xref: /openbmc/linux/fs/btrfs/transaction.c (revision 25985edc)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 
31 #define BTRFS_ROOT_TRANS_TAG 0
32 
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 {
35 	WARN_ON(transaction->use_count == 0);
36 	transaction->use_count--;
37 	if (transaction->use_count == 0) {
38 		list_del_init(&transaction->list);
39 		memset(transaction, 0, sizeof(*transaction));
40 		kmem_cache_free(btrfs_transaction_cachep, transaction);
41 	}
42 }
43 
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46 	free_extent_buffer(root->commit_root);
47 	root->commit_root = btrfs_root_node(root);
48 }
49 
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root)
54 {
55 	struct btrfs_transaction *cur_trans;
56 	cur_trans = root->fs_info->running_transaction;
57 	if (!cur_trans) {
58 		cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59 					     GFP_NOFS);
60 		if (!cur_trans)
61 			return -ENOMEM;
62 		root->fs_info->generation++;
63 		cur_trans->num_writers = 1;
64 		cur_trans->num_joined = 0;
65 		cur_trans->transid = root->fs_info->generation;
66 		init_waitqueue_head(&cur_trans->writer_wait);
67 		init_waitqueue_head(&cur_trans->commit_wait);
68 		cur_trans->in_commit = 0;
69 		cur_trans->blocked = 0;
70 		cur_trans->use_count = 1;
71 		cur_trans->commit_done = 0;
72 		cur_trans->start_time = get_seconds();
73 
74 		cur_trans->delayed_refs.root = RB_ROOT;
75 		cur_trans->delayed_refs.num_entries = 0;
76 		cur_trans->delayed_refs.num_heads_ready = 0;
77 		cur_trans->delayed_refs.num_heads = 0;
78 		cur_trans->delayed_refs.flushing = 0;
79 		cur_trans->delayed_refs.run_delayed_start = 0;
80 		spin_lock_init(&cur_trans->delayed_refs.lock);
81 
82 		INIT_LIST_HEAD(&cur_trans->pending_snapshots);
83 		list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
84 		extent_io_tree_init(&cur_trans->dirty_pages,
85 				     root->fs_info->btree_inode->i_mapping,
86 				     GFP_NOFS);
87 		spin_lock(&root->fs_info->new_trans_lock);
88 		root->fs_info->running_transaction = cur_trans;
89 		spin_unlock(&root->fs_info->new_trans_lock);
90 	} else {
91 		cur_trans->num_writers++;
92 		cur_trans->num_joined++;
93 	}
94 
95 	return 0;
96 }
97 
98 /*
99  * this does all the record keeping required to make sure that a reference
100  * counted root is properly recorded in a given transaction.  This is required
101  * to make sure the old root from before we joined the transaction is deleted
102  * when the transaction commits
103  */
104 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
105 					 struct btrfs_root *root)
106 {
107 	if (root->ref_cows && root->last_trans < trans->transid) {
108 		WARN_ON(root == root->fs_info->extent_root);
109 		WARN_ON(root->commit_root != root->node);
110 
111 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
112 			   (unsigned long)root->root_key.objectid,
113 			   BTRFS_ROOT_TRANS_TAG);
114 		root->last_trans = trans->transid;
115 		btrfs_init_reloc_root(trans, root);
116 	}
117 	return 0;
118 }
119 
120 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
121 			       struct btrfs_root *root)
122 {
123 	if (!root->ref_cows)
124 		return 0;
125 
126 	mutex_lock(&root->fs_info->trans_mutex);
127 	if (root->last_trans == trans->transid) {
128 		mutex_unlock(&root->fs_info->trans_mutex);
129 		return 0;
130 	}
131 
132 	record_root_in_trans(trans, root);
133 	mutex_unlock(&root->fs_info->trans_mutex);
134 	return 0;
135 }
136 
137 /* wait for commit against the current transaction to become unblocked
138  * when this is done, it is safe to start a new transaction, but the current
139  * transaction might not be fully on disk.
140  */
141 static void wait_current_trans(struct btrfs_root *root)
142 {
143 	struct btrfs_transaction *cur_trans;
144 
145 	cur_trans = root->fs_info->running_transaction;
146 	if (cur_trans && cur_trans->blocked) {
147 		DEFINE_WAIT(wait);
148 		cur_trans->use_count++;
149 		while (1) {
150 			prepare_to_wait(&root->fs_info->transaction_wait, &wait,
151 					TASK_UNINTERRUPTIBLE);
152 			if (!cur_trans->blocked)
153 				break;
154 			mutex_unlock(&root->fs_info->trans_mutex);
155 			schedule();
156 			mutex_lock(&root->fs_info->trans_mutex);
157 		}
158 		finish_wait(&root->fs_info->transaction_wait, &wait);
159 		put_transaction(cur_trans);
160 	}
161 }
162 
163 enum btrfs_trans_type {
164 	TRANS_START,
165 	TRANS_JOIN,
166 	TRANS_USERSPACE,
167 	TRANS_JOIN_NOLOCK,
168 };
169 
170 static int may_wait_transaction(struct btrfs_root *root, int type)
171 {
172 	if (!root->fs_info->log_root_recovering &&
173 	    ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
174 	     type == TRANS_USERSPACE))
175 		return 1;
176 	return 0;
