xref: /openbmc/linux/fs/btrfs/transaction.c (revision 206e8c00752fbe9cc463184236ac64b2a532cda5)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			printk(KERN_ERR "pending csums is %llu\n",
69 			       transaction->delayed_refs.pending_csums);
70 		while (!list_empty(&transaction->pending_chunks)) {
71 			struct extent_map *em;
72 
73 			em = list_first_entry(&transaction->pending_chunks,
74 					      struct extent_map, list);
75 			list_del_init(&em->list);
76 			free_extent_map(em);
77 		}
78 		kmem_cache_free(btrfs_transaction_cachep, transaction);
79 	}
80 }
81 
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 	spin_lock(&tree->lock);
85 	while (!RB_EMPTY_ROOT(&tree->state)) {
86 		struct rb_node *node;
87 		struct extent_state *state;
88 
89 		node = rb_first(&tree->state);
90 		state = rb_entry(node, struct extent_state, rb_node);
91 		rb_erase(&state->rb_node, &tree->state);
92 		RB_CLEAR_NODE(&state->rb_node);
93 		/*
94 		 * btree io trees aren't supposed to have tasks waiting for
95 		 * changes in the flags of extent states ever.
96 		 */
97 		ASSERT(!waitqueue_active(&state->wq));
98 		free_extent_state(state);
99 
100 		cond_resched_lock(&tree->lock);
101 	}
102 	spin_unlock(&tree->lock);
103 }
104 
105 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106 					 struct btrfs_fs_info *fs_info)
107 {
108 	struct btrfs_root *root, *tmp;
109 
110 	down_write(&fs_info->commit_root_sem);
111 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112 				 dirty_list) {
113 		list_del_init(&root->dirty_list);
114 		free_extent_buffer(root->commit_root);
115 		root->commit_root = btrfs_root_node(root);
116 		if (is_fstree(root->objectid))
117 			btrfs_unpin_free_ino(root);
118 		clear_btree_io_tree(&root->dirty_log_pages);
119 	}
120 	up_write(&fs_info->commit_root_sem);
121 }
122 
123 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
124 					 unsigned int type)
125 {
126 	if (type & TRANS_EXTWRITERS)
127 		atomic_inc(&trans->num_extwriters);
128 }
129 
130 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
131 					 unsigned int type)
132 {
133 	if (type & TRANS_EXTWRITERS)
134 		atomic_dec(&trans->num_extwriters);
135 }
136 
137 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
138 					  unsigned int type)
139 {
140 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
141 }
142 
143 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
144 {
145 	return atomic_read(&trans->num_extwriters);
146 }
147 
148 /*
149  * either allocate a new transaction or hop into the existing one
150  */
151 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
152 {
153 	struct btrfs_transaction *cur_trans;
154 	struct btrfs_fs_info *fs_info = root->fs_info;
155 
156 	spin_lock(&fs_info->trans_lock);
157 loop:
158 	/* The file system has been taken offline. No new transactions. */
159 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
160 		spin_unlock(&fs_info->trans_lock);
161 		return -EROFS;
162 	}
163 
164 	cur_trans = fs_info->running_transaction;
165 	if (cur_trans) {
166 		if (cur_trans->aborted) {
167 			spin_unlock(&fs_info->trans_lock);
168 			return cur_trans->aborted;
169 		}
170 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
171 			spin_unlock(&fs_info->trans_lock);
172 			return -EBUSY;
173 		}
174 		atomic_inc(&cur_trans->use_count);
175 		atomic_inc(&cur_trans->num_writers);
176 		extwriter_counter_inc(cur_trans, type);
177 		spin_unlock(&fs_info->trans_lock);
178 		return 0;
179 	}
180 	spin_unlock(&fs_info->trans_lock);
181 
182 	/*
183 	 * If we are ATTACH, we just want to catch the current transaction,
184 	 * and commit it. If there is no transaction, just return ENOENT.
185 	 */
186 	if (type == TRANS_ATTACH)
187 		return -ENOENT;
188 
189 	/*
190 	 * JOIN_NOLOCK only happens during the transaction commit, so
191 	 * it is impossible that ->running_transaction is NULL
192 	 */
193 	BUG_ON(type == TRANS_JOIN_NOLOCK);
194 
195 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
196 	if (!cur_trans)
197 		return -ENOMEM;
198 
199 	spin_lock(&fs_info->trans_lock);
200 	if (fs_info->running_transaction) {
201 		/*
202 		 * someone started a transaction after we unlocked.  Make sure
203 		 * to redo the checks above
204 		 */
205 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
206 		goto loop;
207 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
208 		spin_unlock(&fs_info->trans_lock);
209 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
210 		return -EROFS;
211 	}
212 
213 	atomic_set(&cur_trans->num_writers, 1);
214 	extwriter_counter_init(cur_trans, type);
215 	init_waitqueue_head(&cur_trans->writer_wait);
216 	init_waitqueue_head(&cur_trans->commit_wait);
217 	cur_trans->state = TRANS_STATE_RUNNING;
218 	/*
219 	 * One for this trans handle, one so it will live on until we
220 	 * commit the transaction.
221 	 */
222 	atomic_set(&cur_trans->use_count, 2);
223 	cur_trans->have_free_bgs = 0;
224 	cur_trans->start_time = get_seconds();
225 	cur_trans->dirty_bg_run = 0;
226 
227 	cur_trans->delayed_refs.href_root = RB_ROOT;
228 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
229 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
230 	cur_trans->delayed_refs.num_heads_ready = 0;
231 	cur_trans->delayed_refs.pending_csums = 0;
232 	cur_trans->delayed_refs.num_heads = 0;
233 	cur_trans->delayed_refs.flushing = 0;
234 	cur_trans->delayed_refs.run_delayed_start = 0;
235 	cur_trans->delayed_refs.qgroup_to_skip = 0;
236 
237 	/*
238 	 * although the tree mod log is per file system and not per transaction,
239 	 * the log must never go across transaction boundaries.
240 	 */
241 	smp_mb();
242 	if (!list_empty(&fs_info->tree_mod_seq_list))
243 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
244 			"creating a fresh transaction\n");
245 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
246 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
247 			"creating a fresh transaction\n");
248 	atomic64_set(&fs_info->tree_mod_seq, 0);
249 
250 	spin_lock_init(&cur_trans->delayed_refs.lock);
251 
252 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
253 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
254 	INIT_LIST_HEAD(&cur_trans->switch_commits);
255 	INIT_LIST_HEAD(&cur_trans->pending_ordered);
256 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
257 	INIT_LIST_HEAD(&cur_trans->io_bgs);
258 	mutex_init(&cur_trans->cache_write_mutex);
259 	cur_trans->num_dirty_bgs = 0;
260 	spin_lock_init(&cur_trans->dirty_bgs_lock);
261 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
262 	spin_lock_init(&cur_trans->deleted_bgs_lock);
263 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
264 	extent_io_tree_init(&cur_trans->dirty_pages,
265 			     fs_info->btree_inode->i_mapping);
266 	fs_info->generation++;
267 	cur_trans->transid = fs_info->generation;
268 	fs_info->running_transaction = cur_trans;
269 	cur_trans->aborted = 0;
270 	spin_unlock(&fs_info->trans_lock);
271 
272 	return 0;
273 }
274 
275 /*
276  * this does all the record keeping required to make sure that a reference
277  * counted root is properly recorded in a given transaction.  This is required
278  * to make sure the old root from before we joined the transaction is deleted
279  * when the transaction commits
280  */
281 static int record_root_in_trans(struct btrfs_trans_handle *trans,
282 			       struct btrfs_root *root)
283 {
284 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
285 	    root->last_trans < trans->transid) {
286 		WARN_ON(root == root->fs_info->extent_root);
287 		WARN_ON(root->commit_root != root->node);
288 
289 		/*
290 		 * see below for IN_TRANS_SETUP usage rules
291 		 * we have the reloc mutex held now, so there
292 		 * is only one writer in this function
293 		 */
294 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
295 
296 		/* make sure readers find IN_TRANS_SETUP before
297 		 * they find our root->last_trans update
298 		 */
299 		smp_wmb();
300 
301 		spin_lock(&root->fs_info->fs_roots_radix_lock);
302 		if (root->last_trans == trans->transid) {
303 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
304 			return 0;
305 		}
306 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
307 			   (unsigned long)root->root_key.objectid,
308 			   BTRFS_ROOT_TRANS_TAG);
309 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
310 		root->last_trans = trans->transid;
311 
312 		/* this is pretty tricky.  We don't want to
313 		 * take the relocation lock in btrfs_record_root_in_trans
314 		 * unless we're really doing the first setup for this root in
315 		 * this transaction.
316 		 *
317 		 * Normally we'd use root->last_trans as a flag to decide
318 		 * if we want to take the expensive mutex.
319 		 *
320 		 * But, we have to set root->last_trans before we
321 		 * init the relocation root, otherwise, we trip over warnings
322 		 * in ctree.c.  The solution used here is to flag ourselves
323 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
324 		 * fixing up the reloc trees and everyone must wait.
