1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 #include "qgroup.h" 35 36 #define BTRFS_ROOT_TRANS_TAG 0 37 38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 39 [TRANS_STATE_RUNNING] = 0U, 40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | 41 __TRANS_START), 42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | 43 __TRANS_START | 44 __TRANS_ATTACH), 45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | 46 __TRANS_START | 47 __TRANS_ATTACH | 48 __TRANS_JOIN), 49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | 50 __TRANS_START | 51 __TRANS_ATTACH | 52 __TRANS_JOIN | 53 __TRANS_JOIN_NOLOCK), 54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | 55 __TRANS_START | 56 __TRANS_ATTACH | 57 __TRANS_JOIN | 58 __TRANS_JOIN_NOLOCK), 59 }; 60 61 void btrfs_put_transaction(struct btrfs_transaction *transaction) 62 { 63 WARN_ON(atomic_read(&transaction->use_count) == 0); 64 if (atomic_dec_and_test(&transaction->use_count)) { 65 BUG_ON(!list_empty(&transaction->list)); 66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 67 if (transaction->delayed_refs.pending_csums) 68 printk(KERN_ERR "pending csums is %llu\n", 69 transaction->delayed_refs.pending_csums); 70 while (!list_empty(&transaction->pending_chunks)) { 71 struct extent_map *em; 72 73 em = list_first_entry(&transaction->pending_chunks, 74 struct extent_map, list); 75 list_del_init(&em->list); 76 free_extent_map(em); 77 } 78 kmem_cache_free(btrfs_transaction_cachep, transaction); 79 } 80 } 81 82 static void clear_btree_io_tree(struct extent_io_tree *tree) 83 { 84 spin_lock(&tree->lock); 85 while (!RB_EMPTY_ROOT(&tree->state)) { 86 struct rb_node *node; 87 struct extent_state *state; 88 89 node = rb_first(&tree->state); 90 state = rb_entry(node, struct extent_state, rb_node); 91 rb_erase(&state->rb_node, &tree->state); 92 RB_CLEAR_NODE(&state->rb_node); 93 /* 94 * btree io trees aren't supposed to have tasks waiting for 95 * changes in the flags of extent states ever. 96 */ 97 ASSERT(!waitqueue_active(&state->wq)); 98 free_extent_state(state); 99 100 cond_resched_lock(&tree->lock); 101 } 102 spin_unlock(&tree->lock); 103 } 104 105 static noinline void switch_commit_roots(struct btrfs_transaction *trans, 106 struct btrfs_fs_info *fs_info) 107 { 108 struct btrfs_root *root, *tmp; 109 110 down_write(&fs_info->commit_root_sem); 111 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 112 dirty_list) { 113 list_del_init(&root->dirty_list); 114 free_extent_buffer(root->commit_root); 115 root->commit_root = btrfs_root_node(root); 116 if (is_fstree(root->objectid)) 117 btrfs_unpin_free_ino(root); 118 clear_btree_io_tree(&root->dirty_log_pages); 119 } 120 up_write(&fs_info->commit_root_sem); 121 } 122 123 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 124 unsigned int type) 125 { 126 if (type & TRANS_EXTWRITERS) 127 atomic_inc(&trans->num_extwriters); 128 } 129 130 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 131 unsigned int type) 132 { 133 if (type & TRANS_EXTWRITERS) 134 atomic_dec(&trans->num_extwriters); 135 } 136 137 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 138 unsigned int type) 139 { 140 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 141 } 142 143 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 144 { 145 return atomic_read(&trans->num_extwriters); 146 } 147 148 /* 149 * either allocate a new transaction or hop into the existing one 150 */ 151 static noinline int join_transaction(struct btrfs_root *root, unsigned int type) 152 { 153 struct btrfs_transaction *cur_trans; 154 struct btrfs_fs_info *fs_info = root->fs_info; 155 156 spin_lock(&fs_info->trans_lock); 157 loop: 158 /* The file system has been taken offline. No new transactions. */ 159 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 160 spin_unlock(&fs_info->trans_lock); 161 return -EROFS; 162 } 163 164 cur_trans = fs_info->running_transaction; 165 if (cur_trans) { 166 if (cur_trans->aborted) { 167 spin_unlock(&fs_info->trans_lock); 168 return cur_trans->aborted; 169 } 170 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 171 spin_unlock(&fs_info->trans_lock); 172 return -EBUSY; 173 } 174 atomic_inc(&cur_trans->use_count); 175 atomic_inc(&cur_trans->num_writers); 176 extwriter_counter_inc(cur_trans, type); 177 spin_unlock(&fs_info->trans_lock); 178 return 0; 179 } 180 spin_unlock(&fs_info->trans_lock); 181 182 /* 183 * If we are ATTACH, we just want to catch the current transaction, 184 * and commit it. If there is no transaction, just return ENOENT. 185 */ 186 if (type == TRANS_ATTACH) 187 return -ENOENT; 188 189 /* 190 * JOIN_NOLOCK only happens during the transaction commit, so 191 * it is impossible that ->running_transaction is NULL 192 */ 193 BUG_ON(type == TRANS_JOIN_NOLOCK); 194 195 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 196 if (!cur_trans) 197 return -ENOMEM; 198 199 spin_lock(&fs_info->trans_lock); 200 if (fs_info->running_transaction) { 201 /* 202 * someone started a transaction after we unlocked. Make sure 203 * to redo the checks above 204 */ 205 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 206 goto loop; 207 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 208 spin_unlock(&fs_info->trans_lock); 209 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 210 return -EROFS; 211 } 212 213 atomic_set(&cur_trans->num_writers, 1); 214 extwriter_counter_init(cur_trans, type); 215 init_waitqueue_head(&cur_trans->writer_wait); 216 init_waitqueue_head(&cur_trans->commit_wait); 217 cur_trans->state = TRANS_STATE_RUNNING; 218 /* 219 * One for this trans handle, one so it will live on until we 220 * commit the transaction. 221 */ 222 atomic_set(&cur_trans->use_count, 2); 223 cur_trans->have_free_bgs = 0; 224 cur_trans->start_time = get_seconds(); 225 cur_trans->dirty_bg_run = 0; 226 227 cur_trans->delayed_refs.href_root = RB_ROOT; 228 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 229 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 230 cur_trans->delayed_refs.num_heads_ready = 0; 231 cur_trans->delayed_refs.pending_csums = 0; 232 cur_trans->delayed_refs.num_heads = 0; 233 cur_trans->delayed_refs.flushing = 0; 234 cur_trans->delayed_refs.run_delayed_start = 0; 235 cur_trans->delayed_refs.qgroup_to_skip = 0; 236 237 /* 238 * although the tree mod log is per file system and not per transaction, 239 * the log must never go across transaction boundaries. 240 */ 241 smp_mb(); 242 if (!list_empty(&fs_info->tree_mod_seq_list)) 243 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when " 244 "creating a fresh transaction\n"); 245 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 246 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when " 247 "creating a fresh transaction\n"); 248 atomic64_set(&fs_info->tree_mod_seq, 0); 249 250 spin_lock_init(&cur_trans->delayed_refs.lock); 251 252 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 253 INIT_LIST_HEAD(&cur_trans->pending_chunks); 254 INIT_LIST_HEAD(&cur_trans->switch_commits); 255 INIT_LIST_HEAD(&cur_trans->pending_ordered); 256 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 257 INIT_LIST_HEAD(&cur_trans->io_bgs); 258 mutex_init(&cur_trans->cache_write_mutex); 259 cur_trans->num_dirty_bgs = 0; 260 spin_lock_init(&cur_trans->dirty_bgs_lock); 261 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 262 spin_lock_init(&cur_trans->deleted_bgs_lock); 263 list_add_tail(&cur_trans->list, &fs_info->trans_list); 264 extent_io_tree_init(&cur_trans->dirty_pages, 265 fs_info->btree_inode->i_mapping); 266 fs_info->generation++; 267 cur_trans->transid = fs_info->generation; 268 fs_info->running_transaction = cur_trans; 269 cur_trans->aborted = 0; 270 spin_unlock(&fs_info->trans_lock); 271 272 return 0; 273 } 274 275 /* 276 * this does all the record keeping required to make sure that a reference 277 * counted root is properly recorded in a given transaction. This is required 278 * to make sure the old root from before we joined the transaction is deleted 279 * when the transaction commits 280 */ 281 static int record_root_in_trans(struct btrfs_trans_handle *trans, 282 struct btrfs_root *root) 283 { 284 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 285 root->last_trans < trans->transid) { 286 WARN_ON(root == root->fs_info->extent_root); 287 WARN_ON(root->commit_root != root->node); 288 289 /* 290 * see below for IN_TRANS_SETUP usage rules 291 * we have the reloc mutex held now, so there 292 * is only one writer in this function 293 */ 294 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 295 296 /* make sure readers find IN_TRANS_SETUP before 297 * they find our root->last_trans update 298 */ 299 smp_wmb(); 300 301 spin_lock(&root->fs_info->fs_roots_radix_lock); 302 if (root->last_trans == trans->transid) { 303 spin_unlock(&root->fs_info->fs_roots_radix_lock); 304 return 0; 305 } 306 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 307 (unsigned long)root->root_key.objectid, 308 BTRFS_ROOT_TRANS_TAG); 309 spin_unlock(&root->fs_info->fs_roots_radix_lock); 310 root->last_trans = trans->transid; 311 312 /* this is pretty tricky. We don't want to 313 * take the relocation lock in btrfs_record_root_in_trans 314 * unless we're really doing the first setup for this root in 315 * this transaction. 