xref: /openbmc/linux/fs/btrfs/transaction.c (revision 11073886)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "zoned.h"
27 #include "fs.h"
28 #include "accessors.h"
29 #include "extent-tree.h"
30 #include "root-tree.h"
31 #include "defrag.h"
32 #include "dir-item.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37 
38 static struct kmem_cache *btrfs_trans_handle_cachep;
39 
40 #define BTRFS_ROOT_TRANS_TAG 0
41 
42 /*
43  * Transaction states and transitions
44  *
45  * No running transaction (fs tree blocks are not modified)
46  * |
47  * | To next stage:
48  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
49  * V
50  * Transaction N [[TRANS_STATE_RUNNING]]
51  * |
52  * | New trans handles can be attached to transaction N by calling all
53  * | start_transaction() variants.
54  * |
55  * | To next stage:
56  * |  Call btrfs_commit_transaction() on any trans handle attached to
57  * |  transaction N
58  * V
59  * Transaction N [[TRANS_STATE_COMMIT_START]]
60  * |
61  * | Will wait for previous running transaction to completely finish if there
62  * | is one
63  * |
64  * | Then one of the following happes:
65  * | - Wait for all other trans handle holders to release.
66  * |   The btrfs_commit_transaction() caller will do the commit work.
67  * | - Wait for current transaction to be committed by others.
68  * |   Other btrfs_commit_transaction() caller will do the commit work.
69  * |
70  * | At this stage, only btrfs_join_transaction*() variants can attach
71  * | to this running transaction.
72  * | All other variants will wait for current one to finish and attach to
73  * | transaction N+1.
74  * |
75  * | To next stage:
76  * |  Caller is chosen to commit transaction N, and all other trans handle
77  * |  haven been released.
78  * V
79  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
80  * |
81  * | The heavy lifting transaction work is started.
82  * | From running delayed refs (modifying extent tree) to creating pending
83  * | snapshots, running qgroups.
84  * | In short, modify supporting trees to reflect modifications of subvolume
85  * | trees.
86  * |
87  * | At this stage, all start_transaction() calls will wait for this
88  * | transaction to finish and attach to transaction N+1.
89  * |
90  * | To next stage:
91  * |  Until all supporting trees are updated.
92  * V
93  * Transaction N [[TRANS_STATE_UNBLOCKED]]
94  * |						    Transaction N+1
95  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
96  * | need to write them back to disk and update	    |
97  * | super blocks.				    |
98  * |						    |
99  * | At this stage, new transaction is allowed to   |
100  * | start.					    |
101  * | All new start_transaction() calls will be	    |
102  * | attached to transid N+1.			    |
103  * |						    |
104  * | To next stage:				    |
105  * |  Until all tree blocks are super blocks are    |
106  * |  written to block devices			    |
107  * V						    |
108  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
109  *   All tree blocks and super blocks are written.  Transaction N+1
110  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
111  *   data structures will be cleaned up.	    | Life goes on
112  */
113 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
114 	[TRANS_STATE_RUNNING]		= 0U,
115 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
116 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
117 					   __TRANS_ATTACH |
118 					   __TRANS_JOIN |
119 					   __TRANS_JOIN_NOSTART),
120 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
121 					   __TRANS_ATTACH |
122 					   __TRANS_JOIN |
123 					   __TRANS_JOIN_NOLOCK |
124 					   __TRANS_JOIN_NOSTART),
125 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
126 					   __TRANS_ATTACH |
127 					   __TRANS_JOIN |
128 					   __TRANS_JOIN_NOLOCK |
129 					   __TRANS_JOIN_NOSTART),
130 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
131 					   __TRANS_ATTACH |
132 					   __TRANS_JOIN |
133 					   __TRANS_JOIN_NOLOCK |
134 					   __TRANS_JOIN_NOSTART),
135 };
136 
137 void btrfs_put_transaction(struct btrfs_transaction *transaction)
138 {
139 	WARN_ON(refcount_read(&transaction->use_count) == 0);
140 	if (refcount_dec_and_test(&transaction->use_count)) {
141 		BUG_ON(!list_empty(&transaction->list));
142 		WARN_ON(!RB_EMPTY_ROOT(
143 				&transaction->delayed_refs.href_root.rb_root));
144 		WARN_ON(!RB_EMPTY_ROOT(
145 				&transaction->delayed_refs.dirty_extent_root));
146 		if (transaction->delayed_refs.pending_csums)
147 			btrfs_err(transaction->fs_info,
148 				  "pending csums is %llu",
149 				  transaction->delayed_refs.pending_csums);
150 		/*
151 		 * If any block groups are found in ->deleted_bgs then it's
152 		 * because the transaction was aborted and a commit did not
153 		 * happen (things failed before writing the new superblock
154 		 * and calling btrfs_finish_extent_commit()), so we can not
155 		 * discard the physical locations of the block groups.
156 		 */
157 		while (!list_empty(&transaction->deleted_bgs)) {
158 			struct btrfs_block_group *cache;
159 
160 			cache = list_first_entry(&transaction->deleted_bgs,
161 						 struct btrfs_block_group,
162 						 bg_list);
163 			list_del_init(&cache->bg_list);
164 			btrfs_unfreeze_block_group(cache);
165 			btrfs_put_block_group(cache);
166 		}
167 		WARN_ON(!list_empty(&transaction->dev_update_list));
168 		kfree(transaction);
169 	}
170 }
171 
172 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
173 {
174 	struct btrfs_transaction *cur_trans = trans->transaction;
175 	struct btrfs_fs_info *fs_info = trans->fs_info;
176 	struct btrfs_root *root, *tmp;
177 
178 	/*
179 	 * At this point no one can be using this transaction to modify any tree
180 	 * and no one can start another transaction to modify any tree either.
181 	 */
182 	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
183 
184 	down_write(&fs_info->commit_root_sem);
185 
186 	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
187 		fs_info->last_reloc_trans = trans->transid;
188 
189 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
190 				 dirty_list) {
191 		list_del_init(&root->dirty_list);
192 		free_extent_buffer(root->commit_root);
193 		root->commit_root = btrfs_root_node(root);
194 		extent_io_tree_release(&root->dirty_log_pages);
195 		btrfs_qgroup_clean_swapped_blocks(root);
196 	}
197 
198 	/* We can free old roots now. */
199 	spin_lock(&cur_trans->dropped_roots_lock);
200 	while (!list_empty(&cur_trans->dropped_roots)) {
201 		root = list_first_entry(&cur_trans->dropped_roots,
202 					struct btrfs_root, root_list);
203 		list_del_init(&root->root_list);
204 		spin_unlock(&cur_trans->dropped_roots_lock);
205 		btrfs_free_log(trans, root);
206 		btrfs_drop_and_free_fs_root(fs_info, root);
207 		spin_lock(&cur_trans->dropped_roots_lock);
208 	}
209 	spin_unlock(&cur_trans->dropped_roots_lock);
210 
211 	up_write(&fs_info->commit_root_sem);
212 }
213 
214 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
215 					 unsigned int type)
216 {
217 	if (type & TRANS_EXTWRITERS)
218 		atomic_inc(&trans->num_extwriters);
219 }
220 
221 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
222 					 unsigned int type)
223 {
224 	if (type & TRANS_EXTWRITERS)
225 		atomic_dec(&trans->num_extwriters);
226 }
227 
228 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
229 					  unsigned int type)
230 {
231 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
232 }
233 
234 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
235 {
236 	return atomic_read(&trans->num_extwriters);
237 }
238 
239 /*
240  * To be called after doing the chunk btree updates right after allocating a new
241  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
242  * chunk after all chunk btree updates and after finishing the second phase of
243  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
244  * group had its chunk item insertion delayed to the second phase.
245  */
246 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
247 {
248 	struct btrfs_fs_info *fs_info = trans->fs_info;
249 
250 	if (!trans->chunk_bytes_reserved)
251 		return;
252 
253 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
254 				trans->chunk_bytes_reserved, NULL);
255 	trans->chunk_bytes_reserved = 0;
256 }
257 
258 /*
259  * either allocate a new transaction or hop into the existing one
260  */
261 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
262 				     unsigned int type)
263 {
264 	struct btrfs_transaction *cur_trans;
265 
266 	spin_lock(&fs_info->trans_lock);
267 loop:
268 	/* The file system has been taken offline. No new transactions. */
269 	if (BTRFS_FS_ERROR(fs_info)) {
270 		spin_unlock(&fs_info->trans_lock);
271 		return -EROFS;
272 	}
273 
274 	cur_trans = fs_info->running_transaction;
275 	if (cur_trans) {
276 		if (TRANS_ABORTED(cur_trans)) {
277 			spin_unlock(&fs_info->trans_lock);
278 			return cur_trans->aborted;
279 		}
280 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
281 			spin_unlock(&fs_info->trans_lock);
282 			return -EBUSY;
283 		}
284 		refcount_inc(&cur_trans->use_count);
285 		atomic_inc(&cur_trans->num_writers);
286 		extwriter_counter_inc(cur_trans, type);
287 		spin_unlock(&fs_info->trans_lock);
288 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
289 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
290 		return 0;
291 	}
292 	spin_unlock(&fs_info->trans_lock);
293 
294 	/*
295 	 * If we are ATTACH, we just want to catch the current transaction,
296 	 * and commit it. If there is no transaction, just return ENOENT.
297 	 */
298 	if (type == TRANS_ATTACH)
299 		return -ENOENT;
300 
301 	/*
302 	 * JOIN_NOLOCK only happens during the transaction commit, so
303 	 * it is impossible that ->running_transaction is NULL
304 	 */
305 	BUG_ON(type == TRANS_JOIN_NOLOCK);
306 
307 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
308 	if (!cur_trans)
309 		return -ENOMEM;
310 
311 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
312 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
313 
314 	spin_lock(&fs_info->trans_lock);
315 	if (fs_info->running_transaction) {
316 		/*
317 		 * someone started a transaction after we unlocked.  Make sure
318 		 * to redo the checks above
319 		 */
320 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
321 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
322 		kfree(cur_trans);
323 		goto loop;
324 	} else if (BTRFS_FS_ERROR(fs_info)) {
325 		spin_unlock(&fs_info->trans_lock);
326 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
327 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
328 		kfree(cur_trans);
329 		return -EROFS;
330 	}
331 
332 	cur_trans->fs_info = fs_info;
333 	atomic_set(&cur_trans->pending_ordered, 0);
334 	init_waitqueue_head(&cur_trans->pending_wait);
335 	atomic_set(&cur_trans->num_writers, 1);
336 	extwriter_counter_init(cur_trans, type);
337 	init_waitqueue_head(&cur_trans->writer_wait);
338 	init_waitqueue_head(&cur_trans->commit_wait);
339 	cur_trans->state = TRANS_STATE_RUNNING;
340 	/*
341 	 * One for this trans handle, one so it will live on until we
342 	 * commit the transaction.
