */
260 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
261 {
262 	struct btrfs_fs_info *fs_info = trans->fs_info;
263 	struct btrfs_transaction *cur_trans = trans->transaction;
264 
265 	if (!trans->chunk_bytes_reserved)
266 		return;
267 
268 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
269 
270 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
271 				trans->chunk_bytes_reserved, NULL);
272 	atomic64_sub(trans->chunk_bytes_reserved, &cur_trans->chunk_bytes_reserved);
273 	cond_wake_up(&cur_trans->chunk_reserve_wait);
274 	trans->chunk_bytes_reserved = 0;
275 }
276 
277 /*
278  * either allocate a new transaction or hop into the existing one
279  */
280 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
281 				     unsigned int type)
282 {
283 	struct btrfs_transaction *cur_trans;
284 
285 	spin_lock(&fs_info->trans_lock);
286 loop:
287 	/* The file system has been taken offline. No new transactions. */
288 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
289 		spin_unlock(&fs_info->trans_lock);
290 		return -EROFS;
291 	}
292 
293 	cur_trans = fs_info->running_transaction;
294 	if (cur_trans) {
295 		if (TRANS_ABORTED(cur_trans)) {
296 			spin_unlock(&fs_info->trans_lock);
297 			return cur_trans->aborted;
298 		}
299 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
300 			spin_unlock(&fs_info->trans_lock);
301 			return -EBUSY;
302 		}
303 		refcount_inc(&cur_trans->use_count);
304 		atomic_inc(&cur_trans->num_writers);
305 		extwriter_counter_inc(cur_trans, type);
306 		spin_unlock(&fs_info->trans_lock);
307 		return 0;
308 	}
309 	spin_unlock(&fs_info->trans_lock);
310 
311 	/*
312 	 * If we are ATTACH, we just want to catch the current transaction,
313 	 * and commit it. If there is no transaction, just return ENOENT.
314 	 */
315 	if (type == TRANS_ATTACH)
316 		return -ENOENT;
317 
318 	/*
319 	 * JOIN_NOLOCK only happens during the transaction commit, so
320 	 * it is impossible that ->running_transaction is NULL
321 	 */
322 	BUG_ON(type == TRANS_JOIN_NOLOCK);
323 
324 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
325 	if (!cur_trans)
326 		return -ENOMEM;
327 
328 	spin_lock(&fs_info->trans_lock);
329 	if (fs_info->running_transaction) {
330 		/*
331 		 * someone started a transaction after we unlocked.  Make sure
332 		 * to redo the checks above
333 		 */
334 		kfree(cur_trans);
335 		goto loop;
336 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
337 		spin_unlock(&fs_info->trans_lock);
338 		kfree(cur_trans);
339 		return -EROFS;
340 	}
341 
342 	cur_trans->fs_info = fs_info;
343 	atomic_set(&cur_trans->pending_ordered, 0);
344 	init_waitqueue_head(&cur_trans->pending_wait);
345 	atomic_set(&cur_trans->num_writers, 1);
346 	extwriter_counter_init(cur_trans, type);
347 	init_waitqueue_head(&cur_trans->writer_wait);
348 	init_waitqueue_head(&cur_trans->commit_wait);
349 	cur_trans->state = TRANS_STATE_RUNNING;
350 	/*
351 	 * One for this trans handle, one so it will live on until we
352 	 * commit the transaction.
353 	 */
354 	refcount_set(&cur_trans->use_count, 2);
355 	cur_trans->flags = 0;
356 	cur_trans->start_time = ktime_get_seconds();
357 
358 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
359 
360 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
361 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
362 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
363 
364 	/*
365 	 * although the tree mod log is per file system and not per transaction,
366 	 * the log must never go across transaction boundaries.
367 	 */
368 	smp_mb();
369 	if (!list_empty(&fs_info->tree_mod_seq_list))
370 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
371 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
372 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
373 	atomic64_set(&fs_info->tree_mod_seq, 0);
374 
375 	spin_lock_init(&cur_trans->delayed_refs.lock);
376 
377 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
378 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
379 	INIT_LIST_HEAD(&cur_trans->switch_commits);
380 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
381 	INIT_LIST_HEAD(&cur_trans->io_bgs);
382 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
383 	mutex_init(&cur_trans->cache_write_mutex);
384 	spin_lock_init(&cur_trans->dirty_bgs_lock);
385 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
386 	spin_lock_init(&cur_trans->dropped_roots_lock);
387 	INIT_LIST_HEAD(&cur_trans->releasing_ebs);
388 	spin_lock_init(&cur_trans->releasing_ebs_lock);
389 	atomic64_set(&cur_trans->chunk_bytes_reserved, 0);
390 	init_waitqueue_head(&cur_trans->chunk_reserve_wait);
391 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
392 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
393 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
394 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
395 			IO_TREE_FS_PINNED_EXTENTS, NULL);
396 	fs_info->generation++;
397 	cur_trans->transid = fs_info->generation;
398 	fs_info->running_transaction = cur_trans;
399 	cur_trans->aborted = 0;
400 	spin_unlock(&fs_info->trans_lock);
401 
402 	return 0;
403 }
404 
405 /*
406  * This does all the record keeping required to make sure that a shareable root
407  * is properly recorded in a given transaction.  This is required to make sure
408  * the old root from before we joined the transaction is deleted when the
409  * transaction commits.
410  */
411 static int record_root_in_trans(struct btrfs_trans_handle *trans,
412 			       struct btrfs_root *root,
413 			       int force)
414 {
415 	struct btrfs_fs_info *fs_info = root->fs_info;
416 	int ret = 0;
417 
418 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
419 	    root->last_trans < trans->transid) || force) {
420 		WARN_ON(root == fs_info->extent_root);
421 		WARN_ON(!force && root->commit_root != root->node);
422 
423 		/*
424 		 * see below for IN_TRANS_SETUP usage rules
425 		 * we have the reloc mutex held now, so there
426 		 * is only one writer in this function
427 		 */
428 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
429 
430 		/* make sure readers find IN_TRANS_SETUP before
431 		 * they find our root->last_trans update
432 		 */
433 		smp_wmb();
434 
435 		spin_lock(&fs_info->fs_roots_radix_lock);
436 		if (root->last_trans == trans->transid && !force) {
437 			spin_unlock(&fs_info->fs_roots_radix_lock);
438 			return 0;
439 		}
440 		radix_tree_tag_set(&fs_info->fs_roots_radix,
441 				   (unsigned long)root->root_key.objectid,
442 				   BTRFS_ROOT_TRANS_TAG);
443 		spin_unlock(&fs_info->fs_roots_radix_lock);
444 		root->last_trans = trans->transid;
445 
446 		/* this is pretty tricky.  We don't want to
447 		 * take the relocation lock in btrfs_record_root_in_trans
448 		 * unless we're really doing the first setup for this root in
449 		 * this transaction.
450 		 *
451 		 * Normally we'd use root->last_trans as a flag to decide
452 		 * if we want to take the expensive mutex.
453 		 *
454 		 * But, we have to set root->last_trans before we
455 		 * init the relocation root, otherwise, we trip over warnings
456 		 * in ctree.c.  The solution used here is to flag ourselves
457 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
458 		 * fixing up the reloc trees and everyone must wait.
459 		 *
460 		 * When this is zero, they can trust root->last_trans and fly
461 		 * through btrfs_record_root_in_trans without having to take the
462 		 * lock.  smp_wmb() makes sure that all the writes above are
463 		 * done before we pop in the zero below
464 		 */
465 		ret = btrfs_init_reloc_root(trans, root);
466 		smp_mb__before_atomic();
467 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
468 	}
469 	return ret;
470 }
471 
472 
473 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
474 			    struct btrfs_root *root)
475 {
476 	struct btrfs_fs_info *fs_info = root->fs_info;
477 	struct btrfs_transaction *cur_trans = trans->transaction;
478 
479 	/* Add ourselves to the transaction dropped list */
480 	spin_lock(&cur_trans->dropped_roots_lock);
481 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
482 	spin_unlock(&cur_trans->dropped_roots_lock);
483 
484 	/* Make sure we don't try to update the root at commit time */
485 	spin_lock(&fs_info->fs_roots_radix_lock);
486 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
487 			     (unsigned long)root->root_key.objectid,
488 			     BTRFS_ROOT_TRANS_TAG);
489 	spin_unlock(&fs_info->fs_roots_radix_lock);
490 }
491 
492 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
493 			       struct btrfs_root *root)
494 {
495 	struct btrfs_fs_info *fs_info = root->fs_info;
496 	int ret;
497 
498 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
499 		return 0;
500 
501 	/*
502 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
503 	 * and barriers
504 	 */
505 	smp_rmb();
506 	if (root->last_trans == trans->transid &&
507 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
508 		return 0;
509 
510 	mutex_lock(&fs_info->reloc_mutex);
511 	ret = record_root_in_trans(trans, root, 0);
512 	mutex_unlock(&fs_info->reloc_mutex);
513 
514 	return ret;
515 }
516 
517 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
518 {
519 	return (trans->state >= TRANS_STATE_COMMIT_START &&
520 		trans->state < TRANS_STATE_UNBLOCKED &&
521 		!TRANS_ABORTED(trans));
522 }
523 
524 /* wait for commit against the current transaction to become unblocked
525  * when this is done, it is safe to start a new transaction, but the current
526  * transaction might not be fully on disk.