325 		 *
326 		 * When this is zero, they can trust root->last_trans and fly
327 		 * through btrfs_record_root_in_trans without having to take the
328 		 * lock.  smp_wmb() makes sure that all the writes above are
329 		 * done before we pop in the zero below
330 		 */
331 		btrfs_init_reloc_root(trans, root);
332 		smp_mb__before_atomic();
333 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
334 	}
335 	return 0;
336 }
337 
338 
339 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
340 			       struct btrfs_root *root)
341 {
342 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
343 		return 0;
344 
345 	/*
346 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
347 	 * and barriers
348 	 */
349 	smp_rmb();
350 	if (root->last_trans == trans->transid &&
351 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
352 		return 0;
353 
354 	mutex_lock(&root->fs_info->reloc_mutex);
355 	record_root_in_trans(trans, root);
356 	mutex_unlock(&root->fs_info->reloc_mutex);
357 
358 	return 0;
359 }
360 
361 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
362 {
363 	return (trans->state >= TRANS_STATE_BLOCKED &&
364 		trans->state < TRANS_STATE_UNBLOCKED &&
365 		!trans->aborted);
366 }
367 
368 /* wait for commit against the current transaction to become unblocked
369  * when this is done, it is safe to start a new transaction, but the current
370  * transaction might not be fully on disk.
371  */
372 static void wait_current_trans(struct btrfs_root *root)
373 {
374 	struct btrfs_transaction *cur_trans;
375 
376 	spin_lock(&root->fs_info->trans_lock);
377 	cur_trans = root->fs_info->running_transaction;
378 	if (cur_trans && is_transaction_blocked(cur_trans)) {
379 		atomic_inc(&cur_trans->use_count);
380 		spin_unlock(&root->fs_info->trans_lock);
381 
382 		wait_event(root->fs_info->transaction_wait,
383 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
384 			   cur_trans->aborted);
385 		btrfs_put_transaction(cur_trans);
386 	} else {
387 		spin_unlock(&root->fs_info->trans_lock);
388 	}
389 }
390 
391 static int may_wait_transaction(struct btrfs_root *root, int type)
392 {
393 	if (root->fs_info->log_root_recovering)
394 		return 0;
395 
396 	if (type == TRANS_USERSPACE)
397 		return 1;
398 
399 	if (type == TRANS_START &&
400 	    !atomic_read(&root->fs_info->open_ioctl_trans))
401 		return 1;
402 
403 	return 0;
404 }
405 
406 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
407 {
408 	if (!root->fs_info->reloc_ctl ||
409 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
410 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
411 	    root->reloc_root)
412 		return false;
413 
414 	return true;
415 }
416 
417 static struct btrfs_trans_handle *
418 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
419 		  enum btrfs_reserve_flush_enum flush)
420 {
421 	struct btrfs_trans_handle *h;
422 	struct btrfs_transaction *cur_trans;
423 	u64 num_bytes = 0;
424 	u64 qgroup_reserved = 0;
425 	bool reloc_reserved = false;
426 	int ret;
427 
428 	/* Send isn't supposed to start transactions. */
429 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
430 
431 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
432 		return ERR_PTR(-EROFS);
433 
434 	if (current->journal_info) {
435 		WARN_ON(type & TRANS_EXTWRITERS);
436 		h = current->journal_info;
437 		h->use_count++;
438 		WARN_ON(h->use_count > 2);
439 		h->orig_rsv = h->block_rsv;
440 		h->block_rsv = NULL;
441 		goto got_it;
442 	}
443 
444 	/*
445 	 * Do the reservation before we join the transaction so we can do all
446 	 * the appropriate flushing if need be.
447 	 */
448 	if (num_items > 0 && root != root->fs_info->chunk_root) {
449 		if (root->fs_info->quota_enabled &&
450 		    is_fstree(root->root_key.objectid)) {
451 			qgroup_reserved = num_items * root->nodesize;
452 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
453 			if (ret)
454 				return ERR_PTR(ret);
455 		}
456 
457 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
458 		/*
459 		 * Do the reservation for the relocation root creation
460 		 */
461 		if (need_reserve_reloc_root(root)) {
462 			num_bytes += root->nodesize;
463 			reloc_reserved = true;
464 		}
465 
466 		ret = btrfs_block_rsv_add(root,
467 					  &root->fs_info->trans_block_rsv,
468 					  num_bytes, flush);
469 		if (ret)
470 			goto reserve_fail;
471 	}
472 again:
473 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
474 	if (!h) {
475 		ret = -ENOMEM;
476 		goto alloc_fail;
477 	}
478 
479 	/*
480 	 * If we are JOIN_NOLOCK we're already committing a transaction and
481 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
482 	 * because we're already holding a ref.  We need this because we could
483 	 * have raced in and did an fsync() on a file which can kick a commit
484 	 * and then we deadlock with somebody doing a freeze.
485 	 *
486 	 * If we are ATTACH, it means we just want to catch the current
487 	 * transaction and commit it, so we needn't do sb_start_intwrite().
488 	 */
489 	if (type & __TRANS_FREEZABLE)
490 		sb_start_intwrite(root->fs_info->sb);
491 
492 	if (may_wait_transaction(root, type))
493 		wait_current_trans(root);
494 
495 	do {
496 		ret = join_transaction(root, type);
497 		if (ret == -EBUSY) {
498 			wait_current_trans(root);
499 			if (unlikely(type == TRANS_ATTACH))
500 				ret = -ENOENT;
501 		}
502 	} while (ret == -EBUSY);
503 
504 	if (ret < 0) {
505 		/* We must get the transaction if we are JOIN_NOLOCK. */
506 		BUG_ON(type == TRANS_JOIN_NOLOCK);
507 		goto join_fail;
508 	}
509 
510 	cur_trans = root->fs_info->running_transaction;
511 
512 	h->transid = cur_trans->transid;
513 	h->transaction = cur_trans;
514 	h->blocks_used = 0;
515 	h->bytes_reserved = 0;
516 	h->chunk_bytes_reserved = 0;
517 	h->root = root;
518 	h->delayed_ref_updates = 0;
519 	h->use_count = 1;
520 	h->adding_csums = 0;
521 	h->block_rsv = NULL;
522 	h->orig_rsv = NULL;
523 	h->aborted = 0;
524 	h->qgroup_reserved = 0;
525 	h->delayed_ref_elem.seq = 0;
526 	h->type = type;
527 	h->allocating_chunk = false;
528 	h->reloc_reserved = false;
529 	h->sync = false;
530 	INIT_LIST_HEAD(&h->qgroup_ref_list);
531 	INIT_LIST_HEAD(&h->new_bgs);
532 	INIT_LIST_HEAD(&h->ordered);
533 
534 	smp_mb();
535 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
536 	    may_wait_transaction(root, type)) {
537 		current->journal_info = h;
538 		btrfs_commit_transaction(h, root);
539 		goto again;
540 	}
541 
542 	if (num_bytes) {
543 		trace_btrfs_space_reservation(root->fs_info, "transaction",
544 					      h->transid, num_bytes, 1);
545 		h->block_rsv = &root->fs_info->trans_block_rsv;
546 		h->bytes_reserved = num_bytes;
547 		h->reloc_reserved = reloc_reserved;
548 	}
549 	h->qgroup_reserved = qgroup_reserved;
550 
551 got_it:
552 	btrfs_record_root_in_trans(h, root);
553 
554 	if (!current->journal_info && type != TRANS_USERSPACE)
555 		current->journal_info = h;
556 	return h;
557 
558 join_fail:
559 	if (type & __TRANS_FREEZABLE)
560 		sb_end_intwrite(root->fs_info->sb);
561 	kmem_cache_free(btrfs_trans_handle_cachep, h);
562 alloc_fail:
563 	if (num_bytes)
564 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
565 					num_bytes);
566 reserve_fail:
567 	if (qgroup_reserved)
568 		btrfs_qgroup_free(root, qgroup_reserved);
569 	return ERR_PTR(ret);
570 }
571 
572 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
573 						   int num_items)
574 {
575 	return start_transaction(root, num_items, TRANS_START,
576 				 BTRFS_RESERVE_FLUSH_ALL);
577 }
578 
579 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
580 					struct btrfs_root *root, int num_items)
581 {
582 	return start_transaction(root, num_items, TRANS_START,
583 				 BTRFS_RESERVE_FLUSH_LIMIT);
584 }
585 
586 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
587 {
588 	return start_transaction(root, 0, TRANS_JOIN, 0);
589 }
590 
591 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
592 {
593 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
594 }
595 
596 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
597 {
598 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
599 }
600 
601 /*
602  * btrfs_attach_transaction() - catch the running transaction
603  *
604  * It is used when we want to commit the current the transaction, but
605  * don't want to start a new one.