316 * 317 * Normally we'd use root->last_trans as a flag to decide 318 * if we want to take the expensive mutex. 319 * 320 * But, we have to set root->last_trans before we 321 * init the relocation root, otherwise, we trip over warnings 322 * in ctree.c. The solution used here is to flag ourselves 323 * with root IN_TRANS_SETUP. When this is 1, we're still 324 * fixing up the reloc trees and everyone must wait. 325 * 326 * When this is zero, they can trust root->last_trans and fly 327 * through btrfs_record_root_in_trans without having to take the 328 * lock. smp_wmb() makes sure that all the writes above are 329 * done before we pop in the zero below 330 */ 331 btrfs_init_reloc_root(trans, root); 332 smp_mb__before_atomic(); 333 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 334 } 335 return 0; 336 } 337 338 339 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 340 struct btrfs_root *root) 341 { 342 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 343 return 0; 344 345 /* 346 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 347 * and barriers 348 */ 349 smp_rmb(); 350 if (root->last_trans == trans->transid && 351 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 352 return 0; 353 354 mutex_lock(&root->fs_info->reloc_mutex); 355 record_root_in_trans(trans, root); 356 mutex_unlock(&root->fs_info->reloc_mutex); 357 358 return 0; 359 } 360 361 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 362 { 363 return (trans->state >= TRANS_STATE_BLOCKED && 364 trans->state < TRANS_STATE_UNBLOCKED && 365 !trans->aborted); 366 } 367 368 /* wait for commit against the current transaction to become unblocked 369 * when this is done, it is safe to start a new transaction, but the current 370 * transaction might not be fully on disk. 371 */ 372 static void wait_current_trans(struct btrfs_root *root) 373 { 374 struct btrfs_transaction *cur_trans; 375 376 spin_lock(&root->fs_info->trans_lock); 377 cur_trans = root->fs_info->running_transaction; 378 if (cur_trans && is_transaction_blocked(cur_trans)) { 379 atomic_inc(&cur_trans->use_count); 380 spin_unlock(&root->fs_info->trans_lock); 381 382 wait_event(root->fs_info->transaction_wait, 383 cur_trans->state >= TRANS_STATE_UNBLOCKED || 384 cur_trans->aborted); 385 btrfs_put_transaction(cur_trans); 386 } else { 387 spin_unlock(&root->fs_info->trans_lock); 388 } 389 } 390 391 static int may_wait_transaction(struct btrfs_root *root, int type) 392 { 393 if (root->fs_info->log_root_recovering) 394 return 0; 395 396 if (type == TRANS_USERSPACE) 397 return 1; 398 399 if (type == TRANS_START && 400 !atomic_read(&root->fs_info->open_ioctl_trans)) 401 return 1; 402 403 return 0; 404 } 405 406 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 407 { 408 if (!root->fs_info->reloc_ctl || 409 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 410 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 411 root->reloc_root) 412 return false; 413 414 return true; 415 } 416 417 static struct btrfs_trans_handle * 418 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type, 419 enum btrfs_reserve_flush_enum flush) 420 { 421 struct btrfs_trans_handle *h; 422 struct btrfs_transaction *cur_trans; 423 u64 num_bytes = 0; 424 u64 qgroup_reserved = 0; 425 bool reloc_reserved = false; 426 int ret; 427 428 /* Send isn't supposed to start transactions. */ 429 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 430 431 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 432 return ERR_PTR(-EROFS); 433 434 if (current->journal_info) { 435 WARN_ON(type & TRANS_EXTWRITERS); 436 h = current->journal_info; 437 h->use_count++; 438 WARN_ON(h->use_count > 2); 439 h->orig_rsv = h->block_rsv; 440 h->block_rsv = NULL; 441 goto got_it; 442 } 443 444 /* 445 * Do the reservation before we join the transaction so we can do all 446 * the appropriate flushing if need be. 447 */ 448 if (num_items > 0 && root != root->fs_info->chunk_root) { 449 if (root->fs_info->quota_enabled && 450 is_fstree(root->root_key.objectid)) { 451 qgroup_reserved = num_items * root->nodesize; 452 ret = btrfs_qgroup_reserve(root, qgroup_reserved); 453 if (ret) 454 return ERR_PTR(ret); 455 } 456 457 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 458 /* 459 * Do the reservation for the relocation root creation 460 */ 461 if (need_reserve_reloc_root(root)) { 462 num_bytes += root->nodesize; 463 reloc_reserved = true; 464 } 465 466 ret = btrfs_block_rsv_add(root, 467 &root->fs_info->trans_block_rsv, 468 num_bytes, flush); 469 if (ret) 470 goto reserve_fail; 471 } 472 again: 473 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 474 if (!h) { 475 ret = -ENOMEM; 476 goto alloc_fail; 477 } 478 479 /* 480 * If we are JOIN_NOLOCK we're already committing a transaction and 481 * waiting on this guy, so we don't need to do the sb_start_intwrite 482 * because we're already holding a ref. We need this because we could 483 * have raced in and did an fsync() on a file which can kick a commit 484 * and then we deadlock with somebody doing a freeze. 485 * 486 * If we are ATTACH, it means we just want to catch the current 487 * transaction and commit it, so we needn't do sb_start_intwrite(). 488 */ 489 if (type & __TRANS_FREEZABLE) 490 sb_start_intwrite(root->fs_info->sb); 491 492 if (may_wait_transaction(root, type)) 493 wait_current_trans(root); 494 495 do { 496 ret = join_transaction(root, type); 497 if (ret == -EBUSY) { 498 wait_current_trans(root); 499 if (unlikely(type == TRANS_ATTACH)) 500 ret = -ENOENT; 501 } 502 } while (ret == -EBUSY); 503 504 if (ret < 0) { 505 /* We must get the transaction if we are JOIN_NOLOCK. */ 506 BUG_ON(type == TRANS_JOIN_NOLOCK); 507 goto join_fail; 508 } 509 510 cur_trans = root->fs_info->running_transaction; 511 512 h->transid = cur_trans->transid; 513 h->transaction = cur_trans; 514 h->blocks_used = 0; 515 h->bytes_reserved = 0; 516 h->chunk_bytes_reserved = 0; 517 h->root = root; 518 h->delayed_ref_updates = 0; 519 h->use_count = 1; 520 h->adding_csums = 0; 521 h->block_rsv = NULL; 522 h->orig_rsv = NULL; 523 h->aborted = 0; 524 h->qgroup_reserved = 0; 525 h->delayed_ref_elem.seq = 0; 526 h->type = type; 527 h->allocating_chunk = false; 528 h->reloc_reserved = false; 529 h->sync = false; 530 INIT_LIST_HEAD(&h->qgroup_ref_list); 531 INIT_LIST_HEAD(&h->new_bgs); 532 INIT_LIST_HEAD(&h->ordered); 533 534 smp_mb(); 535 if (cur_trans->state >= TRANS_STATE_BLOCKED && 536 may_wait_transaction(root, type)) { 537 current->journal_info = h; 538 btrfs_commit_transaction(h, root); 539 goto again; 540 } 541 542 if (num_bytes) { 543 trace_btrfs_space_reservation(root->fs_info, "transaction", 544 h->transid, num_bytes, 1); 545 h->block_rsv = &root->fs_info->trans_block_rsv; 546 h->bytes_reserved = num_bytes; 547 h->reloc_reserved = reloc_reserved; 548 } 549 h->qgroup_reserved = qgroup_reserved; 550 551 got_it: 552 btrfs_record_root_in_trans(h, root); 553 554 if (!current->journal_info && type != TRANS_USERSPACE) 555 current->journal_info = h; 556 return h; 557 558 join_fail: 559 if (type & __TRANS_FREEZABLE) 560 sb_end_intwrite(root->fs_info->sb); 561 kmem_cache_free(btrfs_trans_handle_cachep, h); 562 alloc_fail: 563 if (num_bytes) 564 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 565 num_bytes); 566 reserve_fail: 567 if (qgroup_reserved) 568 btrfs_qgroup_free(root, qgroup_reserved); 569 return ERR_PTR(ret); 570 } 571 572 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 573 int num_items) 574 { 575 return start_transaction(root, num_items, TRANS_START, 576 BTRFS_RESERVE_FLUSH_ALL); 577 } 578 579 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 