527  */
528 static void wait_current_trans(struct btrfs_fs_info *fs_info)
529 {
530 	struct btrfs_transaction *cur_trans;
531 
532 	spin_lock(&fs_info->trans_lock);
533 	cur_trans = fs_info->running_transaction;
534 	if (cur_trans && is_transaction_blocked(cur_trans)) {
535 		refcount_inc(&cur_trans->use_count);
536 		spin_unlock(&fs_info->trans_lock);
537 
538 		wait_event(fs_info->transaction_wait,
539 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
540 			   TRANS_ABORTED(cur_trans));
541 		btrfs_put_transaction(cur_trans);
542 	} else {
543 		spin_unlock(&fs_info->trans_lock);
544 	}
545 }
546 
547 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
548 {
549 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
550 		return 0;
551 
552 	if (type == TRANS_START)
553 		return 1;
554 
555 	return 0;
556 }
557 
558 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
559 {
560 	struct btrfs_fs_info *fs_info = root->fs_info;
561 
562 	if (!fs_info->reloc_ctl ||
563 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
564 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
565 	    root->reloc_root)
566 		return false;
567 
568 	return true;
569 }
570 
571 static struct btrfs_trans_handle *
572 start_transaction(struct btrfs_root *root, unsigned int num_items,
573 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
574 		  bool enforce_qgroups)
575 {
576 	struct btrfs_fs_info *fs_info = root->fs_info;
577 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
578 	struct btrfs_trans_handle *h;
579 	struct btrfs_transaction *cur_trans;
580 	u64 num_bytes = 0;
581 	u64 qgroup_reserved = 0;
582 	bool reloc_reserved = false;
583 	bool do_chunk_alloc = false;
584 	int ret;
585 
586 	/* Send isn't supposed to start transactions. */
587 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
588 
589 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
590 		return ERR_PTR(-EROFS);
591 
592 	if (current->journal_info) {
593 		WARN_ON(type & TRANS_EXTWRITERS);
594 		h = current->journal_info;
595 		refcount_inc(&h->use_count);
596 		WARN_ON(refcount_read(&h->use_count) > 2);
597 		h->orig_rsv = h->block_rsv;
598 		h->block_rsv = NULL;
599 		goto got_it;
600 	}
601 
602 	/*
603 	 * Do the reservation before we join the transaction so we can do all
604 	 * the appropriate flushing if need be.
605 	 */
606 	if (num_items && root != fs_info->chunk_root) {
607 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
608 		u64 delayed_refs_bytes = 0;
609 
610 		qgroup_reserved = num_items * fs_info->nodesize;
611 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
612 				enforce_qgroups);
613 		if (ret)
614 			return ERR_PTR(ret);
615 
616 		/*
617 		 * We want to reserve all the bytes we may need all at once, so
618 		 * we only do 1 enospc flushing cycle per transaction start.  We
619 		 * accomplish this by simply assuming we'll do 2 x num_items
620 		 * worth of delayed refs updates in this trans handle, and
621 		 * refill that amount for whatever is missing in the reserve.
622 		 */
623 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
624 		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
625 		    delayed_refs_rsv->full == 0) {
626 			delayed_refs_bytes = num_bytes;
627 			num_bytes <<= 1;
628 		}
629 
630 		/*
631 		 * Do the reservation for the relocation root creation
632 		 */
633 		if (need_reserve_reloc_root(root)) {
634 			num_bytes += fs_info->nodesize;
635 			reloc_reserved = true;
636 		}
637 
638 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
639 		if (ret)
640 			goto reserve_fail;
641 		if (delayed_refs_bytes) {
642 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
643 							  delayed_refs_bytes);
644 			num_bytes -= delayed_refs_bytes;
645 		}
646 
647 		if (rsv->space_info->force_alloc)
648 			do_chunk_alloc = true;
649 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
650 		   !delayed_refs_rsv->full) {
651 		/*
652 		 * Some people call with btrfs_start_transaction(root, 0)
653 		 * because they can be throttled, but have some other mechanism
654 		 * for reserving space.  We still want these guys to refill the
655 		 * delayed block_rsv so just add 1 items worth of reservation
656 		 * here.
657 		 */
658 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
659 		if (ret)
660 			goto reserve_fail;
661 	}
662 again:
663 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
664 	if (!h) {
665 		ret = -ENOMEM;
666 		goto alloc_fail;
667 	}
668 
669 	/*
670 	 * If we are JOIN_NOLOCK we're already committing a transaction and
671 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
672 	 * because we're already holding a ref.  We need this because we could
673 	 * have raced in and did an fsync() on a file which can kick a commit
674 	 * and then we deadlock with somebody doing a freeze.
675 	 *
676 	 * If we are ATTACH, it means we just want to catch the current
677 	 * transaction and commit it, so we needn't do sb_start_intwrite().
678 	 */
679 	if (type & __TRANS_FREEZABLE)
680 		sb_start_intwrite(fs_info->sb);
681 
682 	if (may_wait_transaction(fs_info, type))
683 		wait_current_trans(fs_info);
684 
685 	do {
686 		ret = join_transaction(fs_info, type);
687 		if (ret == -EBUSY) {
688 			wait_current_trans(fs_info);
689 			if (unlikely(type == TRANS_ATTACH ||
690 				     type == TRANS_JOIN_NOSTART))
691 				ret = -ENOENT;
692 		}
693 	} while (ret == -EBUSY);
694 
695 	if (ret < 0)
696 		goto join_fail;
697 
698 	cur_trans = fs_info->running_transaction;
699 
700 	h->transid = cur_trans->transid;
701 	h->transaction = cur_trans;
702 	h->root = root;
703 	refcount_set(&h->use_count, 1);
704 	h->fs_info = root->fs_info;
705 
706 	h->type = type;
707 	h->can_flush_pending_bgs = true;
708 	INIT_LIST_HEAD(&h->new_bgs);
709 
710 	smp_mb();
711 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
712 	    may_wait_transaction(fs_info, type)) {
713 		current->journal_info = h;
714 		btrfs_commit_transaction(h);
715 		goto again;
716 	}
717 
718 	if (num_bytes) {
719 		trace_btrfs_space_reservation(fs_info, "transaction",
720 					      h->transid, num_bytes, 1);
721 		h->block_rsv = &fs_info->trans_block_rsv;
722 		h->bytes_reserved = num_bytes;
723 		h->reloc_reserved = reloc_reserved;
724 	}
725 
726 got_it:
727 	if (!current->journal_info)
728 		current->journal_info = h;
729 
730 	/*
731 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
732 	 * ALLOC_FORCE the first run through, and then we won't allocate for
733 	 * anybody else who races in later.  We don't care about the return
734 	 * value here.
735 	 */
736 	if (do_chunk_alloc && num_bytes) {
737 		u64 flags = h->block_rsv->space_info->flags;
738 
739 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
740 				  CHUNK_ALLOC_NO_FORCE);
741 	}
742 
743 	/*
744 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
745 	 * call btrfs_join_transaction() while we're also starting a
746 	 * transaction.
747 	 *
748 	 * Thus it need to be called after current->journal_info initialized,
749 	 * or we can deadlock.
750 	 */
751 	ret = btrfs_record_root_in_trans(h, root);
752 	if (ret) {
753 		/*
754 		 * The transaction handle is fully initialized and linked with
755 		 * other structures so it needs to be ended in case of errors,
756 		 * not just freed.
757 		 */
758 		btrfs_end_transaction(h);
759 		return ERR_PTR(ret);
760 	}
761 
762 	return h;
763 
764 join_fail:
765 	if (type & __TRANS_FREEZABLE)
766 		sb_end_intwrite(fs_info->sb);
767 	kmem_cache_free(btrfs_trans_handle_cachep, h);
768 alloc_fail:
769 	if (num_bytes)
770 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
771 					num_bytes, NULL);
772 reserve_fail:
773 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
774 	return ERR_PTR(ret);
775 }
776 
777 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
778 						   unsigned int num_items)
779 {
780 	return start_transaction(root, num_items, TRANS_START,
781 				 BTRFS_RESERVE_FLUSH_ALL, true);
782 }
783 
784 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
785 					struct btrfs_root *root,
786 					unsigned int num_items)
787 {
788 	return start_transaction(root, num_items, TRANS_START,
789 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
790 }
791 
792 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
793 {
794 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
795 				 true);
796 }
797 
798 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
799 {
800 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
801 				 BTRFS_RESERVE_NO_FLUSH, true);
802 }
803 
804 /*
805  * Similar to regular join but it never starts a transaction when none is
806  * running or after waiting for the current one to finish.
807  */
808 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
809 {
810 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
811 				 BTRFS_RESERVE_NO_FLUSH, true);
812 }
813 
814 /*
815  * btrfs_attach_transaction() - catch the running transaction
816  *
817  * It is used when we want to commit the current the transaction, but
818  * don't want to start a new one.
819  *
820  * Note: If this function return -ENOENT, it just means there is no
821  * running transaction. But it is possible that the inactive transaction
822  * is still in the memory, not fully on disk. If you hope there is no
823  * inactive transaction in the fs when -ENOENT is returned, you should
824  * invoke
825  *     btrfs_attach_transaction_barrier()
826  */
827 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
828 {
829 	return start_transaction(root, 0, TRANS_ATTACH,
830 				 BTRFS_RESERVE_NO_FLUSH, true);
831 }
832 
833 /*
834  * btrfs_attach_transaction_barrier() - catch the running transaction
835  *
836  * It is similar to the above function, the difference is this one
837  * will wait for all the inactive transactions until they fully
838  * complete.