343 	 */
344 	refcount_set(&cur_trans->use_count, 2);
345 	cur_trans->flags = 0;
346 	cur_trans->start_time = ktime_get_seconds();
347 
348 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
349 
350 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
351 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
352 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
353 
354 	/*
355 	 * although the tree mod log is per file system and not per transaction,
356 	 * the log must never go across transaction boundaries.
357 	 */
358 	smp_mb();
359 	if (!list_empty(&fs_info->tree_mod_seq_list))
360 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
361 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
362 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
363 	atomic64_set(&fs_info->tree_mod_seq, 0);
364 
365 	spin_lock_init(&cur_trans->delayed_refs.lock);
366 
367 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
368 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
369 	INIT_LIST_HEAD(&cur_trans->switch_commits);
370 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
371 	INIT_LIST_HEAD(&cur_trans->io_bgs);
372 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
373 	mutex_init(&cur_trans->cache_write_mutex);
374 	spin_lock_init(&cur_trans->dirty_bgs_lock);
375 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
376 	spin_lock_init(&cur_trans->dropped_roots_lock);
377 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
378 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
379 			IO_TREE_TRANS_DIRTY_PAGES);
380 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
381 			IO_TREE_FS_PINNED_EXTENTS);
382 	fs_info->generation++;
383 	cur_trans->transid = fs_info->generation;
384 	fs_info->running_transaction = cur_trans;
385 	cur_trans->aborted = 0;
386 	spin_unlock(&fs_info->trans_lock);
387 
388 	return 0;
389 }
390 
391 /*
392  * This does all the record keeping required to make sure that a shareable root
393  * is properly recorded in a given transaction.  This is required to make sure
394  * the old root from before we joined the transaction is deleted when the
395  * transaction commits.
396  */
397 static int record_root_in_trans(struct btrfs_trans_handle *trans,
398 			       struct btrfs_root *root,
399 			       int force)
400 {
401 	struct btrfs_fs_info *fs_info = root->fs_info;
402 	int ret = 0;
403 
404 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
405 	    root->last_trans < trans->transid) || force) {
406 		WARN_ON(!force && root->commit_root != root->node);
407 
408 		/*
409 		 * see below for IN_TRANS_SETUP usage rules
410 		 * we have the reloc mutex held now, so there
411 		 * is only one writer in this function
412 		 */
413 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
414 
415 		/* make sure readers find IN_TRANS_SETUP before
416 		 * they find our root->last_trans update
417 		 */
418 		smp_wmb();
419 
420 		spin_lock(&fs_info->fs_roots_radix_lock);
421 		if (root->last_trans == trans->transid && !force) {
422 			spin_unlock(&fs_info->fs_roots_radix_lock);
423 			return 0;
424 		}
425 		radix_tree_tag_set(&fs_info->fs_roots_radix,
426 				   (unsigned long)root->root_key.objectid,
427 				   BTRFS_ROOT_TRANS_TAG);
428 		spin_unlock(&fs_info->fs_roots_radix_lock);
429 		root->last_trans = trans->transid;
430 
431 		/* this is pretty tricky.  We don't want to
432 		 * take the relocation lock in btrfs_record_root_in_trans
433 		 * unless we're really doing the first setup for this root in
434 		 * this transaction.
435 		 *
436 		 * Normally we'd use root->last_trans as a flag to decide
437 		 * if we want to take the expensive mutex.
438 		 *
439 		 * But, we have to set root->last_trans before we
440 		 * init the relocation root, otherwise, we trip over warnings
441 		 * in ctree.c.  The solution used here is to flag ourselves
442 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
443 		 * fixing up the reloc trees and everyone must wait.
444 		 *
445 		 * When this is zero, they can trust root->last_trans and fly
446 		 * through btrfs_record_root_in_trans without having to take the
447 		 * lock.  smp_wmb() makes sure that all the writes above are
448 		 * done before we pop in the zero below
449 		 */
450 		ret = btrfs_init_reloc_root(trans, root);
451 		smp_mb__before_atomic();
452 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
453 	}
454 	return ret;
455 }
456 
457 
458 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
459 			    struct btrfs_root *root)
460 {
461 	struct btrfs_fs_info *fs_info = root->fs_info;
462 	struct btrfs_transaction *cur_trans = trans->transaction;
463 
464 	/* Add ourselves to the transaction dropped list */
465 	spin_lock(&cur_trans->dropped_roots_lock);
466 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
467 	spin_unlock(&cur_trans->dropped_roots_lock);
468 
469 	/* Make sure we don't try to update the root at commit time */
470 	spin_lock(&fs_info->fs_roots_radix_lock);
471 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
472 			     (unsigned long)root->root_key.objectid,
473 			     BTRFS_ROOT_TRANS_TAG);
474 	spin_unlock(&fs_info->fs_roots_radix_lock);
475 }
476 
477 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
478 			       struct btrfs_root *root)
479 {
480 	struct btrfs_fs_info *fs_info = root->fs_info;
481 	int ret;
482 
483 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
484 		return 0;
485 
486 	/*
487 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
488 	 * and barriers
489 	 */
490 	smp_rmb();
491 	if (root->last_trans == trans->transid &&
492 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
493 		return 0;
494 
495 	mutex_lock(&fs_info->reloc_mutex);
496 	ret = record_root_in_trans(trans, root, 0);
497 	mutex_unlock(&fs_info->reloc_mutex);
498 
499 	return ret;
500 }
501 
502 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
503 {
504 	return (trans->state >= TRANS_STATE_COMMIT_START &&
505 		trans->state < TRANS_STATE_UNBLOCKED &&
506 		!TRANS_ABORTED(trans));
507 }
508 
509 /* wait for commit against the current transaction to become unblocked
510  * when this is done, it is safe to start a new transaction, but the current
511  * transaction might not be fully on disk.
512  */
513 static void wait_current_trans(struct btrfs_fs_info *fs_info)
514 {
515 	struct btrfs_transaction *cur_trans;
516 
517 	spin_lock(&fs_info->trans_lock);
518 	cur_trans = fs_info->running_transaction;
519 	if (cur_trans && is_transaction_blocked(cur_trans)) {
520 		refcount_inc(&cur_trans->use_count);
521 		spin_unlock(&fs_info->trans_lock);
522 
523 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
524 		wait_event(fs_info->transaction_wait,
525 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
526 			   TRANS_ABORTED(cur_trans));
527 		btrfs_put_transaction(cur_trans);
528 	} else {
529 		spin_unlock(&fs_info->trans_lock);
530 	}
531 }
532 
533 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
534 {
535 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
536 		return 0;
537 
538 	if (type == TRANS_START)
539 		return 1;
540 
541 	return 0;
542 }
543 
544 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
545 {
546 	struct btrfs_fs_info *fs_info = root->fs_info;
547 
548 	if (!fs_info->reloc_ctl ||
549 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
550 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
551 	    root->reloc_root)
552 		return false;
553 
554 	return true;
555 }
556 
557 static struct btrfs_trans_handle *
558 start_transaction(struct btrfs_root *root, unsigned int num_items,
559 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
560 		  bool enforce_qgroups)
561 {
562 	struct btrfs_fs_info *fs_info = root->fs_info;
563 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
564 	struct btrfs_trans_handle *h;
565 	struct btrfs_transaction *cur_trans;
566 	u64 num_bytes = 0;
567 	u64 qgroup_reserved = 0;
568 	bool reloc_reserved = false;
569 	bool do_chunk_alloc = false;
570 	int ret;
571 
572 	if (BTRFS_FS_ERROR(fs_info))
573 		return ERR_PTR(-EROFS);
574 
575 	if (current->journal_info) {
576 		WARN_ON(type & TRANS_EXTWRITERS);
577 		h = current->journal_info;
578 		refcount_inc(&h->use_count);
579 		WARN_ON(refcount_read(&h->use_count) > 2);
580 		h->orig_rsv = h->block_rsv;
581 		h->block_rsv = NULL;
582 		goto got_it;
583 	}
584 
585 	/*
586 	 * Do the reservation before we join the transaction so we can do all
587 	 * the appropriate flushing if need be.
588 	 */
589 	if (num_items && root != fs_info->chunk_root) {
590 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
591 		u64 delayed_refs_bytes = 0;
592 
593 		qgroup_reserved = num_items * fs_info->nodesize;
594 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
595 				enforce_qgroups);
596 		if (ret)
597 			return ERR_PTR(ret);
598 
599 		/*
600 		 * We want to reserve all the bytes we may need all at once, so
601 		 * we only do 1 enospc flushing cycle per transaction start.  We
602 		 * accomplish this by simply assuming we'll do num_items worth
603 		 * of delayed refs updates in this trans handle, and refill that
604 		 * amount for whatever is missing in the reserve.
605 		 */
606 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
607 		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
608 		    !btrfs_block_rsv_full(delayed_refs_rsv)) {
609 			delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
610 									  num_items);
611 			num_bytes += delayed_refs_bytes;
612 		}
613 
614 		/*
615 		 * Do the reservation for the relocation root creation
616 		 */
617 		if (need_reserve_reloc_root(root)) {
618 			num_bytes += fs_info->nodesize;
619 			reloc_reserved = true;
620 		}
621 
622 		ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
623 		if (ret)
624 			goto reserve_fail;
625 		if (delayed_refs_bytes) {
626 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
627 							  delayed_refs_bytes);
628 			num_bytes -= delayed_refs_bytes;
629 		}
630 
631 		if (rsv->space_info->force_alloc)
632 			do_chunk_alloc = true;
633 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
634 		   !btrfs_block_rsv_full(delayed_refs_rsv)) {
635 		/*
636 		 * Some people call with btrfs_start_transaction(root, 0)
637 		 * because they can be throttled, but have some other mechanism
638 		 * for reserving space.  We still want these guys to refill the
639 		 * delayed block_rsv so just add 1 items worth of reservation
640 		 * here.
641 		 */
642 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
643 		if (ret)
644 			goto reserve_fail;
645 	}
646 again:
647 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
648 	if (!h) {
649 		ret = -ENOMEM;
650 		goto alloc_fail;
651 	}
652 
653 	/*
654 	 * If we are JOIN_NOLOCK we're already committing a transaction and
655 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
656 	 * because we're already holding a ref.  We need this because we could
657 	 * have raced in and did an fsync() on a file which can kick a commit
658 	 * and then we deadlock with somebody doing a freeze.
659 	 *
660 	 * If we are ATTACH, it means we just want to catch the current
661 	 * transaction and commit it, so we needn't do sb_start_intwrite().