580 struct btrfs_root *root, int num_items) 581 { 582 return start_transaction(root, num_items, TRANS_START, 583 BTRFS_RESERVE_FLUSH_LIMIT); 584 } 585 586 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 587 { 588 return start_transaction(root, 0, TRANS_JOIN, 0); 589 } 590 591 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 592 { 593 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 594 } 595 596 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 597 { 598 return start_transaction(root, 0, TRANS_USERSPACE, 0); 599 } 600 601 /* 602 * btrfs_attach_transaction() - catch the running transaction 603 * 604 * It is used when we want to commit the current the transaction, but 605 * don't want to start a new one. 606 * 607 * Note: If this function return -ENOENT, it just means there is no 608 * running transaction. But it is possible that the inactive transaction 609 * is still in the memory, not fully on disk. If you hope there is no 610 * inactive transaction in the fs when -ENOENT is returned, you should 611 * invoke 612 * btrfs_attach_transaction_barrier() 613 */ 614 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 615 { 616 return start_transaction(root, 0, TRANS_ATTACH, 0); 617 } 618 619 /* 620 * btrfs_attach_transaction_barrier() - catch the running transaction 621 * 622 * It is similar to the above function, the differentia is this one 623 * will wait for all the inactive transactions until they fully 624 * complete. 625 */ 626 struct btrfs_trans_handle * 627 btrfs_attach_transaction_barrier(struct btrfs_root *root) 628 { 629 struct btrfs_trans_handle *trans; 630 631 trans = start_transaction(root, 0, TRANS_ATTACH, 0); 632 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 633 btrfs_wait_for_commit(root, 0); 634 635 return trans; 636 } 637 638 /* wait for a transaction commit to be fully complete */ 639 static noinline void wait_for_commit(struct btrfs_root *root, 640 struct btrfs_transaction *commit) 641 { 642 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 643 } 644 645 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 646 { 647 struct btrfs_transaction *cur_trans = NULL, *t; 648 int ret = 0; 649 650 if (transid) { 651 if (transid <= root->fs_info->last_trans_committed) 652 goto out; 653 654 /* find specified transaction */ 655 spin_lock(&root->fs_info->trans_lock); 656 list_for_each_entry(t, &root->fs_info->trans_list, list) { 657 if (t->transid == transid) { 658 cur_trans = t; 659 atomic_inc(&cur_trans->use_count); 660 ret = 0; 661 break; 662 } 663 if (t->transid > transid) { 664 ret = 0; 665 break; 666 } 667 } 668 spin_unlock(&root->fs_info->trans_lock); 669 670 /* 671 * The specified transaction doesn't exist, or we 672 * raced with btrfs_commit_transaction 673 */ 674 if (!cur_trans) { 675 if (transid > root->fs_info->last_trans_committed) 676 ret = -EINVAL; 677 goto out; 678 } 679 } else { 680 /* find newest transaction that is committing | committed */ 681 spin_lock(&root->fs_info->trans_lock); 682 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 683 list) { 684 if (t->state >= TRANS_STATE_COMMIT_START) { 685 if (t->state == TRANS_STATE_COMPLETED) 686 break; 687 cur_trans = t; 688 atomic_inc(&cur_trans->use_count); 689 break; 690 } 691 } 692 spin_unlock(&root->fs_info->trans_lock); 693 if (!cur_trans) 694 goto out; /* nothing committing|committed */ 695 } 696 697 wait_for_commit(root, cur_trans); 698 btrfs_put_transaction(cur_trans); 699 out: 700 return ret; 701 } 702 703 void btrfs_throttle(struct btrfs_root *root) 704 { 705 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 706 wait_current_trans(root); 707 } 708 709 static int should_end_transaction(struct btrfs_trans_handle *trans, 710 struct btrfs_root *root) 711 { 712 if (root->fs_info->global_block_rsv.space_info->full && 713 btrfs_check_space_for_delayed_refs(trans, root)) 714 return 1; 715 716 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 717 } 718 719 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 720 struct btrfs_root *root) 721 { 722 struct btrfs_transaction *cur_trans = trans->transaction; 723 int updates; 724 int err; 725 726 smp_mb(); 727 if (cur_trans->state >= TRANS_STATE_BLOCKED || 728 cur_trans->delayed_refs.flushing) 729 return 1; 730 731 updates = trans->delayed_ref_updates; 732 trans->delayed_ref_updates = 0; 733 if (updates) { 734 err = btrfs_run_delayed_refs(trans, root, updates * 2); 735 if (err) /* Error code will also eval true */ 736 return err; 737 } 738 739 return should_end_transaction(trans, root); 740 } 741 742 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 743 struct btrfs_root *root, int throttle) 744 { 745 struct btrfs_transaction *cur_trans = trans->transaction; 746 struct btrfs_fs_info *info = root->fs_info; 747 unsigned long cur = trans->delayed_ref_updates; 748 int lock = (trans->type != TRANS_JOIN_NOLOCK); 749 int err = 0; 750 int must_run_delayed_refs = 0; 751 752 if (trans->use_count > 1) { 753 trans->use_count--; 754 trans->block_rsv = trans->orig_rsv; 755 return 0; 756 } 757 758 btrfs_trans_release_metadata(trans, root); 759 trans->block_rsv = NULL; 760 761 if (!list_empty(&trans->new_bgs)) 762 btrfs_create_pending_block_groups(trans, root); 763 764 if (!list_empty(&trans->ordered)) { 765 spin_lock(&info->trans_lock); 766 list_splice_init(&trans->ordered, &cur_trans->pending_ordered); 767 spin_unlock(&info->trans_lock); 768 } 769 770 trans->delayed_ref_updates = 0; 771 if (!trans->sync) { 772 must_run_delayed_refs = 773 btrfs_should_throttle_delayed_refs(trans, root); 774 cur = max_t(unsigned long, cur, 32); 775 776 /* 777 * don't make the caller wait if they are from a NOLOCK 778 * or ATTACH transaction, it will deadlock with commit 779 */ 780 if (must_run_delayed_refs == 1 && 781 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 782 must_run_delayed_refs = 2; 783 } 784 785 if (trans->qgroup_reserved) { 786 /* 787 * the same root has to be passed here between start_transaction 788 * and end_transaction. Subvolume quota depends on this. 789 */ 790 btrfs_qgroup_free(trans->root, trans->qgroup_reserved); 791 trans->qgroup_reserved = 0; 792 } 793 794 btrfs_trans_release_metadata(trans, root); 795 trans->block_rsv = NULL; 796 797 if (!list_empty(&trans->new_bgs)) 798 btrfs_create_pending_block_groups(trans, root); 799 800 btrfs_trans_release_chunk_metadata(trans); 801 802 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 803 should_end_transaction(trans, root) && 804 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 805 spin_lock(&info->trans_lock); 806 if (cur_trans->state == TRANS_STATE_RUNNING) 807 cur_trans->state = TRANS_STATE_BLOCKED; 808 spin_unlock(&info->trans_lock); 809 } 810 811 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 812 if (throttle) 813 return btrfs_commit_transaction(trans, root); 814 else 815 wake_up_process(info->transaction_kthread); 816 } 817 818 if (trans->type & __TRANS_FREEZABLE) 819 sb_end_intwrite(root->fs_info->sb); 820 821 WARN_ON(cur_trans != info->running_transaction); 822 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 823 atomic_dec(&cur_trans->num_writers); 824 extwriter_counter_dec(cur_trans, trans->type); 825 826 smp_mb(); 827 if (waitqueue_active(&cur_trans->writer_wait)) 828 wake_up(&cur_trans->writer_wait); 829 btrfs_put_transaction(cur_trans); 830 831 if (current->journal_info == trans) 832 current->journal_info = NULL; 833 834 if (throttle) 835 btrfs_run_delayed_iputs(root); 836 837 if (trans->aborted || 838 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 839 wake_up_process(info->transaction_kthread); 840 err = -EIO; 841 } 842 assert_qgroups_uptodate(trans); 843 844 kmem_cache_free(btrfs_trans_handle_cachep, trans); 845 if (must_run_delayed_refs) { 846 btrfs_async_run_delayed_refs(root, cur, 847 must_run_delayed_refs == 1); 848 } 849 return err; 850 } 851 852 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 853 struct btrfs_root *root) 854 { 855 return __btrfs_end_transaction(trans, root, 0); 856 } 857 858 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 859 struct btrfs_root *root) 860 { 861 return __btrfs_end_transaction(trans, root, 1); 862 } 863 864 /* 865 * when btree blocks are allocated, they have some corresponding bits set for 866 * them in one of two extent_io trees. This is used to make sure all of 867 * those extents are sent to disk but does not wait on them 868 */ 869 int btrfs_write_marked_extents(struct btrfs_root *root, 870 struct extent_io_tree *dirty_pages, int mark) 871 { 872 int err = 0; 873 int werr = 0; 874 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 875 struct extent_state *cached_state = NULL; 876 u64 start = 0; 877 u64 end; 878 879 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 880 mark, &cached_state)) { 881 bool wait_writeback = false; 882 883 err = convert_extent_bit(dirty_pages, start, end, 884 EXTENT_NEED_WAIT, 885 mark, &cached_state, GFP_NOFS); 886 /* 887 * convert_extent_bit can return -ENOMEM, which is most of the 888 * time a temporary error. So when it happens, ignore the error 889 * and wait for writeback of this range to finish - because we 890 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 891 * to btrfs_wait_marked_extents() would not know that writeback 892 * for this range started and therefore wouldn't wait for it to 893 * finish - we don't want to commit a superblock that points to 894 * btree nodes/leafs for which writeback hasn't finished yet 895 * (and without errors). 