1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 #include "qgroup.h" 35 36 #define BTRFS_ROOT_TRANS_TAG 0 37 38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 39 [TRANS_STATE_RUNNING] = 0U, 40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | 41 __TRANS_START), 42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | 43 __TRANS_START | 44 __TRANS_ATTACH), 45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | 46 __TRANS_START | 47 __TRANS_ATTACH | 48 __TRANS_JOIN), 49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | 50 __TRANS_START | 51 __TRANS_ATTACH | 52 __TRANS_JOIN | 53 __TRANS_JOIN_NOLOCK), 54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | 55 __TRANS_START | 56 __TRANS_ATTACH | 57 __TRANS_JOIN | 58 __TRANS_JOIN_NOLOCK), 59 }; 60 61 void btrfs_put_transaction(struct btrfs_transaction *transaction) 62 { 63 WARN_ON(atomic_read(&transaction->use_count) == 0); 64 if (atomic_dec_and_test(&transaction->use_count)) { 65 BUG_ON(!list_empty(&transaction->list)); 66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 67 if (transaction->delayed_refs.pending_csums) 68 printk(KERN_ERR "pending csums is %llu\n", 69 transaction->delayed_refs.pending_csums); 70 while (!list_empty(&transaction->pending_chunks)) { 71 struct extent_map *em; 72 73 em = list_first_entry(&transaction->pending_chunks, 74 struct extent_map, list); 75 list_del_init(&em->list); 76 free_extent_map(em); 77 } 78 /* 79 * If any block groups are found in ->deleted_bgs then it's 80 * because the transaction was aborted and a commit did not 81 * happen (things failed before writing the new superblock 82 * and calling btrfs_finish_extent_commit()), so we can not 83 * discard the physical locations of the block groups. 84 */ 85 while (!list_empty(&transaction->deleted_bgs)) { 86 struct btrfs_block_group_cache *cache; 87 88 cache = list_first_entry(&transaction->deleted_bgs, 89 struct btrfs_block_group_cache, 90 bg_list); 91 list_del_init(&cache->bg_list); 92 btrfs_put_block_group_trimming(cache); 93 btrfs_put_block_group(cache); 94 } 95 kmem_cache_free(btrfs_transaction_cachep, transaction); 96 } 97 } 98 99 static void clear_btree_io_tree(struct extent_io_tree *tree) 100 { 101 spin_lock(&tree->lock); 102 /* 103 * Do a single barrier for the waitqueue_active check here, the state 104 * of the waitqueue should not change once clear_btree_io_tree is 105 * called. 106 */ 107 smp_mb(); 108 while (!RB_EMPTY_ROOT(&tree->state)) { 109 struct rb_node *node; 110 struct extent_state *state; 111 112 node = rb_first(&tree->state); 113 state = rb_entry(node, struct extent_state, rb_node); 114 rb_erase(&state->rb_node, &tree->state); 115 RB_CLEAR_NODE(&state->rb_node); 116 /* 117 * btree io trees aren't supposed to have tasks waiting for 118 * changes in the flags of extent states ever. 119 */ 120 ASSERT(!waitqueue_active(&state->wq)); 121 free_extent_state(state); 122 123 cond_resched_lock(&tree->lock); 124 } 125 spin_unlock(&tree->lock); 126 } 127 128 static noinline void switch_commit_roots(struct btrfs_transaction *trans, 129 struct btrfs_fs_info *fs_info) 130 { 131 struct btrfs_root *root, *tmp; 132 133 down_write(&fs_info->commit_root_sem); 134 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 135 dirty_list) { 136 list_del_init(&root->dirty_list); 137 free_extent_buffer(root->commit_root); 138 root->commit_root = btrfs_root_node(root); 139 if (is_fstree(root->objectid)) 140 btrfs_unpin_free_ino(root); 141 clear_btree_io_tree(&root->dirty_log_pages); 142 } 143 144 /* We can free old roots now. */ 145 spin_lock(&trans->dropped_roots_lock); 146 while (!list_empty(&trans->dropped_roots)) { 147 root = list_first_entry(&trans->dropped_roots, 148 struct btrfs_root, root_list); 149 list_del_init(&root->root_list); 150 spin_unlock(&trans->dropped_roots_lock); 151 btrfs_drop_and_free_fs_root(fs_info, root); 152 spin_lock(&trans->dropped_roots_lock); 153 } 154 spin_unlock(&trans->dropped_roots_lock); 155 up_write(&fs_info->commit_root_sem); 156 } 157 158 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 159 unsigned int type) 160 { 161 if (type & TRANS_EXTWRITERS) 162 atomic_inc(&trans->num_extwriters); 163 } 164 165 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 166 unsigned int type) 167 { 168 if (type & TRANS_EXTWRITERS) 169 atomic_dec(&trans->num_extwriters); 170 } 171 172 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 173 unsigned int type) 174 { 175 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 176 } 177 178 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 179 { 180 return atomic_read(&trans->num_extwriters); 181 } 182 183 /* 184 * either allocate a new transaction or hop into the existing one 185 */ 186 static noinline int join_transaction(struct btrfs_root *root, unsigned int type) 187 { 188 struct btrfs_transaction *cur_trans; 189 struct btrfs_fs_info *fs_info = root->fs_info; 190 191 spin_lock(&fs_info->trans_lock); 192 loop: 193 /* The file system has been taken offline. No new transactions. */ 194 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 195 spin_unlock(&fs_info->trans_lock); 196 return -EROFS; 197 } 198 199 cur_trans = fs_info->running_transaction; 200 if (cur_trans) { 201 if (cur_trans->aborted) { 202 spin_unlock(&fs_info->trans_lock); 203 return cur_trans->aborted; 204 } 205 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 206 spin_unlock(&fs_info->trans_lock); 207 return -EBUSY; 208 } 209 atomic_inc(&cur_trans->use_count); 210 atomic_inc(&cur_trans->num_writers); 211 extwriter_counter_inc(cur_trans, type); 212 spin_unlock(&fs_info->trans_lock); 213 return 0; 214 } 215 spin_unlock(&fs_info->trans_lock); 216 217 /* 218 * If we are ATTACH, we just want to catch the current transaction, 219 * and commit it. If there is no transaction, just return ENOENT. 220 */ 221 if (type == TRANS_ATTACH) 222 return -ENOENT; 223 224 /* 225 * JOIN_NOLOCK only happens during the transaction commit, so 226 * it is impossible that ->running_transaction is NULL 227 */ 228 BUG_ON(type == TRANS_JOIN_NOLOCK); 229 230 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 231 if (!cur_trans) 232 return -ENOMEM; 233 234 spin_lock(&fs_info->trans_lock); 235 if (fs_info->running_transaction) { 236 /* 237 * someone started a transaction after we unlocked. Make sure 238 * to redo the checks above 239 */ 240 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 241 goto loop; 242 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 243 spin_unlock(&fs_info->trans_lock); 244 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 245 return -EROFS; 246 } 247 248 atomic_set(&cur_trans->num_writers, 1); 249 extwriter_counter_init(cur_trans, type); 250 init_waitqueue_head(&cur_trans->writer_wait); 251 init_waitqueue_head(&cur_trans->commit_wait); 252 init_waitqueue_head(&cur_trans->pending_wait); 253 cur_trans->state = TRANS_STATE_RUNNING; 254 /* 255 * One for this trans handle, one so it will live on until we 256 * commit the transaction. 257 */ 258 atomic_set(&cur_trans->use_count, 2); 259 atomic_set(&cur_trans->pending_ordered, 0); 260 cur_trans->flags = 0; 261 cur_trans->start_time = get_seconds(); 262 263 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 264 265 cur_trans->delayed_refs.href_root = RB_ROOT; 266 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 267 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 268 269 /* 270 * although the tree mod log is per file system and not per transaction, 271 * the log must never go across transaction boundaries. 272 */ 273 smp_mb(); 274 if (!list_empty(&fs_info->tree_mod_seq_list)) 275 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when " 276 "creating a fresh transaction\n"); 277 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 278 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when " 279 "creating a fresh transaction\n"); 280 atomic64_set(&fs_info->tree_mod_seq, 0); 281 282 spin_lock_init(&cur_trans->delayed_refs.lock); 283 284 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 285 INIT_LIST_HEAD(&cur_trans->pending_chunks); 286 INIT_LIST_HEAD(&cur_trans->switch_commits); 287 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 288 INIT_LIST_HEAD(&cur_trans->io_bgs); 289 INIT_LIST_HEAD(&cur_trans->dropped_roots); 290 mutex_init(&cur_trans->cache_write_mutex); 291 cur_trans->num_dirty_bgs = 0; 292 spin_lock_init(&cur_trans->dirty_bgs_lock); 293 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 294 spin_lock_init(&cur_trans->dropped_roots_lock); 295 list_add_tail(&cur_trans->list, &fs_info->trans_list); 