662 	 */
663 	if (type & __TRANS_FREEZABLE)
664 		sb_start_intwrite(fs_info->sb);
665 
666 	if (may_wait_transaction(fs_info, type))
667 		wait_current_trans(fs_info);
668 
669 	do {
670 		ret = join_transaction(fs_info, type);
671 		if (ret == -EBUSY) {
672 			wait_current_trans(fs_info);
673 			if (unlikely(type == TRANS_ATTACH ||
674 				     type == TRANS_JOIN_NOSTART))
675 				ret = -ENOENT;
676 		}
677 	} while (ret == -EBUSY);
678 
679 	if (ret < 0)
680 		goto join_fail;
681 
682 	cur_trans = fs_info->running_transaction;
683 
684 	h->transid = cur_trans->transid;
685 	h->transaction = cur_trans;
686 	refcount_set(&h->use_count, 1);
687 	h->fs_info = root->fs_info;
688 
689 	h->type = type;
690 	INIT_LIST_HEAD(&h->new_bgs);
691 
692 	smp_mb();
693 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
694 	    may_wait_transaction(fs_info, type)) {
695 		current->journal_info = h;
696 		btrfs_commit_transaction(h);
697 		goto again;
698 	}
699 
700 	if (num_bytes) {
701 		trace_btrfs_space_reservation(fs_info, "transaction",
702 					      h->transid, num_bytes, 1);
703 		h->block_rsv = &fs_info->trans_block_rsv;
704 		h->bytes_reserved = num_bytes;
705 		h->reloc_reserved = reloc_reserved;
706 	}
707 
708 got_it:
709 	if (!current->journal_info)
710 		current->journal_info = h;
711 
712 	/*
713 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
714 	 * ALLOC_FORCE the first run through, and then we won't allocate for
715 	 * anybody else who races in later.  We don't care about the return
716 	 * value here.
717 	 */
718 	if (do_chunk_alloc && num_bytes) {
719 		u64 flags = h->block_rsv->space_info->flags;
720 
721 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
722 				  CHUNK_ALLOC_NO_FORCE);
723 	}
724 
725 	/*
726 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
727 	 * call btrfs_join_transaction() while we're also starting a
728 	 * transaction.
729 	 *
730 	 * Thus it need to be called after current->journal_info initialized,
731 	 * or we can deadlock.
732 	 */
733 	ret = btrfs_record_root_in_trans(h, root);
734 	if (ret) {
735 		/*
736 		 * The transaction handle is fully initialized and linked with
737 		 * other structures so it needs to be ended in case of errors,
738 		 * not just freed.
739 		 */
740 		btrfs_end_transaction(h);
741 		return ERR_PTR(ret);
742 	}
743 
744 	return h;
745 
746 join_fail:
747 	if (type & __TRANS_FREEZABLE)
748 		sb_end_intwrite(fs_info->sb);
749 	kmem_cache_free(btrfs_trans_handle_cachep, h);
750 alloc_fail:
751 	if (num_bytes)
752 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
753 					num_bytes, NULL);
754 reserve_fail:
755 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
756 	return ERR_PTR(ret);
757 }
758 
759 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
760 						   unsigned int num_items)
761 {
762 	return start_transaction(root, num_items, TRANS_START,
763 				 BTRFS_RESERVE_FLUSH_ALL, true);
764 }
765 
766 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
767 					struct btrfs_root *root,
768 					unsigned int num_items)
769 {
770 	return start_transaction(root, num_items, TRANS_START,
771 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
772 }
773 
774 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
775 {
776 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
777 				 true);
778 }
779 
780 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
781 {
782 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
783 				 BTRFS_RESERVE_NO_FLUSH, true);
784 }
785 
786 /*
787  * Similar to regular join but it never starts a transaction when none is
788  * running or after waiting for the current one to finish.
789  */
790 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
791 {
792 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
793 				 BTRFS_RESERVE_NO_FLUSH, true);
794 }
795 
796 /*
797  * btrfs_attach_transaction() - catch the running transaction
798  *
799  * It is used when we want to commit the current the transaction, but
800  * don't want to start a new one.
801  *
802  * Note: If this function return -ENOENT, it just means there is no
803  * running transaction. But it is possible that the inactive transaction
804  * is still in the memory, not fully on disk. If you hope there is no
805  * inactive transaction in the fs when -ENOENT is returned, you should
806  * invoke
807  *     btrfs_attach_transaction_barrier()
808  */
809 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
810 {
811 	return start_transaction(root, 0, TRANS_ATTACH,
812 				 BTRFS_RESERVE_NO_FLUSH, true);
813 }
814 
815 /*
816  * btrfs_attach_transaction_barrier() - catch the running transaction
817  *
818  * It is similar to the above function, the difference is this one
819  * will wait for all the inactive transactions until they fully
820  * complete.
821  */
822 struct btrfs_trans_handle *
823 btrfs_attach_transaction_barrier(struct btrfs_root *root)
824 {
825 	struct btrfs_trans_handle *trans;
826 
827 	trans = start_transaction(root, 0, TRANS_ATTACH,
828 				  BTRFS_RESERVE_NO_FLUSH, true);
829 	if (trans == ERR_PTR(-ENOENT))
830 		btrfs_wait_for_commit(root->fs_info, 0);
831 
832 	return trans;
833 }
834 
835 /* Wait for a transaction commit to reach at least the given state. */
836 static noinline void wait_for_commit(struct btrfs_transaction *commit,
837 				     const enum btrfs_trans_state min_state)
838 {
839 	struct btrfs_fs_info *fs_info = commit->fs_info;
840 	u64 transid = commit->transid;
841 	bool put = false;
842 
843 	/*
844 	 * At the moment this function is called with min_state either being
845 	 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
846 	 */
847 	if (min_state == TRANS_STATE_COMPLETED)
848 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
849 	else
850 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
851 
852 	while (1) {
853 		wait_event(commit->commit_wait, commit->state >= min_state);
854 		if (put)
855 			btrfs_put_transaction(commit);
856 
857 		if (min_state < TRANS_STATE_COMPLETED)
858 			break;
859 
860 		/*
861 		 * A transaction isn't really completed until all of the
862 		 * previous transactions are completed, but with fsync we can
863 		 * end up with SUPER_COMMITTED transactions before a COMPLETED
864 		 * transaction. Wait for those.
865 		 */
866 
867 		spin_lock(&fs_info->trans_lock);
868 		commit = list_first_entry_or_null(&fs_info->trans_list,
869 						  struct btrfs_transaction,
870 						  list);
871 		if (!commit || commit->transid > transid) {
872 			spin_unlock(&fs_info->trans_lock);
873 			break;
874 		}
875 		refcount_inc(&commit->use_count);
876 		put = true;
877 		spin_unlock(&fs_info->trans_lock);
878 	}
879 }
880 
881 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
882 {
883 	struct btrfs_transaction *cur_trans = NULL, *t;
884 	int ret = 0;
885 
886 	if (transid) {
887 		if (transid <= fs_info->last_trans_committed)
888 			goto out;
889 
890 		/* find specified transaction */
891 		spin_lock(&fs_info->trans_lock);
892 		list_for_each_entry(t, &fs_info->trans_list, list) {
893 			if (t->transid == transid) {
894 				cur_trans = t;
895 				refcount_inc(&cur_trans->use_count);
896 				ret = 0;
897 				break;
898 			}
899 			if (t->transid > transid) {
900 				ret = 0;
901 				break;
902 			}
903 		}
904 		spin_unlock(&fs_info->trans_lock);
905 
906 		/*
907 		 * The specified transaction doesn't exist, or we
908 		 * raced with btrfs_commit_transaction
909 		 */
910 		if (!cur_trans) {
911 			if (transid > fs_info->last_trans_committed)
912 				ret = -EINVAL;
913 			goto out;
914 		}
915 	} else {
916 		/* find newest transaction that is committing | committed */
917 		spin_lock(&fs_info->trans_lock);
918 		list_for_each_entry_reverse(t, &fs_info->trans_list,
919 					    list) {
920 			if (t->state >= TRANS_STATE_COMMIT_START) {
921 				if (t->state == TRANS_STATE_COMPLETED)
922 					break;
923 				cur_trans = t;
924 				refcount_inc(&cur_trans->use_count);
925 				break;
926 			}
927 		}
928 		spin_unlock(&fs_info->trans_lock);
929 		if (!cur_trans)
930 			goto out;  /* nothing committing|committed */
931 	}
932 
933 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
934 	btrfs_put_transaction(cur_trans);
935 out:
936 	return ret;
937 }
938 
939 void btrfs_throttle(struct btrfs_fs_info *fs_info)
940 {
941 	wait_current_trans(fs_info);
942 }
943 
944 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
945 {
946 	struct btrfs_transaction *cur_trans = trans->transaction;
947 
948 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
949 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
950 		return true;
951 
952 	if (btrfs_check_space_for_delayed_refs(trans->fs_info))
953 		return true;
954 
955 	return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
956 }
957 
958 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
959 
960 {
961 	struct btrfs_fs_info *fs_info = trans->fs_info;
962 
963 	if (!trans->block_rsv) {
964 		ASSERT(!trans->bytes_reserved);
965 		return;
966 	}
967 
968 	if (!trans->bytes_reserved)
969 		return;
970 
971 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
972 	trace_btrfs_space_reservation(fs_info, "transaction",
973 				      trans->transid, trans->bytes_reserved, 0);
974 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
975 				trans->bytes_reserved, NULL);
976 	trans->bytes_reserved = 0;
977 }
978 
979 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
980 				   int throttle)
981 {
982 	struct btrfs_fs_info *info = trans->fs_info;
983 	struct btrfs_transaction *cur_trans = trans->transaction;
984 	int err = 0;
985 
986 	if (refcount_read(&trans->use_count) > 1) {
987 		refcount_dec(&trans->use_count);
988 		trans->block_rsv = trans->orig_rsv;
989 		return 0;
990 	}
991 
992 	btrfs_trans_release_metadata(trans);
993 	trans->block_rsv = NULL;
994 
995 	btrfs_create_pending_block_groups(trans);
996 
997 	btrfs_trans_release_chunk_metadata(trans);
998 
999 	if (trans->type & __TRANS_FREEZABLE)
1000 		sb_end_intwrite(info->sb);
1001 
1002 	WARN_ON(cur_trans != info->running_transaction);
1003 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1004 	atomic_dec(&cur_trans->num_writers);
1005 	extwriter_counter_dec(cur_trans, trans->type);
1006 
1007 	cond_wake_up(&cur_trans->writer_wait);
1008 
1009 	btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1010 	btrfs_lockdep_release(info, btrfs_trans_num_writers);
1011 
1012 	btrfs_put_transaction(cur_trans);
1013 
1014 	if (current->journal_info == trans)
1015 		current->journal_info = NULL;
1016 
1017 	if (throttle)
1018 		btrfs_run_delayed_iputs(info);
1019 
1020 	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1021 		wake_up_process(info->transaction_kthread);
1022 		if (TRANS_ABORTED(trans))
1023 			err = trans->aborted;
1024 		else
1025 			err = -EROFS;
1026 	}
1027 
1028 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1029 	return err;
1030 }
1031 
1032 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1033 {
1034 	return __btrfs_end_transaction(trans, 0);
1035 }
1036 
1037 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1038 {
1039 	return __btrfs_end_transaction(trans, 1);
1040 }
1041 
1042 /*
1043  * when btree blocks are allocated, they have some corresponding bits set for
1044  * them in one of two extent_io trees.  This is used to make sure all of
1045  * those extents are sent to disk but does not wait on them
1046  */
1047 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1048 			       struct extent_io_tree *dirty_pages, int mark)
1049 {
1050 	int err = 0;
1051 	int werr = 0;
1052 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1053 	struct extent_state *cached_state = NULL;
1054 	u64 start = 0;
1055 	u64 end;
1056 
1057 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1058 				      mark, &cached_state)) {
1059 		bool wait_writeback = false;
1060 
1061 		err = convert_extent_bit(dirty_pages, start, end,
1062 					 EXTENT_NEED_WAIT,
1063 					 mark, &cached_state);
1064 		/*
1065 		 * convert_extent_bit can return -ENOMEM, which is most of the
1066 		 * time a temporary error. So when it happens, ignore the error
1067 		 * and wait for writeback of this range to finish - because we
1068 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1069 		 * to __btrfs_wait_marked_extents() would not know that
1070 		 * writeback for this range started and therefore wouldn't
1071 		 * wait for it to finish - we don't want to commit a
1072 		 * superblock that points to btree nodes/leafs for which
1073 		 * writeback hasn't finished yet (and without errors).