177 }
178 
179 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
180 						    u64 num_items, int type)
181 {
182 	struct btrfs_trans_handle *h;
183 	struct btrfs_transaction *cur_trans;
184 	int ret;
185 
186 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
187 		return ERR_PTR(-EROFS);
188 again:
189 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
190 	if (!h)
191 		return ERR_PTR(-ENOMEM);
192 
193 	if (type != TRANS_JOIN_NOLOCK)
194 		mutex_lock(&root->fs_info->trans_mutex);
195 	if (may_wait_transaction(root, type))
196 		wait_current_trans(root);
197 
198 	ret = join_transaction(root);
199 	if (ret < 0) {
200 		if (type != TRANS_JOIN_NOLOCK)
201 			mutex_unlock(&root->fs_info->trans_mutex);
202 		return ERR_PTR(ret);
203 	}
204 
205 	cur_trans = root->fs_info->running_transaction;
206 	cur_trans->use_count++;
207 	if (type != TRANS_JOIN_NOLOCK)
208 		mutex_unlock(&root->fs_info->trans_mutex);
209 
210 	h->transid = cur_trans->transid;
211 	h->transaction = cur_trans;
212 	h->blocks_used = 0;
213 	h->block_group = 0;
214 	h->bytes_reserved = 0;
215 	h->delayed_ref_updates = 0;
216 	h->block_rsv = NULL;
217 
218 	smp_mb();
219 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
220 		btrfs_commit_transaction(h, root);
221 		goto again;
222 	}
223 
224 	if (num_items > 0) {
225 		ret = btrfs_trans_reserve_metadata(h, root, num_items);
226 		if (ret == -EAGAIN) {
227 			btrfs_commit_transaction(h, root);
228 			goto again;
229 		}
230 		if (ret < 0) {
231 			btrfs_end_transaction(h, root);
232 			return ERR_PTR(ret);
233 		}
234 	}
235 
236 	if (type != TRANS_JOIN_NOLOCK)
237 		mutex_lock(&root->fs_info->trans_mutex);
238 	record_root_in_trans(h, root);
239 	if (type != TRANS_JOIN_NOLOCK)
240 		mutex_unlock(&root->fs_info->trans_mutex);
241 
242 	if (!current->journal_info && type != TRANS_USERSPACE)
243 		current->journal_info = h;
244 	return h;
245 }
246 
247 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
248 						   int num_items)
249 {
250 	return start_transaction(root, num_items, TRANS_START);
251 }
252 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
253 						   int num_blocks)
254 {
255 	return start_transaction(root, 0, TRANS_JOIN);
256 }
257 
258 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root,
259 							  int num_blocks)
260 {
261 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
262 }
263 
264 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
265 							 int num_blocks)
266 {
267 	return start_transaction(r, 0, TRANS_USERSPACE);
268 }
269 
270 /* wait for a transaction commit to be fully complete */
271 static noinline int wait_for_commit(struct btrfs_root *root,
272 				    struct btrfs_transaction *commit)
273 {
274 	DEFINE_WAIT(wait);
275 	mutex_lock(&root->fs_info->trans_mutex);
276 	while (!commit->commit_done) {
277 		prepare_to_wait(&commit->commit_wait, &wait,
278 				TASK_UNINTERRUPTIBLE);
279 		if (commit->commit_done)
280 			break;
281 		mutex_unlock(&root->fs_info->trans_mutex);
282 		schedule();
283 		mutex_lock(&root->fs_info->trans_mutex);
284 	}
285 	mutex_unlock(&root->fs_info->trans_mutex);
286 	finish_wait(&commit->commit_wait, &wait);
287 	return 0;
288 }
289 
290 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
291 {
292 	struct btrfs_transaction *cur_trans = NULL, *t;
293 	int ret;
294 
295 	mutex_lock(&root->fs_info->trans_mutex);
296 
297 	ret = 0;
298 	if (transid) {
299 		if (transid <= root->fs_info->last_trans_committed)
300 			goto out_unlock;
301 
302 		/* find specified transaction */
303 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
304 			if (t->transid == transid) {
305 				cur_trans = t;
306 				break;
307 			}
308 			if (t->transid > transid)
309 				break;
310 		}
311 		ret = -EINVAL;
312 		if (!cur_trans)
313 			goto out_unlock;  /* bad transid */
314 	} else {
315 		/* find newest transaction that is committing | committed */
316 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
317 					    list) {
318 			if (t->in_commit) {
319 				if (t->commit_done)
320 					goto out_unlock;
321 				cur_trans = t;
322 				break;
323 			}
324 		}
325 		if (!cur_trans)
326 			goto out_unlock;  /* nothing committing|committed */
327 	}
328 
329 	cur_trans->use_count++;
330 	mutex_unlock(&root->fs_info->trans_mutex);
331 
332 	wait_for_commit(root, cur_trans);
333 
334 	mutex_lock(&root->fs_info->trans_mutex);
335 	put_transaction(cur_trans);
336 	ret = 0;
337 out_unlock:
338 	mutex_unlock(&root->fs_info->trans_mutex);
339 	return ret;
340 }
341 
342 #if 0
343 /*
344  * rate limit against the drop_snapshot code.  This helps to slow down new
345  * operations if the drop_snapshot code isn't able to keep up.