896 * We cleanup any entries left in the io tree when committing 897 * the transaction (through clear_btree_io_tree()). 898 */ 899 if (err == -ENOMEM) { 900 err = 0; 901 wait_writeback = true; 902 } 903 if (!err) 904 err = filemap_fdatawrite_range(mapping, start, end); 905 if (err) 906 werr = err; 907 else if (wait_writeback) 908 werr = filemap_fdatawait_range(mapping, start, end); 909 free_extent_state(cached_state); 910 cached_state = NULL; 911 cond_resched(); 912 start = end + 1; 913 } 914 return werr; 915 } 916 917 /* 918 * when btree blocks are allocated, they have some corresponding bits set for 919 * them in one of two extent_io trees. This is used to make sure all of 920 * those extents are on disk for transaction or log commit. We wait 921 * on all the pages and clear them from the dirty pages state tree 922 */ 923 int btrfs_wait_marked_extents(struct btrfs_root *root, 924 struct extent_io_tree *dirty_pages, int mark) 925 { 926 int err = 0; 927 int werr = 0; 928 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 929 struct extent_state *cached_state = NULL; 930 u64 start = 0; 931 u64 end; 932 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 933 bool errors = false; 934 935 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 936 EXTENT_NEED_WAIT, &cached_state)) { 937 /* 938 * Ignore -ENOMEM errors returned by clear_extent_bit(). 939 * When committing the transaction, we'll remove any entries 940 * left in the io tree. For a log commit, we don't remove them 941 * after committing the log because the tree can be accessed 942 * concurrently - we do it only at transaction commit time when 943 * it's safe to do it (through clear_btree_io_tree()). 944 */ 945 err = clear_extent_bit(dirty_pages, start, end, 946 EXTENT_NEED_WAIT, 947 0, 0, &cached_state, GFP_NOFS); 948 if (err == -ENOMEM) 949 err = 0; 950 if (!err) 951 err = filemap_fdatawait_range(mapping, start, end); 952 if (err) 953 werr = err; 954 free_extent_state(cached_state); 955 cached_state = NULL; 956 cond_resched(); 957 start = end + 1; 958 } 959 if (err) 960 werr = err; 961 962 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 963 if ((mark & EXTENT_DIRTY) && 964 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, 965 &btree_ino->runtime_flags)) 966 errors = true; 967 968 if ((mark & EXTENT_NEW) && 969 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, 970 &btree_ino->runtime_flags)) 971 errors = true; 972 } else { 973 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR, 974 &btree_ino->runtime_flags)) 975 errors = true; 976 } 977 978 if (errors && !werr) 979 werr = -EIO; 980 981 return werr; 982 } 983 984 /* 985 * when btree blocks are allocated, they have some corresponding bits set for 986 * them in one of two extent_io trees. This is used to make sure all of 987 * those extents are on disk for transaction or log commit 988 */ 989 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 990 struct extent_io_tree *dirty_pages, int mark) 991 { 992 int ret; 993 int ret2; 994 struct blk_plug plug; 995 996 blk_start_plug(&plug); 997 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 998 blk_finish_plug(&plug); 999 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 1000 1001 if (ret) 1002 return ret; 1003 if (ret2) 1004 return ret2; 1005 return 0; 1006 } 1007 1008 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 1009 struct btrfs_root *root) 1010 { 1011 int ret; 1012 1013 ret = btrfs_write_and_wait_marked_extents(root, 1014 &trans->transaction->dirty_pages, 1015 EXTENT_DIRTY); 1016 clear_btree_io_tree(&trans->transaction->dirty_pages); 1017 1018 return ret; 1019 } 1020 1021 /* 1022 * this is used to update the root pointer in the tree of tree roots. 1023 * 1024 * But, in the case of the extent allocation tree, updating the root 1025 * pointer may allocate blocks which may change the root of the extent 1026 * allocation tree. 1027 * 1028 * So, this loops and repeats and makes sure the cowonly root didn't 1029 * change while the root pointer was being updated in the metadata. 1030 */ 1031 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1032 struct btrfs_root *root) 1033 { 1034 int ret; 1035 u64 old_root_bytenr; 1036 u64 old_root_used; 1037 struct btrfs_root *tree_root = root->fs_info->tree_root; 1038 1039 old_root_used = btrfs_root_used(&root->root_item); 1040 1041 while (1) { 1042 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1043 if (old_root_bytenr == root->node->start && 1044 old_root_used == btrfs_root_used(&root->root_item)) 1045 break; 1046 1047 btrfs_set_root_node(&root->root_item, root->node); 1048 ret = btrfs_update_root(trans, tree_root, 1049 &root->root_key, 1050 &root->root_item); 1051 if (ret) 1052 return ret; 1053 1054 old_root_used = btrfs_root_used(&root->root_item); 1055 } 1056 1057 return 0; 1058 } 1059 1060 /* 1061 * update all the cowonly tree roots on disk 1062 * 1063 * The error handling in this function may not be obvious. Any of the 1064 * failures will cause the file system to go offline. We still need 1065 * to clean up the delayed refs. 1066 */ 1067 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 1068 struct btrfs_root *root) 1069 { 1070 struct btrfs_fs_info *fs_info = root->fs_info; 1071 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1072 struct list_head *io_bgs = &trans->transaction->io_bgs; 1073 struct list_head *next; 1074 struct extent_buffer *eb; 1075 int ret; 1076 1077 eb = btrfs_lock_root_node(fs_info->tree_root); 1078 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1079 0, &eb); 1080 btrfs_tree_unlock(eb); 1081 free_extent_buffer(eb); 1082 1083 if (ret) 1084 return ret; 1085 1086 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1087 if (ret) 1088 return ret; 1089 1090 ret = btrfs_run_dev_stats(trans, root->fs_info); 1091 if (ret) 1092 return ret; 1093 ret = btrfs_run_dev_replace(trans, root->fs_info); 1094 if (ret) 1095 return ret; 1096 ret = btrfs_run_qgroups(trans, root->fs_info); 1097 if (ret) 1098 return ret; 1099 1100 ret = btrfs_setup_space_cache(trans, root); 1101 if (ret) 1102 return ret; 1103 1104 /* run_qgroups might have added some more refs */ 1105 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1106 if (ret) 1107 return ret; 1108 again: 1109 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1110 next = fs_info->dirty_cowonly_roots.next; 1111 list_del_init(next); 1112 root = list_entry(next, struct btrfs_root, dirty_list); 1113 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1114 1115 if (root != fs_info->extent_root) 1116 list_add_tail(&root->dirty_list, 1117 &trans->transaction->switch_commits); 1118 ret = update_cowonly_root(trans, root); 1119 if (ret) 1120 return ret; 1121 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1122 if (ret) 1123 return ret; 1124 } 1125 1126 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1127 ret = btrfs_write_dirty_block_groups(trans, root); 1128 if (ret) 1129 return ret; 1130 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1131 if (ret) 1132 return ret; 1133 } 1134 1135 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1136 goto again; 1137 1138 list_add_tail(&fs_info->extent_root->dirty_list, 1139 &trans->transaction->switch_commits); 1140 btrfs_after_dev_replace_commit(fs_info); 1141 1142 return 0; 1143 } 1144 1145 /* 1146 * dead roots are old snapshots that need to be deleted. This allocates 1147 * a dirty root struct