1074 		 * We cleanup any entries left in the io tree when committing
1075 		 * the transaction (through extent_io_tree_release()).
1076 		 */
1077 		if (err == -ENOMEM) {
1078 			err = 0;
1079 			wait_writeback = true;
1080 		}
1081 		if (!err)
1082 			err = filemap_fdatawrite_range(mapping, start, end);
1083 		if (err)
1084 			werr = err;
1085 		else if (wait_writeback)
1086 			werr = filemap_fdatawait_range(mapping, start, end);
1087 		free_extent_state(cached_state);
1088 		cached_state = NULL;
1089 		cond_resched();
1090 		start = end + 1;
1091 	}
1092 	return werr;
1093 }
1094 
1095 /*
1096  * when btree blocks are allocated, they have some corresponding bits set for
1097  * them in one of two extent_io trees.  This is used to make sure all of
1098  * those extents are on disk for transaction or log commit.  We wait
1099  * on all the pages and clear them from the dirty pages state tree
1100  */
1101 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1102 				       struct extent_io_tree *dirty_pages)
1103 {
1104 	int err = 0;
1105 	int werr = 0;
1106 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1107 	struct extent_state *cached_state = NULL;
1108 	u64 start = 0;
1109 	u64 end;
1110 
1111 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1112 				      EXTENT_NEED_WAIT, &cached_state)) {
1113 		/*
1114 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1115 		 * When committing the transaction, we'll remove any entries
1116 		 * left in the io tree. For a log commit, we don't remove them
1117 		 * after committing the log because the tree can be accessed
1118 		 * concurrently - we do it only at transaction commit time when
1119 		 * it's safe to do it (through extent_io_tree_release()).
1120 		 */
1121 		err = clear_extent_bit(dirty_pages, start, end,
1122 				       EXTENT_NEED_WAIT, &cached_state);
1123 		if (err == -ENOMEM)
1124 			err = 0;
1125 		if (!err)
1126 			err = filemap_fdatawait_range(mapping, start, end);
1127 		if (err)
1128 			werr = err;
1129 		free_extent_state(cached_state);
1130 		cached_state = NULL;
1131 		cond_resched();
1132 		start = end + 1;
1133 	}
1134 	if (err)
1135 		werr = err;
1136 	return werr;
1137 }
1138 
1139 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1140 		       struct extent_io_tree *dirty_pages)
1141 {
1142 	bool errors = false;
1143 	int err;
1144 
1145 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1146 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1147 		errors = true;
1148 
1149 	if (errors && !err)
1150 		err = -EIO;
1151 	return err;
1152 }
1153 
1154 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1155 {
1156 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1157 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1158 	bool errors = false;
1159 	int err;
1160 
1161 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1162 
1163 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1164 	if ((mark & EXTENT_DIRTY) &&
1165 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1166 		errors = true;
1167 
1168 	if ((mark & EXTENT_NEW) &&
1169 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1170 		errors = true;
1171 
1172 	if (errors && !err)
1173 		err = -EIO;
1174 	return err;
1175 }
1176 
1177 /*
1178  * When btree blocks are allocated the corresponding extents are marked dirty.
1179  * This function ensures such extents are persisted on disk for transaction or
1180  * log commit.
1181  *
1182  * @trans: transaction whose dirty pages we'd like to write
1183  */
1184 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1185 {
1186 	int ret;
1187 	int ret2;
1188 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1189 	struct btrfs_fs_info *fs_info = trans->fs_info;
1190 	struct blk_plug plug;
1191 
1192 	blk_start_plug(&plug);
1193 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1194 	blk_finish_plug(&plug);
1195 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1196 
1197 	extent_io_tree_release(&trans->transaction->dirty_pages);
1198 
1199 	if (ret)
1200 		return ret;
1201 	else if (ret2)
1202 		return ret2;
1203 	else
1204 		return 0;
1205 }
1206 
1207 /*
1208  * this is used to update the root pointer in the tree of tree roots.
1209  *
1210  * But, in the case of the extent allocation tree, updating the root
1211  * pointer may allocate blocks which may change the root of the extent
1212  * allocation tree.
1213  *
1214  * So, this loops and repeats and makes sure the cowonly root didn't
1215  * change while the root pointer was being updated in the metadata.
1216  */
1217 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1218 			       struct btrfs_root *root)
1219 {
1220 	int ret;
1221 	u64 old_root_bytenr;
1222 	u64 old_root_used;
1223 	struct btrfs_fs_info *fs_info = root->fs_info;
1224 	struct btrfs_root *tree_root = fs_info->tree_root;
1225 
1226 	old_root_used = btrfs_root_used(&root->root_item);
1227 
1228 	while (1) {
1229 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1230 		if (old_root_bytenr == root->node->start &&
1231 		    old_root_used == btrfs_root_used(&root->root_item))
1232 			break;
1233 
1234 		btrfs_set_root_node(&root->root_item, root->node);
1235 		ret = btrfs_update_root(trans, tree_root,
1236 					&root->root_key,
1237 					&root->root_item);
1238 		if (ret)
1239 			return ret;
1240 
1241 		old_root_used = btrfs_root_used(&root->root_item);
1242 	}
1243 
1244 	return 0;
1245 }
1246 
1247 /*
1248  * update all the cowonly tree roots on disk
1249  *
1250  * The error handling in this function may not be obvious. Any of the
1251  * failures will cause the file system to go offline. We still need
1252  * to clean up the delayed refs.
1253  */
1254 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1255 {
1256 	struct btrfs_fs_info *fs_info = trans->fs_info;
1257 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1258 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1259 	struct list_head *next;
1260 	struct extent_buffer *eb;
1261 	int ret;
1262 
1263 	/*
1264 	 * At this point no one can be using this transaction to modify any tree
1265 	 * and no one can start another transaction to modify any tree either.
1266 	 */
1267 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1268 
1269 	eb = btrfs_lock_root_node(fs_info->tree_root);
1270 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1271 			      0, &eb, BTRFS_NESTING_COW);
1272 	btrfs_tree_unlock(eb);
1273 	free_extent_buffer(eb);
1274 
1275 	if (ret)
1276 		return ret;
1277 
1278 	ret = btrfs_run_dev_stats(trans);
1279 	if (ret)
1280 		return ret;
1281 	ret = btrfs_run_dev_replace(trans);
1282 	if (ret)
1283 		return ret;
1284 	ret = btrfs_run_qgroups(trans);
1285 	if (ret)
1286 		return ret;
1287 
1288 	ret = btrfs_setup_space_cache(trans);
1289 	if (ret)
1290 		return ret;
1291 
1292 again:
1293 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1294 		struct btrfs_root *root;
1295 		next = fs_info->dirty_cowonly_roots.next;
1296 		list_del_init(next);
1297 		root = list_entry(next, struct btrfs_root, dirty_list);
1298 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1299 
1300 		list_add_tail(&root->dirty_list,
1301 			      &trans->transaction->switch_commits);
1302 		ret = update_cowonly_root(trans, root);
1303 		if (ret)
1304 			return ret;
1305 	}
1306 
1307 	/* Now flush any delayed refs generated by updating all of the roots */
1308 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1309 	if (ret)
1310 		return ret;
1311 
1312 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1313 		ret = btrfs_write_dirty_block_groups(trans);
1314 		if (ret)
1315 			return ret;
1316 
1317 		/*
1318 		 * We're writing the dirty block groups, which could generate
1319 		 * delayed refs, which could generate more dirty block groups,
1320 		 * so we want to keep this flushing in this loop to make sure
1321 		 * everything gets run.
1322 		 */
1323 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1324 		if (ret)
1325 			return ret;
1326 	}
1327 
1328 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1329 		goto again;
1330 
1331 	/* Update dev-replace pointer once everything is committed */
1332 	fs_info->dev_replace.committed_cursor_left =
1333 		fs_info->dev_replace.cursor_left_last_write_of_item;
1334 
1335 	return 0;
1336 }
1337 
1338 /*
1339  * If we had a pending drop we need to see if there are any others left in our
1340  * dead roots list, and if not clear our bit and wake any waiters.
1341  */
1342 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1343 {
1344 	/*
1345 	 * We put the drop in progress roots at the front of the list, so if the
1346 	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1347 	 * up.
1348 	 */
1349 	spin_lock(&fs_info->trans_lock);
1350 	if (!list_empty(&fs_info->dead_roots)) {
1351 		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1352 							   struct btrfs_root,
1353 							   root_list);
1354 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1355 			spin_unlock(&fs_info->trans_lock);
1356 			return;
1357 		}
1358 	}
1359 	spin_unlock(&fs_info->trans_lock);
1360 
1361 	btrfs_wake_unfinished_drop(fs_info);
1362 }
1363 
1364 /*
1365  * dead roots are old snapshots that need to be deleted.  This allocates
1366  * a dirty root struct and adds it into the list of dead roots that need to
1367  * be deleted
1368  */
1369 void btrfs_add_dead_root(struct btrfs_root *root)
1370 {
1371 	struct btrfs_fs_info *fs_info = root->fs_info;
1372 
1373 	spin_lock(&fs_info->trans_lock);
1374 	if (list_empty(&root->root_list)) {
1375 		btrfs_grab_root(root);
1376 
1377 		/* We want to process the partially complete drops first. */
1378 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1379 			list_add(&root->root_list, &fs_info->dead_roots);
1380 		else
1381 			list_add_tail(&root->root_list, &fs_info->dead_roots);
1382 	}
1383 	spin_unlock(&fs_info->trans_lock);
1384 }
1385 
1386 /*
1387  * Update each subvolume root and its relocation root, if it exists, in the tree
1388  * of tree roots. Also free log roots if they exist.