296 extent_io_tree_init(&cur_trans->dirty_pages, 297 fs_info->btree_inode->i_mapping); 298 fs_info->generation++; 299 cur_trans->transid = fs_info->generation; 300 fs_info->running_transaction = cur_trans; 301 cur_trans->aborted = 0; 302 spin_unlock(&fs_info->trans_lock); 303 304 return 0; 305 } 306 307 /* 308 * this does all the record keeping required to make sure that a reference 309 * counted root is properly recorded in a given transaction. This is required 310 * to make sure the old root from before we joined the transaction is deleted 311 * when the transaction commits 312 */ 313 static int record_root_in_trans(struct btrfs_trans_handle *trans, 314 struct btrfs_root *root, 315 int force) 316 { 317 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 318 root->last_trans < trans->transid) || force) { 319 WARN_ON(root == root->fs_info->extent_root); 320 WARN_ON(root->commit_root != root->node); 321 322 /* 323 * see below for IN_TRANS_SETUP usage rules 324 * we have the reloc mutex held now, so there 325 * is only one writer in this function 326 */ 327 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 328 329 /* make sure readers find IN_TRANS_SETUP before 330 * they find our root->last_trans update 331 */ 332 smp_wmb(); 333 334 spin_lock(&root->fs_info->fs_roots_radix_lock); 335 if (root->last_trans == trans->transid && !force) { 336 spin_unlock(&root->fs_info->fs_roots_radix_lock); 337 return 0; 338 } 339 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 340 (unsigned long)root->root_key.objectid, 341 BTRFS_ROOT_TRANS_TAG); 342 spin_unlock(&root->fs_info->fs_roots_radix_lock); 343 root->last_trans = trans->transid; 344 345 /* this is pretty tricky. We don't want to 346 * take the relocation lock in btrfs_record_root_in_trans 347 * unless we're really doing the first setup for this root in 348 * this transaction. 349 * 350 * Normally we'd use root->last_trans as a flag to decide 351 * if we want to take the expensive mutex. 352 * 353 * But, we have to set root->last_trans before we 354 * init the relocation root, otherwise, we trip over warnings 355 * in ctree.c. The solution used here is to flag ourselves 356 * with root IN_TRANS_SETUP. When this is 1, we're still 357 * fixing up the reloc trees and everyone must wait. 358 * 359 * When this is zero, they can trust root->last_trans and fly 360 * through btrfs_record_root_in_trans without having to take the 361 * lock. smp_wmb() makes sure that all the writes above are 362 * done before we pop in the zero below 363 */ 364 btrfs_init_reloc_root(trans, root); 365 smp_mb__before_atomic(); 366 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 367 } 368 return 0; 369 } 370 371 372 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 373 struct btrfs_root *root) 374 { 375 struct btrfs_transaction *cur_trans = trans->transaction; 376 377 /* Add ourselves to the transaction dropped list */ 378 spin_lock(&cur_trans->dropped_roots_lock); 379 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 380 spin_unlock(&cur_trans->dropped_roots_lock); 381 382 /* Make sure we don't try to update the root at commit time */ 383 spin_lock(&root->fs_info->fs_roots_radix_lock); 384 radix_tree_tag_clear(&root->fs_info->fs_roots_radix, 385 (unsigned long)root->root_key.objectid, 386 BTRFS_ROOT_TRANS_TAG); 387 spin_unlock(&root->fs_info->fs_roots_radix_lock); 388 } 389 390 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 391 struct btrfs_root *root) 392 { 393 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 394 return 0; 395 396 /* 397 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 398 * and barriers 399 */ 400 smp_rmb(); 401 if (root->last_trans == trans->transid && 402 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 403 return 0; 404 405 mutex_lock(&root->fs_info->reloc_mutex); 406 record_root_in_trans(trans, root, 0); 407 mutex_unlock(&root->fs_info->reloc_mutex); 408 409 return 0; 410 } 411 412 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 413 { 414 return (trans->state >= TRANS_STATE_BLOCKED && 415 trans->state < TRANS_STATE_UNBLOCKED && 416 !trans->aborted); 417 } 418 419 /* wait for commit against the current transaction to become unblocked 420 * when this is done, it is safe to