346  */
347 static void throttle_on_drops(struct btrfs_root *root)
348 {
349 	struct btrfs_fs_info *info = root->fs_info;
350 	int harder_count = 0;
351 
352 harder:
353 	if (atomic_read(&info->throttles)) {
354 		DEFINE_WAIT(wait);
355 		int thr;
356 		thr = atomic_read(&info->throttle_gen);
357 
358 		do {
359 			prepare_to_wait(&info->transaction_throttle,
360 					&wait, TASK_UNINTERRUPTIBLE);
361 			if (!atomic_read(&info->throttles)) {
362 				finish_wait(&info->transaction_throttle, &wait);
363 				break;
364 			}
365 			schedule();
366 			finish_wait(&info->transaction_throttle, &wait);
367 		} while (thr == atomic_read(&info->throttle_gen));
368 		harder_count++;
369 
370 		if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
371 		    harder_count < 2)
372 			goto harder;
373 
374 		if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
375 		    harder_count < 10)
376 			goto harder;
377 
378 		if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
379 		    harder_count < 20)
380 			goto harder;
381 	}
382 }
383 #endif
384 
385 void btrfs_throttle(struct btrfs_root *root)
386 {
387 	mutex_lock(&root->fs_info->trans_mutex);
388 	if (!root->fs_info->open_ioctl_trans)
389 		wait_current_trans(root);
390 	mutex_unlock(&root->fs_info->trans_mutex);
391 }
392 
393 static int should_end_transaction(struct btrfs_trans_handle *trans,
394 				  struct btrfs_root *root)
395 {
396 	int ret;
397 	ret = btrfs_block_rsv_check(trans, root,
398 				    &root->fs_info->global_block_rsv, 0, 5);
399 	return ret ? 1 : 0;
400 }
401 
402 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
403 				 struct btrfs_root *root)
404 {
405 	struct btrfs_transaction *cur_trans = trans->transaction;
406 	int updates;
407 
408 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
409 		return 1;
410 
411 	updates = trans->delayed_ref_updates;
412 	trans->delayed_ref_updates = 0;
413 	if (updates)
414 		btrfs_run_delayed_refs(trans, root, updates);
415 
416 	return should_end_transaction(trans, root);
417 }
418 
419 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
420 			  struct btrfs_root *root, int throttle, int lock)
421 {
422 	struct btrfs_transaction *cur_trans = trans->transaction;
423 	struct btrfs_fs_info *info = root->fs_info;
424 	int count = 0;
425 
426 	while (count < 4) {
427 		unsigned long cur = trans->delayed_ref_updates;
428 		trans->delayed_ref_updates = 0;
429 		if (cur &&
430 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
431 			trans->delayed_ref_updates = 0;
432 
433 			/*
434 			 * do a full flush if the transaction is trying
435 			 * to close
436 			 */
437 			if (trans->transaction->delayed_refs.flushing)
438 				cur = 0;
439 			btrfs_run_delayed_refs(trans, root, cur);
440 		} else {
441 			break;
442 		}
443 		count++;
444 	}
445 
446 	btrfs_trans_release_metadata(trans, root);
447 
448 	if (lock && !root->fs_info->open_ioctl_trans &&
449 	    should_end_transaction(trans, root))
450 		trans->transaction->blocked = 1;
451 
452 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
453 		if (throttle)
454 			return btrfs_commit_transaction(trans, root);
455 		else
456 			wake_up_process(info->transaction_kthread);
457 	}
458 
459 	if (lock)
460 		mutex_lock(&info->trans_mutex);
461 	WARN_ON(cur_trans != info->running_transaction);
462 	WARN_ON(cur_trans->num_writers < 1);
463 	cur_trans->num_writers--;
464 
465 	smp_mb();
466 	if (waitqueue_active(&cur_trans->writer_wait))
467 		wake_up(&cur_trans->writer_wait);
468 	put_transaction(cur_trans);
469 	if (lock)
470 		mutex_unlock(&info->trans_mutex);
471 
472 	if (current->journal_info == trans)
473 		current->journal_info = NULL;
474 	memset(trans, 0, sizeof(*trans));
475 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
476 
477 	if (throttle)
478 		btrfs_run_delayed_iputs(root);
479 
480 	return 0;
481 }
482 
483 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
484 			  struct btrfs_root *root)
485 {
486 	return __btrfs_end_transaction(trans, root, 0, 1);
487 }
488 
489 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
490 				   struct btrfs_root *root)
491 {
492 	return __btrfs_end_transaction(trans, root, 1, 1);
493 }
494 
495 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
496 				 struct btrfs_root *root)
497 {
498 	return __btrfs_end_transaction(trans, root, 0, 0);
499 }
500 
501 /*
502  * when btree blocks are allocated, they have some corresponding bits set for
503  * them in one of two extent_io trees.  This is used to make sure all of
504  * those extents are sent to disk but does not wait on them
505  */
506 int btrfs_write_marked_extents(struct btrfs_root *root,
507 			       struct extent_io_tree *dirty_pages, int mark)
508 {
509 	int ret;
510 	int err = 0;
511 	int werr = 0;
512 	struct page *page;
513 	struct inode *btree_inode = root->fs_info->btree_inode;
514 	u64 start = 0;
515 	u64 end;
516 	unsigned long index;
517 
518 	while (1) {
519 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
520 					    mark);
521 		if (ret)
522 			break;
523 		while (start <= end) {
524 			cond_resched();
525 
526 			index = start >> PAGE_CACHE_SHIFT;
527 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
528 			page = find_get_page(btree_inode->i_mapping, index);
529 			if (!page)
530 				continue;
531 
532 			btree_lock_page_hook(page);
533 			if (!page->mapping) {
534 				unlock_page(page);
535 				page_cache_release(page);
536 				continue;
537 			}
538 
539 			if (PageWriteback(page)) {
540 				if (PageDirty(page))
541 					wait_on_page_writeback(page);
542 				else {
543 					unlock_page(page);
544 					page_cache_release(page);
545 					continue;
546 				}
547 			}
548 			err = write_one_page(page, 0);
549 			if (err)
550 				werr = err;
551 			page_cache_release(page);
552 		}
553 	}
554 	if (err)
555 		werr = err;
556 	return werr;
557 }
558 
559 /*
560  * when btree blocks are allocated, they have some corresponding bits set for
561  * them in one of two extent_io trees.  This is used to make sure all of
562  * those extents are on disk for transaction or log commit.  We wait
563  * on all the pages and clear them from the dirty pages state tree
564  */
565 int btrfs_wait_marked_extents(struct btrfs_root *root,