1389  */
1390 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1391 {
1392 	struct btrfs_fs_info *fs_info = trans->fs_info;
1393 	struct btrfs_root *gang[8];
1394 	int i;
1395 	int ret;
1396 
1397 	/*
1398 	 * At this point no one can be using this transaction to modify any tree
1399 	 * and no one can start another transaction to modify any tree either.
1400 	 */
1401 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1402 
1403 	spin_lock(&fs_info->fs_roots_radix_lock);
1404 	while (1) {
1405 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1406 						 (void **)gang, 0,
1407 						 ARRAY_SIZE(gang),
1408 						 BTRFS_ROOT_TRANS_TAG);
1409 		if (ret == 0)
1410 			break;
1411 		for (i = 0; i < ret; i++) {
1412 			struct btrfs_root *root = gang[i];
1413 			int ret2;
1414 
1415 			/*
1416 			 * At this point we can neither have tasks logging inodes
1417 			 * from a root nor trying to commit a log tree.
1418 			 */
1419 			ASSERT(atomic_read(&root->log_writers) == 0);
1420 			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1421 			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1422 
1423 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1424 					(unsigned long)root->root_key.objectid,
1425 					BTRFS_ROOT_TRANS_TAG);
1426 			spin_unlock(&fs_info->fs_roots_radix_lock);
1427 
1428 			btrfs_free_log(trans, root);
1429 			ret2 = btrfs_update_reloc_root(trans, root);
1430 			if (ret2)
1431 				return ret2;
1432 
1433 			/* see comments in should_cow_block() */
1434 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1435 			smp_mb__after_atomic();
1436 
1437 			if (root->commit_root != root->node) {
1438 				list_add_tail(&root->dirty_list,
1439 					&trans->transaction->switch_commits);
1440 				btrfs_set_root_node(&root->root_item,
1441 						    root->node);
1442 			}
1443 
1444 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1445 						&root->root_key,
1446 						&root->root_item);
1447 			if (ret2)
1448 				return ret2;
1449 			spin_lock(&fs_info->fs_roots_radix_lock);
1450 			btrfs_qgroup_free_meta_all_pertrans(root);
1451 		}
1452 	}
1453 	spin_unlock(&fs_info->fs_roots_radix_lock);
1454 	return 0;
1455 }
1456 
1457 /*
1458  * defrag a given btree.
1459  * Every leaf in the btree is read and defragged.
1460  */
1461 int btrfs_defrag_root(struct btrfs_root *root)
1462 {
1463 	struct btrfs_fs_info *info = root->fs_info;
1464 	struct btrfs_trans_handle *trans;
1465 	int ret;
1466 
1467 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1468 		return 0;
1469 
1470 	while (1) {
1471 		trans = btrfs_start_transaction(root, 0);
1472 		if (IS_ERR(trans)) {
1473 			ret = PTR_ERR(trans);
1474 			break;
1475 		}
1476 
1477 		ret = btrfs_defrag_leaves(trans, root);
1478 
1479 		btrfs_end_transaction(trans);
1480 		btrfs_btree_balance_dirty(info);
1481 		cond_resched();
1482 
1483 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1484 			break;
1485 
1486 		if (btrfs_defrag_cancelled(info)) {
1487 			btrfs_debug(info, "defrag_root cancelled");
1488 			ret = -EAGAIN;
1489 			break;
1490 		}
1491 	}
1492 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1493 	return ret;
1494 }
1495 
1496 /*
1497  * Do all special snapshot related qgroup dirty hack.
1498  *
1499  * Will do all needed qgroup inherit and dirty hack like switch commit
1500  * roots inside one transaction and write all btree into disk, to make
1501  * qgroup works.
1502  */
1503 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1504 				   struct btrfs_root *src,
1505 				   struct btrfs_root *parent,
1506 				   struct btrfs_qgroup_inherit *inherit,
1507 				   u64 dst_objectid)
1508 {
1509 	struct btrfs_fs_info *fs_info = src->fs_info;
1510 	int ret;
1511 
1512 	/*
1513 	 * Save some performance in the case that qgroups are not
1514 	 * enabled. If this check races with the ioctl, rescan will
1515 	 * kick in anyway.
1516 	 */
1517 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1518 		return 0;
1519 
1520 	/*
1521 	 * Ensure dirty @src will be committed.  Or, after coming
1522 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1523 	 * recorded root will never be updated again, causing an outdated root
1524 	 * item.
1525 	 */
1526 	ret = record_root_in_trans(trans, src, 1);
1527 	if (ret)
1528 		return ret;
1529 
1530 	/*
1531 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1532 	 * src root, so we must run the delayed refs here.
1533 	 *
1534 	 * However this isn't particularly fool proof, because there's no
1535 	 * synchronization keeping us from changing the tree after this point
1536 	 * before we do the qgroup_inherit, or even from making changes while
1537 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1538 	 * for now flush the delayed refs to narrow the race window where the
1539 	 * qgroup counters could end up wrong.
1540 	 */
1541 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1542 	if (ret) {
1543 		btrfs_abort_transaction(trans, ret);
1544 		return ret;
1545 	}
1546 
1547 	ret = commit_fs_roots(trans);
1548 	if (ret)
1549 		goto out;
1550 	ret = btrfs_qgroup_account_extents(trans);
1551 	if (ret < 0)
1552 		goto out;
1553 
1554 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1555 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1556 				   inherit);
1557 	if (ret < 0)
1558 		goto out;
1559 
1560 	/*
1561 	 * Now we do a simplified commit transaction, which will:
1562 	 * 1) commit all subvolume and extent tree
1563 	 *    To ensure all subvolume and extent tree have a valid
1564 	 *    commit_root to accounting later insert_dir_item()
1565 	 * 2) write all btree blocks onto disk
1566 	 *    This is to make sure later btree modification will be cowed
1567 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1568 	 * In this simplified commit, we don't really care about other trees
1569 	 * like chunk and root tree, as they won't affect qgroup.
1570 	 * And we don't write super to avoid half committed status.
1571 	 */
1572 	ret = commit_cowonly_roots(trans);
1573 	if (ret)
1574 		goto out;
1575 	switch_commit_roots(trans);
1576 	ret = btrfs_write_and_wait_transaction(trans);
1577 	if (ret)
1578 		btrfs_handle_fs_error(fs_info, ret,
1579 			"Error while writing out transaction for qgroup");
1580 
1581 out:
1582 	/*
1583 	 * Force parent root to be updated, as we recorded it before so its
1584 	 * last_trans == cur_transid.
1585 	 * Or it won't be committed again onto disk after later
1586 	 * insert_dir_item()
1587 	 */
1588 	if (!ret)
1589 		ret = record_root_in_trans(trans, parent, 1);
1590 	return ret;
1591 }
1592 
1593 /*
1594  * new snapshots need to be created at a very specific time in the
1595  * transaction commit.  This does the actual creation.
1596  *
1597  * Note:
1598  * If the error which may affect the commitment of the current transaction
1599  * happens, we should return the error number. If the error which just affect
1600  * the creation of the pending snapshots, just return 0.
1601  */
1602 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1603 				   struct btrfs_pending_snapshot *pending)
1604 {
1605 
1606 	struct btrfs_fs_info *fs_info = trans->fs_info;
1607 	struct btrfs_key key;
1608 	struct btrfs_root_item *new_root_item;
1609 	struct btrfs_root *tree_root = fs_info->tree_root;
1610 	struct btrfs_root *root = pending->root;
1611 	struct btrfs_root *parent_root;
1612 	struct btrfs_block_rsv *rsv;
1613 	struct inode *parent_inode = pending->dir;
1614 	struct btrfs_path *path;
1615 	struct btrfs_dir_item *dir_item;
1616 	struct extent_buffer *tmp;
1617 	struct extent_buffer *old;
1618 	struct timespec64 cur_time;
1619 	int ret = 0;
1620 	u64 to_reserve = 0;
1621 	u64 index = 0;
1622 	u64 objectid;
1623 	u64 root_flags;
1624 	unsigned int nofs_flags;
1625 	struct fscrypt_name fname;
1626 
1627 	ASSERT(pending->path);
1628 	path = pending->path;
1629 
1630 	ASSERT(pending->root_item);
1631 	new_root_item = pending->root_item;
1632 
1633 	/*
1634 	 * We're inside a transaction and must make sure that any potential
1635 	 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1636 	 * filesystem.
1637 	 */
1638 	nofs_flags = memalloc_nofs_save();
1639 	pending->error = fscrypt_setup_filename(parent_inode,
1640 						&pending->dentry->d_name, 0,
1641 						&fname);
1642 	memalloc_nofs_restore(nofs_flags);
1643 	if (pending->error)
1644 		goto free_pending;
1645 
1646 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1647 	if (pending->error)
1648 		goto free_fname;
1649 
1650 	/*
1651 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1652 	 * accounted by later btrfs_qgroup_inherit().