start a new transaction, but the current 421 * transaction might not be fully on disk. 422 */ 423 static void wait_current_trans(struct btrfs_root *root) 424 { 425 struct btrfs_transaction *cur_trans; 426 427 spin_lock(&root->fs_info->trans_lock); 428 cur_trans = root->fs_info->running_transaction; 429 if (cur_trans && is_transaction_blocked(cur_trans)) { 430 atomic_inc(&cur_trans->use_count); 431 spin_unlock(&root->fs_info->trans_lock); 432 433 wait_event(root->fs_info->transaction_wait, 434 cur_trans->state >= TRANS_STATE_UNBLOCKED || 435 cur_trans->aborted); 436 btrfs_put_transaction(cur_trans); 437 } else { 438 spin_unlock(&root->fs_info->trans_lock); 439 } 440 } 441 442 static int may_wait_transaction(struct btrfs_root *root, int type) 443 { 444 if (root->fs_info->log_root_recovering) 445 return 0; 446 447 if (type == TRANS_USERSPACE) 448 return 1; 449 450 if (type == TRANS_START && 451 !atomic_read(&root->fs_info->open_ioctl_trans)) 452 return 1; 453 454 return 0; 455 } 456 457 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 458 { 459 if (!root->fs_info->reloc_ctl || 460 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 461 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 462 root->reloc_root) 463 return false; 464 465 return true; 466 } 467 468 static struct btrfs_trans_handle * 469 start_transaction(struct btrfs_root *root, unsigned int num_items, 470 unsigned int type, enum btrfs_reserve_flush_enum flush) 471 { 472 struct btrfs_trans_handle *h; 473 struct btrfs_transaction *cur_trans; 474 u64 num_bytes = 0; 475 u64 qgroup_reserved = 0; 476 bool reloc_reserved = false; 477 int ret; 478 479 /* Send isn't supposed to start transactions. */ 480 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 481 482 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 483 return ERR_PTR(-EROFS); 484 485 if (current->journal_info) { 486 WARN_ON(type & TRANS_EXTWRITERS); 487 h = current->journal_info; 488 h->use_count++; 489 WARN_ON(h->use_count > 2); 490 h->orig_rsv = h->block_rsv; 491 h->block_rsv = NULL; 492 goto got_it; 493 } 494 495 /* 496 * Do the reservation before we join the transaction so we can do all 497 * the appropriate flushing if need be. 498 */ 499 if (num_items > 0 && root != root->fs_info->chunk_root) { 500 qgroup_reserved = num_items * root->nodesize; 501 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved); 502 if (ret) 503 return ERR_PTR(ret); 504 505 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 506 /* 507 * Do the reservation for the relocation root creation 508 */ 509 if (need_reserve_reloc_root(root)) { 510 num_bytes += root->nodesize; 511 reloc_reserved = true; 512 } 513 514 ret = btrfs_block_rsv_add(root, 515 &root->fs_info->trans_block_rsv, 516 num_bytes, flush); 517 if (ret) 518 goto reserve_fail; 519 } 520 again: 521 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 522 if (!h) { 523 ret = -ENOMEM; 524 goto alloc_fail; 525 } 526 527 /* 528 * If we are JOIN_NOLOCK we're already committing a transaction and 529 * waiting on this guy, so we don't need to do the sb_start_intwrite 530 * because we're already holding a ref. We need this because we could 531 * have raced in and did an fsync() on a file which can kick a commit 532 * and then we deadlock with somebody doing a freeze. 533 * 534 * If we are ATTACH, it means we just want to catch the current 535 * transaction and commit it, so we needn't do sb_start_intwrite(). 536 */ 537 if (type & __TRANS_FREEZABLE) 538 sb_start_intwrite(root->fs_info->sb); 539 540 if (may_wait_transaction(root, type)) 541 wait_current_trans(root); 542 543 do { 544 ret = join_transaction(root, type); 545 if (ret == -EBUSY) { 546 wait_current_trans(root); 547 if (unlikely(type == TRANS_ATTACH)) 548 ret = -ENOENT; 549 } 550 } while (ret == -EBUSY); 551 552 if (ret < 0) { 553 /* We must get the transaction if we are JOIN_NOLOCK. */ 554 BUG_ON(type == TRANS_JOIN_NOLOCK); 555 goto join_fail; 556 } 557 558 cur_trans = root->fs_info->running_transaction; 559 560 h->transid = cur_trans->transid; 561 h->transaction = cur_trans; 562 h->root = root; 563 h->use_count = 1; 564 565 h->type = type; 566 h->can_flush_pending_bgs = true; 567 INIT_LIST_HEAD(&h->qgroup_ref_list); 568 INIT_LIST_HEAD(&h->new_bgs); 569 570 smp_mb(); 