1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/writeback.h> 11 #include <linux/pagemap.h> 12 #include <linux/blkdev.h> 13 #include <linux/uuid.h> 14 #include <linux/timekeeping.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "disk-io.h" 18 #include "transaction.h" 19 #include "locking.h" 20 #include "tree-log.h" 21 #include "volumes.h" 22 #include "dev-replace.h" 23 #include "qgroup.h" 24 #include "block-group.h" 25 #include "space-info.h" 26 #include "zoned.h" 27 #include "fs.h" 28 #include "accessors.h" 29 #include "extent-tree.h" 30 #include "root-tree.h" 31 #include "defrag.h" 32 #include "dir-item.h" 33 #include "uuid-tree.h" 34 #include "ioctl.h" 35 #include "relocation.h" 36 #include "scrub.h" 37 38 static struct kmem_cache *btrfs_trans_handle_cachep; 39 40 #define BTRFS_ROOT_TRANS_TAG 0 41 42 /* 43 * Transaction states and transitions 44 * 45 * No running transaction (fs tree blocks are not modified) 46 * | 47 * | To next stage: 48 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 49 * V 50 * Transaction N [[TRANS_STATE_RUNNING]] 51 * | 52 * | New trans handles can be attached to transaction N by calling all 53 * | start_transaction() variants. 54 * | 55 * | To next stage: 56 * | Call btrfs_commit_transaction() on any trans handle attached to 57 * | transaction N 58 * V 59 * Transaction N [[TRANS_STATE_COMMIT_PREP]] 60 * | 61 * | If there are simultaneous calls to btrfs_commit_transaction() one will win 62 * | the race and the rest will wait for the winner to commit the transaction. 63 * | 64 * | The winner will wait for previous running transaction to completely finish 65 * | if there is one. 66 * | 67 * Transaction N [[TRANS_STATE_COMMIT_START]] 68 * | 69 * | Then one of the following happens: 70 * | - Wait for all other trans handle holders to release. 71 * | The btrfs_commit_transaction() caller will do the commit work. 72 * | - Wait for current transaction to be committed by others. 73 * | Other btrfs_commit_transaction() caller will do the commit work. 74 * | 75 * | At this stage, only btrfs_join_transaction*() variants can attach 76 * | to this running transaction. 77 * | All other variants will wait for current one to finish and attach to 78 * | transaction N+1. 79 * | 80 * | To next stage: 81 * | Caller is chosen to commit transaction N, and all other trans handle 82 * | haven been released. 83 * V 84 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 85 * | 86 * | The heavy lifting transaction work is started. 87 * | From running delayed refs (modifying extent tree) to creating pending 88 * | snapshots, running qgroups. 89 * | In short, modify supporting trees to reflect modifications of subvolume 90 * | trees. 91 * | 92 * | At this stage, all start_transaction() calls will wait for this 93 * | transaction to finish and attach to transaction N+1. 94 * | 95 * | To next stage: 96 * | Until all supporting trees are updated. 97 * V 98 * Transaction N [[TRANS_STATE_UNBLOCKED]] 99 * | Transaction N+1 100 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 101 * | need to write them back to disk and update | 102 * | super blocks. | 103 * | | 104 * | At this stage, new transaction is allowed to | 105 * | start. | 106 * | All new start_transaction() calls will be | 107 * | attached to transid N+1. | 108 * | | 109 * | To next stage: | 110 * | Until all tree blocks are super blocks are | 111 * | written to block devices | 112 * V | 113 * Transaction N [[TRANS_STATE_COMPLETED]] V 114 * All tree blocks and super blocks are written. Transaction N+1 115 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 116 * data structures will be cleaned up. | Life goes on 117 */ 118 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 119 [TRANS_STATE_RUNNING] = 0U, 120 [TRANS_STATE_COMMIT_PREP] = 0U, 121 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 122 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 123 __TRANS_ATTACH | 124 __TRANS_JOIN | 125 __TRANS_JOIN_NOSTART), 126 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 127 __TRANS_ATTACH | 128 __TRANS_JOIN | 129 __TRANS_JOIN_NOLOCK | 130 __TRANS_JOIN_NOSTART), 131 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 132 __TRANS_ATTACH | 133 __TRANS_JOIN | 134 __TRANS_JOIN_NOLOCK | 135 __TRANS_JOIN_NOSTART), 136 [TRANS_STATE_COMPLETED] = (__TRANS_START | 137 __TRANS_ATTACH | 138 __TRANS_JOIN | 139 __TRANS_JOIN_NOLOCK | 140 __TRANS_JOIN_NOSTART), 141 }; 142 143 void btrfs_put_transaction(struct btrfs_transaction *transaction) 144 { 145 WARN_ON(refcount_read(&transaction->use_count) == 0); 146 if (refcount_dec_and_test(&transaction->use_count)) { 147 BUG_ON(!list_empty(&transaction->list)); 148 WARN_ON(!RB_EMPTY_ROOT( 149 &transaction->delayed_refs.href_root.rb_root)); 150 WARN_ON(!RB_EMPTY_ROOT( 151 &transaction->delayed_refs.dirty_extent_root)); 152 if (transaction->delayed_refs.pending_csums) 153 btrfs_err(transaction->fs_info, 154 "pending csums is %llu", 155 transaction->delayed_refs.pending_csums); 156 /* 157 * If any block groups are found in ->deleted_bgs then it's 158 * because the transaction was aborted and a commit did not 159 * happen (things failed before writing the new superblock 160 * and calling btrfs_finish_extent_commit()), so we can not 161 * discard the physical locations of the block groups. 162 */ 163 while (!list_empty(&transaction->deleted_bgs)) { 164 struct btrfs_block_group *cache; 165 166 cache = list_first_entry(&transaction->deleted_bgs, 167 struct btrfs_block_group, 168 bg_list); 169 list_del_init(&cache->bg_list); 170 btrfs_unfreeze_block_group(cache); 171 btrfs_put_block_group(cache); 172 } 173 WARN_ON(!list_empty(&transaction->dev_update_list)); 174 kfree(transaction); 175 } 176 } 177 178 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 179 { 180 struct btrfs_transaction *cur_trans = trans->transaction; 181 struct btrfs_fs_info *fs_info = trans->fs_info; 182 struct btrfs_root *root, *tmp; 183 184 /* 185 * At this point no one can be using this transaction to modify any tree 186 * and no one can start another transaction to modify any tree either. 187 */ 188 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING); 189 190 down_write(&fs_info->commit_root_sem); 191 192 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 193 fs_info->last_reloc_trans = trans->transid; 194 195 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 196 dirty_list) { 197 list_del_init(&root->dirty_list); 198 free_extent_buffer(root->commit_root); 199 root->commit_root = btrfs_root_node(root); 200 extent_io_tree_release(&root->dirty_log_pages); 201 btrfs_qgroup_clean_swapped_blocks(root); 202 } 203 204 /* We can free old roots now. */ 205 spin_lock(&cur_trans->dropped_roots_lock); 206 while (!list_empty(&cur_trans->dropped_roots)) { 207 root = list_first_entry(&cur_trans->dropped_roots, 208 struct btrfs_root, root_list); 209 list_del_init(&root->root_list); 210 spin_unlock(&cur_trans->dropped_roots_lock); 211 btrfs_free_log(trans, root); 212 btrfs_drop_and_free_fs_root(fs_info, root); 213 spin_lock(&cur_trans->dropped_roots_lock); 214 } 215 spin_unlock(&cur_trans->dropped_roots_lock); 216 217 up_write(&fs_info->commit_root_sem); 218 } 219 220 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 221 unsigned int type) 222 { 223 if (type & TRANS_EXTWRITERS) 224 atomic_inc(&trans->num_extwriters); 225 } 226 227 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 228 unsigned int type) 229 { 230 if (type & TRANS_EXTWRITERS) 231 atomic_dec(&trans->num_extwriters); 232 } 233 234 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 235 unsigned int type) 236 { 237 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 238 } 239 240 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 241 { 242 return atomic_read(&trans->num_extwriters); 243 } 244 245 /* 246 * To be called after doing the chunk btree updates right after allocating a new 247 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a 248 * chunk after all chunk btree updates and after finishing the second phase of 249 * chunk allocation (btrfs_create_pending_block_groups()) in case some block 250 * group had its chunk item insertion delayed to the second phase. 251 */ 252 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 253 { 254 struct btrfs_fs_info *fs_info = trans->fs_info; 255 256 if (!trans->chunk_bytes_reserved) 257 return; 258 259 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 260 trans->chunk_bytes_reserved, NULL); 261 trans->chunk_bytes_reserved = 0; 262 } 263 264 /* 265 * either allocate a new transaction or hop into the existing one 266 */ 267 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 268 unsigned int type) 269 { 270 struct btrfs_transaction *cur_trans; 271 272 spin_lock(&fs_info->trans_lock); 273 loop: 274 /* The file system has been taken offline. No new transactions. */ 275 if (BTRFS_FS_ERROR(fs_info)) { 276 spin_unlock(&fs_info->trans_lock); 277 return -EROFS; 278 } 279 280 cur_trans = fs_info->running_transaction; 281 if (cur_trans) { 282 if (TRANS_ABORTED(cur_trans)) { 283 spin_unlock(&fs_info->trans_lock); 284 return cur_trans->aborted; 285 } 286 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 287 spin_unlock(&fs_info->trans_lock); 288 return -EBUSY; 289 } 290 refcount_inc(&cur_trans->use_count); 291 atomic_inc(&cur_trans->num_writers); 292 extwriter_counter_inc(cur_trans, type); 293 spin_unlock(&fs_info->trans_lock); 294 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 295 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 296 return 0; 297 } 298 spin_unlock(&fs_info->trans_lock); 299 300 /* 301 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the 302 * current transaction, and commit it. If there is no transaction, just 303 * return ENOENT. 304 */ 305 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART) 306 return -ENOENT; 307 308 /* 309 * JOIN_NOLOCK only happens during the transaction commit, so 310 * it is impossible that ->running_transaction is NULL 311 */ 312 BUG_ON(type == TRANS_JOIN_NOLOCK); 313 314 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 315 if (!cur_trans) 316 return -ENOMEM; 317 318 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 319 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 320 321 spin_lock(&fs_info->trans_lock); 322 if (fs_info->running_transaction) { 323 /* 324 * someone started a transaction after we unlocked. Make sure 325 * to redo the checks above 326 */ 327 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 328 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 329 kfree(cur_trans); 330 goto loop; 331 } else if (BTRFS_FS_ERROR(fs_info)) { 332 spin_unlock(&fs_info->trans_lock); 333 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 334 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 335 kfree(cur_trans); 336 return -EROFS; 337 } 338 339 cur_trans->fs_info = fs_info; 340 atomic_set(&cur_trans->pending_ordered, 0); 341 init_waitqueue_head(&cur_trans->pending_wait); 342 atomic_set(&cur_trans->num_writers, 1); 343 extwriter_counter_init(cur_trans, type); 344 init_waitqueue_head(&cur_trans->writer_wait); 345 init_waitqueue_head(&cur_trans->commit_wait); 346 cur_trans->state = TRANS_STATE_RUNNING; 347 /* 348 * One for this trans handle, one so it will live on until we 349 * commit the transaction. 