1653 	 */
1654 	btrfs_set_skip_qgroup(trans, objectid);
1655 
1656 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1657 
1658 	if (to_reserve > 0) {
1659 		pending->error = btrfs_block_rsv_add(fs_info,
1660 						     &pending->block_rsv,
1661 						     to_reserve,
1662 						     BTRFS_RESERVE_NO_FLUSH);
1663 		if (pending->error)
1664 			goto clear_skip_qgroup;
1665 	}
1666 
1667 	key.objectid = objectid;
1668 	key.offset = (u64)-1;
1669 	key.type = BTRFS_ROOT_ITEM_KEY;
1670 
1671 	rsv = trans->block_rsv;
1672 	trans->block_rsv = &pending->block_rsv;
1673 	trans->bytes_reserved = trans->block_rsv->reserved;
1674 	trace_btrfs_space_reservation(fs_info, "transaction",
1675 				      trans->transid,
1676 				      trans->bytes_reserved, 1);
1677 	parent_root = BTRFS_I(parent_inode)->root;
1678 	ret = record_root_in_trans(trans, parent_root, 0);
1679 	if (ret)
1680 		goto fail;
1681 	cur_time = current_time(parent_inode);
1682 
1683 	/*
1684 	 * insert the directory item
1685 	 */
1686 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1687 	if (ret) {
1688 		btrfs_abort_transaction(trans, ret);
1689 		goto fail;
1690 	}
1691 
1692 	/* check if there is a file/dir which has the same name. */
1693 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1694 					 btrfs_ino(BTRFS_I(parent_inode)),
1695 					 &fname.disk_name, 0);
1696 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1697 		pending->error = -EEXIST;
1698 		goto dir_item_existed;
1699 	} else if (IS_ERR(dir_item)) {
1700 		ret = PTR_ERR(dir_item);
1701 		btrfs_abort_transaction(trans, ret);
1702 		goto fail;
1703 	}
1704 	btrfs_release_path(path);
1705 
1706 	/*
1707 	 * pull in the delayed directory update
1708 	 * and the delayed inode item
1709 	 * otherwise we corrupt the FS during
1710 	 * snapshot
1711 	 */
1712 	ret = btrfs_run_delayed_items(trans);
1713 	if (ret) {	/* Transaction aborted */
1714 		btrfs_abort_transaction(trans, ret);
1715 		goto fail;
1716 	}
1717 
1718 	ret = record_root_in_trans(trans, root, 0);
1719 	if (ret) {
1720 		btrfs_abort_transaction(trans, ret);
1721 		goto fail;
1722 	}
1723 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1724 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1725 	btrfs_check_and_init_root_item(new_root_item);
1726 
1727 	root_flags = btrfs_root_flags(new_root_item);
1728 	if (pending->readonly)
1729 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1730 	else
1731 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1732 	btrfs_set_root_flags(new_root_item, root_flags);
1733 
1734 	btrfs_set_root_generation_v2(new_root_item,
1735 			trans->transid);
1736 	generate_random_guid(new_root_item->uuid);
1737 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1738 			BTRFS_UUID_SIZE);
1739 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1740 		memset(new_root_item->received_uuid, 0,
1741 		       sizeof(new_root_item->received_uuid));
1742 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1743 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1744 		btrfs_set_root_stransid(new_root_item, 0);
1745 		btrfs_set_root_rtransid(new_root_item, 0);
1746 	}
1747 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1748 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1749 	btrfs_set_root_otransid(new_root_item, trans->transid);
1750 
1751 	old = btrfs_lock_root_node(root);
1752 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1753 			      BTRFS_NESTING_COW);
1754 	if (ret) {
1755 		btrfs_tree_unlock(old);
1756 		free_extent_buffer(old);
1757 		btrfs_abort_transaction(trans, ret);
1758 		goto fail;
1759 	}
1760 
1761 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1762 	/* clean up in any case */
1763 	btrfs_tree_unlock(old);
1764 	free_extent_buffer(old);
1765 	if (ret) {
1766 		btrfs_abort_transaction(trans, ret);
1767 		goto fail;
1768 	}
1769 	/* see comments in should_cow_block() */
1770 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1771 	smp_wmb();
1772 
1773 	btrfs_set_root_node(new_root_item, tmp);
1774 	/* record when the snapshot was created in key.offset */
1775 	key.offset = trans->transid;
1776 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1777 	btrfs_tree_unlock(tmp);
1778 	free_extent_buffer(tmp);
1779 	if (ret) {
1780 		btrfs_abort_transaction(trans, ret);
1781 		goto fail;
1782 	}
1783 
1784 	/*
1785 	 * insert root back/forward references
1786 	 */
1787 	ret = btrfs_add_root_ref(trans, objectid,
1788 				 parent_root->root_key.objectid,
1789 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1790 				 &fname.disk_name);
1791 	if (ret) {
1792 		btrfs_abort_transaction(trans, ret);
1793 		goto fail;
1794 	}
1795 
1796 	key.offset = (u64)-1;
1797 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1798 	if (IS_ERR(pending->snap)) {
1799 		ret = PTR_ERR(pending->snap);
1800 		pending->snap = NULL;
1801 		btrfs_abort_transaction(trans, ret);
1802 		goto fail;
1803 	}
1804 
1805 	ret = btrfs_reloc_post_snapshot(trans, pending);
1806 	if (ret) {
1807 		btrfs_abort_transaction(trans, ret);
1808 		goto fail;
1809 	}
1810 
1811 	/*
1812 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1813 	 * snapshot hack to do fast snapshot.
1814 	 * To co-operate with that hack, we do hack again.
1815 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1816 	 */
1817 	ret = qgroup_account_snapshot(trans, root, parent_root,
1818 				      pending->inherit, objectid);
1819 	if (ret < 0)
1820 		goto fail;
1821 
1822 	ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1823 				    BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1824 				    index);
1825 	/* We have check then name at the beginning, so it is impossible. */
1826 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1827 	if (ret) {
1828 		btrfs_abort_transaction(trans, ret);
1829 		goto fail;
1830 	}
1831 
1832 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1833 						  fname.disk_name.len * 2);
1834 	parent_inode->i_mtime = current_time(parent_inode);
1835 	parent_inode->i_ctime = parent_inode->i_mtime;
1836 	ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1837 	if (ret) {
1838 		btrfs_abort_transaction(trans, ret);
1839 		goto fail;
1840 	}
1841 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1842 				  BTRFS_UUID_KEY_SUBVOL,
1843 				  objectid);
1844 	if (ret) {
1845 		btrfs_abort_transaction(trans, ret);
1846 		goto fail;
1847 	}
1848 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1849 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1850 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1851 					  objectid);
1852 		if (ret && ret != -EEXIST) {
1853 			btrfs_abort_transaction(trans, ret);
1854 			goto fail;
1855 		}
1856 	}
1857 
1858 fail:
1859 	pending->error = ret;
1860 dir_item_existed:
1861 	trans->block_rsv = rsv;
1862 	trans->bytes_reserved = 0;
1863 clear_skip_qgroup:
1864 	btrfs_clear_skip_qgroup(trans);
1865 free_fname:
1866 	fscrypt_free_filename(&fname);
1867 free_pending:
1868 	kfree(new_root_item);
1869 	pending->root_item = NULL;
1870 	btrfs_free_path(path);
1871 	pending->path = NULL;
1872 
1873 	return ret;
1874 }
1875 
1876 /*
1877  * create all the snapshots we've scheduled for creation
1878  */
1879 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1880 {
1881 	struct btrfs_pending_snapshot *pending, *next;
1882 	struct list_head *head = &trans->transaction->pending_snapshots;
1883 	int ret = 0;
1884 
1885 	list_for_each_entry_safe(pending, next, head, list) {
1886 		list_del(&pending->list);
1887 		ret = create_pending_snapshot(trans, pending);
1888 		if (ret)
1889 			break;
1890 	}
1891 	return ret;
1892 }
1893 
1894 static void update_super_roots(struct btrfs_fs_info *fs_info)
1895 {
1896 	struct btrfs_root_item *root_item;
1897 	struct btrfs_super_block *super;
1898 
1899 	super = fs_info->super_copy;
1900 
1901 	root_item = &fs_info->chunk_root->root_item;
1902 	super->chunk_root = root_item->bytenr;
1903 	super->chunk_root_generation = root_item->generation;
1904 	super->chunk_root_level = root_item->level;
1905 
1906 	root_item = &fs_info->tree_root->root_item;
1907 	super->root = root_item->bytenr;
1908 	super->generation = root_item->generation;
1909 	super->root_level = root_item->level;
1910 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1911 		super->cache_generation = root_item->generation;
1912 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1913 		super->cache_generation = 0;
1914 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1915 		super->uuid_tree_generation = root_item->generation;
1916 }
1917 
1918 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1919 {
1920 	struct btrfs_transaction *trans;
1921 	int ret = 0;
1922 
1923 	spin_lock(&info->trans_lock);
1924 	trans = info->running_transaction;
1925 	if (trans)
1926 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1927 	spin_unlock(&info->trans_lock);
1928 	return ret;
1929 }
1930 
1931 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1932 {
1933 	struct btrfs_transaction *trans;
1934 	int ret = 0;
1935 
1936 	spin_lock(&info->trans_lock);
1937 	trans = info->running_transaction;
1938 	if (trans)
1939 		ret = is_transaction_blocked(trans);
1940 	spin_unlock(&info->trans_lock);
1941 	return ret;
1942 }
1943 
1944 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1945 {
1946 	struct btrfs_fs_info *fs_info = trans->fs_info;
1947 	struct btrfs_transaction *cur_trans;
1948 
1949 	/* Kick the transaction kthread. */
1950 	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1951 	wake_up_process(fs_info->transaction_kthread);
1952 
1953 	/* take transaction reference */
1954 	cur_trans = trans->transaction;
1955 	refcount_inc(&cur_trans->use_count);
1956 
1957 	btrfs_end_transaction(trans);
1958 
1959 	/*
1960 	 * Wait for the current transaction commit to start and block
1961 	 * subsequent transaction joins
1962 	 */
1963 	btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
1964 	wait_event(fs_info->transaction_blocked_wait,
1965 		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1966 		   TRANS_ABORTED(cur_trans));
1967 	btrfs_put_transaction(cur_trans);
1968 }
1969 
1970 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1971 {
1972 	struct btrfs_fs_info *fs_info = trans->fs_info;
1973 	struct btrfs_transaction *cur_trans = trans->transaction;
1974 
1975 	WARN_ON(refcount_read(&trans->use_count) > 1);
1976 
1977 	btrfs_abort_transaction(trans, err);
1978 
1979 	spin_lock(&fs_info->trans_lock);
1980 
1981 	/*
1982 	 * If the transaction is removed from the list, it means this
1983 	 * transaction has been committed successfully, so it is impossible
1984 	 * to call the cleanup function.
1985 	 */
1986 	BUG_ON(list_empty(&cur_trans->list));
1987 
1988 	if (cur_trans == fs_info->running_transaction) {
1989 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1990 		spin_unlock(&fs_info->trans_lock);
1991 
1992 		/*
1993 		 * The thread has already released the lockdep map as reader
1994 		 * already in btrfs_commit_transaction().
1995 		 */
1996 		btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
1997 		wait_event(cur_trans->writer_wait,
1998 			   atomic_read(&cur_trans->num_writers) == 1);
1999 
2000 		spin_lock(&fs_info->trans_lock);
2001 	}
2002 
2003 	/*
2004 	 * Now that we know no one else is still using the transaction we can
2005 	 * remove the transaction from the list of transactions. This avoids
2006 	 * the transaction kthread from cleaning up the transaction while some
2007 	 * other task is still using it, which could result in a use-after-free
2008 	 * on things like log trees, as it forces the transaction kthread to
2009 	 * wait for this transaction to be cleaned up by us.