571 if (cur_trans->state >= TRANS_STATE_BLOCKED && 572 may_wait_transaction(root, type)) { 573 current->journal_info = h; 574 btrfs_commit_transaction(h, root); 575 goto again; 576 } 577 578 if (num_bytes) { 579 trace_btrfs_space_reservation(root->fs_info, "transaction", 580 h->transid, num_bytes, 1); 581 h->block_rsv = &root->fs_info->trans_block_rsv; 582 h->bytes_reserved = num_bytes; 583 h->reloc_reserved = reloc_reserved; 584 } 585 586 got_it: 587 btrfs_record_root_in_trans(h, root); 588 589 if (!current->journal_info && type != TRANS_USERSPACE) 590 current->journal_info = h; 591 return h; 592 593 join_fail: 594 if (type & __TRANS_FREEZABLE) 595 sb_end_intwrite(root->fs_info->sb); 596 kmem_cache_free(btrfs_trans_handle_cachep, h); 597 alloc_fail: 598 if (num_bytes) 599 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 600 num_bytes); 601 reserve_fail: 602 btrfs_qgroup_free_meta(root, qgroup_reserved); 603 return ERR_PTR(ret); 604 } 605 606 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 607 unsigned int num_items) 608 { 609 return start_transaction(root, num_items, TRANS_START, 610 BTRFS_RESERVE_FLUSH_ALL); 611 } 612 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 613 struct btrfs_root *root, 614 unsigned int num_items, 615 int min_factor) 616 { 617 struct btrfs_trans_handle *trans; 618 u64 num_bytes; 619 int ret; 620 621 trans = btrfs_start_transaction(root, num_items); 622 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 623 return trans; 624 625 trans = btrfs_start_transaction(root, 0); 626 if (IS_ERR(trans)) 627 return trans; 628 629 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 630 ret = btrfs_cond_migrate_bytes(root->fs_info, 631 &root->fs_info->trans_block_rsv, 632 num_bytes, 633 min_factor); 634 if (ret) { 635 btrfs_end_transaction(trans, root); 636 return ERR_PTR(ret); 637 } 638 639 trans->block_rsv = &root->fs_info->trans_block_rsv; 640 trans->bytes_reserved = num_bytes; 641 trace_btrfs_space_reservation(root->fs_info, "transaction", 642 trans->transid, num_bytes, 1); 643 644 return trans; 645 } 646 647 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 648 struct btrfs_root *root, 649 unsigned int num_items) 650 { 651 return start_transaction(root, num_items, TRANS_START, 652 BTRFS_RESERVE_FLUSH_LIMIT); 653 } 654 655 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 656 { 657 return start_transaction(root, 0, TRANS_JOIN, 658 BTRFS_RESERVE_NO_FLUSH); 659 } 660 661 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 662 { 663 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 664 BTRFS_RESERVE_NO_FLUSH); 665 } 666 667 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 668 { 669 return start_transaction(root, 0, TRANS_USERSPACE, 670 BTRFS_RESERVE_NO_FLUSH); 671 } 672 673 /* 674 * btrfs_attach_transaction() - catch the running transaction 675 * 676 * It is used when we want to commit the current the transaction, but 677 * don't want to start a new one. 678 * 679 * Note: If this function return -ENOENT, it just means there is no 680 * running transaction. But it is possible that the inactive transaction 681 * is still in the memory, not fully on disk. If you hope there is no 682 * inactive transaction in the fs when -ENOENT is returned, you should 683 * invoke 684 * btrfs_attach_transaction_barrier() 685 */ 686 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 687 { 688 return start_transaction(root, 0, TRANS_ATTACH, 689 BTRFS_RESERVE_NO_FLUSH); 690 } 691 692 /* 693 * btrfs_attach_transaction_barrier() - catch the running transaction 694 * 695 * It is similar to the above function, the differentia is this one 696 * will wait for all the inactive transactions until they fully 697 * complete. 