606  *
607  * Note: If this function return -ENOENT, it just means there is no
608  * running transaction. But it is possible that the inactive transaction
609  * is still in the memory, not fully on disk. If you hope there is no
610  * inactive transaction in the fs when -ENOENT is returned, you should
611  * invoke
612  *     btrfs_attach_transaction_barrier()
613  */
614 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
615 {
616 	return start_transaction(root, 0, TRANS_ATTACH, 0);
617 }
618 
619 /*
620  * btrfs_attach_transaction_barrier() - catch the running transaction
621  *
622  * It is similar to the above function, the differentia is this one
623  * will wait for all the inactive transactions until they fully
624  * complete.
625  */
626 struct btrfs_trans_handle *
627 btrfs_attach_transaction_barrier(struct btrfs_root *root)
628 {
629 	struct btrfs_trans_handle *trans;
630 
631 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
632 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
633 		btrfs_wait_for_commit(root, 0);
634 
635 	return trans;
636 }
637 
638 /* wait for a transaction commit to be fully complete */
639 static noinline void wait_for_commit(struct btrfs_root *root,
640 				    struct btrfs_transaction *commit)
641 {
642 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
643 }
644 
645 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
646 {
647 	struct btrfs_transaction *cur_trans = NULL, *t;
648 	int ret = 0;
649 
650 	if (transid) {
651 		if (transid <= root->fs_info->last_trans_committed)
652 			goto out;
653 
654 		/* find specified transaction */
655 		spin_lock(&root->fs_info->trans_lock);
656 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
657 			if (t->transid == transid) {
658 				cur_trans = t;
659 				atomic_inc(&cur_trans->use_count);
660 				ret = 0;
661 				break;
662 			}
663 			if (t->transid > transid) {
664 				ret = 0;
665 				break;
666 			}
667 		}
668 		spin_unlock(&root->fs_info->trans_lock);
669 
670 		/*
671 		 * The specified transaction doesn't exist, or we
672 		 * raced with btrfs_commit_transaction
673 		 */
674 		if (!cur_trans) {
675 			if (transid > root->fs_info->last_trans_committed)
676 				ret = -EINVAL;
677 			goto out;
678 		}
679 	} else {
680 		/* find newest transaction that is committing | committed */
681 		spin_lock(&root->fs_info->trans_lock);
682 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
683 					    list) {
684 			if (t->state >= TRANS_STATE_COMMIT_START) {
685 				if (t->state == TRANS_STATE_COMPLETED)
686 					break;
687 				cur_trans = t;
688 				atomic_inc(&cur_trans->use_count);
689 				break;
690 			}
691 		}
692 		spin_unlock(&root->fs_info->trans_lock);
693 		if (!cur_trans)
694 			goto out;  /* nothing committing|committed */
695 	}
696 
697 	wait_for_commit(root, cur_trans);
698 	btrfs_put_transaction(cur_trans);
699 out:
700 	return ret;
701 }
702 
703 void btrfs_throttle(struct btrfs_root *root)
704 {
705 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
706 		wait_current_trans(root);
707 }
708 
709 static int should_end_transaction(struct btrfs_trans_handle *trans,
710 				  struct btrfs_root *root)
711 {
712 	if (root->fs_info->global_block_rsv.space_info->full &&
713 	    btrfs_check_space_for_delayed_refs(trans, root))
714 		return 1;
715 
716 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
717 }
718 
719 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
720 				 struct btrfs_root *root)
721 {
722 	struct btrfs_transaction *cur_trans = trans->transaction;
723 	int updates;
724 	int err;
725 
726 	smp_mb();
727 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
728 	    cur_trans->delayed_refs.flushing)
729 		return 1;
730 
731 	updates = trans->delayed_ref_updates;
732 	trans->delayed_ref_updates = 0;
733 	if (updates) {
734 		err = btrfs_run_delayed_refs(trans, root, updates * 2);
735 		if (err) /* Error code will also eval true */
736 			return err;
737 	}
738 
739 	return should_end_transaction(trans, root);
740 }
741 
742 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
743 			  struct btrfs_root *root, int throttle)
744 {
745 	struct btrfs_transaction *cur_trans = trans->transaction;
746 	struct btrfs_fs_info *info = root->fs_info;
747 	unsigned long cur = trans->delayed_ref_updates;
748 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
749 	int err = 0;
750 	int must_run_delayed_refs = 0;
751 
752 	if (trans->use_count > 1) {
753 		trans->use_count--;
754 		trans->block_rsv = trans->orig_rsv;
755 		return 0;
756 	}
757 
758 	btrfs_trans_release_metadata(trans, root);
759 	trans->block_rsv = NULL;
760 
761 	if (!list_empty(&trans->new_bgs))
762 		btrfs_create_pending_block_groups(trans, root);
763 
764 	if (!list_empty(&trans->ordered)) {
765 		spin_lock(&info->trans_lock);
766 		list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
767 		spin_unlock(&info->trans_lock);
768 	}
769 
770 	trans->delayed_ref_updates = 0;
771 	if (!trans->sync) {
772 		must_run_delayed_refs =
773 			btrfs_should_throttle_delayed_refs(trans, root);
774 		cur = max_t(unsigned long, cur, 32);
775 
776 		/*
777 		 * don't make the caller wait if they are from a NOLOCK
778 		 * or ATTACH transaction, it will deadlock with commit
779 		 */
780 		if (must_run_delayed_refs == 1 &&
781 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
782 			must_run_delayed_refs = 2;
783 	}
784 
785 	if (trans->qgroup_reserved) {
786 		/*
787 		 * the same root has to be passed here between start_transaction
788 		 * and end_transaction. Subvolume quota depends on this.
789 		 */
790 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
791 		trans->qgroup_reserved = 0;
792 	}
793 
794 	btrfs_trans_release_metadata(trans, root);
795 	trans->block_rsv = NULL;
796 
797 	if (!list_empty(&trans->new_bgs))
798 		btrfs_create_pending_block_groups(trans, root);
799 
800 	btrfs_trans_release_chunk_metadata(trans);
801 
802 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
803 	    should_end_transaction(trans, root) &&
804 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
805 		spin_lock(&info->trans_lock);
806 		if (cur_trans->state == TRANS_STATE_RUNNING)
807 			cur_trans->state = TRANS_STATE_BLOCKED;
808 		spin_unlock(&info->trans_lock);
809 	}
810 
811 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
812 		if (throttle)
813 			return btrfs_commit_transaction(trans, root);
814 		else
815 			wake_up_process(info->transaction_kthread);
816 	}
817 
818 	if (trans->type & __TRANS_FREEZABLE)
819 		sb_end_intwrite(root->fs_info->sb);
820 
821 	WARN_ON(cur_trans != info->running_transaction);
822 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
823 	atomic_dec(&cur_trans->num_writers);
824 	extwriter_counter_dec(cur_trans, trans->type);
825 
826 	smp_mb();
827 	if (waitqueue_active(&cur_trans->writer_wait))
828 		wake_up(&cur_trans->writer_wait);
829 	btrfs_put_transaction(cur_trans);
830 
831 	if (current->journal_info == trans)
832 		current->journal_info = NULL;
833 
834 	if (throttle)
835 		btrfs_run_delayed_iputs(root);
836 
837 	if (trans->aborted ||
838 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
839 		wake_up_process(info->transaction_kthread);
840 		err = -EIO;
841 	}
842 	assert_qgroups_uptodate(trans);
843 
844 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
845 	if (must_run_delayed_refs) {
846 		btrfs_async_run_delayed_refs(root, cur,
847 					     must_run_delayed_refs == 1);
848 	}
849 	return err;
850 }
851 
852 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
853 			  struct btrfs_root *root)
854 {
855 	return __btrfs_end_transaction(trans, root, 0);
856 }
857 
858 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
859 				   struct btrfs_root *root)
860 {
861 	return __btrfs_end_transaction(trans, root, 1);
862 }
863 
864 /*
865  * when btree blocks are allocated, they have some corresponding bits set for
866  * them in one of two extent_io trees.  This is used to make sure all of
867  * those extents are sent to disk but does not wait on them
868  */
869 int btrfs_write_marked_extents(struct btrfs_root *root,
870 			       struct extent_io_tree *dirty_pages, int mark)
871 {
872 	int err = 0;
873 	int werr = 0;
874 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
875 	struct extent_state *cached_state = NULL;
876 	u64 start = 0;
877 	u64 end;
878 
879 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
880 				      mark, &cached_state)) {
881 		bool wait_writeback = false;
882 
883 		err = convert_extent_bit(dirty_pages, start, end,
884 					 EXTENT_NEED_WAIT,
885 					 mark, &cached_state, GFP_NOFS);
886 		/*
887 		 * convert_extent_bit can return -ENOMEM, which is most of the
888 		 * time a temporary error. So when it happens, ignore the error
889 		 * and wait for writeback of this range to finish - because we
890 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
891 		 * to btrfs_wait_marked_extents() would not know that writeback
892 		 * for this range started and therefore wouldn't wait for it to
893 		 * finish - we don't want to commit a superblock that points to
894 		 * btree nodes/leafs for which writeback hasn't finished yet
895 		 * (and without errors).