350 */ 351 refcount_set(&cur_trans->use_count, 2); 352 cur_trans->flags = 0; 353 cur_trans->start_time = ktime_get_seconds(); 354 355 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 356 357 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 358 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 359 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 360 361 /* 362 * although the tree mod log is per file system and not per transaction, 363 * the log must never go across transaction boundaries. 364 */ 365 smp_mb(); 366 if (!list_empty(&fs_info->tree_mod_seq_list)) 367 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 368 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 369 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 370 atomic64_set(&fs_info->tree_mod_seq, 0); 371 372 spin_lock_init(&cur_trans->delayed_refs.lock); 373 374 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 375 INIT_LIST_HEAD(&cur_trans->dev_update_list); 376 INIT_LIST_HEAD(&cur_trans->switch_commits); 377 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 378 INIT_LIST_HEAD(&cur_trans->io_bgs); 379 INIT_LIST_HEAD(&cur_trans->dropped_roots); 380 mutex_init(&cur_trans->cache_write_mutex); 381 spin_lock_init(&cur_trans->dirty_bgs_lock); 382 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 383 spin_lock_init(&cur_trans->dropped_roots_lock); 384 list_add_tail(&cur_trans->list, &fs_info->trans_list); 385 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 386 IO_TREE_TRANS_DIRTY_PAGES); 387 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 388 IO_TREE_FS_PINNED_EXTENTS); 389 fs_info->generation++; 390 cur_trans->transid = fs_info->generation; 391 fs_info->running_transaction = cur_trans; 392 cur_trans->aborted = 0; 393 spin_unlock(&fs_info->trans_lock); 394 395 return 0; 396 } 397 398 /* 399 * This does all the record keeping required to make sure that a shareable root 400 * is properly recorded in a given transaction. This is required to make sure 401 * the old root from before we joined the transaction is deleted when the 402 * transaction commits. 403 */ 404 static int record_root_in_trans(struct btrfs_trans_handle *trans, 405 struct btrfs_root *root, 406 int force) 407 { 408 struct btrfs_fs_info *fs_info = root->fs_info; 409 int ret = 0; 410 411 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 412 root->last_trans < trans->transid) || force) { 413 WARN_ON(!force && root->commit_root != root->node); 414 415 /* 416 * see below for IN_TRANS_SETUP usage rules 417 * we have the reloc mutex held now, so there 418 * is only one writer in this function 419 */ 420 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 421 422 /* make sure readers find IN_TRANS_SETUP before 423 * they find our root->last_trans update 424 */ 425 smp_wmb(); 426 427 spin_lock(&fs_info->fs_roots_radix_lock); 428 if (root->last_trans == trans->transid && !force) { 429 spin_unlock(&fs_info->fs_roots_radix_lock); 430 return 0; 431 } 432 radix_tree_tag_set(&fs_info->fs_roots_radix, 433 (unsigned long)root->root_key.objectid, 434 BTRFS_ROOT_TRANS_TAG); 435 spin_unlock(&fs_info->fs_roots_radix_lock); 436 root->last_trans = trans->transid; 437 438 /* this is pretty tricky. We don't want to 439 * take the relocation lock in btrfs_record_root_in_trans 440 * unless we're really doing the first setup for this root in 441 * this transaction. 442 * 443 * Normally we'd use root->last_trans as a flag to decide 444 * if we want to take the expensive mutex. 445 * 446 * But, we have to set root->last_trans before we 447 * init the relocation root, otherwise, we trip over warnings 448 * in ctree.c. The solution used here is to flag ourselves 449 * with root IN_TRANS_SETUP. When this is 1, we're still 450 * fixing up the reloc trees and everyone must wait. 451 * 452 * When this is zero, they can trust root->last_trans and fly 453 * through btrfs_record_root_in_trans without having to take the 454 * lock. smp_wmb() makes sure that all the writes above are 455 * done before we pop in the zero below 456 */ 457 ret = btrfs_init_reloc_root(trans, root); 458 smp_mb__before_atomic(); 459 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 460 } 461 return ret; 462 } 463 464 465 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 466 struct btrfs_root *root) 467 { 468 struct btrfs_fs_info *fs_info = root->fs_info; 469 struct btrfs_transaction *cur_trans = trans->transaction; 470 471 /* Add ourselves to the transaction dropped list */ 472 spin_lock(&cur_trans->dropped_roots_lock); 473 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 474 spin_unlock(&cur_trans->dropped_roots_lock); 475 476 /* Make sure we don't try to update the root at commit time */ 477 spin_lock(&fs_info->fs_roots_radix_lock); 478 radix_tree_tag_clear(&fs_info->fs_roots_radix, 479 (unsigned long)root->root_key.objectid, 480 BTRFS_ROOT_TRANS_TAG); 481 spin_unlock(&fs_info->fs_roots_radix_lock); 482 } 483 484 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 485 struct btrfs_root *root) 486 { 487 struct btrfs_fs_info *fs_info = root->fs_info; 488 int ret; 489 490 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 491 return 0; 492 493 /* 494 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 495 * and barriers 496 */ 497 smp_rmb(); 498 if (root->last_trans == trans->transid && 499 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 500 return 0; 501 502 mutex_lock(&fs_info->reloc_mutex); 503 ret = record_root_in_trans(trans, root, 0); 504 mutex_unlock(&fs_info->reloc_mutex); 505 506 return ret; 507 } 508 509 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 510 { 511 return (trans->state >= TRANS_STATE_COMMIT_START && 512 trans->state < TRANS_STATE_UNBLOCKED && 513 !TRANS_ABORTED(trans)); 514 } 515 516 /* wait for commit against the current transaction to become unblocked 517 * when this is done, it is safe to start a new transaction, but the current 518 * transaction might not be fully on disk. 519 */ 520 static void wait_current_trans(struct btrfs_fs_info *fs_info) 521 { 522 struct btrfs_transaction *cur_trans; 523 524 spin_lock(&fs_info->trans_lock); 525 cur_trans = fs_info->running_transaction; 526 if (cur_trans && is_transaction_blocked(cur_trans)) { 527 refcount_inc(&cur_trans->use_count); 528 spin_unlock(&fs_info->trans_lock); 529 530 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 531 wait_event(fs_info->transaction_wait, 532 cur_trans->state >= TRANS_STATE_UNBLOCKED || 533 TRANS_ABORTED(cur_trans)); 534 btrfs_put_transaction(cur_trans); 535 } else { 536 spin_unlock(&fs_info->trans_lock); 537 } 538 } 539 540 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 541 { 542 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 543 return 0; 544 545 if (type == TRANS_START) 546 return 1; 547 548 return 0; 549 } 550 551 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 552 { 553 struct btrfs_fs_info *fs_info = root->fs_info; 554 555 if (!fs_info->reloc_ctl || 556 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 557 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 558 root->reloc_root) 559 return false; 560 561 return true; 562 } 563 564 static struct btrfs_trans_handle * 565 start_transaction(struct btrfs_root *root, unsigned int num_items, 566 unsigned int type, enum btrfs_reserve_flush_enum flush, 567 bool enforce_qgroups) 568 { 569 struct btrfs_fs_info *fs_info = root->fs_info; 570 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 571 struct btrfs_trans_handle *h; 572 struct btrfs_transaction *cur_trans; 573 u64 num_bytes = 0; 574 u64 qgroup_reserved = 0; 575 bool reloc_reserved = false; 576 bool do_chunk_alloc = false; 577 int ret; 578 579 if (BTRFS_FS_ERROR(fs_info)) 580 return ERR_PTR(-EROFS); 581 582 if (current->journal_info) { 583 WARN_ON(type & TRANS_EXTWRITERS); 584 h = current->journal_info; 585 refcount_inc(&h->use_count); 586 WARN_ON(refcount_read(&h->use_count) > 2); 587 h->orig_rsv = h->block_rsv; 588 h->block_rsv = NULL; 589 goto got_it; 590 } 591 592 /* 593 * Do the reservation before we join the transaction so we can do all 594 * the appropriate flushing if need be. 595 */ 596 if (num_items && root != fs_info->chunk_root) { 597 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 598 u64 delayed_refs_bytes = 0; 599 600 qgroup_reserved = num_items * fs_info->nodesize; 601 /* 602 * Use prealloc for now, as there might be a currently running 603 * transaction that could free this reserved space prematurely 604 * by committing. 605 */ 606 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved, 607 enforce_qgroups, false); 608 if (ret) 609 return ERR_PTR(ret); 610 611 /* 612 * We want to reserve all the bytes we may need all at once, so 613 * we only do 1 enospc flushing cycle per transaction start. We 614 * accomplish this by simply assuming we'll do num_items worth 615 * of delayed refs updates in this trans handle, and refill that 616 * amount for whatever is missing in the reserve. 617 */ 618 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 619 if (flush == BTRFS_RESERVE_FLUSH_ALL && 620 !btrfs_block_rsv_full(delayed_refs_rsv)) { 621 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, 622 num_items); 623 num_bytes += delayed_refs_bytes; 624 } 625 626 /* 627 * Do the reservation for the relocation root creation 628 */ 629 if (need_reserve_reloc_root(root)) { 630 num_bytes += fs_info->nodesize; 631 reloc_reserved = true; 632 } 633 634 ret = btrfs_reserve_metadata_bytes(fs_info, rsv, num_bytes, flush); 635 if (ret) 636 goto reserve_fail; 637 if (delayed_refs_bytes) { 638 btrfs_migrate_to_delayed_refs_rsv(fs_info, delayed_refs_bytes); 639 num_bytes -= delayed_refs_bytes; 640 } 641 btrfs_block_rsv_add_bytes(rsv, num_bytes, true); 642 643 if (rsv->space_info->force_alloc) 644 do_chunk_alloc = true; 645 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 646 !btrfs_block_rsv_full(delayed_refs_rsv)) { 647 /* 648 * Some people call with btrfs_start_transaction(root, 0) 649 * because they can be throttled, but have some other mechanism 650 * for reserving space. We still want these guys to refill the 651 * delayed block_rsv so just add 1 items worth of reservation 652 * here. 653 */ 654 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 655 if (ret) 656 goto reserve_fail; 657 } 658 again: 659 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 660 if (!h) { 661 ret = -ENOMEM; 662 goto alloc_fail; 663 } 664 665 /* 666 * If we are JOIN_NOLOCK we're already committing a transaction and 667 * waiting on this guy, so we don't need to do the sb_start_intwrite 668 * because we're already holding a ref. We need this because we could 669 * have raced in and did an fsync() on a file which can kick a commit 670 * and then we deadlock with somebody doing a freeze. 