and adds it into the list of dead roots that need to 1148 * be deleted 1149 */ 1150 void btrfs_add_dead_root(struct btrfs_root *root) 1151 { 1152 spin_lock(&root->fs_info->trans_lock); 1153 if (list_empty(&root->root_list)) 1154 list_add_tail(&root->root_list, &root->fs_info->dead_roots); 1155 spin_unlock(&root->fs_info->trans_lock); 1156 } 1157 1158 /* 1159 * update all the cowonly tree roots on disk 1160 */ 1161 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 1162 struct btrfs_root *root) 1163 { 1164 struct btrfs_root *gang[8]; 1165 struct btrfs_fs_info *fs_info = root->fs_info; 1166 int i; 1167 int ret; 1168 int err = 0; 1169 1170 spin_lock(&fs_info->fs_roots_radix_lock); 1171 while (1) { 1172 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1173 (void **)gang, 0, 1174 ARRAY_SIZE(gang), 1175 BTRFS_ROOT_TRANS_TAG); 1176 if (ret == 0) 1177 break; 1178 for (i = 0; i < ret; i++) { 1179 root = gang[i]; 1180 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1181 (unsigned long)root->root_key.objectid, 1182 BTRFS_ROOT_TRANS_TAG); 1183 spin_unlock(&fs_info->fs_roots_radix_lock); 1184 1185 btrfs_free_log(trans, root); 1186 btrfs_update_reloc_root(trans, root); 1187 btrfs_orphan_commit_root(trans, root); 1188 1189 btrfs_save_ino_cache(root, trans); 1190 1191 /* see comments in should_cow_block() */ 1192 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1193 smp_mb__after_atomic(); 1194 1195 if (root->commit_root != root->node) { 1196 list_add_tail(&root->dirty_list, 1197 &trans->transaction->switch_commits); 1198 btrfs_set_root_node(&root->root_item, 1199 root->node); 1200 } 1201 1202 err = btrfs_update_root(trans, fs_info->tree_root, 1203 &root->root_key, 1204 &root->root_item); 1205 spin_lock(&fs_info->fs_roots_radix_lock); 1206 if (err) 1207 break; 1208 } 1209 } 1210 spin_unlock(&fs_info->fs_roots_radix_lock); 1211 return err; 1212 } 1213 1214 /* 1215 * defrag a given btree. 1216 * Every leaf in the btree is read and defragged. 1217 */ 1218 int btrfs_defrag_root(struct btrfs_root *root) 1219 { 1220 struct btrfs_fs_info *info = root->fs_info; 1221 struct btrfs_trans_handle *trans; 1222 int ret; 1223 1224 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1225 return 0; 1226 1227 while (1) { 1228 trans = btrfs_start_transaction(root, 0); 1229 if (IS_ERR(trans)) 1230 return PTR_ERR(trans); 1231 1232 ret = btrfs_defrag_leaves(trans, root); 1233 1234 btrfs_end_transaction(trans, root); 1235 btrfs_btree_balance_dirty(info->tree_root); 1236 cond_resched(); 1237 1238 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 1239 break; 1240 1241 if (btrfs_defrag_cancelled(root->fs_info)) { 1242 pr_debug("BTRFS: defrag_root cancelled\n"); 1243 ret = -EAGAIN; 1244 break; 1245 } 1246 } 1247 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1248 return ret; 1249 } 1250 1251 /* 1252 * new snapshots need to be created at a very specific time in the 1253 * transaction commit. This does the actual creation. 1254 * 1255 * Note: 1256 * If the error which may affect the commitment of the current transaction 1257 * happens, we should return the error number. If the error which just affect 1258 * the creation of the pending snapshots, just return 0. 1259 */ 1260 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1261 struct btrfs_fs_info *fs_info, 1262 struct btrfs_pending_snapshot *pending) 1263 { 1264 struct btrfs_key key; 1265 struct btrfs_root_item *new_root_item; 1266 struct btrfs_root *tree_root = fs_info->tree_root; 1267 struct btrfs_root *root = pending->root; 1268 struct btrfs_root *parent_root; 1269 struct btrfs_block_rsv *rsv; 1270 struct inode *parent_inode; 1271 struct btrfs_path *path; 1272 struct btrfs_dir_item *dir_item; 1273 struct dentry *dentry; 1274 struct extent_buffer *tmp; 1275 struct extent_buffer *old; 1276 struct timespec cur_time = CURRENT_TIME; 1277 int ret = 0; 1278 u64 to_reserve = 0; 1279 u64 index = 0; 1280 u64 objectid; 1281 u64 root_flags; 1282 uuid_le new_uuid; 1283 1284 path = btrfs_alloc_path(); 1285 if (!path) { 1286 pending->error = -ENOMEM; 1287 return 0; 1288 } 1289 1290 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1291 if (!new_root_item) { 1292 pending->error = -ENOMEM; 1293 goto root_item_alloc_fail; 1294 } 1295 1296 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1297 if (pending->error) 1298 goto no_free_objectid; 1299 1300 /* 1301 * Make qgroup to skip current new snapshot's qgroupid, as it is 1302 * accounted by later btrfs_qgroup_inherit(). 1303 */ 1304 btrfs_set_skip_qgroup(trans, objectid); 1305 1306 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1307 1308 if (to_reserve > 0) { 1309 pending->error = btrfs_block_rsv_add(root, 1310 &pending->block_rsv, 1311 to_reserve, 1312 BTRFS_RESERVE_NO_FLUSH); 1313 if (pending->error) 1314 goto clear_skip_qgroup; 1315 } 1316 1317 key.objectid = objectid; 1318 key.offset = (u64)-1; 1319 key.type = BTRFS_ROOT_ITEM_KEY; 1320 1321 rsv = trans->block_rsv; 1322 trans->block_rsv = &pending->block_rsv; 1323 trans->bytes_reserved = trans->block_rsv->reserved; 1324 1325 dentry = pending->dentry; 1326 parent_inode = pending->dir; 1327 parent_root = BTRFS_I(parent_inode)->root; 1328 record_root_in_trans(trans, parent_root); 1329 1330 /* 1331 * insert the directory item 1332 */ 1333 ret = btrfs_set_inode_index(parent_inode, &index); 1334 BUG_ON(ret); /* -ENOMEM */ 1335 1336 /* check if there is a file/dir which has the same name. */ 1337 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1338 btrfs_ino(parent_inode), 1339 dentry->d_name.name, 1340 dentry->d_name.len, 0); 1341 if (dir_item != NULL && !IS_ERR(dir_item)) { 1342 pending->error = -EEXIST; 1343 goto dir_item_existed; 1344 } else if (IS_ERR(dir_item)) { 1345 ret = PTR_ERR(dir_item); 1346 btrfs_abort_transaction(trans, root, ret); 1347 goto fail; 1348 } 1349 btrfs_release_path(path); 1350 1351 /* 1352 * pull in the delayed directory update 1353 * and the delayed inode item 1354 * otherwise we corrupt the FS during 1355 * snapshot 1356 */ 1357 ret = btrfs_run_delayed_items(trans, root); 1358 if (ret) { /* Transaction aborted */ 1359 btrfs_abort_transaction(trans, root, ret); 1360 goto fail; 1361 } 1362 1363 record_root_in_trans(trans, root); 1364 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1365 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1366 btrfs_check_and_init_root_item(new_root_item); 1367 1368 root_flags = btrfs_root_flags(new_root_item); 1369 if (pending->readonly) 1370 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1371 else 1372 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1373 btrfs_set_root_flags(new_root_item, root_flags); 1374 1375 btrfs_set_root_generation_v2(new_root_item, 1376 trans->transid); 1377 uuid_le_gen(&new_uuid); 1378 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1379 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1380 BTRFS_UUID_SIZE); 1381 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1382 memset(new_root_item->received_uuid, 0, 1383 sizeof(new_root_item->received_uuid)); 1384 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1385 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1386 btrfs_set_root_stransid(new_root_item, 0); 1387 btrfs_set_root_rtransid(new_root_item, 0); 1388 } 1389 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1390 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1391 btrfs_set_root_otransid(new_root_item, trans->transid); 1392 1393 old = btrfs_lock_root_node(root); 1394 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1395 if (ret) { 1396 btrfs_tree_unlock(old); 1397 free_extent_buffer(old); 1398 btrfs_abort_transaction(trans, root, ret); 1399 goto fail; 1400 } 1401 1402 btrfs_set_lock_blocking(old); 1403 1404 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1405 /* clean up in any case */ 1406 btrfs_tree_unlock(old); 1407 free_extent_buffer(old); 1408 if (ret) { 1409 btrfs_abort_transaction(trans, root, ret); 1410 goto fail; 1411 } 1412 /* see comments in should_cow_block() */ 1413 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1414 smp_wmb(); 1415 1416 btrfs_set_root_node(new_root_item, tmp); 1417 /* record when the snapshot was created in key.offset */ 1418 key.offset = trans->transid; 1419 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1420 btrfs_tree_unlock(tmp); 1421 free_extent_buffer(tmp); 1422 if (ret) { 1423 btrfs_abort_transaction(trans, root, ret); 1424 goto fail; 1425 } 1426 