698 */ 699 struct btrfs_trans_handle * 700 btrfs_attach_transaction_barrier(struct btrfs_root *root) 701 { 702 struct btrfs_trans_handle *trans; 703 704 trans = start_transaction(root, 0, TRANS_ATTACH, 705 BTRFS_RESERVE_NO_FLUSH); 706 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 707 btrfs_wait_for_commit(root, 0); 708 709 return trans; 710 } 711 712 /* wait for a transaction commit to be fully complete */ 713 static noinline void wait_for_commit(struct btrfs_root *root, 714 struct btrfs_transaction *commit) 715 { 716 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 717 } 718 719 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 720 { 721 struct btrfs_transaction *cur_trans = NULL, *t; 722 int ret = 0; 723 724 if (transid) { 725 if (transid <= root->fs_info->last_trans_committed) 726 goto out; 727 728 /* find specified transaction */ 729 spin_lock(&root->fs_info->trans_lock); 730 list_for_each_entry(t, &root->fs_info->trans_list, list) { 731 if (t->transid == transid) { 732 cur_trans = t; 733 atomic_inc(&cur_trans->use_count); 734 ret = 0; 735 break; 736 } 737 if (t->transid > transid) { 738 ret = 0; 739 break; 740 } 741 } 742 spin_unlock(&root->fs_info->trans_lock); 743 744 /* 745 * The specified transaction doesn't exist, or we 746 * raced with btrfs_commit_transaction 747 */ 748 if (!cur_trans) { 749 if (transid > root->fs_info->last_trans_committed) 750 ret = -EINVAL; 751 goto out; 752 } 753 } else { 754 /* find newest transaction that is committing | committed */ 755 spin_lock(&root->fs_info->trans_lock); 756 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 757 list) { 758 if (t->state >= TRANS_STATE_COMMIT_START) { 759 if (t->state == TRANS_STATE_COMPLETED) 760 break; 761 cur_trans = t; 762 atomic_inc(&cur_trans->use_count); 763 break; 764 } 765 } 766 spin_unlock(&root->fs_info->trans_lock); 767 if (!cur_trans) 768 goto out; /* nothing committing|committed */ 769 } 770 771 wait_for_commit(root, cur_trans); 772 btrfs_put_transaction(cur_trans); 773 out: 774 return ret; 775 } 776 777 void btrfs_throttle(struct btrfs_root *root) 778 { 779 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 780 wait_current_trans(root); 781 } 782 783 static int should_end_transaction(struct btrfs_trans_handle *trans, 784 struct btrfs_root *root) 785 { 786 if (root->fs_info->global_block_rsv.space_info->full && 787 btrfs_check_space_for_delayed_refs(trans, root)) 788 return 1; 789 790 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 791 } 792 793 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 794 struct btrfs_root *root) 795 { 796 struct btrfs_transaction *cur_trans = trans->transaction; 797 int updates; 798 int err; 799 800 smp_mb(); 801 if (cur_trans->state >= TRANS_STATE_BLOCKED || 802 cur_trans->delayed_refs.flushing) 803 return 1; 804 805 updates = trans->delayed_ref_updates; 806 trans->delayed_ref_updates = 0; 807 if (updates) { 808 err = btrfs_run_delayed_refs(trans, root, updates * 2); 809 if (err) /* Error code will also eval true */ 810 return err; 811 } 812 813 return should_end_transaction(trans, root); 814 } 815 816 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 817 struct btrfs_root *root, int throttle) 818 { 819 struct btrfs_transaction *cur_trans = trans->transaction; 820 struct btrfs_fs_info *info = root->fs_info; 821 u64 transid = trans->transid; 822 unsigned long cur = trans->delayed_ref_updates; 823 int lock = (trans->type != TRANS_JOIN_NOLOCK); 824 int err = 0; 825 int must_run_delayed_refs = 0; 826 827 if (trans->use_count > 1) { 828 trans->use_count--; 829 trans->block_rsv = trans->orig_rsv; 830 return 0; 831 } 832 833 btrfs_trans_release_metadata(trans, root); 834 trans->block_rsv = NULL; 835 836 if (!list_empty(&trans->new_bgs)) 837 btrfs_create_pending_block_groups(trans, root); 838 839 trans->delayed_ref_updates = 0; 840 if (!trans->sync) { 841 must_run_delayed_refs = 842 btrfs_should_throttle_delayed_refs(trans, root); 843 cur = max_t(unsigned long, cur, 32); 844 845 /* 846 * don't make the caller wait if they are from a NOLOCK 847 * or ATTACH transaction, it will deadlock with commit 848 */ 849 if (must_run_delayed_refs == 1 && 850 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 851 must_run_delayed_refs = 2; 852 } 853 854 btrfs_trans_release_metadata(trans, root); 855 trans->block_rsv = NULL; 856 857 if (!list_empty(&trans->new_bgs)) 858 btrfs_create_pending_block_groups(trans, root); 859 860 btrfs_trans_release_chunk_metadata(trans); 861 862 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 863 should_end_transaction(trans, root) && 864 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 865 spin_lock(&info->trans_lock); 866 if (cur_trans->state == TRANS_STATE_RUNNING) 867 cur_trans->state = TRANS_STATE_BLOCKED; 868 spin_unlock(&info->trans_lock); 869 } 870 871 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 872 if (throttle) 873 return btrfs_commit_transaction(trans, root); 874 else 875 wake_up_process(info->transaction_kthread); 876 } 877 878 if (trans->type & __TRANS_FREEZABLE) 879 sb_end_intwrite(root->fs_info->sb); 880 881 WARN_ON(cur_trans != info->running_transaction); 882 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 883 atomic_dec(&cur_trans->num_writers); 884 extwriter_counter_dec(cur_trans, trans->type); 885 886 /* 887 * Make sure counter is updated before we wake up waiters. 