671 * 672 * If we are ATTACH, it means we just want to catch the current 673 * transaction and commit it, so we needn't do sb_start_intwrite(). 674 */ 675 if (type & __TRANS_FREEZABLE) 676 sb_start_intwrite(fs_info->sb); 677 678 if (may_wait_transaction(fs_info, type)) 679 wait_current_trans(fs_info); 680 681 do { 682 ret = join_transaction(fs_info, type); 683 if (ret == -EBUSY) { 684 wait_current_trans(fs_info); 685 if (unlikely(type == TRANS_ATTACH || 686 type == TRANS_JOIN_NOSTART)) 687 ret = -ENOENT; 688 } 689 } while (ret == -EBUSY); 690 691 if (ret < 0) 692 goto join_fail; 693 694 cur_trans = fs_info->running_transaction; 695 696 h->transid = cur_trans->transid; 697 h->transaction = cur_trans; 698 refcount_set(&h->use_count, 1); 699 h->fs_info = root->fs_info; 700 701 h->type = type; 702 INIT_LIST_HEAD(&h->new_bgs); 703 704 smp_mb(); 705 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 706 may_wait_transaction(fs_info, type)) { 707 current->journal_info = h; 708 btrfs_commit_transaction(h); 709 goto again; 710 } 711 712 if (num_bytes) { 713 trace_btrfs_space_reservation(fs_info, "transaction", 714 h->transid, num_bytes, 1); 715 h->block_rsv = &fs_info->trans_block_rsv; 716 h->bytes_reserved = num_bytes; 717 h->reloc_reserved = reloc_reserved; 718 } 719 720 /* 721 * Now that we have found a transaction to be a part of, convert the 722 * qgroup reservation from prealloc to pertrans. A different transaction 723 * can't race in and free our pertrans out from under us. 724 */ 725 if (qgroup_reserved) 726 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 727 728 got_it: 729 if (!current->journal_info) 730 current->journal_info = h; 731 732 /* 733 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 734 * ALLOC_FORCE the first run through, and then we won't allocate for 735 * anybody else who races in later. We don't care about the return 736 * value here. 737 */ 738 if (do_chunk_alloc && num_bytes) { 739 u64 flags = h->block_rsv->space_info->flags; 740 741 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 742 CHUNK_ALLOC_NO_FORCE); 743 } 744 745 /* 746 * btrfs_record_root_in_trans() needs to alloc new extents, and may 747 * call btrfs_join_transaction() while we're also starting a 748 * transaction. 749 * 750 * Thus it need to be called after current->journal_info initialized, 751 * or we can deadlock. 752 */ 753 ret = btrfs_record_root_in_trans(h, root); 754 if (ret) { 755 /* 756 * The transaction handle is fully initialized and linked with 757 * other structures so it needs to be ended in case of errors, 758 * not just freed. 759 */ 760 btrfs_end_transaction(h); 761 return ERR_PTR(ret); 762 } 763 764 return h; 765 766 join_fail: 767 if (type & __TRANS_FREEZABLE) 768 sb_end_intwrite(fs_info->sb); 769 kmem_cache_free(btrfs_trans_handle_cachep, h); 770 alloc_fail: 771 if (num_bytes) 772 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 773 num_bytes, NULL); 774 reserve_fail: 775 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 776 return ERR_PTR(ret); 777 } 778 779 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 780 unsigned int num_items) 781 { 782 return start_transaction(root, num_items, TRANS_START, 783 BTRFS_RESERVE_FLUSH_ALL, true); 784 } 785 786 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 787 struct btrfs_root *root, 788 unsigned int num_items) 789 { 790 return start_transaction(root, num_items, TRANS_START, 791 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 792 } 793 794 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 795 { 796 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 797 true); 798 } 799 800 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 801 { 802 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 803 BTRFS_RESERVE_NO_FLUSH, true); 804 } 805 806 /* 807 * Similar to regular join but it never starts a transaction when none is 808 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED. 809 * This is similar to btrfs_attach_transaction() but it allows the join to 810 * happen if the transaction commit already started but it's not yet in the 811 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING). 812 */ 813 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 814 { 815 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 816 BTRFS_RESERVE_NO_FLUSH, true); 817 } 818 819 /* 820 * btrfs_attach_transaction() - catch the running transaction 821 * 822 * It is used when we want to commit the current the transaction, but 823 * don't want to start a new one. 824 * 825 * Note: If this function return -ENOENT, it just means there is no 826 * running transaction. But it is possible that the inactive transaction 827 * is still in the memory, not fully on disk. If you hope there is no 828 * inactive transaction in the fs when -ENOENT is returned, you should 829 * invoke 830 * btrfs_attach_transaction_barrier() 831 */ 832 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 833 { 834 return start_transaction(root, 0, TRANS_ATTACH, 835 BTRFS_RESERVE_NO_FLUSH, true); 836 } 837 838 /* 839 * btrfs_attach_transaction_barrier() - catch the running transaction 840 * 841 * It is similar to the above function, the difference is this one 842 * will wait for all the inactive transactions until they fully 843 * complete. 844 */ 845 struct btrfs_trans_handle * 846 btrfs_attach_transaction_barrier(struct btrfs_root *root) 847 { 848 struct btrfs_trans_handle *trans; 849 850 trans = start_transaction(root, 0, TRANS_ATTACH, 851 BTRFS_RESERVE_NO_FLUSH, true); 852 if (trans == ERR_PTR(-ENOENT)) { 853 int ret; 854 855 ret = btrfs_wait_for_commit(root->fs_info, 0); 856 if (ret) 857 return ERR_PTR(ret); 858 } 859 860 return trans; 861 } 862 863 /* Wait for a transaction commit to reach at least the given state. */ 864 static noinline void wait_for_commit(struct btrfs_transaction *commit, 865 const enum btrfs_trans_state min_state) 866 { 867 struct btrfs_fs_info *fs_info = commit->fs_info; 868 u64 transid = commit->transid; 869 bool put = false; 870 871 /* 872 * At the moment this function is called with min_state either being 873 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED. 874 */ 875 if (min_state == TRANS_STATE_COMPLETED) 876 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 877 else 878 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 879 880 while (1) { 881 wait_event(commit->commit_wait, commit->state >= min_state); 882 if (put) 883 btrfs_put_transaction(commit); 884 885 if (min_state < TRANS_STATE_COMPLETED) 886 break; 887 888 /* 889 * A transaction isn't really completed until all of the 890 * previous transactions are completed, but with fsync we can 891 * end up with SUPER_COMMITTED transactions before a COMPLETED 892 * transaction. Wait for those. 893 */ 894 895 spin_lock(&fs_info->trans_lock); 896 commit = list_first_entry_or_null(&fs_info->trans_list, 897 struct btrfs_transaction, 898 list); 899 if (!commit || commit->transid > transid) { 900 spin_unlock(&fs_info->trans_lock); 901 break; 902 } 903 refcount_inc(&commit->use_count); 904 put = true; 905 spin_unlock(&fs_info->trans_lock); 906 } 907 } 908 909 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 910 { 911 struct btrfs_transaction *cur_trans = NULL, *t; 912 int ret = 0; 913 914 if (transid) { 915 if (transid <= fs_info->last_trans_committed) 916 goto out; 917 918 /* find specified transaction */ 919 spin_lock(&fs_info->trans_lock); 920 list_for_each_entry(t, &fs_info->trans_list, list) { 921 if (t->transid == transid) { 922 cur_trans = t; 923 refcount_inc(&cur_trans->use_count); 924 ret = 0; 925 break; 926 } 927 if (t->transid > transid) { 928 ret = 0; 929 break; 930 } 931 } 932 spin_unlock(&fs_info->trans_lock); 933 934 /* 935 * The specified transaction doesn't exist, or we 936 * raced with btrfs_commit_transaction 937 */ 938 if (!cur_trans) { 939 if (transid > fs_info->last_trans_committed) 940 ret = -EINVAL; 941 goto out; 942 } 943 } else { 944 /* find newest transaction that is committing | committed */ 945 spin_lock(&fs_info->trans_lock); 946 list_for_each_entry_reverse(t, &fs_info->trans_list, 947 list) { 948 if (t->state >= TRANS_STATE_COMMIT_START) { 949 if (t->state == TRANS_STATE_COMPLETED) 950 break; 951 cur_trans = t; 952 refcount_inc(&cur_trans->use_count); 953 break; 954 } 955 } 956 spin_unlock(&fs_info->trans_lock); 957 if (!cur_trans) 958 goto out; /* nothing committing|committed */ 959 } 960 961 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 962 ret = cur_trans->aborted; 963 btrfs_put_transaction(cur_trans); 964 out: 965 return ret; 966 } 967 968 void btrfs_throttle(struct btrfs_fs_info *fs_info) 969 { 970 wait_current_trans(fs_info); 971 } 972 973 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 974 { 975 struct btrfs_transaction *cur_trans = trans->transaction; 976 977 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 978 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 979 return true; 980 981 if (btrfs_check_space_for_delayed_refs(trans->fs_info)) 982 return true; 983 984 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50); 985 } 986 987 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 988 989 { 990 struct btrfs_fs_info *fs_info = trans->fs_info; 991 992 if (!trans->block_rsv) { 993 ASSERT(!trans->bytes_reserved); 994 return; 995 } 996 997 if (!trans->bytes_reserved) 998 return; 999 1000 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 1001 trace_btrfs_space_reservation(fs_info, "transaction", 1002 trans->transid, trans->bytes_reserved, 0); 1003 btrfs_block_rsv_release(fs_info, trans->block_rsv, 1004 trans->bytes_reserved, NULL); 1005 trans->bytes_reserved = 0; 1006 } 1007 1008 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 1009 int throttle) 1010 { 1011 struct btrfs_fs_info *info = trans->fs_info; 1012 struct btrfs_transaction *cur_trans = trans->transaction; 1013 int err = 0; 1014 1015 if (refcount_read(&trans->use_count) > 1) { 1016 refcount_dec(&trans->use_count); 1017 trans->block_rsv = trans->orig_rsv; 1018 return 0; 1019 } 1020 1021 btrfs_trans_release_metadata(trans); 1022 trans->block_rsv = NULL; 1023 1024 btrfs_create_pending_block_groups(trans); 1025 1026 btrfs_trans_release_chunk_metadata(trans); 