839  */
840 struct btrfs_trans_handle *
841 btrfs_attach_transaction_barrier(struct btrfs_root *root)
842 {
843 	struct btrfs_trans_handle *trans;
844 
845 	trans = start_transaction(root, 0, TRANS_ATTACH,
846 				  BTRFS_RESERVE_NO_FLUSH, true);
847 	if (trans == ERR_PTR(-ENOENT))
848 		btrfs_wait_for_commit(root->fs_info, 0);
849 
850 	return trans;
851 }
852 
853 /* Wait for a transaction commit to reach at least the given state. */
854 static noinline void wait_for_commit(struct btrfs_transaction *commit,
855 				     const enum btrfs_trans_state min_state)
856 {
857 	wait_event(commit->commit_wait, commit->state >= min_state);
858 }
859 
860 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
861 {
862 	struct btrfs_transaction *cur_trans = NULL, *t;
863 	int ret = 0;
864 
865 	if (transid) {
866 		if (transid <= fs_info->last_trans_committed)
867 			goto out;
868 
869 		/* find specified transaction */
870 		spin_lock(&fs_info->trans_lock);
871 		list_for_each_entry(t, &fs_info->trans_list, list) {
872 			if (t->transid == transid) {
873 				cur_trans = t;
874 				refcount_inc(&cur_trans->use_count);
875 				ret = 0;
876 				break;
877 			}
878 			if (t->transid > transid) {
879 				ret = 0;
880 				break;
881 			}
882 		}
883 		spin_unlock(&fs_info->trans_lock);
884 
885 		/*
886 		 * The specified transaction doesn't exist, or we
887 		 * raced with btrfs_commit_transaction
888 		 */
889 		if (!cur_trans) {
890 			if (transid > fs_info->last_trans_committed)
891 				ret = -EINVAL;
892 			goto out;
893 		}
894 	} else {
895 		/* find newest transaction that is committing | committed */
896 		spin_lock(&fs_info->trans_lock);
897 		list_for_each_entry_reverse(t, &fs_info->trans_list,
898 					    list) {
899 			if (t->state >= TRANS_STATE_COMMIT_START) {
900 				if (t->state == TRANS_STATE_COMPLETED)
901 					break;
902 				cur_trans = t;
903 				refcount_inc(&cur_trans->use_count);
904 				break;
905 			}
906 		}
907 		spin_unlock(&fs_info->trans_lock);
908 		if (!cur_trans)
909 			goto out;  /* nothing committing|committed */
910 	}
911 
912 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
913 	btrfs_put_transaction(cur_trans);
914 out:
915 	return ret;
916 }
917 
918 void btrfs_throttle(struct btrfs_fs_info *fs_info)
919 {
920 	wait_current_trans(fs_info);
921 }
922 
923 static bool should_end_transaction(struct btrfs_trans_handle *trans)
924 {
925 	struct btrfs_fs_info *fs_info = trans->fs_info;
926 
927 	if (btrfs_check_space_for_delayed_refs(fs_info))
928 		return true;
929 
930 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
931 }
932 
933 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
934 {
935 	struct btrfs_transaction *cur_trans = trans->transaction;
936 
937 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
938 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
939 		return true;
940 
941 	return should_end_transaction(trans);
942 }
943 
944 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
945 
946 {
947 	struct btrfs_fs_info *fs_info = trans->fs_info;
948 
949 	if (!trans->block_rsv) {
950 		ASSERT(!trans->bytes_reserved);
951 		return;
952 	}
953 
954 	if (!trans->bytes_reserved)
955 		return;
956 
957 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
958 	trace_btrfs_space_reservation(fs_info, "transaction",
959 				      trans->transid, trans->bytes_reserved, 0);
960 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
961 				trans->bytes_reserved, NULL);
962 	trans->bytes_reserved = 0;
963 }
964 
965 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
966 				   int throttle)
967 {
968 	struct btrfs_fs_info *info = trans->fs_info;
969 	struct btrfs_transaction *cur_trans = trans->transaction;
970 	int err = 0;
971 
972 	if (refcount_read(&trans->use_count) > 1) {
973 		refcount_dec(&trans->use_count);
974 		trans->block_rsv = trans->orig_rsv;
975 		return 0;
976 	}
977 
978 	btrfs_trans_release_metadata(trans);
979 	trans->block_rsv = NULL;
980 
981 	btrfs_create_pending_block_groups(trans);
982 
983 	btrfs_trans_release_chunk_metadata(trans);
984 
985 	if (trans->type & __TRANS_FREEZABLE)
986 		sb_end_intwrite(info->sb);
987 
988 	WARN_ON(cur_trans != info->running_transaction);
989 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
990 	atomic_dec(&cur_trans->num_writers);
991 	extwriter_counter_dec(cur_trans, trans->type);
992 
993 	cond_wake_up(&cur_trans->writer_wait);
994 	btrfs_put_transaction(cur_trans);
995 
996 	if (current->journal_info == trans)
997 		current->journal_info = NULL;
998 
999 	if (throttle)
1000 		btrfs_run_delayed_iputs(info);
1001 
1002 	if (TRANS_ABORTED(trans) ||
1003 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
1004 		wake_up_process(info->transaction_kthread);
1005 		if (TRANS_ABORTED(trans))
1006 			err = trans->aborted;
1007 		else
1008 			err = -EROFS;
1009 	}
1010 
1011 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1012 	return err;
1013 }
1014 
1015 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1016 {
1017 	return __btrfs_end_transaction(trans, 0);
1018 }
1019 
1020 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1021 {
1022 	return __btrfs_end_transaction(trans, 1);
1023 }
1024 
1025 /*
1026  * when btree blocks are allocated, they have some corresponding bits set for
1027  * them in one of two extent_io trees.  This is used to make sure all of
1028  * those extents are sent to disk but does not wait on them
1029  */
1030 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1031 			       struct extent_io_tree *dirty_pages, int mark)
1032 {
1033 	int err = 0;
1034 	int werr = 0;
1035 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1036 	struct extent_state *cached_state = NULL;
1037 	u64 start = 0;
1038 	u64 end;
1039 
1040 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1041 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1042 				      mark, &cached_state)) {
1043 		bool wait_writeback = false;
1044 
1045 		err = convert_extent_bit(dirty_pages, start, end,
1046 					 EXTENT_NEED_WAIT,
1047 					 mark, &cached_state);
1048 		/*
1049 		 * convert_extent_bit can return -ENOMEM, which is most of the
1050 		 * time a temporary error. So when it happens, ignore the error
1051 		 * and wait for writeback of this range to finish - because we
1052 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1053 		 * to __btrfs_wait_marked_extents() would not know that
1054 		 * writeback for this range started and therefore wouldn't
1055 		 * wait for it to finish - we don't want to commit a
1056 		 * superblock that points to btree nodes/leafs for which
1057 		 * writeback hasn't finished yet (and without errors).
1058 		 * We cleanup any entries left in the io tree when committing
1059 		 * the transaction (through extent_io_tree_release()).
1060 		 */
1061 		if (err == -ENOMEM) {
1062 			err = 0;
1063 			wait_writeback = true;
1064 		}
1065 		if (!err)
1066 			err = filemap_fdatawrite_range(mapping, start, end);
1067 		if (err)
1068 			werr = err;
1069 		else if (wait_writeback)
1070 			werr = filemap_fdatawait_range(mapping, start, end);
1071 		free_extent_state(cached_state);
1072 		cached_state = NULL;
1073 		cond_resched();
1074 		start = end + 1;
1075 	}
1076 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1077 	return werr;
1078 }
1079 
1080 /*
1081  * when btree blocks are allocated, they have some corresponding bits set for
1082  * them in one of two extent_io trees.  This is used to make sure all of
1083  * those extents are on disk for transaction or log commit.  We wait
1084  * on all the pages and clear them from the dirty pages state tree
1085  */
1086 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1087 				       struct extent_io_tree *dirty_pages)
1088 {
1089 	int err = 0;
1090 	int werr = 0;
1091 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1092 	struct extent_state *cached_state = NULL;
1093 	u64 start = 0;
1094 	u64 end;
1095 
1096 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1097 				      EXTENT_NEED_WAIT, &cached_state)) {
1098 		/*
1099 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1100 		 * When committing the transaction, we'll remove any entries
1101 		 * left in the io tree. For a log commit, we don't remove them
1102 		 * after committing the log because the tree can be accessed
1103 		 * concurrently - we do it only at transaction commit time when
1104 		 * it's safe to do it (through extent_io_tree_release()).