888 */ 889 smp_mb(); 890 if (waitqueue_active(&cur_trans->writer_wait)) 891 wake_up(&cur_trans->writer_wait); 892 btrfs_put_transaction(cur_trans); 893 894 if (current->journal_info == trans) 895 current->journal_info = NULL; 896 897 if (throttle) 898 btrfs_run_delayed_iputs(root); 899 900 if (trans->aborted || 901 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 902 wake_up_process(info->transaction_kthread); 903 err = -EIO; 904 } 905 assert_qgroups_uptodate(trans); 906 907 kmem_cache_free(btrfs_trans_handle_cachep, trans); 908 if (must_run_delayed_refs) { 909 btrfs_async_run_delayed_refs(root, cur, transid, 910 must_run_delayed_refs == 1); 911 } 912 return err; 913 } 914 915 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 916 struct btrfs_root *root) 917 { 918 return __btrfs_end_transaction(trans, root, 0); 919 } 920 921 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 922 struct btrfs_root *root) 923 { 924 return __btrfs_end_transaction(trans, root, 1); 925 } 926 927 /* 928 * when btree blocks are allocated, they have some corresponding bits set for 929 * them in one of two extent_io trees. This is used to make sure all of 930 * those extents are sent to disk but does not wait on them 931 */ 932 int btrfs_write_marked_extents(struct btrfs_root *root, 933 struct extent_io_tree *dirty_pages, int mark) 934 { 935 int err = 0; 936 int werr = 0; 937 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 938 struct extent_state *cached_state = NULL; 939 u64 start = 0; 940 u64 end; 941 942 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 943 mark, &cached_state)) { 944 bool wait_writeback = false; 945 946 err = convert_extent_bit(dirty_pages, start, end, 947 EXTENT_NEED_WAIT, 948 mark, &cached_state); 949 /* 950 * convert_extent_bit can return -ENOMEM, which is most of the 951 * time a temporary error. So when it happens, ignore the error 952 * and wait for writeback of this range to finish - because we 953 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 954 * to btrfs_wait_marked_extents() would not know that writeback 955 * for this range started and therefore wouldn't wait for it to 956 * finish - we don't want to commit a superblock that points to 957 * btree nodes/leafs for which writeback hasn't finished yet 958 * (and without errors). 959 * We cleanup any entries left in the io tree when committing 960 * the transaction (through clear_btree_io_tree()). 961 */ 962 if (err == -ENOMEM) { 963 err = 0; 964 wait_writeback = true; 965 } 966 if (!err) 967 err = filemap_fdatawrite_range(mapping, start, end); 968 if (err) 969 werr = err; 970 else if (wait_writeback) 971 werr = filemap_fdatawait_range(mapping, start, end); 972 free_extent_state(cached_state); 973 cached_state = NULL; 974 cond_resched(); 975 start = end + 1; 976 } 977 return werr; 978 } 979 980 /* 981 * when btree blocks are allocated, they have some corresponding bits set for 982 * them in one of two extent_io trees. This is used to make sure all of 983 * those extents are on disk for transaction or log commit. We wait 984 * on all the pages and clear them from the dirty pages state tree 985 */ 986 int btrfs_wait_marked_extents(struct btrfs_root *root, 987 struct extent_io_tree *dirty_pages, int mark) 988 { 989 int err = 0; 990 int werr = 0; 991 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 992 struct extent_state *cached_state = NULL; 993 u64 start = 0; 994 u64 end; 995 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 996 bool errors = false; 997 998 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 999 EXTENT_NEED_WAIT, &cached_state)) { 1000 /* 1001 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1002 * When committing the transaction, we'll remove any entries 1003 * left in the io tree. For a log commit, we don't remove them 1004 * after committing the log because the tree can be accessed 1005 * concurrently - we do it only at transaction commit time when 1006 * it's safe to do it (through clear_btree_io_tree()). 