1427 /* 1428 * insert root back/forward references 1429 */ 1430 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1431 parent_root->root_key.objectid, 1432 btrfs_ino(parent_inode), index, 1433 dentry->d_name.name, dentry->d_name.len); 1434 if (ret) { 1435 btrfs_abort_transaction(trans, root, ret); 1436 goto fail; 1437 } 1438 1439 key.offset = (u64)-1; 1440 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1441 if (IS_ERR(pending->snap)) { 1442 ret = PTR_ERR(pending->snap); 1443 btrfs_abort_transaction(trans, root, ret); 1444 goto fail; 1445 } 1446 1447 ret = btrfs_reloc_post_snapshot(trans, pending); 1448 if (ret) { 1449 btrfs_abort_transaction(trans, root, ret); 1450 goto fail; 1451 } 1452 1453 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1454 if (ret) { 1455 btrfs_abort_transaction(trans, root, ret); 1456 goto fail; 1457 } 1458 1459 ret = btrfs_insert_dir_item(trans, parent_root, 1460 dentry->d_name.name, dentry->d_name.len, 1461 parent_inode, &key, 1462 BTRFS_FT_DIR, index); 1463 /* We have check then name at the beginning, so it is impossible. */ 1464 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1465 if (ret) { 1466 btrfs_abort_transaction(trans, root, ret); 1467 goto fail; 1468 } 1469 1470 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1471 dentry->d_name.len * 2); 1472 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1473 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1474 if (ret) { 1475 btrfs_abort_transaction(trans, root, ret); 1476 goto fail; 1477 } 1478 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b, 1479 BTRFS_UUID_KEY_SUBVOL, objectid); 1480 if (ret) { 1481 btrfs_abort_transaction(trans, root, ret); 1482 goto fail; 1483 } 1484 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1485 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 1486 new_root_item->received_uuid, 1487 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1488 objectid); 1489 if (ret && ret != -EEXIST) { 1490 btrfs_abort_transaction(trans, root, ret); 1491 goto fail; 1492 } 1493 } 1494 1495 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1496 if (ret) { 1497 btrfs_abort_transaction(trans, root, ret); 1498 goto fail; 1499 } 1500 1501 /* 1502 * account qgroup counters before qgroup_inherit() 1503 */ 1504 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info); 1505 if (ret) 1506 goto fail; 1507 ret = btrfs_qgroup_account_extents(trans, fs_info); 1508 if (ret) 1509 goto fail; 1510 ret = btrfs_qgroup_inherit(trans, fs_info, 1511 root->root_key.objectid, 1512 objectid, pending->inherit); 1513 if (ret) { 1514 btrfs_abort_transaction(trans, root, ret); 1515 goto fail; 1516 } 1517 1518 fail: 1519 pending->error = ret; 1520 dir_item_existed: 1521 trans->block_rsv = rsv; 1522 trans->bytes_reserved = 0; 1523 clear_skip_qgroup: 1524 btrfs_clear_skip_qgroup(trans); 1525 no_free_objectid: 1526 kfree(new_root_item); 1527 root_item_alloc_fail: 1528 btrfs_free_path(path); 1529 return ret; 1530 } 1531 1532 /* 1533 * create all the snapshots we've scheduled for creation 1534 */ 1535 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1536 struct btrfs_fs_info *fs_info) 1537 { 1538 struct btrfs_pending_snapshot *pending, *next; 1539 struct list_head *head = &trans->transaction->pending_snapshots; 1540 int ret = 0; 1541 1542 list_for_each_entry_safe(pending, next, head, list) { 1543 list_del(&pending->list); 1544 ret = create_pending_snapshot(trans, fs_info, pending); 1545 if (ret) 1546 break; 1547 } 1548 return ret; 1549 } 1550 1551 static void update_super_roots(struct btrfs_root *root) 1552 { 1553 struct btrfs_root_item *root_item; 1554 struct btrfs_super_block *super; 1555 1556 super = root->fs_info->super_copy; 1557 1558 root_item = &root->fs_info->chunk_root->root_item; 1559 super->chunk_root = root_item->bytenr; 1560 super->chunk_root_generation = root_item->generation; 1561 super->chunk_root_level = root_item->level; 1562 1563 root_item = &root->fs_info->tree_root->root_item; 1564 super->root = root_item->bytenr; 1565 super->generation = root_item->generation; 1566 super->root_level = root_item->level; 1567 if (btrfs_test_opt(root, SPACE_CACHE)) 1568 super->cache_generation = root_item->generation; 1569 if (root->fs_info->update_uuid_tree_gen) 1570 super->uuid_tree_generation = root_item->generation; 1571 } 1572 1573 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1574 { 1575 struct btrfs_transaction *trans; 1576 int ret = 0; 1577 1578 spin_lock(&info->trans_lock); 1579 trans = info->running_transaction; 1580 if (trans) 1581 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1582 spin_unlock(&info->trans_lock); 1583 return ret; 1584 } 1585 1586 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1587 { 1588 struct btrfs_transaction *trans; 1589 int ret = 0; 1590 1591 spin_lock(&info->trans_lock); 1592 trans = info->running_transaction; 1593 if (trans) 1594 ret = is_transaction_blocked(trans); 1595 spin_unlock(&info->trans_lock); 1596 return ret; 1597 } 1598 1599 /* 1600 * wait for the current transaction commit to start and block subsequent 1601 * transaction joins 1602 */ 1603 static void wait_current_trans_commit_start(struct btrfs_root *root, 1604 struct btrfs_transaction *trans) 1605 { 1606 wait_event(root->fs_info->transaction_blocked_wait, 1607 trans->state >= TRANS_STATE_COMMIT_START || 1608 trans->aborted); 1609 } 1610 1611 /* 1612 * wait for the current transaction to start and then become unblocked. 1613 * caller holds ref. 1614 */ 1615 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1616 struct btrfs_transaction *trans) 1617 { 1618 wait_event(root->fs_info->transaction_wait, 1619 trans->state >= TRANS_STATE_UNBLOCKED || 1620 trans->aborted); 1621 } 1622 1623 /* 1624 * commit transactions asynchronously. once btrfs_commit_transaction_async 1625 * returns, any subsequent transaction will not be allowed to join. 1626 */ 1627 struct btrfs_async_commit { 1628 struct btrfs_trans_handle *newtrans; 1629 struct btrfs_root *root; 1630 struct work_struct work; 1631 }; 1632 1633 static void do_async_commit(struct work_struct *work) 1634 { 1635 struct btrfs_async_commit *ac = 1636 container_of(work, struct btrfs_async_commit, work); 1637 1638 /* 1639 * We've got freeze protection passed with the transaction. 1640 * Tell lockdep about it. 1641 */ 1642 if (ac->newtrans->type & __TRANS_FREEZABLE) 1643 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS); 1644 1645 current->journal_info = ac->newtrans; 1646 1647 btrfs_commit_transaction(ac->newtrans, ac->root); 1648 kfree(ac); 1649 } 1650 1651 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1652 struct btrfs_root *root, 1653 int wait_for_unblock) 1654 { 1655 struct btrfs_async_commit *ac; 1656 struct btrfs_transaction *cur_trans; 1657 1658 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1659 if (!ac) 1660 return -ENOMEM; 1661 1662 INIT_WORK(&ac->work, do_async_commit); 1663 ac->root = root; 1664 ac->newtrans = btrfs_join_transaction(root); 1665 if (IS_ERR(ac->newtrans)) { 1666 int err = PTR_ERR(ac->newtrans); 1667 kfree(ac); 1668 return err; 1669 } 1670 1671 /* take transaction reference */ 1672 cur_trans = trans->transaction; 1673 atomic_inc(&cur_trans->use_count); 1674 1675 btrfs_end_transaction(trans, root); 1676 1677 /* 1678 * Tell lockdep we've released the freeze rwsem, since the 1679 * async commit thread will be the one to unlock it. 1680 */ 1681 if (ac->newtrans->type & __TRANS_FREEZABLE) 1682 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS); 1683 1684 schedule_work(&ac->work); 1685 1686 /* wait for transaction to start and unblock */ 1687 if (wait_for_unblock) 1688 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1689 else 1690 wait_current_trans_commit_start(root, cur_trans); 1691 1692 if (current->journal_info == trans) 1693 current->journal_info = NULL; 1694 1695 btrfs_put_transaction(cur_trans); 1696 return 0; 1697 } 1698 1699 1700 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1701 struct btrfs_root *root, int err) 1702 { 1703 struct btrfs_transaction *cur_trans = trans->transaction; 1704 DEFINE_WAIT(wait); 1705 1706 WARN_ON(trans->use_count > 1); 1707 1708 btrfs_abort_transaction(trans, root, err); 1709 1710 spin_lock(&root->fs_info->trans_lock); 1711 1712 /* 1713 * If the transaction is removed from the list, it means this 1714 * transaction has been committed successfully, so it is impossible 1715 * to call the cleanup function. 