1105 		 */
1106 		err = clear_extent_bit(dirty_pages, start, end,
1107 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1108 		if (err == -ENOMEM)
1109 			err = 0;
1110 		if (!err)
1111 			err = filemap_fdatawait_range(mapping, start, end);
1112 		if (err)
1113 			werr = err;
1114 		free_extent_state(cached_state);
1115 		cached_state = NULL;
1116 		cond_resched();
1117 		start = end + 1;
1118 	}
1119 	if (err)
1120 		werr = err;
1121 	return werr;
1122 }
1123 
1124 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1125 		       struct extent_io_tree *dirty_pages)
1126 {
1127 	bool errors = false;
1128 	int err;
1129 
1130 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1131 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1132 		errors = true;
1133 
1134 	if (errors && !err)
1135 		err = -EIO;
1136 	return err;
1137 }
1138 
1139 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1140 {
1141 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1142 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1143 	bool errors = false;
1144 	int err;
1145 
1146 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1147 
1148 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1149 	if ((mark & EXTENT_DIRTY) &&
1150 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1151 		errors = true;
1152 
1153 	if ((mark & EXTENT_NEW) &&
1154 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1155 		errors = true;
1156 
1157 	if (errors && !err)
1158 		err = -EIO;
1159 	return err;
1160 }
1161 
1162 /*
1163  * When btree blocks are allocated the corresponding extents are marked dirty.
1164  * This function ensures such extents are persisted on disk for transaction or
1165  * log commit.
1166  *
1167  * @trans: transaction whose dirty pages we'd like to write
1168  */
1169 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1170 {
1171 	int ret;
1172 	int ret2;
1173 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1174 	struct btrfs_fs_info *fs_info = trans->fs_info;
1175 	struct blk_plug plug;
1176 
1177 	blk_start_plug(&plug);
1178 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1179 	blk_finish_plug(&plug);
1180 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1181 
1182 	extent_io_tree_release(&trans->transaction->dirty_pages);
1183 
1184 	if (ret)
1185 		return ret;
1186 	else if (ret2)
1187 		return ret2;
1188 	else
1189 		return 0;
1190 }
1191 
1192 /*
1193  * this is used to update the root pointer in the tree of tree roots.
1194  *
1195  * But, in the case of the extent allocation tree, updating the root
1196  * pointer may allocate blocks which may change the root of the extent
1197  * allocation tree.
1198  *
1199  * So, this loops and repeats and makes sure the cowonly root didn't
1200  * change while the root pointer was being updated in the metadata.
1201  */
1202 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1203 			       struct btrfs_root *root)
1204 {
1205 	int ret;
1206 	u64 old_root_bytenr;
1207 	u64 old_root_used;
1208 	struct btrfs_fs_info *fs_info = root->fs_info;
1209 	struct btrfs_root *tree_root = fs_info->tree_root;
1210 
1211 	old_root_used = btrfs_root_used(&root->root_item);
1212 
1213 	while (1) {
1214 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1215 		if (old_root_bytenr == root->node->start &&
1216 		    old_root_used == btrfs_root_used(&root->root_item))
1217 			break;
1218 
1219 		btrfs_set_root_node(&root->root_item, root->node);
1220 		ret = btrfs_update_root(trans, tree_root,
1221 					&root->root_key,
1222 					&root->root_item);
1223 		if (ret)
1224 			return ret;
1225 
1226 		old_root_used = btrfs_root_used(&root->root_item);
1227 	}
1228 
1229 	return 0;
1230 }
1231 
1232 /*
1233  * update all the cowonly tree roots on disk
1234  *
1235  * The error handling in this function may not be obvious. Any of the
1236  * failures will cause the file system to go offline. We still need
1237  * to clean up the delayed refs.
1238  */
1239 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1240 {
1241 	struct btrfs_fs_info *fs_info = trans->fs_info;
1242 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1243 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1244 	struct list_head *next;
1245 	struct extent_buffer *eb;
1246 	int ret;
1247 
1248 	eb = btrfs_lock_root_node(fs_info->tree_root);
1249 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1250 			      0, &eb, BTRFS_NESTING_COW);
1251 	btrfs_tree_unlock(eb);
1252 	free_extent_buffer(eb);
1253 
1254 	if (ret)
1255 		return ret;
1256 
1257 	ret = btrfs_run_dev_stats(trans);
1258 	if (ret)
1259 		return ret;
1260 	ret = btrfs_run_dev_replace(trans);
1261 	if (ret)
1262 		return ret;
1263 	ret = btrfs_run_qgroups(trans);
1264 	if (ret)
1265 		return ret;
1266 
1267 	ret = btrfs_setup_space_cache(trans);
1268 	if (ret)
1269 		return ret;
1270 
1271 again:
1272 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1273 		struct btrfs_root *root;
1274 		next = fs_info->dirty_cowonly_roots.next;
1275 		list_del_init(next);
1276 		root = list_entry(next, struct btrfs_root, dirty_list);
1277 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1278 
1279 		if (root != fs_info->extent_root)
1280 			list_add_tail(&root->dirty_list,
1281 				      &trans->transaction->switch_commits);
1282 		ret = update_cowonly_root(trans, root);
1283 		if (ret)
1284 			return ret;
1285 	}
1286 
1287 	/* Now flush any delayed refs generated by updating all of the roots */
1288 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1289 	if (ret)
1290 		return ret;
1291 
1292 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1293 		ret = btrfs_write_dirty_block_groups(trans);
1294 		if (ret)
1295 			return ret;
1296 
1297 		/*
1298 		 * We're writing the dirty block groups, which could generate
1299 		 * delayed refs, which could generate more dirty block groups,
1300 		 * so we want to keep this flushing in this loop to make sure
1301 		 * everything gets run.
1302 		 */
1303 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1304 		if (ret)
1305 			return ret;
1306 	}
1307 
1308 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1309 		goto again;
1310 
1311 	list_add_tail(&fs_info->extent_root->dirty_list,
1312 		      &trans->transaction->switch_commits);
1313 
1314 	/* Update dev-replace pointer once everything is committed */
1315 	fs_info->dev_replace.committed_cursor_left =
1316 		fs_info->dev_replace.cursor_left_last_write_of_item;
1317 
1318 	return 0;
1319 }
1320 
1321 /*
1322  * dead roots are old snapshots that need to be deleted.  This allocates
1323  * a dirty root struct and adds it into the list of dead roots that need to
1324  * be deleted
1325  */
1326 void btrfs_add_dead_root(struct btrfs_root *root)
1327 {
1328 	struct btrfs_fs_info *fs_info = root->fs_info;
1329 
1330 	spin_lock(&fs_info->trans_lock);
1331 	if (list_empty(&root->root_list)) {
1332 		btrfs_grab_root(root);
1333 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1334 	}
1335 	spin_unlock(&fs_info->trans_lock);
1336 }
1337 
1338 /*
1339  * update all the cowonly tree roots on disk
1340  */
1341 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1342 {
1343 	struct btrfs_fs_info *fs_info = trans->fs_info;
1344 	struct btrfs_root *gang[8];
1345 	int i;
1346 	int ret;
1347 
1348 	spin_lock(&fs_info->fs_roots_radix_lock);
1349 	while (1) {
1350 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1351 						 (void **)gang, 0,
1352 						 ARRAY_SIZE(gang),
1353 						 BTRFS_ROOT_TRANS_TAG);
1354 		if (ret == 0)
1355 			break;
1356 		for (i = 0; i < ret; i++) {
1357 			struct btrfs_root *root = gang[i];
1358 			int ret2;
1359 
1360 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1361 					(unsigned long)root->root_key.objectid,
1362 					BTRFS_ROOT_TRANS_TAG);
1363 			spin_unlock(&fs_info->fs_roots_radix_lock);
1364 
1365 			btrfs_free_log(trans, root);
1366 			ret2 = btrfs_update_reloc_root(trans, root);
1367 			if (ret2)
1368 				return ret2;
1369 
1370 			/* see comments in should_cow_block() */
1371 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1372 			smp_mb__after_atomic();
1373 
1374 			if (root->commit_root != root->node) {
1375 				list_add_tail(&root->dirty_list,
1376 					&trans->transaction->switch_commits);
1377 				btrfs_set_root_node(&root->root_item,
1378 						    root->node);
1379 			}
1380 
1381 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1382 						&root->root_key,
1383 						&root->root_item);
1384 			if (ret2)
1385 				return ret2;
1386 			spin_lock(&fs_info->fs_roots_radix_lock);
1387 			btrfs_qgroup_free_meta_all_pertrans(root);
1388 		}
1389 	}
1390 	spin_unlock(&fs_info->fs_roots_radix_lock);
1391 	return 0;
1392 }
1393 
1394 /*
1395  * defrag a given btree.
1396  * Every leaf in the btree is read and defragged.
1397  */
1398 int btrfs_defrag_root(struct btrfs_root *root)
1399 {
1400 	struct btrfs_fs_info *info = root->fs_info;
1401 	struct btrfs_trans_handle *trans;
1402 	int ret;
1403 
1404 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1405 		return 0;
1406 
1407 	while (1) {
1408 		trans = btrfs_start_transaction(root, 0);
1409 		if (IS_ERR(trans))
1410 			return PTR_ERR(trans);
1411 
1412 		ret = btrfs_defrag_leaves(trans, root);
1413 
1414 		btrfs_end_transaction(trans);
1415 		btrfs_btree_balance_dirty(info);
1416 		cond_resched();
1417 
1418 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1419 			break;
1420 
1421 		if (btrfs_defrag_cancelled(info)) {
1422 			btrfs_debug(info, "defrag_root cancelled");
1423 			ret = -EAGAIN;
1424 			break;
1425 		}
1426 	}
1427 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1428 	return ret;
1429 }
1430 
1431 /*
1432  * Do all special snapshot related qgroup dirty hack.
1433  *
1434  * Will do all needed qgroup inherit and dirty hack like switch commit
1435  * roots inside one transaction and write all btree into disk, to make
1436  * qgroup works.