2010 	 */
2011 	list_del_init(&cur_trans->list);
2012 
2013 	spin_unlock(&fs_info->trans_lock);
2014 
2015 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2016 
2017 	spin_lock(&fs_info->trans_lock);
2018 	if (cur_trans == fs_info->running_transaction)
2019 		fs_info->running_transaction = NULL;
2020 	spin_unlock(&fs_info->trans_lock);
2021 
2022 	if (trans->type & __TRANS_FREEZABLE)
2023 		sb_end_intwrite(fs_info->sb);
2024 	btrfs_put_transaction(cur_trans);
2025 	btrfs_put_transaction(cur_trans);
2026 
2027 	trace_btrfs_transaction_commit(fs_info);
2028 
2029 	if (current->journal_info == trans)
2030 		current->journal_info = NULL;
2031 
2032 	/*
2033 	 * If relocation is running, we can't cancel scrub because that will
2034 	 * result in a deadlock. Before relocating a block group, relocation
2035 	 * pauses scrub, then starts and commits a transaction before unpausing
2036 	 * scrub. If the transaction commit is being done by the relocation
2037 	 * task or triggered by another task and the relocation task is waiting
2038 	 * for the commit, and we end up here due to an error in the commit
2039 	 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2040 	 * asking for scrub to stop while having it asked to be paused higher
2041 	 * above in relocation code.
2042 	 */
2043 	if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2044 		btrfs_scrub_cancel(fs_info);
2045 
2046 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2047 }
2048 
2049 /*
2050  * Release reserved delayed ref space of all pending block groups of the
2051  * transaction and remove them from the list
2052  */
2053 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2054 {
2055        struct btrfs_fs_info *fs_info = trans->fs_info;
2056        struct btrfs_block_group *block_group, *tmp;
2057 
2058        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2059                btrfs_delayed_refs_rsv_release(fs_info, 1);
2060                list_del_init(&block_group->bg_list);
2061        }
2062 }
2063 
2064 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2065 {
2066 	/*
2067 	 * We use try_to_writeback_inodes_sb() here because if we used
2068 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2069 	 * Currently are holding the fs freeze lock, if we do an async flush
2070 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2071 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2072 	 * from already being in a transaction and our join_transaction doesn't
2073 	 * have to re-take the fs freeze lock.
2074 	 *
2075 	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2076 	 * if it can read lock sb->s_umount. It will always be able to lock it,
2077 	 * except when the filesystem is being unmounted or being frozen, but in
2078 	 * those cases sync_filesystem() is called, which results in calling
2079 	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2080 	 * Note that we don't call writeback_inodes_sb() directly, because it
2081 	 * will emit a warning if sb->s_umount is not locked.
2082 	 */
2083 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2084 		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2085 	return 0;
2086 }
2087 
2088 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2089 {
2090 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2091 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2092 }
2093 
2094 /*
2095  * Add a pending snapshot associated with the given transaction handle to the
2096  * respective handle. This must be called after the transaction commit started
2097  * and while holding fs_info->trans_lock.
2098  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2099  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2100  * returns an error.
2101  */
2102 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2103 {
2104 	struct btrfs_transaction *cur_trans = trans->transaction;
2105 
2106 	if (!trans->pending_snapshot)
2107 		return;
2108 
2109 	lockdep_assert_held(&trans->fs_info->trans_lock);
2110 	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2111 
2112 	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2113 }
2114 
2115 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2116 {
2117 	fs_info->commit_stats.commit_count++;
2118 	fs_info->commit_stats.last_commit_dur = interval;
2119 	fs_info->commit_stats.max_commit_dur =
2120 			max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2121 	fs_info->commit_stats.total_commit_dur += interval;
2122 }
2123 
2124 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2125 {
2126 	struct btrfs_fs_info *fs_info = trans->fs_info;
2127 	struct btrfs_transaction *cur_trans = trans->transaction;
2128 	struct btrfs_transaction *prev_trans = NULL;
2129 	int ret;
2130 	ktime_t start_time;
2131 	ktime_t interval;
2132 
2133 	ASSERT(refcount_read(&trans->use_count) == 1);
2134 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2135 
2136 	clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2137 
2138 	/* Stop the commit early if ->aborted is set */
2139 	if (TRANS_ABORTED(cur_trans)) {
2140 		ret = cur_trans->aborted;
2141 		goto lockdep_trans_commit_start_release;
2142 	}
2143 
2144 	btrfs_trans_release_metadata(trans);
2145 	trans->block_rsv = NULL;
2146 
2147 	/*
2148 	 * We only want one transaction commit doing the flushing so we do not
2149 	 * waste a bunch of time on lock contention on the extent root node.
2150 	 */
2151 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2152 			      &cur_trans->delayed_refs.flags)) {
2153 		/*
2154 		 * Make a pass through all the delayed refs we have so far.
2155 		 * Any running threads may add more while we are here.
2156 		 */
2157 		ret = btrfs_run_delayed_refs(trans, 0);
2158 		if (ret)
2159 			goto lockdep_trans_commit_start_release;
2160 	}
2161 
2162 	btrfs_create_pending_block_groups(trans);
2163 
2164 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2165 		int run_it = 0;
2166 
2167 		/* this mutex is also taken before trying to set
2168 		 * block groups readonly.  We need to make sure
2169 		 * that nobody has set a block group readonly
2170 		 * after a extents from that block group have been
2171 		 * allocated for cache files.  btrfs_set_block_group_ro
2172 		 * will wait for the transaction to commit if it
2173 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2174 		 *
2175 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2176 		 * only one process starts all the block group IO.  It wouldn't
2177 		 * hurt to have more than one go through, but there's no
2178 		 * real advantage to it either.
2179 		 */
2180 		mutex_lock(&fs_info->ro_block_group_mutex);
2181 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2182 				      &cur_trans->flags))
2183 			run_it = 1;
2184 		mutex_unlock(&fs_info->ro_block_group_mutex);
2185 
2186 		if (run_it) {
2187 			ret = btrfs_start_dirty_block_groups(trans);
2188 			if (ret)
2189 				goto lockdep_trans_commit_start_release;
2190 		}
2191 	}
2192 
2193 	spin_lock(&fs_info->trans_lock);
2194 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2195 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2196 
2197 		add_pending_snapshot(trans);
2198 
2199 		spin_unlock(&fs_info->trans_lock);
2200 		refcount_inc(&cur_trans->use_count);
2201 
2202 		if (trans->in_fsync)
2203 			want_state = TRANS_STATE_SUPER_COMMITTED;
2204 
2205 		btrfs_trans_state_lockdep_release(fs_info,
2206 						  BTRFS_LOCKDEP_TRANS_COMMIT_START);
2207 		ret = btrfs_end_transaction(trans);
2208 		wait_for_commit(cur_trans, want_state);
2209 
2210 		if (TRANS_ABORTED(cur_trans))
2211 			ret = cur_trans->aborted;
2212 
2213 		btrfs_put_transaction(cur_trans);
2214 
2215 		return ret;
2216 	}
2217 
2218 	cur_trans->state = TRANS_STATE_COMMIT_START;
2219 	wake_up(&fs_info->transaction_blocked_wait);
2220 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2221 
2222 	if (cur_trans->list.prev != &fs_info->trans_list) {
2223 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2224 
2225 		if (trans->in_fsync)
2226 			want_state = TRANS_STATE_SUPER_COMMITTED;
2227 
2228 		prev_trans = list_entry(cur_trans->list.prev,
2229 					struct btrfs_transaction, list);
2230 		if (prev_trans->state < want_state) {
2231 			refcount_inc(&prev_trans->use_count);
2232 			spin_unlock(&fs_info->trans_lock);
2233 
2234 			wait_for_commit(prev_trans, want_state);
2235 
2236 			ret = READ_ONCE(prev_trans->aborted);
2237 
2238 			btrfs_put_transaction(prev_trans);
2239 			if (ret)
2240 				goto lockdep_release;
2241 		} else {
2242 			spin_unlock(&fs_info->trans_lock);
2243 		}
2244 	} else {
2245 		spin_unlock(&fs_info->trans_lock);
2246 		/*
2247 		 * The previous transaction was aborted and was already removed
2248 		 * from the list of transactions at fs_info->trans_list. So we
2249 		 * abort to prevent writing a new superblock that reflects a
2250 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2251 		 */
2252 		if (BTRFS_FS_ERROR(fs_info)) {
2253 			ret = -EROFS;
2254 			goto lockdep_release;
2255 		}
2256 	}
2257 
2258 	/*
2259 	 * Get the time spent on the work done by the commit thread and not
2260 	 * the time spent waiting on a previous commit
2261 	 */
2262 	start_time = ktime_get_ns();
2263 
2264 	extwriter_counter_dec(cur_trans, trans->type);
2265 
2266 	ret = btrfs_start_delalloc_flush(fs_info);
2267 	if (ret)
2268 		goto lockdep_release;
2269 
2270 	ret = btrfs_run_delayed_items(trans);
2271 	if (ret)
2272 		goto lockdep_release;
2273 
2274 	/*
2275 	 * The thread has started/joined the transaction thus it holds the
2276 	 * lockdep map as a reader. It has to release it before acquiring the
2277 	 * lockdep map as a writer.
2278 	 */
2279 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2280 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2281 	wait_event(cur_trans->writer_wait,
2282 		   extwriter_counter_read(cur_trans) == 0);
2283 
2284 	/* some pending stuffs might be added after the previous flush. */
2285 	ret = btrfs_run_delayed_items(trans);
2286 	if (ret) {
2287 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2288 		goto cleanup_transaction;
2289 	}
2290 
2291 	btrfs_wait_delalloc_flush(fs_info);
2292 
2293 	/*
2294 	 * Wait for all ordered extents started by a fast fsync that joined this
2295 	 * transaction. Otherwise if this transaction commits before the ordered
2296 	 * extents complete we lose logged data after a power failure.
2297 	 */
2298 	btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2299 	wait_event(cur_trans->pending_wait,
2300 		   atomic_read(&cur_trans->pending_ordered) == 0);
2301 
2302 	btrfs_scrub_pause(fs_info);
2303 	/*
2304 	 * Ok now we need to make sure to block out any other joins while we
2305 	 * commit the transaction.  We could have started a join before setting
2306 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2307 	 */
2308 	spin_lock(&fs_info->trans_lock);
2309 	add_pending_snapshot(trans);
2310 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2311 	spin_unlock(&fs_info->trans_lock);
2312 
2313 	/*
2314 	 * The thread has started/joined the transaction thus it holds the
2315 	 * lockdep map as a reader. It has to release it before acquiring the
2316 	 * lockdep map as a writer.
2317 	 */
2318 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2319 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2320 	wait_event(cur_trans->writer_wait,
2321 		   atomic_read(&cur_trans->num_writers) == 1);
2322 
2323 	/*
2324 	 * Make lockdep happy by acquiring the state locks after
2325 	 * btrfs_trans_num_writers is released. If we acquired the state locks
2326 	 * before releasing the btrfs_trans_num_writers lock then lockdep would
2327 	 * complain because we did not follow the reverse order unlocking rule.
2328 	 */
2329 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2330 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2331 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2332 
2333 	/*
2334 	 * We've started the commit, clear the flag in case we were triggered to
2335 	 * do an async commit but somebody else started before the transaction
2336 	 * kthread could do the work.