566 			      struct extent_io_tree *dirty_pages, int mark)
567 {
568 	int ret;
569 	int err = 0;
570 	int werr = 0;
571 	struct page *page;
572 	struct inode *btree_inode = root->fs_info->btree_inode;
573 	u64 start = 0;
574 	u64 end;
575 	unsigned long index;
576 
577 	while (1) {
578 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
579 					    mark);
580 		if (ret)
581 			break;
582 
583 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
584 		while (start <= end) {
585 			index = start >> PAGE_CACHE_SHIFT;
586 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
587 			page = find_get_page(btree_inode->i_mapping, index);
588 			if (!page)
589 				continue;
590 			if (PageDirty(page)) {
591 				btree_lock_page_hook(page);
592 				wait_on_page_writeback(page);
593 				err = write_one_page(page, 0);
594 				if (err)
595 					werr = err;
596 			}
597 			wait_on_page_writeback(page);
598 			page_cache_release(page);
599 			cond_resched();
600 		}
601 	}
602 	if (err)
603 		werr = err;
604 	return werr;
605 }
606 
607 /*
608  * when btree blocks are allocated, they have some corresponding bits set for
609  * them in one of two extent_io trees.  This is used to make sure all of
610  * those extents are on disk for transaction or log commit
611  */
612 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
613 				struct extent_io_tree *dirty_pages, int mark)
614 {
615 	int ret;
616 	int ret2;
617 
618 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
619 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
620 	return ret || ret2;
621 }
622 
623 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
624 				     struct btrfs_root *root)
625 {
626 	if (!trans || !trans->transaction) {
627 		struct inode *btree_inode;
628 		btree_inode = root->fs_info->btree_inode;
629 		return filemap_write_and_wait(btree_inode->i_mapping);
630 	}
631 	return btrfs_write_and_wait_marked_extents(root,
632 					   &trans->transaction->dirty_pages,
633 					   EXTENT_DIRTY);
634 }
635 
636 /*
637  * this is used to update the root pointer in the tree of tree roots.
638  *
639  * But, in the case of the extent allocation tree, updating the root
640  * pointer may allocate blocks which may change the root of the extent
641  * allocation tree.
642  *
643  * So, this loops and repeats and makes sure the cowonly root didn't
644  * change while the root pointer was being updated in the metadata.
645  */
646 static int update_cowonly_root(struct btrfs_trans_handle *trans,
647 			       struct btrfs_root *root)
648 {
649 	int ret;
650 	u64 old_root_bytenr;
651 	u64 old_root_used;
652 	struct btrfs_root *tree_root = root->fs_info->tree_root;
653 
654 	old_root_used = btrfs_root_used(&root->root_item);
655 	btrfs_write_dirty_block_groups(trans, root);
656 
657 	while (1) {
658 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
659 		if (old_root_bytenr == root->node->start &&
660 		    old_root_used == btrfs_root_used(&root->root_item))
661 			break;
662 
663 		btrfs_set_root_node(&root->root_item, root->node);
664 		ret = btrfs_update_root(trans, tree_root,
665 					&root->root_key,
666 					&root->root_item);
667 		BUG_ON(ret);
668 
669 		old_root_used = btrfs_root_used(&root->root_item);
670 		ret = btrfs_write_dirty_block_groups(trans, root);
671 		BUG_ON(ret);
672 	}
673 
674 	if (root != root->fs_info->extent_root)
675 		switch_commit_root(root);
676 
677 	return 0;
678 }
679 
680 /*
681  * update all the cowonly tree roots on disk
682  */
683 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
684 					 struct btrfs_root *root)
685 {
686 	struct btrfs_fs_info *fs_info = root->fs_info;
687 	struct list_head *next;
688 	struct extent_buffer *eb;
689 	int ret;
690 
691 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
692 	BUG_ON(ret);
693 
694 	eb = btrfs_lock_root_node(fs_info->tree_root);
695 	btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
696 	btrfs_tree_unlock(eb);
697 	free_extent_buffer(eb);
698 
699 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
700 	BUG_ON(ret);
701 
702 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
703 		next = fs_info->dirty_cowonly_roots.next;
704 		list_del_init(next);
705 		root = list_entry(next, struct btrfs_root, dirty_list);
706 
707 		update_cowonly_root(trans, root);
708 	}
709 
710 	down_write(&fs_info->extent_commit_sem);
711 	switch_commit_root(fs_info->extent_root);
712 	up_write(&fs_info->extent_commit_sem);
713 
714 	return 0;
715 }
716 
717 /*
718  * dead roots are old snapshots that need to be deleted.  This allocates
719  * a dirty root struct and adds it into the list of dead roots that need to
720  * be deleted
721  */
722 int btrfs_add_dead_root(struct btrfs_root *root)
723 {
724 	mutex_lock(&root->fs_info->trans_mutex);
725 	list_add(&root->root_list, &root->fs_info->dead_roots);
726 	mutex_unlock(&root->fs_info->trans_mutex);
727 	return 0;
728 }
729 
730 /*
731  * update all the cowonly tree roots on disk
732  */
733 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
734 				    struct btrfs_root *root)
735 {
736 	struct btrfs_root *gang[8];
737 	struct btrfs_fs_info *fs_info = root->fs_info;
738 	int i;
739 	int ret;
740 	int err = 0;
741 
742 	while (1) {
743 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
744 						 (void **)gang, 0,
745 						 ARRAY_SIZE(gang),
746 						 BTRFS_ROOT_TRANS_TAG);
747 		if (ret == 0)
748 			break;
749 		for (i = 0; i < ret; i++) {
750 			root = gang[i];
751 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
752 					(unsigned long)root->root_key.objectid,
753 					BTRFS_ROOT_TRANS_TAG);
754 
755 			btrfs_free_log(trans, root);
756 			btrfs_update_reloc_root(trans, root);
757 			btrfs_orphan_commit_root(trans, root);
758 
759 			if (root->commit_root != root->node) {
760 				switch_commit_root(root);
761 				btrfs_set_root_node(&root->root_item,
762 						    root->node);
763 			}
764 
765 			err = btrfs_update_root(trans, fs_info->tree_root,
766 						&root->root_key,
767 						&root->root_item);
768 			if (err)
769 				break;
770 		}
771 	}
772 	return err;
773 }
774 
775 /*
776  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
777  * otherwise every leaf in the btree is read and defragged.