1437  */
1438 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1439 				   struct btrfs_root *src,
1440 				   struct btrfs_root *parent,
1441 				   struct btrfs_qgroup_inherit *inherit,
1442 				   u64 dst_objectid)
1443 {
1444 	struct btrfs_fs_info *fs_info = src->fs_info;
1445 	int ret;
1446 
1447 	/*
1448 	 * Save some performance in the case that qgroups are not
1449 	 * enabled. If this check races with the ioctl, rescan will
1450 	 * kick in anyway.
1451 	 */
1452 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1453 		return 0;
1454 
1455 	/*
1456 	 * Ensure dirty @src will be committed.  Or, after coming
1457 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1458 	 * recorded root will never be updated again, causing an outdated root
1459 	 * item.
1460 	 */
1461 	ret = record_root_in_trans(trans, src, 1);
1462 	if (ret)
1463 		return ret;
1464 
1465 	/*
1466 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1467 	 * src root, so we must run the delayed refs here.
1468 	 *
1469 	 * However this isn't particularly fool proof, because there's no
1470 	 * synchronization keeping us from changing the tree after this point
1471 	 * before we do the qgroup_inherit, or even from making changes while
1472 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1473 	 * for now flush the delayed refs to narrow the race window where the
1474 	 * qgroup counters could end up wrong.
1475 	 */
1476 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1477 	if (ret) {
1478 		btrfs_abort_transaction(trans, ret);
1479 		goto out;
1480 	}
1481 
1482 	/*
1483 	 * We are going to commit transaction, see btrfs_commit_transaction()
1484 	 * comment for reason locking tree_log_mutex
1485 	 */
1486 	mutex_lock(&fs_info->tree_log_mutex);
1487 
1488 	ret = commit_fs_roots(trans);
1489 	if (ret)
1490 		goto out;
1491 	ret = btrfs_qgroup_account_extents(trans);
1492 	if (ret < 0)
1493 		goto out;
1494 
1495 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1496 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1497 				   inherit);
1498 	if (ret < 0)
1499 		goto out;
1500 
1501 	/*
1502 	 * Now we do a simplified commit transaction, which will:
1503 	 * 1) commit all subvolume and extent tree
1504 	 *    To ensure all subvolume and extent tree have a valid
1505 	 *    commit_root to accounting later insert_dir_item()
1506 	 * 2) write all btree blocks onto disk
1507 	 *    This is to make sure later btree modification will be cowed
1508 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1509 	 * In this simplified commit, we don't really care about other trees
1510 	 * like chunk and root tree, as they won't affect qgroup.
1511 	 * And we don't write super to avoid half committed status.
1512 	 */
1513 	ret = commit_cowonly_roots(trans);
1514 	if (ret)
1515 		goto out;
1516 	switch_commit_roots(trans);
1517 	ret = btrfs_write_and_wait_transaction(trans);
1518 	if (ret)
1519 		btrfs_handle_fs_error(fs_info, ret,
1520 			"Error while writing out transaction for qgroup");
1521 
1522 out:
1523 	mutex_unlock(&fs_info->tree_log_mutex);
1524 
1525 	/*
1526 	 * Force parent root to be updated, as we recorded it before so its
1527 	 * last_trans == cur_transid.
1528 	 * Or it won't be committed again onto disk after later
1529 	 * insert_dir_item()
1530 	 */
1531 	if (!ret)
1532 		ret = record_root_in_trans(trans, parent, 1);
1533 	return ret;
1534 }
1535 
1536 /*
1537  * new snapshots need to be created at a very specific time in the
1538  * transaction commit.  This does the actual creation.
1539  *
1540  * Note:
1541  * If the error which may affect the commitment of the current transaction
1542  * happens, we should return the error number. If the error which just affect
1543  * the creation of the pending snapshots, just return 0.
1544  */
1545 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1546 				   struct btrfs_pending_snapshot *pending)
1547 {
1548 
1549 	struct btrfs_fs_info *fs_info = trans->fs_info;
1550 	struct btrfs_key key;
1551 	struct btrfs_root_item *new_root_item;
1552 	struct btrfs_root *tree_root = fs_info->tree_root;
1553 	struct btrfs_root *root = pending->root;
1554 	struct btrfs_root *parent_root;
1555 	struct btrfs_block_rsv *rsv;
1556 	struct inode *parent_inode;
1557 	struct btrfs_path *path;
1558 	struct btrfs_dir_item *dir_item;
1559 	struct dentry *dentry;
1560 	struct extent_buffer *tmp;
1561 	struct extent_buffer *old;
1562 	struct timespec64 cur_time;
1563 	int ret = 0;
1564 	u64 to_reserve = 0;
1565 	u64 index = 0;
1566 	u64 objectid;
1567 	u64 root_flags;
1568 
1569 	ASSERT(pending->path);
1570 	path = pending->path;
1571 
1572 	ASSERT(pending->root_item);
1573 	new_root_item = pending->root_item;
1574 
1575 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1576 	if (pending->error)
1577 		goto no_free_objectid;
1578 
1579 	/*
1580 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1581 	 * accounted by later btrfs_qgroup_inherit().
1582 	 */
1583 	btrfs_set_skip_qgroup(trans, objectid);
1584 
1585 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1586 
1587 	if (to_reserve > 0) {
1588 		pending->error = btrfs_block_rsv_add(root,
1589 						     &pending->block_rsv,
1590 						     to_reserve,
1591 						     BTRFS_RESERVE_NO_FLUSH);
1592 		if (pending->error)
1593 			goto clear_skip_qgroup;
1594 	}
1595 
1596 	key.objectid = objectid;
1597 	key.offset = (u64)-1;
1598 	key.type = BTRFS_ROOT_ITEM_KEY;
1599 
1600 	rsv = trans->block_rsv;
1601 	trans->block_rsv = &pending->block_rsv;
1602 	trans->bytes_reserved = trans->block_rsv->reserved;
1603 	trace_btrfs_space_reservation(fs_info, "transaction",
1604 				      trans->transid,
1605 				      trans->bytes_reserved, 1);
1606 	dentry = pending->dentry;
1607 	parent_inode = pending->dir;
1608 	parent_root = BTRFS_I(parent_inode)->root;
1609 	ret = record_root_in_trans(trans, parent_root, 0);
1610 	if (ret)
1611 		goto fail;
1612 	cur_time = current_time(parent_inode);
1613 
1614 	/*
1615 	 * insert the directory item
1616 	 */
1617 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1618 	BUG_ON(ret); /* -ENOMEM */
1619 
1620 	/* check if there is a file/dir which has the same name. */
1621 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1622 					 btrfs_ino(BTRFS_I(parent_inode)),
1623 					 dentry->d_name.name,
1624 					 dentry->d_name.len, 0);
1625 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1626 		pending->error = -EEXIST;
1627 		goto dir_item_existed;
1628 	} else if (IS_ERR(dir_item)) {
1629 		ret = PTR_ERR(dir_item);
1630 		btrfs_abort_transaction(trans, ret);
1631 		goto fail;
1632 	}
1633 	btrfs_release_path(path);
1634 
1635 	/*
1636 	 * pull in the delayed directory update
1637 	 * and the delayed inode item
1638 	 * otherwise we corrupt the FS during
1639 	 * snapshot
1640 	 */
1641 	ret = btrfs_run_delayed_items(trans);
1642 	if (ret) {	/* Transaction aborted */
1643 		btrfs_abort_transaction(trans, ret);
1644 		goto fail;
1645 	}
1646 
1647 	ret = record_root_in_trans(trans, root, 0);
1648 	if (ret) {
1649 		btrfs_abort_transaction(trans, ret);
1650 		goto fail;
1651 	}
1652 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1653 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1654 	btrfs_check_and_init_root_item(new_root_item);
1655 
1656 	root_flags = btrfs_root_flags(new_root_item);
1657 	if (pending->readonly)
1658 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1659 	else
1660 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1661 	btrfs_set_root_flags(new_root_item, root_flags);
1662 
1663 	btrfs_set_root_generation_v2(new_root_item,
1664 			trans->transid);
1665 	generate_random_guid(new_root_item->uuid);
1666 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1667 			BTRFS_UUID_SIZE);
1668 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1669 		memset(new_root_item->received_uuid, 0,
1670 		       sizeof(new_root_item->received_uuid));
1671 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1672 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1673 		btrfs_set_root_stransid(new_root_item, 0);
1674 		btrfs_set_root_rtransid(new_root_item, 0);
1675 	}
1676 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1677 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1678 	btrfs_set_root_otransid(new_root_item, trans->transid);
1679 
1680 	old = btrfs_lock_root_node(root);
1681 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1682 			      BTRFS_NESTING_COW);
1683 	if (ret) {
1684 		btrfs_tree_unlock(old);
1685 		free_extent_buffer(old);
1686 		btrfs_abort_transaction(trans, ret);
1687 		goto fail;
1688 	}
1689 
1690 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1691 	/* clean up in any case */
1692 	btrfs_tree_unlock(old);
1693 	free_extent_buffer(old);
1694 	if (ret) {
1695 		btrfs_abort_transaction(trans, ret);
1696 		goto fail;
1697 	}
1698 	/* see comments in should_cow_block() */
1699 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1700 	smp_wmb();
1701 
1702 	btrfs_set_root_node(new_root_item, tmp);
1703 	/* record when the snapshot was created in key.offset */
1704 	key.offset = trans->transid;
1705 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1706 	btrfs_tree_unlock(tmp);
1707 	free_extent_buffer(tmp);
1708 	if (ret) {
1709 		btrfs_abort_transaction(trans, ret);
1710 		goto fail;
1711 	}
1712 
1713 	/*
1714 	 * insert root back/forward references
1715 	 */
1716 	ret = btrfs_add_root_ref(trans, objectid,
1717 				 parent_root->root_key.objectid,
1718 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1719 				 dentry->d_name.name, dentry->d_name.len);
1720 	if (ret) {
1721 		btrfs_abort_transaction(trans, ret);
1722 		goto fail;
1723 	}
1724 
1725 	key.offset = (u64)-1;
1726 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1727 	if (IS_ERR(pending->snap)) {
1728 		ret = PTR_ERR(pending->snap);
1729 		pending->snap = NULL;
1730 		btrfs_abort_transaction(trans, ret);
1731 		goto fail;
1732 	}
1733 
1734 	ret = btrfs_reloc_post_snapshot(trans, pending);
1735 	if (ret) {
1736 		btrfs_abort_transaction(trans, ret);
1737 		goto fail;
1738 	}
1739 
1740 	/*
1741 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1742 	 * snapshot hack to do fast snapshot.