1027 1028 if (trans->type & __TRANS_FREEZABLE) 1029 sb_end_intwrite(info->sb); 1030 1031 WARN_ON(cur_trans != info->running_transaction); 1032 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 1033 atomic_dec(&cur_trans->num_writers); 1034 extwriter_counter_dec(cur_trans, trans->type); 1035 1036 cond_wake_up(&cur_trans->writer_wait); 1037 1038 btrfs_lockdep_release(info, btrfs_trans_num_extwriters); 1039 btrfs_lockdep_release(info, btrfs_trans_num_writers); 1040 1041 btrfs_put_transaction(cur_trans); 1042 1043 if (current->journal_info == trans) 1044 current->journal_info = NULL; 1045 1046 if (throttle) 1047 btrfs_run_delayed_iputs(info); 1048 1049 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) { 1050 wake_up_process(info->transaction_kthread); 1051 if (TRANS_ABORTED(trans)) 1052 err = trans->aborted; 1053 else 1054 err = -EROFS; 1055 } 1056 1057 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1058 return err; 1059 } 1060 1061 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1062 { 1063 return __btrfs_end_transaction(trans, 0); 1064 } 1065 1066 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1067 { 1068 return __btrfs_end_transaction(trans, 1); 1069 } 1070 1071 /* 1072 * when btree blocks are allocated, they have some corresponding bits set for 1073 * them in one of two extent_io trees. This is used to make sure all of 1074 * those extents are sent to disk but does not wait on them 1075 */ 1076 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1077 struct extent_io_tree *dirty_pages, int mark) 1078 { 1079 int err = 0; 1080 int werr = 0; 1081 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1082 struct extent_state *cached_state = NULL; 1083 u64 start = 0; 1084 u64 end; 1085 1086 while (find_first_extent_bit(dirty_pages, start, &start, &end, 1087 mark, &cached_state)) { 1088 bool wait_writeback = false; 1089 1090 err = convert_extent_bit(dirty_pages, start, end, 1091 EXTENT_NEED_WAIT, 1092 mark, &cached_state); 1093 /* 1094 * convert_extent_bit can return -ENOMEM, which is most of the 1095 * time a temporary error. So when it happens, ignore the error 1096 * and wait for writeback of this range to finish - because we 1097 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1098 * to __btrfs_wait_marked_extents() would not know that 1099 * writeback for this range started and therefore wouldn't 1100 * wait for it to finish - we don't want to commit a 1101 * superblock that points to btree nodes/leafs for which 1102 * writeback hasn't finished yet (and without errors). 1103 * We cleanup any entries left in the io tree when committing 1104 * the transaction (through extent_io_tree_release()). 1105 */ 1106 if (err == -ENOMEM) { 1107 err = 0; 1108 wait_writeback = true; 1109 } 1110 if (!err) 1111 err = filemap_fdatawrite_range(mapping, start, end); 1112 if (err) 1113 werr = err; 1114 else if (wait_writeback) 1115 werr = filemap_fdatawait_range(mapping, start, end); 1116 free_extent_state(cached_state); 1117 cached_state = NULL; 1118 cond_resched(); 1119 start = end + 1; 1120 } 1121 return werr; 1122 } 1123 1124 /* 1125 * when btree blocks are allocated, they have some corresponding bits set for 1126 * them in one of two extent_io trees. This is used to make sure all of 1127 * those extents are on disk for transaction or log commit. We wait 1128 * on all the pages and clear them from the dirty pages state tree 1129 */ 1130 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1131 struct extent_io_tree *dirty_pages) 1132 { 1133 int err = 0; 1134 int werr = 0; 1135 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1136 struct extent_state *cached_state = NULL; 1137 u64 start = 0; 1138 u64 end; 1139 1140 while (find_first_extent_bit(dirty_pages, start, &start, &end, 1141 EXTENT_NEED_WAIT, &cached_state)) { 1142 /* 1143 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1144 * When committing the transaction, we'll remove any entries 1145 * left in the io tree. For a log commit, we don't remove them 1146 * after committing the log because the tree can be accessed 1147 * concurrently - we do it only at transaction commit time when 1148 * it's safe to do it (through extent_io_tree_release()). 1149 */ 1150 err = clear_extent_bit(dirty_pages, start, end, 1151 EXTENT_NEED_WAIT, &cached_state); 1152 if (err == -ENOMEM) 1153 err = 0; 1154 if (!err) 1155 err = filemap_fdatawait_range(mapping, start, end); 1156 if (err) 1157 werr = err; 1158 free_extent_state(cached_state); 1159 cached_state = NULL; 1160 cond_resched(); 1161 start = end + 1; 1162 } 1163 if (err) 1164 werr = err; 1165 return werr; 1166 } 1167 1168 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1169 struct extent_io_tree *dirty_pages) 1170 { 1171 bool errors = false; 1172 int err; 1173 1174 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1175 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1176 errors = true; 1177 1178 if (errors && !err) 1179 err = -EIO; 1180 return err; 1181 } 1182 1183 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1184 { 1185 struct btrfs_fs_info *fs_info = log_root->fs_info; 1186 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1187 bool errors = false; 1188 int err; 1189 1190 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1191 1192 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1193 if ((mark & EXTENT_DIRTY) && 1194 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1195 errors = true; 1196 1197 if ((mark & EXTENT_NEW) && 1198 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1199 errors = true; 1200 1201 if (errors && !err) 1202 err = -EIO; 1203 return err; 1204 } 1205 1206 /* 1207 * When btree blocks are allocated the corresponding extents are marked dirty. 1208 * This function ensures such extents are persisted on disk for transaction or 1209 * log commit. 1210 * 1211 * @trans: transaction whose dirty pages we'd like to write 1212 */ 1213 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1214 { 1215 int ret; 1216 int ret2; 1217 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1218 struct btrfs_fs_info *fs_info = trans->fs_info; 1219 struct blk_plug plug; 1220 1221 blk_start_plug(&plug); 1222 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1223 blk_finish_plug(&plug); 1224 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1225 1226 extent_io_tree_release(&trans->transaction->dirty_pages); 1227 1228 if (ret) 1229 return ret; 1230 else if (ret2) 1231 return ret2; 1232 else 1233 return 0; 1234 } 1235 1236 /* 1237 * this is used to update the root pointer in the tree of tree roots. 1238 * 1239 * But, in the case of the extent allocation tree, updating the root 1240 * pointer may allocate blocks which may change the root of the extent 1241 * allocation tree. 1242 * 1243 * So, this loops and repeats and makes sure the cowonly root didn't 1244 * change while the root pointer was being updated in the metadata. 1245 */ 1246 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1247 struct btrfs_root *root) 1248 { 1249 int ret; 1250 u64 old_root_bytenr; 1251 u64 old_root_used; 1252 struct btrfs_fs_info *fs_info = root->fs_info; 1253 struct btrfs_root *tree_root = fs_info->tree_root; 1254 1255 old_root_used = btrfs_root_used(&root->root_item); 1256 1257 while (1) { 1258 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1259 if (old_root_bytenr == root->node->start && 1260 old_root_used == btrfs_root_used(&root->root_item)) 1261 break; 1262 1263 btrfs_set_root_node(&root->root_item, root->node); 1264 ret = btrfs_update_root(trans, tree_root, 1265 &root->root_key, 1266 &root->root_item); 1267 if (ret) 1268 return ret; 1269 1270 old_root_used = btrfs_root_used(&root->root_item); 1271 } 1272 1273 return 0; 1274 } 1275 1276 /* 1277 * update all the cowonly tree roots on disk 1278 * 1279 * The error handling in this function may not be obvious. Any of the 1280 * failures will cause the file system to go offline. We still need 1281 * to clean up the delayed refs. 1282 */ 1283 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1284 { 1285 struct btrfs_fs_info *fs_info = trans->fs_info; 1286 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1287 struct list_head *io_bgs = &trans->transaction->io_bgs; 1288 struct list_head *next; 1289 struct extent_buffer *eb; 1290 int ret; 1291 1292 /* 1293 * At this point no one can be using this transaction to modify any tree 1294 * and no one can start another transaction to modify any tree either. 1295 */ 1296 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1297 1298 eb = btrfs_lock_root_node(fs_info->tree_root); 1299 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1300 0, &eb, BTRFS_NESTING_COW); 1301 btrfs_tree_unlock(eb); 1302 free_extent_buffer(eb); 1303 1304 if (ret) 1305 return ret; 1306 1307 ret = btrfs_run_dev_stats(trans); 1308 if (ret) 1309 return ret; 1310 ret = btrfs_run_dev_replace(trans); 1311 if (ret) 1312 return ret; 1313 ret = btrfs_run_qgroups(trans); 1314 if (ret) 1315 return ret; 1316 1317 ret = btrfs_setup_space_cache(trans); 1318 if (ret) 1319 return ret; 1320 1321 again: 1322 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1323 struct btrfs_root *root; 1324 next = fs_info->dirty_cowonly_roots.next; 1325 list_del_init(next); 1326 root = list_entry(next, struct btrfs_root, dirty_list); 1327 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1328 1329 list_add_tail(&root->dirty_list, 1330 &trans->transaction->switch_commits); 1331 ret = update_cowonly_root(trans, root); 1332 if (ret) 1333 return ret; 1334 } 1335 1336 /* Now flush any delayed refs generated by updating all of the roots */ 1337 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1338 if (ret) 1339 return ret; 1340 1341 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1342 ret = btrfs_write_dirty_block_groups(trans); 1343 if (ret) 1344 return ret; 1345 1346 /* 1347 * We're writing the dirty block groups, which could generate 1348 * delayed refs, which could generate more dirty block groups, 1349 * so we want to keep this flushing in this loop to make sure 1350 * everything gets run. 1351 */ 1352 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1353 if (ret) 1354 return ret; 1355 } 1356 1357 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1358 goto again; 1359 1360 /* Update dev-replace pointer once everything is committed */ 1361 fs_info->dev_replace.committed_cursor_left = 1362 fs_info->dev_replace.cursor_left_last_write_of_item; 1363 1364 return 0; 1365 } 1366 1367 /* 1368 * If we had a pending drop we need to see if there are any others left in our 1369 * dead roots list, and if not clear our bit and wake any waiters. 