778  */
779 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
780 {
781 	struct btrfs_fs_info *info = root->fs_info;
782 	struct btrfs_trans_handle *trans;
783 	int ret;
784 	unsigned long nr;
785 
786 	if (xchg(&root->defrag_running, 1))
787 		return 0;
788 
789 	while (1) {
790 		trans = btrfs_start_transaction(root, 0);
791 		if (IS_ERR(trans))
792 			return PTR_ERR(trans);
793 
794 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
795 
796 		nr = trans->blocks_used;
797 		btrfs_end_transaction(trans, root);
798 		btrfs_btree_balance_dirty(info->tree_root, nr);
799 		cond_resched();
800 
801 		if (root->fs_info->closing || ret != -EAGAIN)
802 			break;
803 	}
804 	root->defrag_running = 0;
805 	return ret;
806 }
807 
808 #if 0
809 /*
810  * when dropping snapshots, we generate a ton of delayed refs, and it makes
811  * sense not to join the transaction while it is trying to flush the current
812  * queue of delayed refs out.
813  *
814  * This is used by the drop snapshot code only
815  */
816 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
817 {
818 	DEFINE_WAIT(wait);
819 
820 	mutex_lock(&info->trans_mutex);
821 	while (info->running_transaction &&
822 	       info->running_transaction->delayed_refs.flushing) {
823 		prepare_to_wait(&info->transaction_wait, &wait,
824 				TASK_UNINTERRUPTIBLE);
825 		mutex_unlock(&info->trans_mutex);
826 
827 		schedule();
828 
829 		mutex_lock(&info->trans_mutex);
830 		finish_wait(&info->transaction_wait, &wait);
831 	}
832 	mutex_unlock(&info->trans_mutex);
833 	return 0;
834 }
835 
836 /*
837  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
838  * all of them
839  */
840 int btrfs_drop_dead_root(struct btrfs_root *root)
841 {
842 	struct btrfs_trans_handle *trans;
843 	struct btrfs_root *tree_root = root->fs_info->tree_root;
844 	unsigned long nr;
845 	int ret;
846 
847 	while (1) {
848 		/*
849 		 * we don't want to jump in and create a bunch of
850 		 * delayed refs if the transaction is starting to close
851 		 */
852 		wait_transaction_pre_flush(tree_root->fs_info);
853 		trans = btrfs_start_transaction(tree_root, 1);
854 
855 		/*
856 		 * we've joined a transaction, make sure it isn't
857 		 * closing right now
858 		 */
859 		if (trans->transaction->delayed_refs.flushing) {
860 			btrfs_end_transaction(trans, tree_root);
861 			continue;
862 		}
863 
864 		ret = btrfs_drop_snapshot(trans, root);
865 		if (ret != -EAGAIN)
866 			break;
867 
868 		ret = btrfs_update_root(trans, tree_root,
869 					&root->root_key,
870 					&root->root_item);
871 		if (ret)
872 			break;
873 
874 		nr = trans->blocks_used;
875 		ret = btrfs_end_transaction(trans, tree_root);
876 		BUG_ON(ret);
877 
878 		btrfs_btree_balance_dirty(tree_root, nr);
879 		cond_resched();
880 	}
881 	BUG_ON(ret);
882 
883 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
884 	BUG_ON(ret);
885 
886 	nr = trans->blocks_used;
887 	ret = btrfs_end_transaction(trans, tree_root);
888 	BUG_ON(ret);
889 
890 	free_extent_buffer(root->node);
891 	free_extent_buffer(root->commit_root);
892 	kfree(root);
893 
894 	btrfs_btree_balance_dirty(tree_root, nr);
895 	return ret;
896 }
897 #endif
898 
899 /*
900  * new snapshots need to be created at a very specific time in the
901  * transaction commit.  This does the actual creation
902  */
903 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
904 				   struct btrfs_fs_info *fs_info,
905 				   struct btrfs_pending_snapshot *pending)
906 {
907 	struct btrfs_key key;
908 	struct btrfs_root_item *new_root_item;
909 	struct btrfs_root *tree_root = fs_info->tree_root;
910 	struct btrfs_root *root = pending->root;
911 	struct btrfs_root *parent_root;
912 	struct inode *parent_inode;
913 	struct dentry *parent;
914 	struct dentry *dentry;
915 	struct extent_buffer *tmp;
916 	struct extent_buffer *old;
917 	int ret;
918 	u64 to_reserve = 0;
919 	u64 index = 0;
920 	u64 objectid;
921 	u64 root_flags;
922 
923 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
924 	if (!new_root_item) {
925 		pending->error = -ENOMEM;
926 		goto fail;
927 	}
928 
929 	ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
930 	if (ret) {
931 		pending->error = ret;
932 		goto fail;
933 	}
934 
935 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
936 	btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
937 
938 	if (to_reserve > 0) {
939 		ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
940 					  to_reserve);
941 		if (ret) {
942 			pending->error = ret;
943 			goto fail;
944 		}
945 	}
946 
947 	key.objectid = objectid;
948 	key.offset = (u64)-1;
949 	key.type = BTRFS_ROOT_ITEM_KEY;
950 
951 	trans->block_rsv = &pending->block_rsv;
952 
953 	dentry = pending->dentry;
954 	parent = dget_parent(dentry);
955 	parent_inode = parent->d_inode;
956 	parent_root = BTRFS_I(parent_inode)->root;