1743 	 * To co-operate with that hack, we do hack again.
1744 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1745 	 */
1746 	ret = qgroup_account_snapshot(trans, root, parent_root,
1747 				      pending->inherit, objectid);
1748 	if (ret < 0)
1749 		goto fail;
1750 
1751 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1752 				    dentry->d_name.len, BTRFS_I(parent_inode),
1753 				    &key, BTRFS_FT_DIR, index);
1754 	/* We have check then name at the beginning, so it is impossible. */
1755 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1756 	if (ret) {
1757 		btrfs_abort_transaction(trans, ret);
1758 		goto fail;
1759 	}
1760 
1761 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1762 					 dentry->d_name.len * 2);
1763 	parent_inode->i_mtime = parent_inode->i_ctime =
1764 		current_time(parent_inode);
1765 	ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1766 	if (ret) {
1767 		btrfs_abort_transaction(trans, ret);
1768 		goto fail;
1769 	}
1770 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1771 				  BTRFS_UUID_KEY_SUBVOL,
1772 				  objectid);
1773 	if (ret) {
1774 		btrfs_abort_transaction(trans, ret);
1775 		goto fail;
1776 	}
1777 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1778 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1779 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1780 					  objectid);
1781 		if (ret && ret != -EEXIST) {
1782 			btrfs_abort_transaction(trans, ret);
1783 			goto fail;
1784 		}
1785 	}
1786 
1787 fail:
1788 	pending->error = ret;
1789 dir_item_existed:
1790 	trans->block_rsv = rsv;
1791 	trans->bytes_reserved = 0;
1792 clear_skip_qgroup:
1793 	btrfs_clear_skip_qgroup(trans);
1794 no_free_objectid:
1795 	kfree(new_root_item);
1796 	pending->root_item = NULL;
1797 	btrfs_free_path(path);
1798 	pending->path = NULL;
1799 
1800 	return ret;
1801 }
1802 
1803 /*
1804  * create all the snapshots we've scheduled for creation
1805  */
1806 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1807 {
1808 	struct btrfs_pending_snapshot *pending, *next;
1809 	struct list_head *head = &trans->transaction->pending_snapshots;
1810 	int ret = 0;
1811 
1812 	list_for_each_entry_safe(pending, next, head, list) {
1813 		list_del(&pending->list);
1814 		ret = create_pending_snapshot(trans, pending);
1815 		if (ret)
1816 			break;
1817 	}
1818 	return ret;
1819 }
1820 
1821 static void update_super_roots(struct btrfs_fs_info *fs_info)
1822 {
1823 	struct btrfs_root_item *root_item;
1824 	struct btrfs_super_block *super;
1825 
1826 	super = fs_info->super_copy;
1827 
1828 	root_item = &fs_info->chunk_root->root_item;
1829 	super->chunk_root = root_item->bytenr;
1830 	super->chunk_root_generation = root_item->generation;
1831 	super->chunk_root_level = root_item->level;
1832 
1833 	root_item = &fs_info->tree_root->root_item;
1834 	super->root = root_item->bytenr;
1835 	super->generation = root_item->generation;
1836 	super->root_level = root_item->level;
1837 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1838 		super->cache_generation = root_item->generation;
1839 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1840 		super->cache_generation = 0;
1841 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1842 		super->uuid_tree_generation = root_item->generation;
1843 }
1844 
1845 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1846 {
1847 	struct btrfs_transaction *trans;
1848 	int ret = 0;
1849 
1850 	spin_lock(&info->trans_lock);
1851 	trans = info->running_transaction;
1852 	if (trans)
1853 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1854 	spin_unlock(&info->trans_lock);
1855 	return ret;
1856 }
1857 
1858 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1859 {
1860 	struct btrfs_transaction *trans;
1861 	int ret = 0;
1862 
1863 	spin_lock(&info->trans_lock);
1864 	trans = info->running_transaction;
1865 	if (trans)
1866 		ret = is_transaction_blocked(trans);
1867 	spin_unlock(&info->trans_lock);
1868 	return ret;
1869 }
1870 
1871 /*
1872  * wait for the current transaction commit to start and block subsequent
1873  * transaction joins
1874  */
1875 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1876 					    struct btrfs_transaction *trans)
1877 {
1878 	wait_event(fs_info->transaction_blocked_wait,
1879 		   trans->state >= TRANS_STATE_COMMIT_START ||
1880 		   TRANS_ABORTED(trans));
1881 }
1882 
1883 /*
1884  * wait for the current transaction to start and then become unblocked.
1885  * caller holds ref.
1886  */
1887 static void wait_current_trans_commit_start_and_unblock(
1888 					struct btrfs_fs_info *fs_info,
1889 					struct btrfs_transaction *trans)
1890 {
1891 	wait_event(fs_info->transaction_wait,
1892 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1893 		   TRANS_ABORTED(trans));
1894 }
1895 
1896 /*
1897  * commit transactions asynchronously. once btrfs_commit_transaction_async
1898  * returns, any subsequent transaction will not be allowed to join.
1899  */
1900 struct btrfs_async_commit {
1901 	struct btrfs_trans_handle *newtrans;
1902 	struct work_struct work;
1903 };
1904 
1905 static void do_async_commit(struct work_struct *work)
1906 {
1907 	struct btrfs_async_commit *ac =
1908 		container_of(work, struct btrfs_async_commit, work);
1909 
1910 	/*
1911 	 * We've got freeze protection passed with the transaction.
1912 	 * Tell lockdep about it.
1913 	 */
1914 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1915 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1916 
1917 	current->journal_info = ac->newtrans;
1918 
1919 	btrfs_commit_transaction(ac->newtrans);
1920 	kfree(ac);
1921 }
1922 
1923 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1924 				   int wait_for_unblock)
1925 {
1926 	struct btrfs_fs_info *fs_info = trans->fs_info;
1927 	struct btrfs_async_commit *ac;
1928 	struct btrfs_transaction *cur_trans;
1929 
1930 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1931 	if (!ac)
1932 		return -ENOMEM;
1933 
1934 	INIT_WORK(&ac->work, do_async_commit);
1935 	ac->newtrans = btrfs_join_transaction(trans->root);
1936 	if (IS_ERR(ac->newtrans)) {
1937 		int err = PTR_ERR(ac->newtrans);
1938 		kfree(ac);
1939 		return err;
1940 	}
1941 
1942 	/* take transaction reference */
1943 	cur_trans = trans->transaction;
1944 	refcount_inc(&cur_trans->use_count);
1945 
1946 	btrfs_end_transaction(trans);
1947 
1948 	/*
1949 	 * Tell lockdep we've released the freeze rwsem, since the
1950 	 * async commit thread will be the one to unlock it.
1951 	 */
1952 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1953 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1954 
1955 	schedule_work(&ac->work);
1956 
1957 	/* wait for transaction to start and unblock */
1958 	if (wait_for_unblock)
1959 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1960 	else
1961 		wait_current_trans_commit_start(fs_info, cur_trans);
1962 
1963 	if (current->journal_info == trans)
1964 		current->journal_info = NULL;
1965 
1966 	btrfs_put_transaction(cur_trans);
1967 	return 0;
1968 }
1969 
1970 
1971 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1972 {
1973 	struct btrfs_fs_info *fs_info = trans->fs_info;
1974 	struct btrfs_transaction *cur_trans = trans->transaction;
1975 
1976 	WARN_ON(refcount_read(&trans->use_count) > 1);
1977 
1978 	btrfs_abort_transaction(trans, err);
1979 
1980 	spin_lock(&fs_info->trans_lock);
1981 
1982 	/*
1983 	 * If the transaction is removed from the list, it means this
1984 	 * transaction has been committed successfully, so it is impossible
1985 	 * to call the cleanup function.
1986 	 */
1987 	BUG_ON(list_empty(&cur_trans->list));
1988 
1989 	if (cur_trans == fs_info->running_transaction) {
1990 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1991 		spin_unlock(&fs_info->trans_lock);
1992 		wait_event(cur_trans->writer_wait,
1993 			   atomic_read(&cur_trans->num_writers) == 1);
1994 
1995 		spin_lock(&fs_info->trans_lock);
1996 	}
1997 
1998 	/*
1999 	 * Now that we know no one else is still using the transaction we can
2000 	 * remove the transaction from the list of transactions. This avoids
2001 	 * the transaction kthread from cleaning up the transaction while some
2002 	 * other task is still using it, which could result in a use-after-free
2003 	 * on things like log trees, as it forces the transaction kthread to
2004 	 * wait for this transaction to be cleaned up by us.