896 		 * We cleanup any entries left in the io tree when committing
897 		 * the transaction (through clear_btree_io_tree()).
898 		 */
899 		if (err == -ENOMEM) {
900 			err = 0;
901 			wait_writeback = true;
902 		}
903 		if (!err)
904 			err = filemap_fdatawrite_range(mapping, start, end);
905 		if (err)
906 			werr = err;
907 		else if (wait_writeback)
908 			werr = filemap_fdatawait_range(mapping, start, end);
909 		free_extent_state(cached_state);
910 		cached_state = NULL;
911 		cond_resched();
912 		start = end + 1;
913 	}
914 	return werr;
915 }
916 
917 /*
918  * when btree blocks are allocated, they have some corresponding bits set for
919  * them in one of two extent_io trees.  This is used to make sure all of
920  * those extents are on disk for transaction or log commit.  We wait
921  * on all the pages and clear them from the dirty pages state tree
922  */
923 int btrfs_wait_marked_extents(struct btrfs_root *root,
924 			      struct extent_io_tree *dirty_pages, int mark)
925 {
926 	int err = 0;
927 	int werr = 0;
928 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
929 	struct extent_state *cached_state = NULL;
930 	u64 start = 0;
931 	u64 end;
932 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
933 	bool errors = false;
934 
935 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
936 				      EXTENT_NEED_WAIT, &cached_state)) {
937 		/*
938 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
939 		 * When committing the transaction, we'll remove any entries
940 		 * left in the io tree. For a log commit, we don't remove them
941 		 * after committing the log because the tree can be accessed
942 		 * concurrently - we do it only at transaction commit time when
943 		 * it's safe to do it (through clear_btree_io_tree()).
944 		 */
945 		err = clear_extent_bit(dirty_pages, start, end,
946 				       EXTENT_NEED_WAIT,
947 				       0, 0, &cached_state, GFP_NOFS);
948 		if (err == -ENOMEM)
949 			err = 0;
950 		if (!err)
951 			err = filemap_fdatawait_range(mapping, start, end);
952 		if (err)
953 			werr = err;
954 		free_extent_state(cached_state);
955 		cached_state = NULL;
956 		cond_resched();
957 		start = end + 1;
958 	}
959 	if (err)
960 		werr = err;
961 
962 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
963 		if ((mark & EXTENT_DIRTY) &&
964 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
965 				       &btree_ino->runtime_flags))
966 			errors = true;
967 
968 		if ((mark & EXTENT_NEW) &&
969 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
970 				       &btree_ino->runtime_flags))
971 			errors = true;
972 	} else {
973 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
974 				       &btree_ino->runtime_flags))
975 			errors = true;
976 	}
977 
978 	if (errors && !werr)
979 		werr = -EIO;
980 
981 	return werr;
982 }
983 
984 /*
985  * when btree blocks are allocated, they have some corresponding bits set for
986  * them in one of two extent_io trees.  This is used to make sure all of
987  * those extents are on disk for transaction or log commit
988  */
989 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
990 				struct extent_io_tree *dirty_pages, int mark)
991 {
992 	int ret;
993 	int ret2;
994 	struct blk_plug plug;
995 
996 	blk_start_plug(&plug);
997 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
998 	blk_finish_plug(&plug);
999 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1000 
1001 	if (ret)
1002 		return ret;
1003 	if (ret2)
1004 		return ret2;
1005 	return 0;
1006 }
1007 
1008 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1009 				     struct btrfs_root *root)
1010 {
1011 	int ret;
1012 
1013 	ret = btrfs_write_and_wait_marked_extents(root,
1014 					   &trans->transaction->dirty_pages,
1015 					   EXTENT_DIRTY);
1016 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1017 
1018 	return ret;
1019 }
1020 
1021 /*
1022  * this is used to update the root pointer in the tree of tree roots.
1023  *
1024  * But, in the case of the extent allocation tree, updating the root
1025  * pointer may allocate blocks which may change the root of the extent
1026  * allocation tree.
1027  *
1028  * So, this loops and repeats and makes sure the cowonly root didn't
1029  * change while the root pointer was being updated in the metadata.
1030  */
1031 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1032 			       struct btrfs_root *root)
1033 {
1034 	int ret;
1035 	u64 old_root_bytenr;
1036 	u64 old_root_used;
1037 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1038 
1039 	old_root_used = btrfs_root_used(&root->root_item);
1040 
1041 	while (1) {
1042 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1043 		if (old_root_bytenr == root->node->start &&
1044 		    old_root_used == btrfs_root_used(&root->root_item))
1045 			break;
1046 
1047 		btrfs_set_root_node(&root->root_item, root->node);
1048 		ret = btrfs_update_root(trans, tree_root,
1049 					&root->root_key,
1050 					&root->root_item);
1051 		if (ret)
1052 			return ret;
1053 
1054 		old_root_used = btrfs_root_used(&root->root_item);
1055 	}
1056 
1057 	return 0;
1058 }
1059 
1060 /*
1061  * update all the cowonly tree roots on disk
1062  *
1063  * The error handling in this function may not be obvious. Any of the
1064  * failures will cause the file system to go offline. We still need
1065  * to clean up the delayed refs.
1066  */
1067 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1068 					 struct btrfs_root *root)
1069 {
1070 	struct btrfs_fs_info *fs_info = root->fs_info;
1071 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1072 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1073 	struct list_head *next;
1074 	struct extent_buffer *eb;
1075 	int ret;
1076 
1077 	eb = btrfs_lock_root_node(fs_info->tree_root);
1078 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1079 			      0, &eb);
1080 	btrfs_tree_unlock(eb);
1081 	free_extent_buffer(eb);
1082 
1083 	if (ret)
1084 		return ret;
1085 
1086 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1087 	if (ret)
1088 		return ret;
1089 
1090 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1091 	if (ret)
1092 		return ret;
1093 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1094 	if (ret)
1095 		return ret;
1096 	ret = btrfs_run_qgroups(trans, root->fs_info);
1097 	if (ret)
1098 		return ret;
1099 
1100 	ret = btrfs_setup_space_cache(trans, root);
1101 	if (ret)
1102 		return ret;
1103 
1104 	/* run_qgroups might have added some more refs */
1105 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1106 	if (ret)
1107 		return ret;
1108 again:
1109 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1110 		next = fs_info->dirty_cowonly_roots.next;
1111 		list_del_init(next);
1112 		root = list_entry(next, struct btrfs_root, dirty_list);
1113 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1114 
1115 		if (root != fs_info->extent_root)
1116 			list_add_tail(&root->dirty_list,
1117 				      &trans->transaction->switch_commits);
1118 		ret = update_cowonly_root(trans, root);
1119 		if (ret)
1120 			return ret;
1121 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1122 		if (ret)
1123 			return ret;
1124 	}
1125 
1126 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1127 		ret = btrfs_write_dirty_block_groups(trans, root);
1128 		if (ret)
1129 			return ret;
1130 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1131 		if (ret)
1132 			return ret;
1133 	}
1134 
1135 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1136 		goto again;
1137 
1138 	list_add_tail(&fs_info->extent_root->dirty_list,
1139 		      &trans->transaction->switch_commits);
1140 	btrfs_after_dev_replace_commit(fs_info);
1141 
1142 	return 0;
1143 }
1144 
1145 /*
1146  * dead roots are old snapshots that need to be deleted.  This allocates
1147  * a dirty root struct and adds it into the list of dead roots that need to
1148  * be deleted
1149  */
1150 void btrfs_add_dead_root(struct btrfs_root *root)
1151 {
1152 	spin_lock(&root->fs_info->trans_lock);
1153 	if (list_empty(&root->root_list))
1154 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1155 	spin_unlock(&root->fs_info->trans_lock);
1156 }
1157 
1158 /*
1159  * update all the cowonly tree roots on disk
1160  */
1161 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1162 				    struct btrfs_root *root)
1163 {
1164 	struct btrfs_root *gang[8];
1165 	struct btrfs_fs_info *fs_info = root->fs_info;
1166 	int i;
1167 	int ret;
1168 	int err = 0;
1169 
1170 	spin_lock(&fs_info->fs_roots_radix_lock);
1171 	while (1) {
1172 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1173 						 (void **)gang, 0,
1174 						 ARRAY_SIZE(gang),
1175 						 BTRFS_ROOT_TRANS_TAG);
1176 		if (ret == 0)
1177 			break;
1178 		for (i = 0; i < ret; i++) {
1179 			root = gang[i];
1180 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1181 					(unsigned long)root->root_key.objectid,
1182 					BTRFS_ROOT_TRANS_TAG);
1183 			spin_unlock(&fs_info->fs_roots_radix_lock);
1184 
1185 			btrfs_free_log(trans, root);
1186 			btrfs_update_reloc_root(trans, root);
1187 			btrfs_orphan_commit_root(trans, root);
1188 
1189 			btrfs_save_ino_cache(root, trans);
1190 
1191 			/* see comments in should_cow_block() */
1192 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1193 			smp_mb__after_atomic();
1194 
1195 			if (root->commit_root != root->node) {
1196 				list_add_tail(&root->dirty_list,
1197 					&trans->transaction->switch_commits);
1198 				btrfs_set_root_node(&root->root_item,
1199 						    root->node);
1200 			}
1201 
1202 			err = btrfs_update_root(trans, fs_info->tree_root,
1203 						&root->root_key,
1204 						&root->root_item);
1205 			spin_lock(&fs_info->fs_roots_radix_lock);
1206 			if (err)
1207 				break;
1208 		}
1209 	}
1210 	spin_unlock(&fs_info->fs_roots_radix_lock);
1211 	return err;
1212 }
1213 
1214 /*
1215  * defrag a given btree.