1370 */ 1371 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1372 { 1373 /* 1374 * We put the drop in progress roots at the front of the list, so if the 1375 * first entry doesn't have UNFINISHED_DROP set we can wake everybody 1376 * up. 1377 */ 1378 spin_lock(&fs_info->trans_lock); 1379 if (!list_empty(&fs_info->dead_roots)) { 1380 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots, 1381 struct btrfs_root, 1382 root_list); 1383 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) { 1384 spin_unlock(&fs_info->trans_lock); 1385 return; 1386 } 1387 } 1388 spin_unlock(&fs_info->trans_lock); 1389 1390 btrfs_wake_unfinished_drop(fs_info); 1391 } 1392 1393 /* 1394 * dead roots are old snapshots that need to be deleted. This allocates 1395 * a dirty root struct and adds it into the list of dead roots that need to 1396 * be deleted 1397 */ 1398 void btrfs_add_dead_root(struct btrfs_root *root) 1399 { 1400 struct btrfs_fs_info *fs_info = root->fs_info; 1401 1402 spin_lock(&fs_info->trans_lock); 1403 if (list_empty(&root->root_list)) { 1404 btrfs_grab_root(root); 1405 1406 /* We want to process the partially complete drops first. */ 1407 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) 1408 list_add(&root->root_list, &fs_info->dead_roots); 1409 else 1410 list_add_tail(&root->root_list, &fs_info->dead_roots); 1411 } 1412 spin_unlock(&fs_info->trans_lock); 1413 } 1414 1415 /* 1416 * Update each subvolume root and its relocation root, if it exists, in the tree 1417 * of tree roots. Also free log roots if they exist. 1418 */ 1419 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1420 { 1421 struct btrfs_fs_info *fs_info = trans->fs_info; 1422 struct btrfs_root *gang[8]; 1423 int i; 1424 int ret; 1425 1426 /* 1427 * At this point no one can be using this transaction to modify any tree 1428 * and no one can start another transaction to modify any tree either. 1429 */ 1430 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1431 1432 spin_lock(&fs_info->fs_roots_radix_lock); 1433 while (1) { 1434 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1435 (void **)gang, 0, 1436 ARRAY_SIZE(gang), 1437 BTRFS_ROOT_TRANS_TAG); 1438 if (ret == 0) 1439 break; 1440 for (i = 0; i < ret; i++) { 1441 struct btrfs_root *root = gang[i]; 1442 int ret2; 1443 1444 /* 1445 * At this point we can neither have tasks logging inodes 1446 * from a root nor trying to commit a log tree. 1447 */ 1448 ASSERT(atomic_read(&root->log_writers) == 0); 1449 ASSERT(atomic_read(&root->log_commit[0]) == 0); 1450 ASSERT(atomic_read(&root->log_commit[1]) == 0); 1451 1452 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1453 (unsigned long)root->root_key.objectid, 1454 BTRFS_ROOT_TRANS_TAG); 1455 spin_unlock(&fs_info->fs_roots_radix_lock); 1456 1457 btrfs_free_log(trans, root); 1458 ret2 = btrfs_update_reloc_root(trans, root); 1459 if (ret2) 1460 return ret2; 1461 1462 /* see comments in should_cow_block() */ 1463 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1464 smp_mb__after_atomic(); 1465 1466 if (root->commit_root != root->node) { 1467 list_add_tail(&root->dirty_list, 1468 &trans->transaction->switch_commits); 1469 btrfs_set_root_node(&root->root_item, 1470 root->node); 1471 } 1472 1473 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1474 &root->root_key, 1475 &root->root_item); 1476 if (ret2) 1477 return ret2; 1478 spin_lock(&fs_info->fs_roots_radix_lock); 1479 btrfs_qgroup_free_meta_all_pertrans(root); 1480 } 1481 } 1482 spin_unlock(&fs_info->fs_roots_radix_lock); 1483 return 0; 1484 } 1485 1486 /* 1487 * defrag a given btree. 1488 * Every leaf in the btree is read and defragged. 1489 */ 1490 int btrfs_defrag_root(struct btrfs_root *root) 1491 { 1492 struct btrfs_fs_info *info = root->fs_info; 1493 struct btrfs_trans_handle *trans; 1494 int ret; 1495 1496 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1497 return 0; 1498 1499 while (1) { 1500 trans = btrfs_start_transaction(root, 0); 1501 if (IS_ERR(trans)) { 1502 ret = PTR_ERR(trans); 1503 break; 1504 } 1505 1506 ret = btrfs_defrag_leaves(trans, root); 1507 1508 btrfs_end_transaction(trans); 1509 btrfs_btree_balance_dirty(info); 1510 cond_resched(); 1511 1512 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1513 break; 1514 1515 if (btrfs_defrag_cancelled(info)) { 1516 btrfs_debug(info, "defrag_root cancelled"); 1517 ret = -EAGAIN; 1518 break; 1519 } 1520 } 1521 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1522 return ret; 1523 } 1524 1525 /* 1526 * Do all special snapshot related qgroup dirty hack. 1527 * 1528 * Will do all needed qgroup inherit and dirty hack like switch commit 1529 * roots inside one transaction and write all btree into disk, to make 1530 * qgroup works. 1531 */ 1532 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1533 struct btrfs_root *src, 1534 struct btrfs_root *parent, 1535 struct btrfs_qgroup_inherit *inherit, 1536 u64 dst_objectid) 1537 { 1538 struct btrfs_fs_info *fs_info = src->fs_info; 1539 int ret; 1540 1541 /* 1542 * Save some performance in the case that qgroups are not 1543 * enabled. If this check races with the ioctl, rescan will 1544 * kick in anyway. 1545 */ 1546 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1547 return 0; 1548 1549 /* 1550 * Ensure dirty @src will be committed. Or, after coming 1551 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1552 * recorded root will never be updated again, causing an outdated root 1553 * item. 1554 */ 1555 ret = record_root_in_trans(trans, src, 1); 1556 if (ret) 1557 return ret; 1558 1559 /* 1560 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1561 * src root, so we must run the delayed refs here. 1562 * 1563 * However this isn't particularly fool proof, because there's no 1564 * synchronization keeping us from changing the tree after this point 1565 * before we do the qgroup_inherit, or even from making changes while 1566 * we're doing the qgroup_inherit. But that's a problem for the future, 1567 * for now flush the delayed refs to narrow the race window where the 1568 * qgroup counters could end up wrong. 1569 */ 1570 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1571 if (ret) { 1572 btrfs_abort_transaction(trans, ret); 1573 return ret; 1574 } 1575 1576 ret = commit_fs_roots(trans); 1577 if (ret) 1578 goto out; 1579 ret = btrfs_qgroup_account_extents(trans); 1580 if (ret < 0) 1581 goto out; 1582 1583 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1584 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1585 inherit); 1586 if (ret < 0) 1587 goto out; 1588 1589 /* 1590 * Now we do a simplified commit transaction, which will: 1591 * 1) commit all subvolume and extent tree 1592 * To ensure all subvolume and extent tree have a valid 1593 * commit_root to accounting later insert_dir_item() 1594 * 2) write all btree blocks onto disk 1595 * This is to make sure later btree modification will be cowed 1596 * Or commit_root can be populated and cause wrong qgroup numbers 1597 * In this simplified commit, we don't really care about other trees 1598 * like chunk and root tree, as they won't affect qgroup. 1599 * And we don't write super to avoid half committed status. 1600 */ 1601 ret = commit_cowonly_roots(trans); 1602 if (ret) 1603 goto out; 1604 switch_commit_roots(trans); 1605 ret = btrfs_write_and_wait_transaction(trans); 1606 if (ret) 1607 btrfs_handle_fs_error(fs_info, ret, 1608 "Error while writing out transaction for qgroup"); 1609 1610 out: 1611 /* 1612 * Force parent root to be updated, as we recorded it before so its 1613 * last_trans == cur_transid. 1614 * Or it won't be committed again onto disk after later 1615 * insert_dir_item() 1616 */ 1617 if (!ret) 1618 ret = record_root_in_trans(trans, parent, 1); 1619 return ret; 1620 } 1621 1622 /* 1623 * new snapshots need to be created at a very specific time in the 1624 * transaction commit. This does the actual creation. 1625 * 1626 * Note: 1627 * If the error which may affect the commitment of the current transaction 1628 * happens, we should return the error number. If the error which just affect 1629 * the creation of the pending snapshots, just return 0. 1630 */ 1631 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1632 struct btrfs_pending_snapshot *pending) 1633 { 1634 1635 struct btrfs_fs_info *fs_info = trans->fs_info; 1636 struct btrfs_key key; 1637 struct btrfs_root_item *new_root_item; 1638 struct btrfs_root *tree_root = fs_info->tree_root; 1639 struct btrfs_root *root = pending->root; 1640 struct btrfs_root *parent_root; 1641 struct btrfs_block_rsv *rsv; 1642 struct inode *parent_inode = pending->dir; 1643 struct btrfs_path *path; 1644 struct btrfs_dir_item *dir_item; 1645 struct extent_buffer *tmp; 1646 struct extent_buffer *old; 1647 struct timespec64 cur_time; 1648 int ret = 0; 1649 u64 to_reserve = 0; 1650 u64 index = 0; 1651 u64 objectid; 1652 u64 root_flags; 1653 unsigned int nofs_flags; 1654 struct fscrypt_name fname; 1655 1656 ASSERT(pending->path); 1657 path = pending->path; 1658 1659 ASSERT(pending->root_item); 1660 new_root_item = pending->root_item; 1661 1662 /* 1663 * We're inside a transaction and must make sure that any potential 1664 * allocations with GFP_KERNEL in fscrypt won't recurse back to 1665 * filesystem. 1666 */ 1667 nofs_flags = memalloc_nofs_save(); 1668 pending->error = fscrypt_setup_filename(parent_inode, 1669 &pending->dentry->d_name, 0, 1670 &fname); 1671 memalloc_nofs_restore(nofs_flags); 1672 if (pending->error) 1673 goto free_pending; 1674 1675 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1676 if (pending->error) 1677 goto free_fname; 1678 1679 /* 1680 * Make qgroup to skip current new snapshot's qgroupid, as it is 1681 * accounted by later btrfs_qgroup_inherit(). 