2005 	 */
2006 	list_del_init(&cur_trans->list);
2007 
2008 	spin_unlock(&fs_info->trans_lock);
2009 
2010 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2011 
2012 	spin_lock(&fs_info->trans_lock);
2013 	if (cur_trans == fs_info->running_transaction)
2014 		fs_info->running_transaction = NULL;
2015 	spin_unlock(&fs_info->trans_lock);
2016 
2017 	if (trans->type & __TRANS_FREEZABLE)
2018 		sb_end_intwrite(fs_info->sb);
2019 	btrfs_put_transaction(cur_trans);
2020 	btrfs_put_transaction(cur_trans);
2021 
2022 	trace_btrfs_transaction_commit(trans->root);
2023 
2024 	if (current->journal_info == trans)
2025 		current->journal_info = NULL;
2026 	btrfs_scrub_cancel(fs_info);
2027 
2028 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2029 }
2030 
2031 /*
2032  * Release reserved delayed ref space of all pending block groups of the
2033  * transaction and remove them from the list
2034  */
2035 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2036 {
2037        struct btrfs_fs_info *fs_info = trans->fs_info;
2038        struct btrfs_block_group *block_group, *tmp;
2039 
2040        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2041                btrfs_delayed_refs_rsv_release(fs_info, 1);
2042                list_del_init(&block_group->bg_list);
2043        }
2044 }
2045 
2046 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2047 {
2048 	/*
2049 	 * We use writeback_inodes_sb here because if we used
2050 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2051 	 * Currently are holding the fs freeze lock, if we do an async flush
2052 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2053 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2054 	 * from already being in a transaction and our join_transaction doesn't
2055 	 * have to re-take the fs freeze lock.
2056 	 */
2057 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2058 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2059 	return 0;
2060 }
2061 
2062 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2063 {
2064 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2065 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2066 }
2067 
2068 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2069 {
2070 	struct btrfs_fs_info *fs_info = trans->fs_info;
2071 	struct btrfs_transaction *cur_trans = trans->transaction;
2072 	struct btrfs_transaction *prev_trans = NULL;
2073 	int ret;
2074 
2075 	ASSERT(refcount_read(&trans->use_count) == 1);
2076 
2077 	/*
2078 	 * Some places just start a transaction to commit it.  We need to make
2079 	 * sure that if this commit fails that the abort code actually marks the
2080 	 * transaction as failed, so set trans->dirty to make the abort code do
2081 	 * the right thing.
2082 	 */
2083 	trans->dirty = true;
2084 
2085 	/* Stop the commit early if ->aborted is set */
2086 	if (TRANS_ABORTED(cur_trans)) {
2087 		ret = cur_trans->aborted;
2088 		btrfs_end_transaction(trans);
2089 		return ret;
2090 	}
2091 
2092 	btrfs_trans_release_metadata(trans);
2093 	trans->block_rsv = NULL;
2094 
2095 	/*
2096 	 * We only want one transaction commit doing the flushing so we do not
2097 	 * waste a bunch of time on lock contention on the extent root node.
2098 	 */
2099 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2100 			      &cur_trans->delayed_refs.flags)) {
2101 		/*
2102 		 * Make a pass through all the delayed refs we have so far.
2103 		 * Any running threads may add more while we are here.
2104 		 */
2105 		ret = btrfs_run_delayed_refs(trans, 0);
2106 		if (ret) {
2107 			btrfs_end_transaction(trans);
2108 			return ret;
2109 		}
2110 	}
2111 
2112 	btrfs_create_pending_block_groups(trans);
2113 
2114 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2115 		int run_it = 0;
2116 
2117 		/* this mutex is also taken before trying to set
2118 		 * block groups readonly.  We need to make sure
2119 		 * that nobody has set a block group readonly
2120 		 * after a extents from that block group have been
2121 		 * allocated for cache files.  btrfs_set_block_group_ro
2122 		 * will wait for the transaction to commit if it
2123 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2124 		 *
2125 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2126 		 * only one process starts all the block group IO.  It wouldn't
2127 		 * hurt to have more than one go through, but there's no
2128 		 * real advantage to it either.
2129 		 */
2130 		mutex_lock(&fs_info->ro_block_group_mutex);
2131 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2132 				      &cur_trans->flags))
2133 			run_it = 1;
2134 		mutex_unlock(&fs_info->ro_block_group_mutex);
2135 
2136 		if (run_it) {
2137 			ret = btrfs_start_dirty_block_groups(trans);
2138 			if (ret) {
2139 				btrfs_end_transaction(trans);
2140 				return ret;
2141 			}
2142 		}
2143 	}
2144 
2145 	spin_lock(&fs_info->trans_lock);
2146 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2147 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2148 
2149 		spin_unlock(&fs_info->trans_lock);
2150 		refcount_inc(&cur_trans->use_count);
2151 
2152 		if (trans->in_fsync)
2153 			want_state = TRANS_STATE_SUPER_COMMITTED;
2154 		ret = btrfs_end_transaction(trans);
2155 		wait_for_commit(cur_trans, want_state);
2156 
2157 		if (TRANS_ABORTED(cur_trans))
2158 			ret = cur_trans->aborted;
2159 
2160 		btrfs_put_transaction(cur_trans);
2161 
2162 		return ret;
2163 	}
2164 
2165 	cur_trans->state = TRANS_STATE_COMMIT_START;
2166 	wake_up(&fs_info->transaction_blocked_wait);
2167 
2168 	if (cur_trans->list.prev != &fs_info->trans_list) {
2169 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2170 
2171 		if (trans->in_fsync)
2172 			want_state = TRANS_STATE_SUPER_COMMITTED;
2173 
2174 		prev_trans = list_entry(cur_trans->list.prev,
2175 					struct btrfs_transaction, list);
2176 		if (prev_trans->state < want_state) {
2177 			refcount_inc(&prev_trans->use_count);
2178 			spin_unlock(&fs_info->trans_lock);
2179 
2180 			wait_for_commit(prev_trans, want_state);
2181 
2182 			ret = READ_ONCE(prev_trans->aborted);
2183 
2184 			btrfs_put_transaction(prev_trans);
2185 			if (ret)
2186 				goto cleanup_transaction;
2187 		} else {
2188 			spin_unlock(&fs_info->trans_lock);
2189 		}
2190 	} else {
2191 		spin_unlock(&fs_info->trans_lock);
2192 		/*
2193 		 * The previous transaction was aborted and was already removed
2194 		 * from the list of transactions at fs_info->trans_list. So we
2195 		 * abort to prevent writing a new superblock that reflects a
2196 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2197 		 */
2198 		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2199 			ret = -EROFS;
2200 			goto cleanup_transaction;
2201 		}
2202 	}
2203 
2204 	extwriter_counter_dec(cur_trans, trans->type);
2205 
2206 	ret = btrfs_start_delalloc_flush(fs_info);
2207 	if (ret)
2208 		goto cleanup_transaction;
2209 
2210 	ret = btrfs_run_delayed_items(trans);
2211 	if (ret)
2212 		goto cleanup_transaction;
2213 
2214 	wait_event(cur_trans->writer_wait,
2215 		   extwriter_counter_read(cur_trans) == 0);
2216 
2217 	/* some pending stuffs might be added after the previous flush. */
2218 	ret = btrfs_run_delayed_items(trans);
2219 	if (ret)
2220 		goto cleanup_transaction;
2221 
2222 	btrfs_wait_delalloc_flush(fs_info);
2223 
2224 	/*
2225 	 * Wait for all ordered extents started by a fast fsync that joined this
2226 	 * transaction. Otherwise if this transaction commits before the ordered
2227 	 * extents complete we lose logged data after a power failure.
2228 	 */
2229 	wait_event(cur_trans->pending_wait,
2230 		   atomic_read(&cur_trans->pending_ordered) == 0);
2231 
2232 	btrfs_scrub_pause(fs_info);
2233 	/*
2234 	 * Ok now we need to make sure to block out any other joins while we
2235 	 * commit the transaction.  We could have started a join before setting
2236 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2237 	 */
2238 	spin_lock(&fs_info->trans_lock);
2239 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2240 	spin_unlock(&fs_info->trans_lock);
2241 	wait_event(cur_trans->writer_wait,
2242 		   atomic_read(&cur_trans->num_writers) == 1);
2243 
2244 	if (TRANS_ABORTED(cur_trans)) {
2245 		ret = cur_trans->aborted;
2246 		goto scrub_continue;
2247 	}
2248 	/*
2249 	 * the reloc mutex makes sure that we stop
2250 	 * the balancing code from coming in and moving
2251 	 * extents around in the middle of the commit
2252 	 */
2253 	mutex_lock(&fs_info->reloc_mutex);
2254 
2255 	/*
2256 	 * We needn't worry about the delayed items because we will
2257 	 * deal with them in create_pending_snapshot(), which is the
2258 	 * core function of the snapshot creation.