1216  * Every leaf in the btree is read and defragged.
1217  */
1218 int btrfs_defrag_root(struct btrfs_root *root)
1219 {
1220 	struct btrfs_fs_info *info = root->fs_info;
1221 	struct btrfs_trans_handle *trans;
1222 	int ret;
1223 
1224 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1225 		return 0;
1226 
1227 	while (1) {
1228 		trans = btrfs_start_transaction(root, 0);
1229 		if (IS_ERR(trans))
1230 			return PTR_ERR(trans);
1231 
1232 		ret = btrfs_defrag_leaves(trans, root);
1233 
1234 		btrfs_end_transaction(trans, root);
1235 		btrfs_btree_balance_dirty(info->tree_root);
1236 		cond_resched();
1237 
1238 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1239 			break;
1240 
1241 		if (btrfs_defrag_cancelled(root->fs_info)) {
1242 			pr_debug("BTRFS: defrag_root cancelled\n");
1243 			ret = -EAGAIN;
1244 			break;
1245 		}
1246 	}
1247 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1248 	return ret;
1249 }
1250 
1251 /*
1252  * new snapshots need to be created at a very specific time in the
1253  * transaction commit.  This does the actual creation.
1254  *
1255  * Note:
1256  * If the error which may affect the commitment of the current transaction
1257  * happens, we should return the error number. If the error which just affect
1258  * the creation of the pending snapshots, just return 0.
1259  */
1260 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1261 				   struct btrfs_fs_info *fs_info,
1262 				   struct btrfs_pending_snapshot *pending)
1263 {
1264 	struct btrfs_key key;
1265 	struct btrfs_root_item *new_root_item;
1266 	struct btrfs_root *tree_root = fs_info->tree_root;
1267 	struct btrfs_root *root = pending->root;
1268 	struct btrfs_root *parent_root;
1269 	struct btrfs_block_rsv *rsv;
1270 	struct inode *parent_inode;
1271 	struct btrfs_path *path;
1272 	struct btrfs_dir_item *dir_item;
1273 	struct dentry *dentry;
1274 	struct extent_buffer *tmp;
1275 	struct extent_buffer *old;
1276 	struct timespec cur_time = CURRENT_TIME;
1277 	int ret = 0;
1278 	u64 to_reserve = 0;
1279 	u64 index = 0;
1280 	u64 objectid;
1281 	u64 root_flags;
1282 	uuid_le new_uuid;
1283 
1284 	path = btrfs_alloc_path();
1285 	if (!path) {
1286 		pending->error = -ENOMEM;
1287 		return 0;
1288 	}
1289 
1290 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1291 	if (!new_root_item) {
1292 		pending->error = -ENOMEM;
1293 		goto root_item_alloc_fail;
1294 	}
1295 
1296 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1297 	if (pending->error)
1298 		goto no_free_objectid;
1299 
1300 	/*
1301 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1302 	 * accounted by later btrfs_qgroup_inherit().
1303 	 */
1304 	btrfs_set_skip_qgroup(trans, objectid);
1305 
1306 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1307 
1308 	if (to_reserve > 0) {
1309 		pending->error = btrfs_block_rsv_add(root,
1310 						     &pending->block_rsv,
1311 						     to_reserve,
1312 						     BTRFS_RESERVE_NO_FLUSH);
1313 		if (pending->error)
1314 			goto clear_skip_qgroup;
1315 	}
1316 
1317 	key.objectid = objectid;
1318 	key.offset = (u64)-1;
1319 	key.type = BTRFS_ROOT_ITEM_KEY;
1320 
1321 	rsv = trans->block_rsv;
1322 	trans->block_rsv = &pending->block_rsv;
1323 	trans->bytes_reserved = trans->block_rsv->reserved;
1324 
1325 	dentry = pending->dentry;
1326 	parent_inode = pending->dir;
1327 	parent_root = BTRFS_I(parent_inode)->root;
1328 	record_root_in_trans(trans, parent_root);
1329 
1330 	/*
1331 	 * insert the directory item
1332 	 */
1333 	ret = btrfs_set_inode_index(parent_inode, &index);
1334 	BUG_ON(ret); /* -ENOMEM */
1335 
1336 	/* check if there is a file/dir which has the same name. */
1337 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1338 					 btrfs_ino(parent_inode),
1339 					 dentry->d_name.name,
1340 					 dentry->d_name.len, 0);
1341 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1342 		pending->error = -EEXIST;
1343 		goto dir_item_existed;
1344 	} else if (IS_ERR(dir_item)) {
1345 		ret = PTR_ERR(dir_item);
1346 		btrfs_abort_transaction(trans, root, ret);
1347 		goto fail;
1348 	}
1349 	btrfs_release_path(path);
1350 
1351 	/*
1352 	 * pull in the delayed directory update
1353 	 * and the delayed inode item
1354 	 * otherwise we corrupt the FS during
1355 	 * snapshot
1356 	 */
1357 	ret = btrfs_run_delayed_items(trans, root);
1358 	if (ret) {	/* Transaction aborted */
1359 		btrfs_abort_transaction(trans, root, ret);
1360 		goto fail;
1361 	}
1362 
1363 	record_root_in_trans(trans, root);
1364 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1365 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1366 	btrfs_check_and_init_root_item(new_root_item);
1367 
1368 	root_flags = btrfs_root_flags(new_root_item);
1369 	if (pending->readonly)
1370 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1371 	else
1372 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1373 	btrfs_set_root_flags(new_root_item, root_flags);
1374 
1375 	btrfs_set_root_generation_v2(new_root_item,
1376 			trans->transid);
1377 	uuid_le_gen(&new_uuid);
1378 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1379 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1380 			BTRFS_UUID_SIZE);
1381 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1382 		memset(new_root_item->received_uuid, 0,
1383 		       sizeof(new_root_item->received_uuid));
1384 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1385 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1386 		btrfs_set_root_stransid(new_root_item, 0);
1387 		btrfs_set_root_rtransid(new_root_item, 0);
1388 	}
1389 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1390 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1391 	btrfs_set_root_otransid(new_root_item, trans->transid);
1392 
1393 	old = btrfs_lock_root_node(root);
1394 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1395 	if (ret) {
1396 		btrfs_tree_unlock(old);
1397 		free_extent_buffer(old);
1398 		btrfs_abort_transaction(trans, root, ret);
1399 		goto fail;
1400 	}
1401 
1402 	btrfs_set_lock_blocking(old);
1403 
1404 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1405 	/* clean up in any case */
1406 	btrfs_tree_unlock(old);
1407 	free_extent_buffer(old);
1408 	if (ret) {
1409 		btrfs_abort_transaction(trans, root, ret);
1410 		goto fail;
1411 	}
1412 	/* see comments in should_cow_block() */
1413 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1414 	smp_wmb();
1415 
1416 	btrfs_set_root_node(new_root_item, tmp);
1417 	/* record when the snapshot was created in key.offset */
1418 	key.offset = trans->transid;
1419 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1420 	btrfs_tree_unlock(tmp);
1421 	free_extent_buffer(tmp);
1422 	if (ret) {
1423 		btrfs_abort_transaction(trans, root, ret);
1424 		goto fail;
1425 	}
1426 
1427 	/*
1428 	 * insert root back/forward references
1429 	 */
1430 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1431 				 parent_root->root_key.objectid,
1432 				 btrfs_ino(parent_inode), index,
1433 				 dentry->d_name.name, dentry->d_name.len);
1434 	if (ret) {
1435 		btrfs_abort_transaction(trans, root, ret);
1436 		goto fail;
1437 	}
1438 
1439 	key.offset = (u64)-1;
1440 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1441 	if (IS_ERR(pending->snap)) {
1442 		ret = PTR_ERR(pending->snap);
1443 		btrfs_abort_transaction(trans, root, ret);
1444 		goto fail;
1445 	}
1446 
1447 	ret = btrfs_reloc_post_snapshot(trans, pending);
1448 	if (ret) {
1449 		btrfs_abort_transaction(trans, root, ret);
1450 		goto fail;
1451 	}
1452 
1453 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1454 	if (ret) {
1455 		btrfs_abort_transaction(trans, root, ret);
1456 		goto fail;
1457 	}
1458 
1459 	ret = btrfs_insert_dir_item(trans, parent_root,
1460 				    dentry->d_name.name, dentry->d_name.len,