1716 */ 1717 BUG_ON(list_empty(&cur_trans->list)); 1718 1719 list_del_init(&cur_trans->list); 1720 if (cur_trans == root->fs_info->running_transaction) { 1721 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1722 spin_unlock(&root->fs_info->trans_lock); 1723 wait_event(cur_trans->writer_wait, 1724 atomic_read(&cur_trans->num_writers) == 1); 1725 1726 spin_lock(&root->fs_info->trans_lock); 1727 } 1728 spin_unlock(&root->fs_info->trans_lock); 1729 1730 btrfs_cleanup_one_transaction(trans->transaction, root); 1731 1732 spin_lock(&root->fs_info->trans_lock); 1733 if (cur_trans == root->fs_info->running_transaction) 1734 root->fs_info->running_transaction = NULL; 1735 spin_unlock(&root->fs_info->trans_lock); 1736 1737 if (trans->type & __TRANS_FREEZABLE) 1738 sb_end_intwrite(root->fs_info->sb); 1739 btrfs_put_transaction(cur_trans); 1740 btrfs_put_transaction(cur_trans); 1741 1742 trace_btrfs_transaction_commit(root); 1743 1744 if (current->journal_info == trans) 1745 current->journal_info = NULL; 1746 btrfs_scrub_cancel(root->fs_info); 1747 1748 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1749 } 1750 1751 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1752 { 1753 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1754 return btrfs_start_delalloc_roots(fs_info, 1, -1); 1755 return 0; 1756 } 1757 1758 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1759 { 1760 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1761 btrfs_wait_ordered_roots(fs_info, -1); 1762 } 1763 1764 static inline void 1765 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans, 1766 struct btrfs_fs_info *fs_info) 1767 { 1768 struct btrfs_ordered_extent *ordered; 1769 1770 spin_lock(&fs_info->trans_lock); 1771 while (!list_empty(&cur_trans->pending_ordered)) { 1772 ordered = list_first_entry(&cur_trans->pending_ordered, 1773 struct btrfs_ordered_extent, 1774 trans_list); 1775 list_del_init(&ordered->trans_list); 1776 spin_unlock(&fs_info->trans_lock); 1777 1778 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE, 1779 &ordered->flags)); 1780 btrfs_put_ordered_extent(ordered); 1781 spin_lock(&fs_info->trans_lock); 1782 } 1783 spin_unlock(&fs_info->trans_lock); 1784 } 1785 1786 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1787 struct btrfs_root *root) 1788 { 1789 struct btrfs_transaction *cur_trans = trans->transaction; 1790 struct btrfs_transaction *prev_trans = NULL; 1791 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 1792 int ret; 1793 1794 /* Stop the commit early if ->aborted is set */ 1795 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1796 ret = cur_trans->aborted; 1797 btrfs_end_transaction(trans, root); 1798 return ret; 1799 } 1800 1801 /* make a pass through all the delayed refs we have so far 1802 * any runnings procs may add more while we are here 1803 */ 1804 ret = btrfs_run_delayed_refs(trans, root, 0); 1805 if (ret) { 1806 btrfs_end_transaction(trans, root); 1807 return ret; 1808 } 1809 1810 btrfs_trans_release_metadata(trans, root); 1811 trans->block_rsv = NULL; 1812 if (trans->qgroup_reserved) { 1813 btrfs_qgroup_free(root, trans->qgroup_reserved); 1814 trans->qgroup_reserved = 0; 1815 } 1816 1817 cur_trans = trans->transaction; 1818 1819 /* 1820 * set the flushing flag so procs in this transaction have to 1821 * start sending their work down. 1822 */ 1823 cur_trans->delayed_refs.flushing = 1; 1824 smp_wmb(); 1825 1826 if (!list_empty(&trans->new_bgs)) 1827 btrfs_create_pending_block_groups(trans, root); 1828 1829 ret = btrfs_run_delayed_refs(trans, root, 0); 1830 if (ret) { 1831 btrfs_end_transaction(trans, root); 1832 return ret; 1833 } 1834 1835 if (!cur_trans->dirty_bg_run) { 1836 int run_it = 0; 1837 1838 /* this mutex is also taken before trying to set 1839 * block groups readonly. We need to make sure 1840 * that nobody has set a block group readonly 1841 * after a extents from that block group have been 1842 * allocated for cache files. btrfs_set_block_group_ro 1843 * will wait for the transaction to commit if it 1844 * finds dirty_bg_run = 1 1845 * 1846 * The dirty_bg_run flag is also used to make sure only 1847 * one process starts all the block group IO. It wouldn't 1848 * hurt to have more than one go through, but there's no 1849 * real advantage to it either. 1850 */ 1851 mutex_lock(&root->fs_info->ro_block_group_mutex); 1852 if (!cur_trans->dirty_bg_run) { 1853 run_it = 1; 1854 cur_trans->dirty_bg_run = 1; 1855 } 1856 mutex_unlock(&root->fs_info->ro_block_group_mutex); 1857 1858 if (run_it) 1859 ret = btrfs_start_dirty_block_groups(trans, root); 1860 } 1861 if (ret) { 1862 btrfs_end_transaction(trans, root); 1863 return ret; 1864 } 1865 1866 spin_lock(&root->fs_info->trans_lock); 1867 list_splice_init(&trans->ordered, &cur_trans->pending_ordered); 1868 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1869 spin_unlock(&root->fs_info->trans_lock); 1870 atomic_inc(&cur_trans->use_count); 1871 ret = btrfs_end_transaction(trans, root); 1872 1873 wait_for_commit(root, cur_trans); 1874 1875 if (unlikely(cur_trans->aborted)) 1876 ret = cur_trans->aborted; 1877 1878 btrfs_put_transaction(cur_trans); 1879 1880 return ret; 1881 } 1882 1883 cur_trans->state = TRANS_STATE_COMMIT_START; 1884 wake_up(&root->fs_info->transaction_blocked_wait); 1885 1886 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1887 prev_trans = list_entry(cur_trans->list.prev, 1888 struct btrfs_transaction, list); 1889 if (prev_trans->state != TRANS_STATE_COMPLETED) { 1890 atomic_inc(&prev_trans->use_count); 1891 spin_unlock(&root->fs_info->trans_lock); 1892 1893 wait_for_commit(root, prev_trans); 1894 ret = prev_trans->aborted; 1895 1896 btrfs_put_transaction(prev_trans); 1897 if (ret) 1898 goto cleanup_transaction; 1899 } else { 1900 spin_unlock(&root->fs_info->trans_lock); 1901 } 1902 } else { 1903 spin_unlock(&root->fs_info->trans_lock); 1904 } 1905 1906 extwriter_counter_dec(cur_trans, trans->type); 1907 1908 ret = btrfs_start_delalloc_flush(root->fs_info); 1909 if (ret) 1910 goto cleanup_transaction; 1911 1912 ret = btrfs_run_delayed_items(trans, root); 1913 if (ret) 1914 goto cleanup_transaction; 1915 1916 wait_event(cur_trans->writer_wait, 1917 extwriter_counter_read(cur_trans) == 0); 1918 1919 /* some pending stuffs might be added after the previous flush. */ 1920 ret = btrfs_run_delayed_items(trans, root); 1921 if (ret) 1922 goto cleanup_transaction; 1923 1924 btrfs_wait_delalloc_flush(root->fs_info); 1925 1926 btrfs_wait_pending_ordered(cur_trans, root->fs_info); 1927 1928 btrfs_scrub_pause(root); 1929 /* 1930 * Ok now we need to make sure to block out any other joins while we 1931 * commit the transaction. We could have started a join before setting 1932 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 1933 */ 1934 spin_lock(&root->fs_info->trans_lock); 1935 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1936 spin_unlock(&root->fs_info->trans_lock); 1937 wait_event(cur_trans->writer_wait, 1938 atomic_read(&cur_trans->num_writers) == 1); 1939 1940 /* ->aborted might be set after the previous check, so check it */ 1941 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1942 ret = cur_trans->aborted; 1943 goto scrub_continue; 1944 } 1945 /* 1946 * the reloc mutex makes sure that we stop 1947 * the balancing code from coming in and moving 1948 * extents around in the middle of the commit 1949 */ 1950 mutex_lock(&root->fs_info->reloc_mutex); 1951 1952 /* 1953 * We needn't worry about the delayed items because we will 1954 * deal with them in create_pending_snapshot(), which is the 1955 * core function of the snapshot creation. 1956 */ 1957 ret = create_pending_snapshots(trans, root->fs_info); 1958 if (ret) { 1959 mutex_unlock(&root->fs_info->reloc_mutex); 1960 goto scrub_continue; 1961 } 1962 1963 /* 1964 * We insert the dir indexes of the snapshots and update the inode 1965 * of the snapshots' parents after the snapshot creation, so there 1966 * are some delayed items which are not dealt with. Now deal with 1967 * them. 1968 * 1969 * We needn't worry that this operation will corrupt the snapshots, 1970 * because all the tree which are snapshoted will be forced to COW 1971 * the nodes and leaves. 