2259 	 */
2260 	ret = create_pending_snapshots(trans);
2261 	if (ret)
2262 		goto unlock_reloc;
2263 
2264 	/*
2265 	 * We insert the dir indexes of the snapshots and update the inode
2266 	 * of the snapshots' parents after the snapshot creation, so there
2267 	 * are some delayed items which are not dealt with. Now deal with
2268 	 * them.
2269 	 *
2270 	 * We needn't worry that this operation will corrupt the snapshots,
2271 	 * because all the tree which are snapshoted will be forced to COW
2272 	 * the nodes and leaves.
2273 	 */
2274 	ret = btrfs_run_delayed_items(trans);
2275 	if (ret)
2276 		goto unlock_reloc;
2277 
2278 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2279 	if (ret)
2280 		goto unlock_reloc;
2281 
2282 	/*
2283 	 * make sure none of the code above managed to slip in a
2284 	 * delayed item
2285 	 */
2286 	btrfs_assert_delayed_root_empty(fs_info);
2287 
2288 	WARN_ON(cur_trans != trans->transaction);
2289 
2290 	/* btrfs_commit_tree_roots is responsible for getting the
2291 	 * various roots consistent with each other.  Every pointer
2292 	 * in the tree of tree roots has to point to the most up to date
2293 	 * root for every subvolume and other tree.  So, we have to keep
2294 	 * the tree logging code from jumping in and changing any
2295 	 * of the trees.
2296 	 *
2297 	 * At this point in the commit, there can't be any tree-log
2298 	 * writers, but a little lower down we drop the trans mutex
2299 	 * and let new people in.  By holding the tree_log_mutex
2300 	 * from now until after the super is written, we avoid races
2301 	 * with the tree-log code.
2302 	 */
2303 	mutex_lock(&fs_info->tree_log_mutex);
2304 
2305 	ret = commit_fs_roots(trans);
2306 	if (ret)
2307 		goto unlock_tree_log;
2308 
2309 	/*
2310 	 * Since the transaction is done, we can apply the pending changes
2311 	 * before the next transaction.
2312 	 */
2313 	btrfs_apply_pending_changes(fs_info);
2314 
2315 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2316 	 * safe to free the root of tree log roots
2317 	 */
2318 	btrfs_free_log_root_tree(trans, fs_info);
2319 
2320 	/*
2321 	 * Since fs roots are all committed, we can get a quite accurate
2322 	 * new_roots. So let's do quota accounting.
2323 	 */
2324 	ret = btrfs_qgroup_account_extents(trans);
2325 	if (ret < 0)
2326 		goto unlock_tree_log;
2327 
2328 	ret = commit_cowonly_roots(trans);
2329 	if (ret)
2330 		goto unlock_tree_log;
2331 
2332 	/*
2333 	 * The tasks which save the space cache and inode cache may also
2334 	 * update ->aborted, check it.
2335 	 */
2336 	if (TRANS_ABORTED(cur_trans)) {
2337 		ret = cur_trans->aborted;
2338 		goto unlock_tree_log;
2339 	}
2340 
2341 	cur_trans = fs_info->running_transaction;
2342 
2343 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2344 			    fs_info->tree_root->node);
2345 	list_add_tail(&fs_info->tree_root->dirty_list,
2346 		      &cur_trans->switch_commits);
2347 
2348 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2349 			    fs_info->chunk_root->node);
2350 	list_add_tail(&fs_info->chunk_root->dirty_list,
2351 		      &cur_trans->switch_commits);
2352 
2353 	switch_commit_roots(trans);
2354 
2355 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2356 	ASSERT(list_empty(&cur_trans->io_bgs));
2357 	update_super_roots(fs_info);
2358 
2359 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2360 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2361 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2362 	       sizeof(*fs_info->super_copy));
2363 
2364 	btrfs_commit_device_sizes(cur_trans);
2365 
2366 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2367 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2368 
2369 	btrfs_trans_release_chunk_metadata(trans);
2370 
2371 	spin_lock(&fs_info->trans_lock);
2372 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2373 	fs_info->running_transaction = NULL;
2374 	spin_unlock(&fs_info->trans_lock);
2375 	mutex_unlock(&fs_info->reloc_mutex);
2376 
2377 	wake_up(&fs_info->transaction_wait);
2378 
2379 	ret = btrfs_write_and_wait_transaction(trans);
2380 	if (ret) {
2381 		btrfs_handle_fs_error(fs_info, ret,
2382 				      "Error while writing out transaction");
2383 		/*
2384 		 * reloc_mutex has been unlocked, tree_log_mutex is still held
2385 		 * but we can't jump to unlock_tree_log causing double unlock
2386 		 */
2387 		mutex_unlock(&fs_info->tree_log_mutex);
2388 		goto scrub_continue;
2389 	}
2390 
2391 	/*
2392 	 * At this point, we should have written all the tree blocks allocated
2393 	 * in this transaction. So it's now safe to free the redirtyied extent
2394 	 * buffers.
2395 	 */
2396 	btrfs_free_redirty_list(cur_trans);
2397 
2398 	ret = write_all_supers(fs_info, 0);
2399 	/*
2400 	 * the super is written, we can safely allow the tree-loggers
2401 	 * to go about their business
2402 	 */
2403 	mutex_unlock(&fs_info->tree_log_mutex);
2404 	if (ret)
2405 		goto scrub_continue;
2406 
2407 	/*
2408 	 * We needn't acquire the lock here because there is no other task
2409 	 * which can change it.
2410 	 */
2411 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2412 	wake_up(&cur_trans->commit_wait);
2413 
2414 	btrfs_finish_extent_commit(trans);
2415 
2416 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2417 		btrfs_clear_space_info_full(fs_info);
2418 
2419 	fs_info->last_trans_committed = cur_trans->transid;
2420 	/*
2421 	 * We needn't acquire the lock here because there is no other task
2422 	 * which can change it.
2423 	 */
2424 	cur_trans->state = TRANS_STATE_COMPLETED;
2425 	wake_up(&cur_trans->commit_wait);
2426 
2427 	spin_lock(&fs_info->trans_lock);
2428 	list_del_init(&cur_trans->list);
2429 	spin_unlock(&fs_info->trans_lock);
2430 
2431 	btrfs_put_transaction(cur_trans);
2432 	btrfs_put_transaction(cur_trans);
2433 
2434 	if (trans->type & __TRANS_FREEZABLE)
2435 		sb_end_intwrite(fs_info->sb);
2436 
2437 	trace_btrfs_transaction_commit(trans->root);
2438 
2439 	btrfs_scrub_continue(fs_info);
2440 
2441 	if (current->journal_info == trans)
2442 		current->journal_info = NULL;
2443 
2444 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2445 
2446 	return ret;
2447 
2448 unlock_tree_log:
2449 	mutex_unlock(&fs_info->tree_log_mutex);
2450 unlock_reloc:
2451 	mutex_unlock(&fs_info->reloc_mutex);
2452 scrub_continue:
2453 	btrfs_scrub_continue(fs_info);
2454 cleanup_transaction:
2455 	btrfs_trans_release_metadata(trans);
2456 	btrfs_cleanup_pending_block_groups(trans);
2457 	btrfs_trans_release_chunk_metadata(trans);
2458 	trans->block_rsv = NULL;
2459 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2460 	if (current->journal_info == trans)
2461 		current->journal_info = NULL;
2462 	cleanup_transaction(trans, ret);
2463 
2464 	return ret;
2465 }
2466 
2467 /*
2468  * return < 0 if error
2469  * 0 if there are no more dead_roots at the time of call
2470  * 1 there are more to be processed, call me again
2471  *
2472  * The return value indicates there are certainly more snapshots to delete, but
2473  * if there comes a new one during processing, it may return 0. We don't mind,
2474  * because btrfs_commit_super will poke cleaner thread and it will process it a
2475  * few seconds later.
2476  */
2477 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2478 {
2479 	int ret;
2480 	struct btrfs_fs_info *fs_info = root->fs_info;
2481 
2482 	spin_lock(&fs_info->trans_lock);
2483 	if (list_empty(&fs_info->dead_roots)) {
2484 		spin_unlock(&fs_info->trans_lock);
2485 		return 0;
2486 	}
2487 	root = list_first_entry(&fs_info->dead_roots,
2488 			struct btrfs_root, root_list);
2489 	list_del_init(&root->root_list);
2490 	spin_unlock(&fs_info->trans_lock);
2491 
2492 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2493 
2494 	btrfs_kill_all_delayed_nodes(root);
2495 
2496 	if (btrfs_header_backref_rev(root->node) <
2497 			BTRFS_MIXED_BACKREF_REV)
2498 		ret = btrfs_drop_snapshot(root, 0, 0);
2499 	else
2500 		ret = btrfs_drop_snapshot(root, 1, 0);
2501 
2502 	btrfs_put_root(root);
2503 	return (ret < 0) ? 0 : 1;
2504 }
2505 
2506 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2507 {
2508 	unsigned long prev;
2509 	unsigned long bit;
2510 
2511 	prev = xchg(&fs_info->pending_changes, 0);
2512 	if (!prev)
2513 		return;
2514 
2515 	bit = 1 << BTRFS_PENDING_COMMIT;
2516 	if (prev & bit)
2517 		btrfs_debug(fs_info, "pending commit done");
2518 	prev &= ~bit;
2519 
2520 	if (prev)
2521 		btrfs_warn(fs_info,
2522 			"unknown pending changes left 0x%lx, ignoring", prev);
2523 }
2524