1682 */ 1683 btrfs_set_skip_qgroup(trans, objectid); 1684 1685 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1686 1687 if (to_reserve > 0) { 1688 pending->error = btrfs_block_rsv_add(fs_info, 1689 &pending->block_rsv, 1690 to_reserve, 1691 BTRFS_RESERVE_NO_FLUSH); 1692 if (pending->error) 1693 goto clear_skip_qgroup; 1694 } 1695 1696 key.objectid = objectid; 1697 key.offset = (u64)-1; 1698 key.type = BTRFS_ROOT_ITEM_KEY; 1699 1700 rsv = trans->block_rsv; 1701 trans->block_rsv = &pending->block_rsv; 1702 trans->bytes_reserved = trans->block_rsv->reserved; 1703 trace_btrfs_space_reservation(fs_info, "transaction", 1704 trans->transid, 1705 trans->bytes_reserved, 1); 1706 parent_root = BTRFS_I(parent_inode)->root; 1707 ret = record_root_in_trans(trans, parent_root, 0); 1708 if (ret) 1709 goto fail; 1710 cur_time = current_time(parent_inode); 1711 1712 /* 1713 * insert the directory item 1714 */ 1715 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1716 if (ret) { 1717 btrfs_abort_transaction(trans, ret); 1718 goto fail; 1719 } 1720 1721 /* check if there is a file/dir which has the same name. */ 1722 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1723 btrfs_ino(BTRFS_I(parent_inode)), 1724 &fname.disk_name, 0); 1725 if (dir_item != NULL && !IS_ERR(dir_item)) { 1726 pending->error = -EEXIST; 1727 goto dir_item_existed; 1728 } else if (IS_ERR(dir_item)) { 1729 ret = PTR_ERR(dir_item); 1730 btrfs_abort_transaction(trans, ret); 1731 goto fail; 1732 } 1733 btrfs_release_path(path); 1734 1735 /* 1736 * pull in the delayed directory update 1737 * and the delayed inode item 1738 * otherwise we corrupt the FS during 1739 * snapshot 1740 */ 1741 ret = btrfs_run_delayed_items(trans); 1742 if (ret) { /* Transaction aborted */ 1743 btrfs_abort_transaction(trans, ret); 1744 goto fail; 1745 } 1746 1747 ret = record_root_in_trans(trans, root, 0); 1748 if (ret) { 1749 btrfs_abort_transaction(trans, ret); 1750 goto fail; 1751 } 1752 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1753 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1754 btrfs_check_and_init_root_item(new_root_item); 1755 1756 root_flags = btrfs_root_flags(new_root_item); 1757 if (pending->readonly) 1758 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1759 else 1760 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1761 btrfs_set_root_flags(new_root_item, root_flags); 1762 1763 btrfs_set_root_generation_v2(new_root_item, 1764 trans->transid); 1765 generate_random_guid(new_root_item->uuid); 1766 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1767 BTRFS_UUID_SIZE); 1768 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1769 memset(new_root_item->received_uuid, 0, 1770 sizeof(new_root_item->received_uuid)); 1771 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1772 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1773 btrfs_set_root_stransid(new_root_item, 0); 1774 btrfs_set_root_rtransid(new_root_item, 0); 1775 } 1776 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1777 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1778 btrfs_set_root_otransid(new_root_item, trans->transid); 1779 1780 old = btrfs_lock_root_node(root); 1781 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1782 BTRFS_NESTING_COW); 1783 if (ret) { 1784 btrfs_tree_unlock(old); 1785 free_extent_buffer(old); 1786 btrfs_abort_transaction(trans, ret); 1787 goto fail; 1788 } 1789 1790 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1791 /* clean up in any case */ 1792 btrfs_tree_unlock(old); 1793 free_extent_buffer(old); 1794 if (ret) { 1795 btrfs_abort_transaction(trans, ret); 1796 goto fail; 1797 } 1798 /* see comments in should_cow_block() */ 1799 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1800 smp_wmb(); 1801 1802 btrfs_set_root_node(new_root_item, tmp); 1803 /* record when the snapshot was created in key.offset */ 1804 key.offset = trans->transid; 1805 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1806 btrfs_tree_unlock(tmp); 1807 free_extent_buffer(tmp); 1808 if (ret) { 1809 btrfs_abort_transaction(trans, ret); 1810 goto fail; 1811 } 1812 1813 /* 1814 * insert root back/forward references 1815 */ 1816 ret = btrfs_add_root_ref(trans, objectid, 1817 parent_root->root_key.objectid, 1818 btrfs_ino(BTRFS_I(parent_inode)), index, 1819 &fname.disk_name); 1820 if (ret) { 1821 btrfs_abort_transaction(trans, ret); 1822 goto fail; 1823 } 1824 1825 key.offset = (u64)-1; 1826 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1827 if (IS_ERR(pending->snap)) { 1828 ret = PTR_ERR(pending->snap); 1829 pending->snap = NULL; 1830 btrfs_abort_transaction(trans, ret); 1831 goto fail; 1832 } 1833 1834 ret = btrfs_reloc_post_snapshot(trans, pending); 1835 if (ret) { 1836 btrfs_abort_transaction(trans, ret); 1837 goto fail; 1838 } 1839 1840 /* 1841 * Do special qgroup accounting for snapshot, as we do some qgroup 1842 * snapshot hack to do fast snapshot. 1843 * To co-operate with that hack, we do hack again. 1844 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1845 */ 1846 ret = qgroup_account_snapshot(trans, root, parent_root, 1847 pending->inherit, objectid); 1848 if (ret < 0) 1849 goto fail; 1850 1851 ret = btrfs_insert_dir_item(trans, &fname.disk_name, 1852 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR, 1853 index); 1854 /* We have check then name at the beginning, so it is impossible. */ 1855 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1856 if (ret) { 1857 btrfs_abort_transaction(trans, ret); 1858 goto fail; 1859 } 1860 1861 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1862 fname.disk_name.len * 2); 1863 parent_inode->i_mtime = inode_set_ctime_current(parent_inode); 1864 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode)); 1865 if (ret) { 1866 btrfs_abort_transaction(trans, ret); 1867 goto fail; 1868 } 1869 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1870 BTRFS_UUID_KEY_SUBVOL, 1871 objectid); 1872 if (ret) { 1873 btrfs_abort_transaction(trans, ret); 1874 goto fail; 1875 } 1876 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1877 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1878 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1879 objectid); 1880 if (ret && ret != -EEXIST) { 1881 btrfs_abort_transaction(trans, ret); 1882 goto fail; 1883 } 1884 } 1885 1886 fail: 1887 pending->error = ret; 1888 dir_item_existed: 1889 trans->block_rsv = rsv; 1890 trans->bytes_reserved = 0; 1891 clear_skip_qgroup: 1892 btrfs_clear_skip_qgroup(trans); 1893 free_fname: 1894 fscrypt_free_filename(&fname); 1895 free_pending: 1896 kfree(new_root_item); 1897 pending->root_item = NULL; 1898 btrfs_free_path(path); 1899 pending->path = NULL; 1900 1901 return ret; 1902 } 1903 1904 /* 1905 * create all the snapshots we've scheduled for creation 1906 */ 1907 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1908 { 1909 struct btrfs_pending_snapshot *pending, *next; 1910 struct list_head *head = &trans->transaction->pending_snapshots; 1911 int ret = 0; 1912 1913 list_for_each_entry_safe(pending, next, head, list) { 1914 list_del(&pending->list); 1915 ret = create_pending_snapshot(trans, pending); 1916 if (ret) 1917 break; 1918 } 1919 return ret; 1920 } 1921 1922 static void update_super_roots(struct btrfs_fs_info *fs_info) 1923 { 1924 struct btrfs_root_item *root_item; 1925 struct btrfs_super_block *super; 1926 1927 super = fs_info->super_copy; 1928 1929 root_item = &fs_info->chunk_root->root_item; 1930 super->chunk_root = root_item->bytenr; 1931 super->chunk_root_generation = root_item->generation; 1932 super->chunk_root_level = root_item->level; 1933 1934 root_item = &fs_info->tree_root->root_item; 1935 super->root = root_item->bytenr; 1936 super->generation = root_item->generation; 1937 super->root_level = root_item->level; 1938 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1939 super->cache_generation = root_item->generation; 1940 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1941 super->cache_generation = 0; 1942 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1943 super->uuid_tree_generation = root_item->generation; 1944 } 1945 1946 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1947 { 1948 struct btrfs_transaction *trans; 1949 int ret = 0; 1950 1951 spin_lock(&info->trans_lock); 1952 trans = info->running_transaction; 1953 if (trans) 1954 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1955 spin_unlock(&info->trans_lock); 1956 return ret; 1957 } 1958 1959 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1960 { 1961 struct btrfs_transaction *trans; 1962 int ret = 0; 1963 1964 spin_lock(&info->trans_lock); 1965 trans = info->running_transaction; 1966 if (trans) 1967 ret = is_transaction_blocked(trans); 1968 spin_unlock(&info->trans_lock); 1969 return ret; 1970 } 1971 1972 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 1973 { 1974 struct btrfs_fs_info *fs_info = trans->fs_info; 1975 struct btrfs_transaction *cur_trans; 1976 1977 /* Kick the transaction kthread. */ 1978 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 1979 wake_up_process(fs_info->transaction_kthread); 1980 1981 /* take transaction reference */ 1982 cur_trans = trans->transaction; 1983 refcount_inc(&cur_trans->use_count); 1984 1985 btrfs_end_transaction(trans); 1986 1987 /* 1988 * Wait for the current transaction commit to start and block 1989 * subsequent transaction joins 1990 */ 1991 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 1992 wait_event(fs_info->transaction_blocked_wait, 1993 cur_trans->state >= TRANS_STATE_COMMIT_START || 1994 TRANS_ABORTED(cur_trans)); 1995 btrfs_put_transaction(cur_trans); 1996 } 1997 1998 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1999 { 2000 struct btrfs_fs_info *fs_info = trans->fs_info; 2001 struct btrfs_transaction *cur_trans = trans->transaction; 2002 2003 WARN_ON(refcount_read(&trans->use_count) > 1); 2004 2005 btrfs_abort_transaction(trans, err); 2006 2007 spin_lock(&fs_info->trans_lock); 2008 2009 /* 2010 * If the transaction is removed from the list, it means this 2011 * transaction has been committed successfully, so it is impossible 2012 * to call the cleanup function. 2013 */ 2014 BUG_ON(list_empty(&cur_trans->list)); 2015 2016 if (cur_trans == fs_info->running_transaction) { 2017 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2018 spin_unlock(&fs_info->trans_lock); 2019 2020 /* 2021 * The thread has already released the lockdep map as reader 2022 * already in btrfs_commit_transaction(). 