1461 				    parent_inode, &key,
1462 				    BTRFS_FT_DIR, index);
1463 	/* We have check then name at the beginning, so it is impossible. */
1464 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1465 	if (ret) {
1466 		btrfs_abort_transaction(trans, root, ret);
1467 		goto fail;
1468 	}
1469 
1470 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1471 					 dentry->d_name.len * 2);
1472 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1473 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1474 	if (ret) {
1475 		btrfs_abort_transaction(trans, root, ret);
1476 		goto fail;
1477 	}
1478 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1479 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1480 	if (ret) {
1481 		btrfs_abort_transaction(trans, root, ret);
1482 		goto fail;
1483 	}
1484 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1485 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1486 					  new_root_item->received_uuid,
1487 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1488 					  objectid);
1489 		if (ret && ret != -EEXIST) {
1490 			btrfs_abort_transaction(trans, root, ret);
1491 			goto fail;
1492 		}
1493 	}
1494 
1495 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1496 	if (ret) {
1497 		btrfs_abort_transaction(trans, root, ret);
1498 		goto fail;
1499 	}
1500 
1501 	/*
1502 	 * account qgroup counters before qgroup_inherit()
1503 	 */
1504 	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1505 	if (ret)
1506 		goto fail;
1507 	ret = btrfs_qgroup_account_extents(trans, fs_info);
1508 	if (ret)
1509 		goto fail;
1510 	ret = btrfs_qgroup_inherit(trans, fs_info,
1511 				   root->root_key.objectid,
1512 				   objectid, pending->inherit);
1513 	if (ret) {
1514 		btrfs_abort_transaction(trans, root, ret);
1515 		goto fail;
1516 	}
1517 
1518 fail:
1519 	pending->error = ret;
1520 dir_item_existed:
1521 	trans->block_rsv = rsv;
1522 	trans->bytes_reserved = 0;
1523 clear_skip_qgroup:
1524 	btrfs_clear_skip_qgroup(trans);
1525 no_free_objectid:
1526 	kfree(new_root_item);
1527 root_item_alloc_fail:
1528 	btrfs_free_path(path);
1529 	return ret;
1530 }
1531 
1532 /*
1533  * create all the snapshots we've scheduled for creation
1534  */
1535 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1536 					     struct btrfs_fs_info *fs_info)
1537 {
1538 	struct btrfs_pending_snapshot *pending, *next;
1539 	struct list_head *head = &trans->transaction->pending_snapshots;
1540 	int ret = 0;
1541 
1542 	list_for_each_entry_safe(pending, next, head, list) {
1543 		list_del(&pending->list);
1544 		ret = create_pending_snapshot(trans, fs_info, pending);
1545 		if (ret)
1546 			break;
1547 	}
1548 	return ret;
1549 }
1550 
1551 static void update_super_roots(struct btrfs_root *root)
1552 {
1553 	struct btrfs_root_item *root_item;
1554 	struct btrfs_super_block *super;
1555 
1556 	super = root->fs_info->super_copy;
1557 
1558 	root_item = &root->fs_info->chunk_root->root_item;
1559 	super->chunk_root = root_item->bytenr;
1560 	super->chunk_root_generation = root_item->generation;
1561 	super->chunk_root_level = root_item->level;
1562 
1563 	root_item = &root->fs_info->tree_root->root_item;
1564 	super->root = root_item->bytenr;
1565 	super->generation = root_item->generation;
1566 	super->root_level = root_item->level;
1567 	if (btrfs_test_opt(root, SPACE_CACHE))
1568 		super->cache_generation = root_item->generation;
1569 	if (root->fs_info->update_uuid_tree_gen)
1570 		super->uuid_tree_generation = root_item->generation;
1571 }
1572 
1573 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1574 {
1575 	struct btrfs_transaction *trans;
1576 	int ret = 0;
1577 
1578 	spin_lock(&info->trans_lock);
1579 	trans = info->running_transaction;
1580 	if (trans)
1581 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1582 	spin_unlock(&info->trans_lock);
1583 	return ret;
1584 }
1585 
1586 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1587 {
1588 	struct btrfs_transaction *trans;
1589 	int ret = 0;
1590 
1591 	spin_lock(&info->trans_lock);
1592 	trans = info->running_transaction;
1593 	if (trans)
1594 		ret = is_transaction_blocked(trans);
1595 	spin_unlock(&info->trans_lock);
1596 	return ret;
1597 }
1598 
1599 /*
1600  * wait for the current transaction commit to start and block subsequent
1601  * transaction joins
1602  */
1603 static void wait_current_trans_commit_start(struct btrfs_root *root,
1604 					    struct btrfs_transaction *trans)
1605 {
1606 	wait_event(root->fs_info->transaction_blocked_wait,
1607 		   trans->state >= TRANS_STATE_COMMIT_START ||
1608 		   trans->aborted);
1609 }
1610 
1611 /*
1612  * wait for the current transaction to start and then become unblocked.
1613  * caller holds ref.
1614  */
1615 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1616 					 struct btrfs_transaction *trans)
1617 {
1618 	wait_event(root->fs_info->transaction_wait,
1619 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1620 		   trans->aborted);
1621 }
1622 
1623 /*
1624  * commit transactions asynchronously. once btrfs_commit_transaction_async
1625  * returns, any subsequent transaction will not be allowed to join.
1626  */
1627 struct btrfs_async_commit {
1628 	struct btrfs_trans_handle *newtrans;
1629 	struct btrfs_root *root;
1630 	struct work_struct work;
1631 };
1632 
1633 static void do_async_commit(struct work_struct *work)
1634 {
1635 	struct btrfs_async_commit *ac =
1636 		container_of(work, struct btrfs_async_commit, work);
1637 
1638 	/*
1639 	 * We've got freeze protection passed with the transaction.
1640 	 * Tell lockdep about it.
1641 	 */
1642 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1643 		__sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1644 
1645 	current->journal_info = ac->newtrans;
1646 
1647 	btrfs_commit_transaction(ac->newtrans, ac->root);
1648 	kfree(ac);
1649 }
1650 
1651 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1652 				   struct btrfs_root *root,
1653 				   int wait_for_unblock)
1654 {
1655 	struct btrfs_async_commit *ac;
1656 	struct btrfs_transaction *cur_trans;
1657 
1658 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1659 	if (!ac)
1660 		return -ENOMEM;
1661 
1662 	INIT_WORK(&ac->work, do_async_commit);
1663 	ac->root = root;
1664 	ac->newtrans = btrfs_join_transaction(root);
1665 	if (IS_ERR(ac->newtrans)) {
1666 		int err = PTR_ERR(ac->newtrans);
1667 		kfree(ac);
1668 		return err;
1669 	}
1670 
1671 	/* take transaction reference */
1672 	cur_trans = trans->transaction;
1673 	atomic_inc(&cur_trans->use_count);
1674 
1675 	btrfs_end_transaction(trans, root);
1676 
1677 	/*
1678 	 * Tell lockdep we've released the freeze rwsem, since the
1679 	 * async commit thread will be the one to unlock it.
1680 	 */
1681 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1682 		__sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1683 
1684 	schedule_work(&ac->work);
1685 
1686 	/* wait for transaction to start and unblock */
1687 	if (wait_for_unblock)
1688 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1689 	else
1690 		wait_current_trans_commit_start(root, cur_trans);
1691 
1692 	if (current->journal_info == trans)
1693 		current->journal_info = NULL;
1694 
1695 	btrfs_put_transaction(cur_trans);
1696 	return 0;
1697 }
1698 
1699 
1700 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1701 				struct btrfs_root *root, int err)
1702 {
1703 	struct btrfs_transaction *cur_trans = trans->transaction;
1704 	DEFINE_WAIT(wait);
1705 
1706 	WARN_ON(trans->use_count > 1);
1707 
1708 	btrfs_abort_transaction(trans, root, err);
1709 
1710 	spin_lock(&root->fs_info->trans_lock);
1711 
1712 	/*
1713 	 * If the transaction is removed from the list, it means this
1714 	 * transaction has been committed successfully, so it is impossible
1715 	 * to call the cleanup function.