1972 */ 1973 ret = btrfs_run_delayed_items(trans, root); 1974 if (ret) { 1975 mutex_unlock(&root->fs_info->reloc_mutex); 1976 goto scrub_continue; 1977 } 1978 1979 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1980 if (ret) { 1981 mutex_unlock(&root->fs_info->reloc_mutex); 1982 goto scrub_continue; 1983 } 1984 1985 /* Reocrd old roots for later qgroup accounting */ 1986 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info); 1987 if (ret) { 1988 mutex_unlock(&root->fs_info->reloc_mutex); 1989 goto scrub_continue; 1990 } 1991 1992 /* 1993 * make sure none of the code above managed to slip in a 1994 * delayed item 1995 */ 1996 btrfs_assert_delayed_root_empty(root); 1997 1998 WARN_ON(cur_trans != trans->transaction); 1999 2000 /* btrfs_commit_tree_roots is responsible for getting the 2001 * various roots consistent with each other. Every pointer 2002 * in the tree of tree roots has to point to the most up to date 2003 * root for every subvolume and other tree. So, we have to keep 2004 * the tree logging code from jumping in and changing any 2005 * of the trees. 2006 * 2007 * At this point in the commit, there can't be any tree-log 2008 * writers, but a little lower down we drop the trans mutex 2009 * and let new people in. By holding the tree_log_mutex 2010 * from now until after the super is written, we avoid races 2011 * with the tree-log code. 2012 */ 2013 mutex_lock(&root->fs_info->tree_log_mutex); 2014 2015 ret = commit_fs_roots(trans, root); 2016 if (ret) { 2017 mutex_unlock(&root->fs_info->tree_log_mutex); 2018 mutex_unlock(&root->fs_info->reloc_mutex); 2019 goto scrub_continue; 2020 } 2021 2022 /* 2023 * Since the transaction is done, we can apply the pending changes 2024 * before the next transaction. 2025 */ 2026 btrfs_apply_pending_changes(root->fs_info); 2027 2028 /* commit_fs_roots gets rid of all the tree log roots, it is now 2029 * safe to free the root of tree log roots 2030 */ 2031 btrfs_free_log_root_tree(trans, root->fs_info); 2032 2033 /* 2034 * Since fs roots are all committed, we can get a quite accurate 2035 * new_roots. So let's do quota accounting. 2036 */ 2037 ret = btrfs_qgroup_account_extents(trans, root->fs_info); 2038 if (ret < 0) { 2039 mutex_unlock(&root->fs_info->tree_log_mutex); 2040 mutex_unlock(&root->fs_info->reloc_mutex); 2041 goto scrub_continue; 2042 } 2043 2044 ret = commit_cowonly_roots(trans, root); 2045 if (ret) { 2046 mutex_unlock(&root->fs_info->tree_log_mutex); 2047 mutex_unlock(&root->fs_info->reloc_mutex); 2048 goto scrub_continue; 2049 } 2050 2051 /* 2052 * The tasks which save the space cache and inode cache may also 2053 * update ->aborted, check it. 2054 */ 2055 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 2056 ret = cur_trans->aborted; 2057 mutex_unlock(&root->fs_info->tree_log_mutex); 2058 mutex_unlock(&root->fs_info->reloc_mutex); 2059 goto scrub_continue; 2060 } 2061 2062 btrfs_prepare_extent_commit(trans, root); 2063 2064 cur_trans = root->fs_info->running_transaction; 2065 2066 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 2067 root->fs_info->tree_root->node); 2068 list_add_tail(&root->fs_info->tree_root->dirty_list, 2069 &cur_trans->switch_commits); 2070 2071 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 2072 root->fs_info->chunk_root->node); 2073 list_add_tail(&root->fs_info->chunk_root->dirty_list, 2074 &cur_trans->switch_commits); 2075 2076 switch_commit_roots(cur_trans, root->fs_info); 2077 2078 assert_qgroups_uptodate(trans); 2079 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2080 ASSERT(list_empty(&cur_trans->io_bgs)); 2081 update_super_roots(root); 2082 2083 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 2084 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 2085 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 2086 sizeof(*root->fs_info->super_copy)); 2087 2088 btrfs_update_commit_device_size(root->fs_info); 2089 btrfs_update_commit_device_bytes_used(root, cur_trans); 2090 2091 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 2092 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 2093 2094 btrfs_trans_release_chunk_metadata(trans); 2095 2096 spin_lock(&root->fs_info->trans_lock); 2097 cur_trans->state = TRANS_STATE_UNBLOCKED; 2098 root->fs_info->running_transaction = NULL; 2099 spin_unlock(&root->fs_info->trans_lock); 2100 mutex_unlock(&root->fs_info->reloc_mutex); 2101 2102 wake_up(&root->fs_info->transaction_wait); 2103 2104 ret = btrfs_write_and_wait_transaction(trans, root); 2105 if (ret) { 2106 btrfs_error(root->fs_info, ret, 2107 "Error while writing out transaction"); 2108 mutex_unlock(&root->fs_info->tree_log_mutex); 2109 goto scrub_continue; 2110 } 2111 2112 ret = write_ctree_super(trans, root, 0); 2113 if (ret) { 2114 mutex_unlock(&root->fs_info->tree_log_mutex); 2115 goto scrub_continue; 2116 } 2117 2118 /* 2119 * the super is written, we can safely allow the tree-loggers 2120 * to go about their business 2121 */ 2122 mutex_unlock(&root->fs_info->tree_log_mutex); 2123 2124 btrfs_finish_extent_commit(trans, root); 2125 2126 if (cur_trans->have_free_bgs) 2127 btrfs_clear_space_info_full(root->fs_info); 2128 2129 root->fs_info->last_trans_committed = cur_trans->transid; 2130 /* 2131 * We needn't acquire the lock here because there is no other task 2132 * which can change it. 2133 */ 2134 cur_trans->state = TRANS_STATE_COMPLETED; 2135 wake_up(&cur_trans->commit_wait); 2136 2137 spin_lock(&root->fs_info->trans_lock); 2138 list_del_init(&cur_trans->list); 2139 spin_unlock(&root->fs_info->trans_lock); 2140 2141 btrfs_put_transaction(cur_trans); 2142 btrfs_put_transaction(cur_trans); 2143 2144 if (trans->type & __TRANS_FREEZABLE) 2145 sb_end_intwrite(root->fs_info->sb); 2146 2147 trace_btrfs_transaction_commit(root); 2148 2149 btrfs_scrub_continue(root); 2150 2151 if (current->journal_info == trans) 2152 current->journal_info = NULL; 2153 2154 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2155 2156 if (current != root->fs_info->transaction_kthread && 2157 current != root->fs_info->cleaner_kthread) 2158 btrfs_run_delayed_iputs(root); 2159 2160 return ret; 2161 2162 scrub_continue: 2163 btrfs_scrub_continue(root); 2164 cleanup_transaction: 2165 btrfs_trans_release_metadata(trans, root); 2166 btrfs_trans_release_chunk_metadata(trans); 2167 trans->block_rsv = NULL; 2168 if (trans->qgroup_reserved) { 2169 btrfs_qgroup_free(root, trans->qgroup_reserved); 2170 trans->qgroup_reserved = 0; 2171 } 2172 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction."); 2173 if (current->journal_info == trans) 2174 current->journal_info = NULL; 2175 cleanup_transaction(trans, root, ret); 2176 2177 return ret; 2178 } 2179 2180 /* 2181 * return < 0 if error 2182 * 0 if there are no more dead_roots at the time of call 2183 * 1 there are more to be processed, call me again 2184 * 2185 * The return value indicates there are certainly more snapshots to delete, but 2186 * if there comes a new one during processing, it may return 0. We don't mind, 2187 * because btrfs_commit_super will poke cleaner thread and it will process it a 2188 * few seconds later. 2189 */ 2190 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2191 { 2192 int ret; 2193 struct btrfs_fs_info *fs_info = root->fs_info; 2194 2195 spin_lock(&fs_info->trans_lock); 2196 if (list_empty(&fs_info->dead_roots)) { 2197 spin_unlock(&fs_info->trans_lock); 2198 return 0; 2199 } 2200 root = list_first_entry(&fs_info->dead_roots, 2201 struct btrfs_root, root_list); 2202 list_del_init(&root->root_list); 2203 spin_unlock(&fs_info->trans_lock); 2204 2205 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid); 2206 2207 btrfs_kill_all_delayed_nodes(root); 2208 2209 if (btrfs_header_backref_rev(root->node) < 2210 BTRFS_MIXED_BACKREF_REV) 2211 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2212 else 2213 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2214 2215 return (ret < 0) ? 0 : 1; 2216 } 2217 2218 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2219 { 2220 unsigned long prev; 2221 unsigned long bit; 2222 2223 prev = xchg(&fs_info->pending_changes, 0); 2224 if (!prev) 2225 return; 2226 2227 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2228 if (prev & bit) 2229 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2230 prev &= ~bit; 2231 2232 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2233 if (prev & bit) 2234 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2235 prev &= ~bit; 2236 2237 bit = 1 << BTRFS_PENDING_COMMIT; 2238 if (prev & bit) 2239 btrfs_debug(fs_info, "pending commit done"); 2240 prev &= ~bit; 2241 2242 if (prev) 2243 btrfs_warn(fs_info, 2244 "unknown pending changes left 0x%lx, ignoring", prev); 2245 } 2246