957 	record_root_in_trans(trans, parent_root);
958 
959 	/*
960 	 * insert the directory item
961 	 */
962 	ret = btrfs_set_inode_index(parent_inode, &index);
963 	BUG_ON(ret);
964 	ret = btrfs_insert_dir_item(trans, parent_root,
965 				dentry->d_name.name, dentry->d_name.len,
966 				parent_inode->i_ino, &key,
967 				BTRFS_FT_DIR, index);
968 	BUG_ON(ret);
969 
970 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
971 					 dentry->d_name.len * 2);
972 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
973 	BUG_ON(ret);
974 
975 	record_root_in_trans(trans, root);
976 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
977 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
978 
979 	root_flags = btrfs_root_flags(new_root_item);
980 	if (pending->readonly)
981 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
982 	else
983 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
984 	btrfs_set_root_flags(new_root_item, root_flags);
985 
986 	old = btrfs_lock_root_node(root);
987 	btrfs_cow_block(trans, root, old, NULL, 0, &old);
988 	btrfs_set_lock_blocking(old);
989 
990 	btrfs_copy_root(trans, root, old, &tmp, objectid);
991 	btrfs_tree_unlock(old);
992 	free_extent_buffer(old);
993 
994 	btrfs_set_root_node(new_root_item, tmp);
995 	/* record when the snapshot was created in key.offset */
996 	key.offset = trans->transid;
997 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
998 	btrfs_tree_unlock(tmp);
999 	free_extent_buffer(tmp);
1000 	BUG_ON(ret);
1001 
1002 	/*
1003 	 * insert root back/forward references
1004 	 */
1005 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1006 				 parent_root->root_key.objectid,
1007 				 parent_inode->i_ino, index,
1008 				 dentry->d_name.name, dentry->d_name.len);
1009 	BUG_ON(ret);
1010 	dput(parent);
1011 
1012 	key.offset = (u64)-1;
1013 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1014 	BUG_ON(IS_ERR(pending->snap));
1015 
1016 	btrfs_reloc_post_snapshot(trans, pending);
1017 	btrfs_orphan_post_snapshot(trans, pending);
1018 fail:
1019 	kfree(new_root_item);
1020 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1021 	return 0;
1022 }
1023 
1024 /*
1025  * create all the snapshots we've scheduled for creation
1026  */
1027 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1028 					     struct btrfs_fs_info *fs_info)
1029 {
1030 	struct btrfs_pending_snapshot *pending;
1031 	struct list_head *head = &trans->transaction->pending_snapshots;
1032 	int ret;
1033 
1034 	list_for_each_entry(pending, head, list) {
1035 		ret = create_pending_snapshot(trans, fs_info, pending);
1036 		BUG_ON(ret);
1037 	}
1038 	return 0;
1039 }
1040 
1041 static void update_super_roots(struct btrfs_root *root)
1042 {
1043 	struct btrfs_root_item *root_item;
1044 	struct btrfs_super_block *super;
1045 
1046 	super = &root->fs_info->super_copy;
1047 
1048 	root_item = &root->fs_info->chunk_root->root_item;
1049 	super->chunk_root = root_item->bytenr;
1050 	super->chunk_root_generation = root_item->generation;
1051 	super->chunk_root_level = root_item->level;
1052 
1053 	root_item = &root->fs_info->tree_root->root_item;
1054 	super->root = root_item->bytenr;
1055 	super->generation = root_item->generation;
1056 	super->root_level = root_item->level;
1057 	if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1058 		super->cache_generation = root_item->generation;
1059 }
1060 
1061 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1062 {
1063 	int ret = 0;
1064 	spin_lock(&info->new_trans_lock);
1065 	if (info->running_transaction)
1066 		ret = info->running_transaction->in_commit;
1067 	spin_unlock(&info->new_trans_lock);
1068 	return ret;
1069 }
1070 
1071 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1072 {
1073 	int ret = 0;
1074 	spin_lock(&info->new_trans_lock);
1075 	if (info->running_transaction)
1076 		ret = info->running_transaction->blocked;
1077 	spin_unlock(&info->new_trans_lock);
1078 	return ret;
1079 }
1080 
1081 /*
1082  * wait for the current transaction commit to start and block subsequent
1083  * transaction joins
1084  */
1085 static void wait_current_trans_commit_start(struct btrfs_root *root,
1086 					    struct btrfs_transaction *trans)
1087 {
1088 	DEFINE_WAIT(wait);
1089 
1090 	if (trans->in_commit)
1091 		return;
1092 
1093 	while (1) {
1094 		prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait,
1095 				TASK_UNINTERRUPTIBLE);
1096 		if (trans->in_commit) {
1097 			finish_wait(&root->fs_info->transaction_blocked_wait,
1098 				    &wait);
1099 			break;
1100 		}
1101 		mutex_unlock(&root->fs_info->trans_mutex);
1102 		schedule();
1103 		mutex_lock(&root->fs_info->trans_mutex);
1104 		finish_wait(&root->fs_info->transaction_blocked_wait, &wait);
1105 	}
1106 }
1107 
1108 /*
1109  * wait for the current transaction to start and then become unblocked.
1110  * caller holds ref.