2023 */ 2024 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2025 wait_event(cur_trans->writer_wait, 2026 atomic_read(&cur_trans->num_writers) == 1); 2027 2028 spin_lock(&fs_info->trans_lock); 2029 } 2030 2031 /* 2032 * Now that we know no one else is still using the transaction we can 2033 * remove the transaction from the list of transactions. This avoids 2034 * the transaction kthread from cleaning up the transaction while some 2035 * other task is still using it, which could result in a use-after-free 2036 * on things like log trees, as it forces the transaction kthread to 2037 * wait for this transaction to be cleaned up by us. 2038 */ 2039 list_del_init(&cur_trans->list); 2040 2041 spin_unlock(&fs_info->trans_lock); 2042 2043 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 2044 2045 spin_lock(&fs_info->trans_lock); 2046 if (cur_trans == fs_info->running_transaction) 2047 fs_info->running_transaction = NULL; 2048 spin_unlock(&fs_info->trans_lock); 2049 2050 if (trans->type & __TRANS_FREEZABLE) 2051 sb_end_intwrite(fs_info->sb); 2052 btrfs_put_transaction(cur_trans); 2053 btrfs_put_transaction(cur_trans); 2054 2055 trace_btrfs_transaction_commit(fs_info); 2056 2057 if (current->journal_info == trans) 2058 current->journal_info = NULL; 2059 2060 /* 2061 * If relocation is running, we can't cancel scrub because that will 2062 * result in a deadlock. Before relocating a block group, relocation 2063 * pauses scrub, then starts and commits a transaction before unpausing 2064 * scrub. If the transaction commit is being done by the relocation 2065 * task or triggered by another task and the relocation task is waiting 2066 * for the commit, and we end up here due to an error in the commit 2067 * path, then calling btrfs_scrub_cancel() will deadlock, as we are 2068 * asking for scrub to stop while having it asked to be paused higher 2069 * above in relocation code. 2070 */ 2071 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 2072 btrfs_scrub_cancel(fs_info); 2073 2074 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2075 } 2076 2077 /* 2078 * Release reserved delayed ref space of all pending block groups of the 2079 * transaction and remove them from the list 2080 */ 2081 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2082 { 2083 struct btrfs_fs_info *fs_info = trans->fs_info; 2084 struct btrfs_block_group *block_group, *tmp; 2085 2086 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2087 btrfs_delayed_refs_rsv_release(fs_info, 1); 2088 list_del_init(&block_group->bg_list); 2089 } 2090 } 2091 2092 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2093 { 2094 /* 2095 * We use try_to_writeback_inodes_sb() here because if we used 2096 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2097 * Currently are holding the fs freeze lock, if we do an async flush 2098 * we'll do btrfs_join_transaction() and deadlock because we need to 2099 * wait for the fs freeze lock. Using the direct flushing we benefit 2100 * from already being in a transaction and our join_transaction doesn't 2101 * have to re-take the fs freeze lock. 2102 * 2103 * Note that try_to_writeback_inodes_sb() will only trigger writeback 2104 * if it can read lock sb->s_umount. It will always be able to lock it, 2105 * except when the filesystem is being unmounted or being frozen, but in 2106 * those cases sync_filesystem() is called, which results in calling 2107 * writeback_inodes_sb() while holding a write lock on sb->s_umount. 2108 * Note that we don't call writeback_inodes_sb() directly, because it 2109 * will emit a warning if sb->s_umount is not locked. 2110 */ 2111 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2112 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2113 return 0; 2114 } 2115 2116 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2117 { 2118 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2119 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2120 } 2121 2122 /* 2123 * Add a pending snapshot associated with the given transaction handle to the 2124 * respective handle. This must be called after the transaction commit started 2125 * and while holding fs_info->trans_lock. 2126 * This serves to guarantee a caller of btrfs_commit_transaction() that it can 2127 * safely free the pending snapshot pointer in case btrfs_commit_transaction() 2128 * returns an error. 2129 */ 2130 static void add_pending_snapshot(struct btrfs_trans_handle *trans) 2131 { 2132 struct btrfs_transaction *cur_trans = trans->transaction; 2133 2134 if (!trans->pending_snapshot) 2135 return; 2136 2137 lockdep_assert_held(&trans->fs_info->trans_lock); 2138 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP); 2139 2140 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots); 2141 } 2142 2143 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval) 2144 { 2145 fs_info->commit_stats.commit_count++; 2146 fs_info->commit_stats.last_commit_dur = interval; 2147 fs_info->commit_stats.max_commit_dur = 2148 max_t(u64, fs_info->commit_stats.max_commit_dur, interval); 2149 fs_info->commit_stats.total_commit_dur += interval; 2150 } 2151 2152 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2153 { 2154 struct btrfs_fs_info *fs_info = trans->fs_info; 2155 struct btrfs_transaction *cur_trans = trans->transaction; 2156 struct btrfs_transaction *prev_trans = NULL; 2157 int ret; 2158 ktime_t start_time; 2159 ktime_t interval; 2160 2161 ASSERT(refcount_read(&trans->use_count) == 1); 2162 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2163 2164 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags); 2165 2166 /* Stop the commit early if ->aborted is set */ 2167 if (TRANS_ABORTED(cur_trans)) { 2168 ret = cur_trans->aborted; 2169 goto lockdep_trans_commit_start_release; 2170 } 2171 2172 btrfs_trans_release_metadata(trans); 2173 trans->block_rsv = NULL; 2174 2175 /* 2176 * We only want one transaction commit doing the flushing so we do not 2177 * waste a bunch of time on lock contention on the extent root node. 2178 */ 2179 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2180 &cur_trans->delayed_refs.flags)) { 2181 /* 2182 * Make a pass through all the delayed refs we have so far. 2183 * Any running threads may add more while we are here. 2184 */ 2185 ret = btrfs_run_delayed_refs(trans, 0); 2186 if (ret) 2187 goto lockdep_trans_commit_start_release; 2188 } 2189 2190 btrfs_create_pending_block_groups(trans); 2191 2192 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2193 int run_it = 0; 2194 2195 /* this mutex is also taken before trying to set 2196 * block groups readonly. We need to make sure 2197 * that nobody has set a block group readonly 2198 * after a extents from that block group have been 2199 * allocated for cache files. btrfs_set_block_group_ro 2200 * will wait for the transaction to commit if it 2201 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2202 * 2203 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2204 * only one process starts all the block group IO. It wouldn't 2205 * hurt to have more than one go through, but there's no 2206 * real advantage to it either. 2207 */ 2208 mutex_lock(&fs_info->ro_block_group_mutex); 2209 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2210 &cur_trans->flags)) 2211 run_it = 1; 2212 mutex_unlock(&fs_info->ro_block_group_mutex); 2213 2214 if (run_it) { 2215 ret = btrfs_start_dirty_block_groups(trans); 2216 if (ret) 2217 goto lockdep_trans_commit_start_release; 2218 } 2219 } 2220 2221 spin_lock(&fs_info->trans_lock); 2222 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) { 2223 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2224 2225 add_pending_snapshot(trans); 2226 2227 spin_unlock(&fs_info->trans_lock); 2228 refcount_inc(&cur_trans->use_count); 2229 2230 if (trans->in_fsync) 2231 want_state = TRANS_STATE_SUPER_COMMITTED; 2232 2233 btrfs_trans_state_lockdep_release(fs_info, 2234 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2235 ret = btrfs_end_transaction(trans); 2236 wait_for_commit(cur_trans, want_state); 2237 2238 if (TRANS_ABORTED(cur_trans)) 2239 ret = cur_trans->aborted; 2240 2241 btrfs_put_transaction(cur_trans); 2242 2243 return ret; 2244 } 2245 2246 cur_trans->state = TRANS_STATE_COMMIT_PREP; 2247 wake_up(&fs_info->transaction_blocked_wait); 2248 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2249 2250 if (cur_trans->list.prev != &fs_info->trans_list) { 2251 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2252 2253 if (trans->in_fsync) 2254 want_state = TRANS_STATE_SUPER_COMMITTED; 2255 2256 prev_trans = list_entry(cur_trans->list.prev, 2257 struct btrfs_transaction, list); 2258 if (prev_trans->state < want_state) { 2259 refcount_inc(&prev_trans->use_count); 2260 spin_unlock(&fs_info->trans_lock); 2261 2262 wait_for_commit(prev_trans, want_state); 2263 2264 ret = READ_ONCE(prev_trans->aborted); 2265 2266 btrfs_put_transaction(prev_trans); 2267 if (ret) 2268 goto lockdep_release; 2269 spin_lock(&fs_info->trans_lock); 2270 } 2271 } else { 2272 /* 2273 * The previous transaction was aborted and was already removed 2274 * from the list of transactions at fs_info->trans_list. So we 2275 * abort to prevent writing a new superblock that reflects a 2276 * corrupt state (pointing to trees with unwritten nodes/leafs). 2277 */ 2278 if (BTRFS_FS_ERROR(fs_info)) { 2279 spin_unlock(&fs_info->trans_lock); 2280 ret = -EROFS; 2281 goto lockdep_release; 2282 } 2283 } 2284 2285 cur_trans->state = TRANS_STATE_COMMIT_START; 2286 wake_up(&fs_info->transaction_blocked_wait); 2287 spin_unlock(&fs_info->trans_lock); 2288 2289 /* 2290 * Get the time spent on the work done by the commit thread and not 2291 * the time spent waiting on a previous commit 2292 */ 2293 start_time = ktime_get_ns(); 2294 2295 extwriter_counter_dec(cur_trans, trans->type); 2296 2297 ret = btrfs_start_delalloc_flush(fs_info); 2298 if (ret) 2299 goto lockdep_release; 2300 2301 ret = btrfs_run_delayed_items(trans); 2302 if (ret) 2303 goto lockdep_release; 2304 2305 /* 2306 * The thread has started/joined the transaction thus it holds the 2307 * lockdep map as a reader. It has to release it before acquiring the 2308 * lockdep map as a writer. 2309 */ 2310 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2311 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters); 2312 wait_event(cur_trans->writer_wait, 2313 extwriter_counter_read(cur_trans) == 0); 2314 2315 /* some pending stuffs might be added after the previous flush. */ 2316 ret = btrfs_run_delayed_items(trans); 2317 if (ret) { 2318 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2319 goto cleanup_transaction; 2320 } 2321 2322 btrfs_wait_delalloc_flush(fs_info); 2323 2324 /* 2325 * Wait for all ordered extents started by a fast fsync that joined this 2326 * transaction. Otherwise if this transaction commits before the ordered 2327 * extents complete we lose logged data after a power failure. 2328 */ 2329 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered); 2330 wait_event(cur_trans->pending_wait, 2331 atomic_read(&cur_trans->pending_ordered) == 0); 2332 2333 btrfs_scrub_pause(fs_info); 2334 /* 2335 * Ok now we need to make sure to block out any other joins while we 2336 * commit the transaction. We could have started a join before setting 2337 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2338 */ 2339 spin_lock(&fs_info->trans_lock); 2340 add_pending_snapshot(trans); 2341 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2342 spin_unlock(&fs_info->trans_lock); 2343 2344 /* 2345 * The thread has started/joined the transaction thus it holds the 2346 * lockdep map as a reader. It has to release it before acquiring the 2347 * lockdep map as a writer. 