1716 	 */
1717 	BUG_ON(list_empty(&cur_trans->list));
1718 
1719 	list_del_init(&cur_trans->list);
1720 	if (cur_trans == root->fs_info->running_transaction) {
1721 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1722 		spin_unlock(&root->fs_info->trans_lock);
1723 		wait_event(cur_trans->writer_wait,
1724 			   atomic_read(&cur_trans->num_writers) == 1);
1725 
1726 		spin_lock(&root->fs_info->trans_lock);
1727 	}
1728 	spin_unlock(&root->fs_info->trans_lock);
1729 
1730 	btrfs_cleanup_one_transaction(trans->transaction, root);
1731 
1732 	spin_lock(&root->fs_info->trans_lock);
1733 	if (cur_trans == root->fs_info->running_transaction)
1734 		root->fs_info->running_transaction = NULL;
1735 	spin_unlock(&root->fs_info->trans_lock);
1736 
1737 	if (trans->type & __TRANS_FREEZABLE)
1738 		sb_end_intwrite(root->fs_info->sb);
1739 	btrfs_put_transaction(cur_trans);
1740 	btrfs_put_transaction(cur_trans);
1741 
1742 	trace_btrfs_transaction_commit(root);
1743 
1744 	if (current->journal_info == trans)
1745 		current->journal_info = NULL;
1746 	btrfs_scrub_cancel(root->fs_info);
1747 
1748 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1749 }
1750 
1751 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1752 {
1753 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1754 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1755 	return 0;
1756 }
1757 
1758 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1759 {
1760 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1761 		btrfs_wait_ordered_roots(fs_info, -1);
1762 }
1763 
1764 static inline void
1765 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1766 			   struct btrfs_fs_info *fs_info)
1767 {
1768 	struct btrfs_ordered_extent *ordered;
1769 
1770 	spin_lock(&fs_info->trans_lock);
1771 	while (!list_empty(&cur_trans->pending_ordered)) {
1772 		ordered = list_first_entry(&cur_trans->pending_ordered,
1773 					   struct btrfs_ordered_extent,
1774 					   trans_list);
1775 		list_del_init(&ordered->trans_list);
1776 		spin_unlock(&fs_info->trans_lock);
1777 
1778 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1779 						   &ordered->flags));
1780 		btrfs_put_ordered_extent(ordered);
1781 		spin_lock(&fs_info->trans_lock);
1782 	}
1783 	spin_unlock(&fs_info->trans_lock);
1784 }
1785 
1786 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1787 			     struct btrfs_root *root)
1788 {
1789 	struct btrfs_transaction *cur_trans = trans->transaction;
1790 	struct btrfs_transaction *prev_trans = NULL;
1791 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1792 	int ret;
1793 
1794 	/* Stop the commit early if ->aborted is set */
1795 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1796 		ret = cur_trans->aborted;
1797 		btrfs_end_transaction(trans, root);
1798 		return ret;
1799 	}
1800 
1801 	/* make a pass through all the delayed refs we have so far
1802 	 * any runnings procs may add more while we are here
1803 	 */
1804 	ret = btrfs_run_delayed_refs(trans, root, 0);
1805 	if (ret) {
1806 		btrfs_end_transaction(trans, root);
1807 		return ret;
1808 	}
1809 
1810 	btrfs_trans_release_metadata(trans, root);
1811 	trans->block_rsv = NULL;
1812 	if (trans->qgroup_reserved) {
1813 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1814 		trans->qgroup_reserved = 0;
1815 	}
1816 
1817 	cur_trans = trans->transaction;
1818 
1819 	/*
1820 	 * set the flushing flag so procs in this transaction have to
1821 	 * start sending their work down.
1822 	 */
1823 	cur_trans->delayed_refs.flushing = 1;
1824 	smp_wmb();
1825 
1826 	if (!list_empty(&trans->new_bgs))
1827 		btrfs_create_pending_block_groups(trans, root);
1828 
1829 	ret = btrfs_run_delayed_refs(trans, root, 0);
1830 	if (ret) {
1831 		btrfs_end_transaction(trans, root);
1832 		return ret;
1833 	}
1834 
1835 	if (!cur_trans->dirty_bg_run) {
1836 		int run_it = 0;
1837 
1838 		/* this mutex is also taken before trying to set
1839 		 * block groups readonly.  We need to make sure
1840 		 * that nobody has set a block group readonly
1841 		 * after a extents from that block group have been
1842 		 * allocated for cache files.  btrfs_set_block_group_ro
1843 		 * will wait for the transaction to commit if it
1844 		 * finds dirty_bg_run = 1
1845 		 *
1846 		 * The dirty_bg_run flag is also used to make sure only
1847 		 * one process starts all the block group IO.  It wouldn't
1848 		 * hurt to have more than one go through, but there's no
1849 		 * real advantage to it either.
1850 		 */
1851 		mutex_lock(&root->fs_info->ro_block_group_mutex);
1852 		if (!cur_trans->dirty_bg_run) {
1853 			run_it = 1;
1854 			cur_trans->dirty_bg_run = 1;
1855 		}
1856 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1857 
1858 		if (run_it)
1859 			ret = btrfs_start_dirty_block_groups(trans, root);
1860 	}
1861 	if (ret) {
1862 		btrfs_end_transaction(trans, root);
1863 		return ret;
1864 	}
1865 
1866 	spin_lock(&root->fs_info->trans_lock);
1867 	list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
1868 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1869 		spin_unlock(&root->fs_info->trans_lock);
1870 		atomic_inc(&cur_trans->use_count);
1871 		ret = btrfs_end_transaction(trans, root);
1872 
1873 		wait_for_commit(root, cur_trans);
1874 
1875 		if (unlikely(cur_trans->aborted))
1876 			ret = cur_trans->aborted;
1877 
1878 		btrfs_put_transaction(cur_trans);
1879 
1880 		return ret;
1881 	}
1882 
1883 	cur_trans->state = TRANS_STATE_COMMIT_START;
1884 	wake_up(&root->fs_info->transaction_blocked_wait);
1885 
1886 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1887 		prev_trans = list_entry(cur_trans->list.prev,
1888 					struct btrfs_transaction, list);
1889 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1890 			atomic_inc(&prev_trans->use_count);
1891 			spin_unlock(&root->fs_info->trans_lock);
1892 
1893 			wait_for_commit(root, prev_trans);
1894 			ret = prev_trans->aborted;
1895 
1896 			btrfs_put_transaction(prev_trans);
1897 			if (ret)
1898 				goto cleanup_transaction;
1899 		} else {
1900 			spin_unlock(&root->fs_info->trans_lock);
1901 		}
1902 	} else {
1903 		spin_unlock(&root->fs_info->trans_lock);
1904 	}
1905 
1906 	extwriter_counter_dec(cur_trans, trans->type);
1907 
1908 	ret = btrfs_start_delalloc_flush(root->fs_info);
1909 	if (ret)
1910 		goto cleanup_transaction;
1911 
1912 	ret = btrfs_run_delayed_items(trans, root);
1913 	if (ret)
1914 		goto cleanup_transaction;
1915 
1916 	wait_event(cur_trans->writer_wait,
1917 		   extwriter_counter_read(cur_trans) == 0);
1918 
1919 	/* some pending stuffs might be added after the previous flush. */
1920 	ret = btrfs_run_delayed_items(trans, root);
1921 	if (ret)
1922 		goto cleanup_transaction;
1923 
1924 	btrfs_wait_delalloc_flush(root->fs_info);
1925 
1926 	btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1927 
1928 	btrfs_scrub_pause(root);
1929 	/*
1930 	 * Ok now we need to make sure to block out any other joins while we
1931 	 * commit the transaction.  We could have started a join before setting
1932 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1933 	 */
1934 	spin_lock(&root->fs_info->trans_lock);
1935 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1936 	spin_unlock(&root->fs_info->trans_lock);
1937 	wait_event(cur_trans->writer_wait,
1938 		   atomic_read(&cur_trans->num_writers) == 1);
1939 
1940 	/* ->aborted might be set after the previous check, so check it */
1941 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1942 		ret = cur_trans->aborted;
1943 		goto scrub_continue;
1944 	}
1945 	/*
1946 	 * the reloc mutex makes sure that we stop
1947 	 * the balancing code from coming in and moving
1948 	 * extents around in the middle of the commit
1949 	 */
1950 	mutex_lock(&root->fs_info->reloc_mutex);
1951 
1952 	/*
1953 	 * We needn't worry about the delayed items because we will
1954 	 * deal with them in create_pending_snapshot(), which is the
1955 	 * core function of the snapshot creation.
1956 	 */
1957 	ret = create_pending_snapshots(trans, root->fs_info);
1958 	if (ret) {
1959 		mutex_unlock(&root->fs_info->reloc_mutex);
1960 		goto scrub_continue;
1961 	}
1962 
1963 	/*
1964 	 * We insert the dir indexes of the snapshots and update the inode
1965 	 * of the snapshots' parents after the snapshot creation, so there
1966 	 * are some delayed items which are not dealt with. Now deal with
1967 	 * them.
1968 	 *
1969 	 * We needn't worry that this operation will corrupt the snapshots,
1970 	 * because all the tree which are snapshoted will be forced to COW
1971 	 * the nodes and leaves.
1972 	 */
1973 	ret = btrfs_run_delayed_items(trans, root);
1974 	if (ret) {
1975 		mutex_unlock(&root->fs_info->reloc_mutex);
1976 		goto scrub_continue;
1977 	}
1978 
1979 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1980 	if (ret) {
1981 		mutex_unlock(&root->fs_info->reloc_mutex);
1982 		goto scrub_continue;
1983 	}
1984 
1985 	/* Reocrd old roots for later qgroup accounting */
1986 	ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
1987 	if (ret) {
1988 		mutex_unlock(&root->fs_info->reloc_mutex);
1989 		goto scrub_continue;
1990 	}
1991 
1992 	/*
1993 	 * make sure none of the code above managed to slip in a
1994 	 * delayed item
1995 	 */
1996 	btrfs_assert_delayed_root_empty(root);
1997 
1998 	WARN_ON(cur_trans != trans->transaction);
1999 
2000 	/* btrfs_commit_tree_roots is responsible for getting the
2001 	 * various roots consistent with each other.  Every pointer
2002 	 * in the tree of tree roots has to point to the most up to date
2003 	 * root for every subvolume and other tree.  So, we have to keep
2004 	 * the tree logging code from jumping in and changing any
2005 	 * of the trees.