1111  */
1112 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1113 					 struct btrfs_transaction *trans)
1114 {
1115 	DEFINE_WAIT(wait);
1116 
1117 	if (trans->commit_done || (trans->in_commit && !trans->blocked))
1118 		return;
1119 
1120 	while (1) {
1121 		prepare_to_wait(&root->fs_info->transaction_wait, &wait,
1122 				TASK_UNINTERRUPTIBLE);
1123 		if (trans->commit_done ||
1124 		    (trans->in_commit && !trans->blocked)) {
1125 			finish_wait(&root->fs_info->transaction_wait,
1126 				    &wait);
1127 			break;
1128 		}
1129 		mutex_unlock(&root->fs_info->trans_mutex);
1130 		schedule();
1131 		mutex_lock(&root->fs_info->trans_mutex);
1132 		finish_wait(&root->fs_info->transaction_wait,
1133 			    &wait);
1134 	}
1135 }
1136 
1137 /*
1138  * commit transactions asynchronously. once btrfs_commit_transaction_async
1139  * returns, any subsequent transaction will not be allowed to join.
1140  */
1141 struct btrfs_async_commit {
1142 	struct btrfs_trans_handle *newtrans;
1143 	struct btrfs_root *root;
1144 	struct delayed_work work;
1145 };
1146 
1147 static void do_async_commit(struct work_struct *work)
1148 {
1149 	struct btrfs_async_commit *ac =
1150 		container_of(work, struct btrfs_async_commit, work.work);
1151 
1152 	btrfs_commit_transaction(ac->newtrans, ac->root);
1153 	kfree(ac);
1154 }
1155 
1156 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1157 				   struct btrfs_root *root,
1158 				   int wait_for_unblock)
1159 {
1160 	struct btrfs_async_commit *ac;
1161 	struct btrfs_transaction *cur_trans;
1162 
1163 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1164 	if (!ac)
1165 		return -ENOMEM;
1166 
1167 	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1168 	ac->root = root;
1169 	ac->newtrans = btrfs_join_transaction(root, 0);
1170 	if (IS_ERR(ac->newtrans)) {
1171 		int err = PTR_ERR(ac->newtrans);
1172 		kfree(ac);
1173 		return err;
1174 	}
1175 
1176 	/* take transaction reference */
1177 	mutex_lock(&root->fs_info->trans_mutex);
1178 	cur_trans = trans->transaction;
1179 	cur_trans->use_count++;
1180 	mutex_unlock(&root->fs_info->trans_mutex);
1181 
1182 	btrfs_end_transaction(trans, root);
1183 	schedule_delayed_work(&ac->work, 0);
1184 
1185 	/* wait for transaction to start and unblock */
1186 	mutex_lock(&root->fs_info->trans_mutex);
1187 	if (wait_for_unblock)
1188 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1189 	else
1190 		wait_current_trans_commit_start(root, cur_trans);
1191 	put_transaction(cur_trans);
1192 	mutex_unlock(&root->fs_info->trans_mutex);
1193 
1194 	return 0;
1195 }
1196 
1197 /*
1198  * btrfs_transaction state sequence:
1199  *    in_commit = 0, blocked = 0  (initial)
1200  *    in_commit = 1, blocked = 1
1201  *    blocked = 0
1202  *    commit_done = 1
1203  */
1204 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1205 			     struct btrfs_root *root)
1206 {
1207 	unsigned long joined = 0;
1208 	struct btrfs_transaction *cur_trans;
1209 	struct btrfs_transaction *prev_trans = NULL;
1210 	DEFINE_WAIT(wait);
1211 	int ret;
1212 	int should_grow = 0;
1213 	unsigned long now = get_seconds();
1214 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1215 
1216 	btrfs_run_ordered_operations(root, 0);
1217 
1218 	/* make a pass through all the delayed refs we have so far
1219 	 * any runnings procs may add more while we are here
1220 	 */
1221 	ret = btrfs_run_delayed_refs(trans, root, 0);
1222 	BUG_ON(ret);
1223 
1224 	btrfs_trans_release_metadata(trans, root);
1225 
1226 	cur_trans = trans->transaction;
1227 	/*
1228 	 * set the flushing flag so procs in this transaction have to
1229 	 * start sending their work down.
1230 	 */
1231 	cur_trans->delayed_refs.flushing = 1;
1232 
1233 	ret = btrfs_run_delayed_refs(trans, root, 0);
1234 	BUG_ON(ret);
1235 
1236 	mutex_lock(&root->fs_info->trans_mutex);
1237 	if (cur_trans->in_commit) {
1238 		cur_trans->use_count++;
1239 		mutex_unlock(&root->fs_info->trans_mutex);
1240 		btrfs_end_transaction(trans, root);
1241 
1242 		ret = wait_for_commit(root, cur_trans);
1243 		BUG_ON(ret);
1244 
1245 		mutex_lock(&root->fs_info->trans_mutex);
1246 		put_transaction(cur_trans);
1247 		mutex_unlock(&root->fs_info->trans_mutex);
1248 
1249 		return 0;
1250 	}
1251 
1252 	trans->transaction->in_commit = 1;
1253 	trans->transaction->blocked = 1;
1254 	wake_up(&root->fs_info->transaction_blocked_wait);
1255 
1256 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1257 		prev_trans = list_entry(cur_trans->list.prev,
1258 					struct btrfs_transaction, list);
1259 		if (!prev_trans->commit_done) {
1260 			prev_trans->use_count++;
1261 			mutex_unlock(&root->fs_info->trans_mutex);
1262 
1263 			wait_for_commit(root, prev_trans);
1264 
1265 			mutex_lock(&root->fs_info->trans_mutex);
1266 			put_transaction(prev_trans);
1267 		}
1268 	}
1269 
1270 	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1271 		should_grow = 1;
1272 
1273 	do {
1274 		int snap_pending = 0;
1275 		joined = cur_trans->num_joined;
1276 		if (!list_empty(&trans->transaction->pending_snapshots))
1277 			snap_pending = 1;
1278 
1279 		WARN_ON(cur_trans != trans->transaction);
1280 		mutex_unlock(&root->fs_info->trans_mutex);
1281 
1282 		if (flush_on_commit || snap_pending) {
1283 			btrfs_start_delalloc_inodes(root, 1);
1284 			ret = btrfs_wait_ordered_extents(root, 0, 1);
1285 			BUG_ON(ret);
1286 		}
1287 
1288 		/*
1289 		 * rename don't use btrfs_join_transaction, so, once we
1290 		 * set the transaction to blocked above, we aren't going
1291 		 * to get any new ordered operations.  We can safely run
1292 		 * it here and no for sure that nothing new will be added
1293 		 * to the list
1294 		 */
1295 		btrfs_run_ordered_operations(root, 1);
1296 
1297 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1298 				TASK_UNINTERRUPTIBLE);
1299 
1300 		smp_mb();
1301 		if (cur_trans->num_writers > 1)
1302 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1303 		else if (should_grow)
1304 			schedule_timeout(1);
1305 
1306 		mutex_lock(&root->fs_info->trans_mutex);
1307 		finish_wait(&cur_trans->writer_wait, &wait);
1308 	} while (cur_trans->num_writers > 1 ||
1309 		 (should_grow && cur_trans->num_joined != joined));
1310 
1311 	ret = create_pending_snapshots(trans, root->fs_info);
1312 	BUG_ON(ret);
1313 
1314 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1315 	BUG_ON(ret);
1316 
1317 	WARN_ON(cur_trans != trans->transaction);
1318 
1319 	/* btrfs_commit_tree_roots is responsible for getting the
1320 	 * various roots consistent with each other.  Every pointer
1321 	 * in the tree of tree roots has to point to the most up to date
1322 	 * root for every subvolume and other tree.  So, we have to keep
1323 	 * the tree logging code from jumping in and changing any
1324 	 * of the trees.