2337 	 */
2338 	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2339 
2340 	if (TRANS_ABORTED(cur_trans)) {
2341 		ret = cur_trans->aborted;
2342 		btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2343 		goto scrub_continue;
2344 	}
2345 	/*
2346 	 * the reloc mutex makes sure that we stop
2347 	 * the balancing code from coming in and moving
2348 	 * extents around in the middle of the commit
2349 	 */
2350 	mutex_lock(&fs_info->reloc_mutex);
2351 
2352 	/*
2353 	 * We needn't worry about the delayed items because we will
2354 	 * deal with them in create_pending_snapshot(), which is the
2355 	 * core function of the snapshot creation.
2356 	 */
2357 	ret = create_pending_snapshots(trans);
2358 	if (ret)
2359 		goto unlock_reloc;
2360 
2361 	/*
2362 	 * We insert the dir indexes of the snapshots and update the inode
2363 	 * of the snapshots' parents after the snapshot creation, so there
2364 	 * are some delayed items which are not dealt with. Now deal with
2365 	 * them.
2366 	 *
2367 	 * We needn't worry that this operation will corrupt the snapshots,
2368 	 * because all the tree which are snapshoted will be forced to COW
2369 	 * the nodes and leaves.
2370 	 */
2371 	ret = btrfs_run_delayed_items(trans);
2372 	if (ret)
2373 		goto unlock_reloc;
2374 
2375 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2376 	if (ret)
2377 		goto unlock_reloc;
2378 
2379 	/*
2380 	 * make sure none of the code above managed to slip in a
2381 	 * delayed item
2382 	 */
2383 	btrfs_assert_delayed_root_empty(fs_info);
2384 
2385 	WARN_ON(cur_trans != trans->transaction);
2386 
2387 	ret = commit_fs_roots(trans);
2388 	if (ret)
2389 		goto unlock_reloc;
2390 
2391 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2392 	 * safe to free the root of tree log roots
2393 	 */
2394 	btrfs_free_log_root_tree(trans, fs_info);
2395 
2396 	/*
2397 	 * Since fs roots are all committed, we can get a quite accurate
2398 	 * new_roots. So let's do quota accounting.
2399 	 */
2400 	ret = btrfs_qgroup_account_extents(trans);
2401 	if (ret < 0)
2402 		goto unlock_reloc;
2403 
2404 	ret = commit_cowonly_roots(trans);
2405 	if (ret)
2406 		goto unlock_reloc;
2407 
2408 	/*
2409 	 * The tasks which save the space cache and inode cache may also
2410 	 * update ->aborted, check it.
2411 	 */
2412 	if (TRANS_ABORTED(cur_trans)) {
2413 		ret = cur_trans->aborted;
2414 		goto unlock_reloc;
2415 	}
2416 
2417 	cur_trans = fs_info->running_transaction;
2418 
2419 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2420 			    fs_info->tree_root->node);
2421 	list_add_tail(&fs_info->tree_root->dirty_list,
2422 		      &cur_trans->switch_commits);
2423 
2424 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2425 			    fs_info->chunk_root->node);
2426 	list_add_tail(&fs_info->chunk_root->dirty_list,
2427 		      &cur_trans->switch_commits);
2428 
2429 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2430 		btrfs_set_root_node(&fs_info->block_group_root->root_item,
2431 				    fs_info->block_group_root->node);
2432 		list_add_tail(&fs_info->block_group_root->dirty_list,
2433 			      &cur_trans->switch_commits);
2434 	}
2435 
2436 	switch_commit_roots(trans);
2437 
2438 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2439 	ASSERT(list_empty(&cur_trans->io_bgs));
2440 	update_super_roots(fs_info);
2441 
2442 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2443 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2444 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2445 	       sizeof(*fs_info->super_copy));
2446 
2447 	btrfs_commit_device_sizes(cur_trans);
2448 
2449 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2450 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2451 
2452 	btrfs_trans_release_chunk_metadata(trans);
2453 
2454 	/*
2455 	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2456 	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2457 	 * make sure that before we commit our superblock, no other task can
2458 	 * start a new transaction and commit a log tree before we commit our
2459 	 * superblock. Anyone trying to commit a log tree locks this mutex before
2460 	 * writing its superblock.
2461 	 */
2462 	mutex_lock(&fs_info->tree_log_mutex);
2463 
2464 	spin_lock(&fs_info->trans_lock);
2465 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2466 	fs_info->running_transaction = NULL;
2467 	spin_unlock(&fs_info->trans_lock);
2468 	mutex_unlock(&fs_info->reloc_mutex);
2469 
2470 	wake_up(&fs_info->transaction_wait);
2471 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2472 
2473 	/* If we have features changed, wake up the cleaner to update sysfs. */
2474 	if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2475 	    fs_info->cleaner_kthread)
2476 		wake_up_process(fs_info->cleaner_kthread);
2477 
2478 	ret = btrfs_write_and_wait_transaction(trans);
2479 	if (ret) {
2480 		btrfs_handle_fs_error(fs_info, ret,
2481 				      "Error while writing out transaction");
2482 		mutex_unlock(&fs_info->tree_log_mutex);
2483 		goto scrub_continue;
2484 	}
2485 
2486 	ret = write_all_supers(fs_info, 0);
2487 	/*
2488 	 * the super is written, we can safely allow the tree-loggers
2489 	 * to go about their business
2490 	 */
2491 	mutex_unlock(&fs_info->tree_log_mutex);
2492 	if (ret)
2493 		goto scrub_continue;
2494 
2495 	/*
2496 	 * We needn't acquire the lock here because there is no other task
2497 	 * which can change it.
2498 	 */
2499 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2500 	wake_up(&cur_trans->commit_wait);
2501 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2502 
2503 	btrfs_finish_extent_commit(trans);
2504 
2505 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2506 		btrfs_clear_space_info_full(fs_info);
2507 
2508 	fs_info->last_trans_committed = cur_trans->transid;
2509 	/*
2510 	 * We needn't acquire the lock here because there is no other task
2511 	 * which can change it.
2512 	 */
2513 	cur_trans->state = TRANS_STATE_COMPLETED;
2514 	wake_up(&cur_trans->commit_wait);
2515 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2516 
2517 	spin_lock(&fs_info->trans_lock);
2518 	list_del_init(&cur_trans->list);
2519 	spin_unlock(&fs_info->trans_lock);
2520 
2521 	btrfs_put_transaction(cur_trans);
2522 	btrfs_put_transaction(cur_trans);
2523 
2524 	if (trans->type & __TRANS_FREEZABLE)
2525 		sb_end_intwrite(fs_info->sb);
2526 
2527 	trace_btrfs_transaction_commit(fs_info);
2528 
2529 	interval = ktime_get_ns() - start_time;
2530 
2531 	btrfs_scrub_continue(fs_info);
2532 
2533 	if (current->journal_info == trans)
2534 		current->journal_info = NULL;
2535 
2536 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2537 
2538 	update_commit_stats(fs_info, interval);
2539 
2540 	return ret;
2541 
2542 unlock_reloc:
2543 	mutex_unlock(&fs_info->reloc_mutex);
2544 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2545 scrub_continue:
2546 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2547 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2548 	btrfs_scrub_continue(fs_info);
2549 cleanup_transaction:
2550 	btrfs_trans_release_metadata(trans);
2551 	btrfs_cleanup_pending_block_groups(trans);
2552 	btrfs_trans_release_chunk_metadata(trans);
2553 	trans->block_rsv = NULL;
2554 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2555 	if (current->journal_info == trans)
2556 		current->journal_info = NULL;
2557 	cleanup_transaction(trans, ret);
2558 
2559 	return ret;
2560 
2561 lockdep_release:
2562 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2563 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2564 	goto cleanup_transaction;
2565 
2566 lockdep_trans_commit_start_release:
2567 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2568 	btrfs_end_transaction(trans);
2569 	return ret;
2570 }
2571 
2572 /*
2573  * return < 0 if error
2574  * 0 if there are no more dead_roots at the time of call
2575  * 1 there are more to be processed, call me again
2576  *
2577  * The return value indicates there are certainly more snapshots to delete, but
2578  * if there comes a new one during processing, it may return 0. We don't mind,
2579  * because btrfs_commit_super will poke cleaner thread and it will process it a
2580  * few seconds later.
2581  */
2582 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2583 {
2584 	struct btrfs_root *root;
2585 	int ret;
2586 
2587 	spin_lock(&fs_info->trans_lock);
2588 	if (list_empty(&fs_info->dead_roots)) {
2589 		spin_unlock(&fs_info->trans_lock);
2590 		return 0;
2591 	}
2592 	root = list_first_entry(&fs_info->dead_roots,
2593 			struct btrfs_root, root_list);
2594 	list_del_init(&root->root_list);
2595 	spin_unlock(&fs_info->trans_lock);
2596 
2597 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2598 
2599 	btrfs_kill_all_delayed_nodes(root);
2600 
2601 	if (btrfs_header_backref_rev(root->node) <
2602 			BTRFS_MIXED_BACKREF_REV)
2603 		ret = btrfs_drop_snapshot(root, 0, 0);
2604 	else
2605 		ret = btrfs_drop_snapshot(root, 1, 0);
2606 
2607 	btrfs_put_root(root);
2608 	return (ret < 0) ? 0 : 1;
2609 }
2610 
2611 /*
2612  * We only mark the transaction aborted and then set the file system read-only.
2613  * This will prevent new transactions from starting or trying to join this
2614  * one.
2615  *
2616  * This means that error recovery at the call site is limited to freeing
2617  * any local memory allocations and passing the error code up without
2618  * further cleanup. The transaction should complete as it normally would
2619  * in the call path but will return -EIO.
2620  *
2621  * We'll complete the cleanup in btrfs_end_transaction and
2622  * btrfs_commit_transaction.
2623  */
2624 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2625 				      const char *function,
2626 				      unsigned int line, int errno, bool first_hit)
2627 {
2628 	struct btrfs_fs_info *fs_info = trans->fs_info;
2629 
2630 	WRITE_ONCE(trans->aborted, errno);
2631 	WRITE_ONCE(trans->transaction->aborted, errno);
2632 	if (first_hit && errno == -ENOSPC)
2633 		btrfs_dump_space_info_for_trans_abort(fs_info);
2634 	/* Wake up anybody who may be waiting on this transaction */
2635 	wake_up(&fs_info->transaction_wait);
2636 	wake_up(&fs_info->transaction_blocked_wait);
2637 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
2638 }
2639 
2640 int __init btrfs_transaction_init(void)
2641 {
2642 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2643 			sizeof(struct btrfs_trans_handle), 0,
2644 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2645 	if (!btrfs_trans_handle_cachep)
2646 		return -ENOMEM;
2647 	return 0;
2648 }
2649 
2650 void __cold btrfs_transaction_exit(void)
2651 {
2652 	kmem_cache_destroy(btrfs_trans_handle_cachep);
2653 }
2654