2006 	 *
2007 	 * At this point in the commit, there can't be any tree-log
2008 	 * writers, but a little lower down we drop the trans mutex
2009 	 * and let new people in.  By holding the tree_log_mutex
2010 	 * from now until after the super is written, we avoid races
2011 	 * with the tree-log code.
2012 	 */
2013 	mutex_lock(&root->fs_info->tree_log_mutex);
2014 
2015 	ret = commit_fs_roots(trans, root);
2016 	if (ret) {
2017 		mutex_unlock(&root->fs_info->tree_log_mutex);
2018 		mutex_unlock(&root->fs_info->reloc_mutex);
2019 		goto scrub_continue;
2020 	}
2021 
2022 	/*
2023 	 * Since the transaction is done, we can apply the pending changes
2024 	 * before the next transaction.
2025 	 */
2026 	btrfs_apply_pending_changes(root->fs_info);
2027 
2028 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2029 	 * safe to free the root of tree log roots
2030 	 */
2031 	btrfs_free_log_root_tree(trans, root->fs_info);
2032 
2033 	/*
2034 	 * Since fs roots are all committed, we can get a quite accurate
2035 	 * new_roots. So let's do quota accounting.
2036 	 */
2037 	ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2038 	if (ret < 0) {
2039 		mutex_unlock(&root->fs_info->tree_log_mutex);
2040 		mutex_unlock(&root->fs_info->reloc_mutex);
2041 		goto scrub_continue;
2042 	}
2043 
2044 	ret = commit_cowonly_roots(trans, root);
2045 	if (ret) {
2046 		mutex_unlock(&root->fs_info->tree_log_mutex);
2047 		mutex_unlock(&root->fs_info->reloc_mutex);
2048 		goto scrub_continue;
2049 	}
2050 
2051 	/*
2052 	 * The tasks which save the space cache and inode cache may also
2053 	 * update ->aborted, check it.
2054 	 */
2055 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2056 		ret = cur_trans->aborted;
2057 		mutex_unlock(&root->fs_info->tree_log_mutex);
2058 		mutex_unlock(&root->fs_info->reloc_mutex);
2059 		goto scrub_continue;
2060 	}
2061 
2062 	btrfs_prepare_extent_commit(trans, root);
2063 
2064 	cur_trans = root->fs_info->running_transaction;
2065 
2066 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2067 			    root->fs_info->tree_root->node);
2068 	list_add_tail(&root->fs_info->tree_root->dirty_list,
2069 		      &cur_trans->switch_commits);
2070 
2071 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2072 			    root->fs_info->chunk_root->node);
2073 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2074 		      &cur_trans->switch_commits);
2075 
2076 	switch_commit_roots(cur_trans, root->fs_info);
2077 
2078 	assert_qgroups_uptodate(trans);
2079 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2080 	ASSERT(list_empty(&cur_trans->io_bgs));
2081 	update_super_roots(root);
2082 
2083 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2084 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2085 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2086 	       sizeof(*root->fs_info->super_copy));
2087 
2088 	btrfs_update_commit_device_size(root->fs_info);
2089 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2090 
2091 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2092 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2093 
2094 	btrfs_trans_release_chunk_metadata(trans);
2095 
2096 	spin_lock(&root->fs_info->trans_lock);
2097 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2098 	root->fs_info->running_transaction = NULL;
2099 	spin_unlock(&root->fs_info->trans_lock);
2100 	mutex_unlock(&root->fs_info->reloc_mutex);
2101 
2102 	wake_up(&root->fs_info->transaction_wait);
2103 
2104 	ret = btrfs_write_and_wait_transaction(trans, root);
2105 	if (ret) {
2106 		btrfs_error(root->fs_info, ret,
2107 			    "Error while writing out transaction");
2108 		mutex_unlock(&root->fs_info->tree_log_mutex);
2109 		goto scrub_continue;
2110 	}
2111 
2112 	ret = write_ctree_super(trans, root, 0);
2113 	if (ret) {
2114 		mutex_unlock(&root->fs_info->tree_log_mutex);
2115 		goto scrub_continue;
2116 	}
2117 
2118 	/*
2119 	 * the super is written, we can safely allow the tree-loggers
2120 	 * to go about their business
2121 	 */
2122 	mutex_unlock(&root->fs_info->tree_log_mutex);
2123 
2124 	btrfs_finish_extent_commit(trans, root);
2125 
2126 	if (cur_trans->have_free_bgs)
2127 		btrfs_clear_space_info_full(root->fs_info);
2128 
2129 	root->fs_info->last_trans_committed = cur_trans->transid;
2130 	/*
2131 	 * We needn't acquire the lock here because there is no other task
2132 	 * which can change it.
2133 	 */
2134 	cur_trans->state = TRANS_STATE_COMPLETED;
2135 	wake_up(&cur_trans->commit_wait);
2136 
2137 	spin_lock(&root->fs_info->trans_lock);
2138 	list_del_init(&cur_trans->list);
2139 	spin_unlock(&root->fs_info->trans_lock);
2140 
2141 	btrfs_put_transaction(cur_trans);
2142 	btrfs_put_transaction(cur_trans);
2143 
2144 	if (trans->type & __TRANS_FREEZABLE)
2145 		sb_end_intwrite(root->fs_info->sb);
2146 
2147 	trace_btrfs_transaction_commit(root);
2148 
2149 	btrfs_scrub_continue(root);
2150 
2151 	if (current->journal_info == trans)
2152 		current->journal_info = NULL;
2153 
2154 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2155 
2156 	if (current != root->fs_info->transaction_kthread &&
2157 	    current != root->fs_info->cleaner_kthread)
2158 		btrfs_run_delayed_iputs(root);
2159 
2160 	return ret;
2161 
2162 scrub_continue:
2163 	btrfs_scrub_continue(root);
2164 cleanup_transaction:
2165 	btrfs_trans_release_metadata(trans, root);
2166 	btrfs_trans_release_chunk_metadata(trans);
2167 	trans->block_rsv = NULL;
2168 	if (trans->qgroup_reserved) {
2169 		btrfs_qgroup_free(root, trans->qgroup_reserved);
2170 		trans->qgroup_reserved = 0;
2171 	}
2172 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2173 	if (current->journal_info == trans)
2174 		current->journal_info = NULL;
2175 	cleanup_transaction(trans, root, ret);
2176 
2177 	return ret;
2178 }
2179 
2180 /*
2181  * return < 0 if error
2182  * 0 if there are no more dead_roots at the time of call
2183  * 1 there are more to be processed, call me again
2184  *
2185  * The return value indicates there are certainly more snapshots to delete, but
2186  * if there comes a new one during processing, it may return 0. We don't mind,
2187  * because btrfs_commit_super will poke cleaner thread and it will process it a
2188  * few seconds later.
2189  */
2190 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2191 {
2192 	int ret;
2193 	struct btrfs_fs_info *fs_info = root->fs_info;
2194 
2195 	spin_lock(&fs_info->trans_lock);
2196 	if (list_empty(&fs_info->dead_roots)) {
2197 		spin_unlock(&fs_info->trans_lock);
2198 		return 0;
2199 	}
2200 	root = list_first_entry(&fs_info->dead_roots,
2201 			struct btrfs_root, root_list);
2202 	list_del_init(&root->root_list);
2203 	spin_unlock(&fs_info->trans_lock);
2204 
2205 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2206 
2207 	btrfs_kill_all_delayed_nodes(root);
2208 
2209 	if (btrfs_header_backref_rev(root->node) <
2210 			BTRFS_MIXED_BACKREF_REV)
2211 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2212 	else
2213 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2214 
2215 	return (ret < 0) ? 0 : 1;
2216 }
2217 
2218 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2219 {
2220 	unsigned long prev;
2221 	unsigned long bit;
2222 
2223 	prev = xchg(&fs_info->pending_changes, 0);
2224 	if (!prev)
2225 		return;
2226 
2227 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2228 	if (prev & bit)
2229 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2230 	prev &= ~bit;
2231 
2232 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2233 	if (prev & bit)
2234 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2235 	prev &= ~bit;
2236 
2237 	bit = 1 << BTRFS_PENDING_COMMIT;
2238 	if (prev & bit)
2239 		btrfs_debug(fs_info, "pending commit done");
2240 	prev &= ~bit;
2241 
2242 	if (prev)
2243 		btrfs_warn(fs_info,
2244 			"unknown pending changes left 0x%lx, ignoring", prev);
2245 }
2246