1325 	 *
1326 	 * At this point in the commit, there can't be any tree-log
1327 	 * writers, but a little lower down we drop the trans mutex
1328 	 * and let new people in.  By holding the tree_log_mutex
1329 	 * from now until after the super is written, we avoid races
1330 	 * with the tree-log code.
1331 	 */
1332 	mutex_lock(&root->fs_info->tree_log_mutex);
1333 
1334 	ret = commit_fs_roots(trans, root);
1335 	BUG_ON(ret);
1336 
1337 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1338 	 * safe to free the root of tree log roots
1339 	 */
1340 	btrfs_free_log_root_tree(trans, root->fs_info);
1341 
1342 	ret = commit_cowonly_roots(trans, root);
1343 	BUG_ON(ret);
1344 
1345 	btrfs_prepare_extent_commit(trans, root);
1346 
1347 	cur_trans = root->fs_info->running_transaction;
1348 	spin_lock(&root->fs_info->new_trans_lock);
1349 	root->fs_info->running_transaction = NULL;
1350 	spin_unlock(&root->fs_info->new_trans_lock);
1351 
1352 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1353 			    root->fs_info->tree_root->node);
1354 	switch_commit_root(root->fs_info->tree_root);
1355 
1356 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1357 			    root->fs_info->chunk_root->node);
1358 	switch_commit_root(root->fs_info->chunk_root);
1359 
1360 	update_super_roots(root);
1361 
1362 	if (!root->fs_info->log_root_recovering) {
1363 		btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1364 		btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1365 	}
1366 
1367 	memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1368 	       sizeof(root->fs_info->super_copy));
1369 
1370 	trans->transaction->blocked = 0;
1371 
1372 	wake_up(&root->fs_info->transaction_wait);
1373 
1374 	mutex_unlock(&root->fs_info->trans_mutex);
1375 	ret = btrfs_write_and_wait_transaction(trans, root);
1376 	BUG_ON(ret);
1377 	write_ctree_super(trans, root, 0);
1378 
1379 	/*
1380 	 * the super is written, we can safely allow the tree-loggers
1381 	 * to go about their business
1382 	 */
1383 	mutex_unlock(&root->fs_info->tree_log_mutex);
1384 
1385 	btrfs_finish_extent_commit(trans, root);
1386 
1387 	mutex_lock(&root->fs_info->trans_mutex);
1388 
1389 	cur_trans->commit_done = 1;
1390 
1391 	root->fs_info->last_trans_committed = cur_trans->transid;
1392 
1393 	wake_up(&cur_trans->commit_wait);
1394 
1395 	put_transaction(cur_trans);
1396 	put_transaction(cur_trans);
1397 
1398 	trace_btrfs_transaction_commit(root);
1399 
1400 	mutex_unlock(&root->fs_info->trans_mutex);
1401 
1402 	if (current->journal_info == trans)
1403 		current->journal_info = NULL;
1404 
1405 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1406 
1407 	if (current != root->fs_info->transaction_kthread)
1408 		btrfs_run_delayed_iputs(root);
1409 
1410 	return ret;
1411 }
1412 
1413 /*
1414  * interface function to delete all the snapshots we have scheduled for deletion
1415  */
1416 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1417 {
1418 	LIST_HEAD(list);
1419 	struct btrfs_fs_info *fs_info = root->fs_info;
1420 
1421 	mutex_lock(&fs_info->trans_mutex);
1422 	list_splice_init(&fs_info->dead_roots, &list);
1423 	mutex_unlock(&fs_info->trans_mutex);
1424 
1425 	while (!list_empty(&list)) {
1426 		root = list_entry(list.next, struct btrfs_root, root_list);
1427 		list_del(&root->root_list);
1428 
1429 		if (btrfs_header_backref_rev(root->node) <
1430 		    BTRFS_MIXED_BACKREF_REV)
1431 			btrfs_drop_snapshot(root, NULL, 0);
1432 		else
1433 			btrfs_drop_snapshot(root, NULL, 1);
1434 	}
1435 	return 0;
1436 }
1437