2348 */ 2349 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2350 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2351 wait_event(cur_trans->writer_wait, 2352 atomic_read(&cur_trans->num_writers) == 1); 2353 2354 /* 2355 * Make lockdep happy by acquiring the state locks after 2356 * btrfs_trans_num_writers is released. If we acquired the state locks 2357 * before releasing the btrfs_trans_num_writers lock then lockdep would 2358 * complain because we did not follow the reverse order unlocking rule. 2359 */ 2360 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2361 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2362 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2363 2364 /* 2365 * We've started the commit, clear the flag in case we were triggered to 2366 * do an async commit but somebody else started before the transaction 2367 * kthread could do the work. 2368 */ 2369 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 2370 2371 if (TRANS_ABORTED(cur_trans)) { 2372 ret = cur_trans->aborted; 2373 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2374 goto scrub_continue; 2375 } 2376 /* 2377 * the reloc mutex makes sure that we stop 2378 * the balancing code from coming in and moving 2379 * extents around in the middle of the commit 2380 */ 2381 mutex_lock(&fs_info->reloc_mutex); 2382 2383 /* 2384 * We needn't worry about the delayed items because we will 2385 * deal with them in create_pending_snapshot(), which is the 2386 * core function of the snapshot creation. 2387 */ 2388 ret = create_pending_snapshots(trans); 2389 if (ret) 2390 goto unlock_reloc; 2391 2392 /* 2393 * We insert the dir indexes of the snapshots and update the inode 2394 * of the snapshots' parents after the snapshot creation, so there 2395 * are some delayed items which are not dealt with. Now deal with 2396 * them. 2397 * 2398 * We needn't worry that this operation will corrupt the snapshots, 2399 * because all the tree which are snapshoted will be forced to COW 2400 * the nodes and leaves. 2401 */ 2402 ret = btrfs_run_delayed_items(trans); 2403 if (ret) 2404 goto unlock_reloc; 2405 2406 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2407 if (ret) 2408 goto unlock_reloc; 2409 2410 /* 2411 * make sure none of the code above managed to slip in a 2412 * delayed item 2413 */ 2414 btrfs_assert_delayed_root_empty(fs_info); 2415 2416 WARN_ON(cur_trans != trans->transaction); 2417 2418 ret = commit_fs_roots(trans); 2419 if (ret) 2420 goto unlock_reloc; 2421 2422 /* commit_fs_roots gets rid of all the tree log roots, it is now 2423 * safe to free the root of tree log roots 2424 */ 2425 btrfs_free_log_root_tree(trans, fs_info); 2426 2427 /* 2428 * Since fs roots are all committed, we can get a quite accurate 2429 * new_roots. So let's do quota accounting. 2430 */ 2431 ret = btrfs_qgroup_account_extents(trans); 2432 if (ret < 0) 2433 goto unlock_reloc; 2434 2435 ret = commit_cowonly_roots(trans); 2436 if (ret) 2437 goto unlock_reloc; 2438 2439 /* 2440 * The tasks which save the space cache and inode cache may also 2441 * update ->aborted, check it. 2442 */ 2443 if (TRANS_ABORTED(cur_trans)) { 2444 ret = cur_trans->aborted; 2445 goto unlock_reloc; 2446 } 2447 2448 cur_trans = fs_info->running_transaction; 2449 2450 btrfs_set_root_node(&fs_info->tree_root->root_item, 2451 fs_info->tree_root->node); 2452 list_add_tail(&fs_info->tree_root->dirty_list, 2453 &cur_trans->switch_commits); 2454 2455 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2456 fs_info->chunk_root->node); 2457 list_add_tail(&fs_info->chunk_root->dirty_list, 2458 &cur_trans->switch_commits); 2459 2460 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2461 btrfs_set_root_node(&fs_info->block_group_root->root_item, 2462 fs_info->block_group_root->node); 2463 list_add_tail(&fs_info->block_group_root->dirty_list, 2464 &cur_trans->switch_commits); 2465 } 2466 2467 switch_commit_roots(trans); 2468 2469 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2470 ASSERT(list_empty(&cur_trans->io_bgs)); 2471 update_super_roots(fs_info); 2472 2473 btrfs_set_super_log_root(fs_info->super_copy, 0); 2474 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2475 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2476 sizeof(*fs_info->super_copy)); 2477 2478 btrfs_commit_device_sizes(cur_trans); 2479 2480 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2481 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2482 2483 btrfs_trans_release_chunk_metadata(trans); 2484 2485 /* 2486 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and 2487 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to 2488 * make sure that before we commit our superblock, no other task can 2489 * start a new transaction and commit a log tree before we commit our 2490 * superblock. Anyone trying to commit a log tree locks this mutex before 2491 * writing its superblock. 2492 */ 2493 mutex_lock(&fs_info->tree_log_mutex); 2494 2495 spin_lock(&fs_info->trans_lock); 2496 cur_trans->state = TRANS_STATE_UNBLOCKED; 2497 fs_info->running_transaction = NULL; 2498 spin_unlock(&fs_info->trans_lock); 2499 mutex_unlock(&fs_info->reloc_mutex); 2500 2501 wake_up(&fs_info->transaction_wait); 2502 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2503 2504 /* If we have features changed, wake up the cleaner to update sysfs. */ 2505 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) && 2506 fs_info->cleaner_kthread) 2507 wake_up_process(fs_info->cleaner_kthread); 2508 2509 ret = btrfs_write_and_wait_transaction(trans); 2510 if (ret) { 2511 btrfs_handle_fs_error(fs_info, ret, 2512 "Error while writing out transaction"); 2513 mutex_unlock(&fs_info->tree_log_mutex); 2514 goto scrub_continue; 2515 } 2516 2517 ret = write_all_supers(fs_info, 0); 2518 /* 2519 * the super is written, we can safely allow the tree-loggers 2520 * to go about their business 2521 */ 2522 mutex_unlock(&fs_info->tree_log_mutex); 2523 if (ret) 2524 goto scrub_continue; 2525 2526 /* 2527 * We needn't acquire the lock here because there is no other task 2528 * which can change it. 2529 */ 2530 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2531 wake_up(&cur_trans->commit_wait); 2532 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2533 2534 btrfs_finish_extent_commit(trans); 2535 2536 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2537 btrfs_clear_space_info_full(fs_info); 2538 2539 fs_info->last_trans_committed = cur_trans->transid; 2540 /* 2541 * We needn't acquire the lock here because there is no other task 2542 * which can change it. 2543 */ 2544 cur_trans->state = TRANS_STATE_COMPLETED; 2545 wake_up(&cur_trans->commit_wait); 2546 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2547 2548 spin_lock(&fs_info->trans_lock); 2549 list_del_init(&cur_trans->list); 2550 spin_unlock(&fs_info->trans_lock); 2551 2552 btrfs_put_transaction(cur_trans); 2553 btrfs_put_transaction(cur_trans); 2554 2555 if (trans->type & __TRANS_FREEZABLE) 2556 sb_end_intwrite(fs_info->sb); 2557 2558 trace_btrfs_transaction_commit(fs_info); 2559 2560 interval = ktime_get_ns() - start_time; 2561 2562 btrfs_scrub_continue(fs_info); 2563 2564 if (current->journal_info == trans) 2565 current->journal_info = NULL; 2566 2567 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2568 2569 update_commit_stats(fs_info, interval); 2570 2571 return ret; 2572 2573 unlock_reloc: 2574 mutex_unlock(&fs_info->reloc_mutex); 2575 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2576 scrub_continue: 2577 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2578 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2579 btrfs_scrub_continue(fs_info); 2580 cleanup_transaction: 2581 btrfs_trans_release_metadata(trans); 2582 btrfs_cleanup_pending_block_groups(trans); 2583 btrfs_trans_release_chunk_metadata(trans); 2584 trans->block_rsv = NULL; 2585 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2586 if (current->journal_info == trans) 2587 current->journal_info = NULL; 2588 cleanup_transaction(trans, ret); 2589 2590 return ret; 2591 2592 lockdep_release: 2593 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2594 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2595 goto cleanup_transaction; 2596 2597 lockdep_trans_commit_start_release: 2598 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2599 btrfs_end_transaction(trans); 2600 return ret; 2601 } 2602 2603 /* 2604 * return < 0 if error 2605 * 0 if there are no more dead_roots at the time of call 2606 * 1 there are more to be processed, call me again 2607 * 2608 * The return value indicates there are certainly more snapshots to delete, but 2609 * if there comes a new one during processing, it may return 0. We don't mind, 2610 * because btrfs_commit_super will poke cleaner thread and it will process it a 2611 * few seconds later. 2612 */ 2613 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info) 2614 { 2615 struct btrfs_root *root; 2616 int ret; 2617 2618 spin_lock(&fs_info->trans_lock); 2619 if (list_empty(&fs_info->dead_roots)) { 2620 spin_unlock(&fs_info->trans_lock); 2621 return 0; 2622 } 2623 root = list_first_entry(&fs_info->dead_roots, 2624 struct btrfs_root, root_list); 2625 list_del_init(&root->root_list); 2626 spin_unlock(&fs_info->trans_lock); 2627 2628 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2629 2630 btrfs_kill_all_delayed_nodes(root); 2631 2632 if (btrfs_header_backref_rev(root->node) < 2633 BTRFS_MIXED_BACKREF_REV) 2634 ret = btrfs_drop_snapshot(root, 0, 0); 2635 else 2636 ret = btrfs_drop_snapshot(root, 1, 0); 2637 2638 btrfs_put_root(root); 2639 return (ret < 0) ? 0 : 1; 2640 } 2641 2642 /* 2643 * We only mark the transaction aborted and then set the file system read-only. 2644 * This will prevent new transactions from starting or trying to join this 2645 * one. 2646 * 2647 * This means that error recovery at the call site is limited to freeing 2648 * any local memory allocations and passing the error code up without 2649 * further cleanup. The transaction should complete as it normally would 2650 * in the call path but will return -EIO. 2651 * 2652 * We'll complete the cleanup in btrfs_end_transaction and 2653 * btrfs_commit_transaction. 2654 */ 2655 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 2656 const char *function, 2657 unsigned int line, int errno, bool first_hit) 2658 { 2659 struct btrfs_fs_info *fs_info = trans->fs_info; 2660 2661 WRITE_ONCE(trans->aborted, errno); 2662 WRITE_ONCE(trans->transaction->aborted, errno); 2663 if (first_hit && errno == -ENOSPC) 2664 btrfs_dump_space_info_for_trans_abort(fs_info); 2665 /* Wake up anybody who may be waiting on this transaction */ 2666 wake_up(&fs_info->transaction_wait); 2667 wake_up(&fs_info->transaction_blocked_wait); 2668 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 2669 } 2670 2671 int __init btrfs_transaction_init(void) 2672 { 2673 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 2674 sizeof(struct btrfs_trans_handle), 0, 2675 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 2676 if (!btrfs_trans_handle_cachep) 2677 return -ENOMEM; 2678 return 0; 2679 } 2680 2681 void __cold btrfs_transaction_exit(void) 2682 { 2683 kmem_cache_destroy(btrfs_trans_handle_cachep); 2684 } 2685