1007 */ 1008 err = clear_extent_bit(dirty_pages, start, end, 1009 EXTENT_NEED_WAIT, 1010 0, 0, &cached_state, GFP_NOFS); 1011 if (err == -ENOMEM) 1012 err = 0; 1013 if (!err) 1014 err = filemap_fdatawait_range(mapping, start, end); 1015 if (err) 1016 werr = err; 1017 free_extent_state(cached_state); 1018 cached_state = NULL; 1019 cond_resched(); 1020 start = end + 1; 1021 } 1022 if (err) 1023 werr = err; 1024 1025 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 1026 if ((mark & EXTENT_DIRTY) && 1027 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, 1028 &btree_ino->runtime_flags)) 1029 errors = true; 1030 1031 if ((mark & EXTENT_NEW) && 1032 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, 1033 &btree_ino->runtime_flags)) 1034 errors = true; 1035 } else { 1036 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR, 1037 &btree_ino->runtime_flags)) 1038 errors = true; 1039 } 1040 1041 if (errors && !werr) 1042 werr = -EIO; 1043 1044 return werr; 1045 } 1046 1047 /* 1048 * when btree blocks are allocated, they have some corresponding bits set for 1049 * them in one of two extent_io trees. This is used to make sure all of 1050 * those extents are on disk for transaction or log commit 1051 */ 1052 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 1053 struct extent_io_tree *dirty_pages, int mark) 1054 { 1055 int ret; 1056 int ret2; 1057 struct blk_plug plug; 1058 1059 blk_start_plug(&plug); 1060 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 1061 blk_finish_plug(&plug); 1062 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 1063 1064 if (ret) 1065 return ret; 1066 if (ret2) 1067 return ret2; 1068 return 0; 1069 } 1070 1071 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 1072 struct btrfs_root *root) 1073 { 1074 int ret; 1075 1076 ret = btrfs_write_and_wait_marked_extents(root, 1077 &trans->transaction->dirty_pages, 1078 EXTENT_DIRTY); 1079 clear_btree_io_tree(&trans->transaction->dirty_pages); 1080 1081 return ret; 1082 } 1083 1084 /* 1085 * this is used to update the root pointer in the tree of tree roots. 1086 * 1087 * But, in the case of the extent allocation tree, updating the root 1088 * pointer may allocate blocks which may change the root of the extent 1089 * allocation tree. 1090 * 1091 * So, this loops and repeats and makes sure the cowonly root didn't 1092 * change while the root pointer was being updated in the metadata. 1093 */ 1094 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1095 struct btrfs_root *root) 1096 { 1097 int ret; 1098 u64 old_root_bytenr; 1099 u64 old_root_used; 1100 struct btrfs_root *tree_root = root->fs_info->tree_root; 1101 1102 old_root_used = btrfs_root_used(&root->root_item); 1103 1104 while (1) { 1105 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1106 if (old_root_bytenr == root->node->start && 1107 old_root_used == btrfs_root_used(&root->root_item)) 1108 break; 1109 1110 btrfs_set_root_node(&root->root_item, root->node); 1111 ret = btrfs_update_root(trans, tree_root, 1112 &root->root_key, 1113 &root->root_item); 1114 if (ret) 1115 return ret; 1116 1117 old_root_used = btrfs_root_used(&root->root_item); 1118 } 1119 1120 return 0; 1121 } 1122 1123 /* 1124 * update all the cowonly tree roots on disk 1125 * 1126 * The error handling in this function may not be obvious. Any of the 1127 * failures will cause the file system to go offline. We still need 1128 * to clean up the delayed refs. 1129 */ 1130 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 1131 struct btrfs_root *root) 1132 { 1133 struct btrfs_fs_info *fs_info = root->fs_info; 1134 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1135 struct list_head *io_bgs = &trans->transaction->io_bgs; 1136 struct list_head *next; 1137 struct extent_buffer *eb; 1138 int ret; 1139 1140 eb = btrfs_lock_root_node(fs_info->tree_root); 1141 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1142 0, &eb); 1143 btrfs_tree_unlock(eb); 1144 free_extent_buffer(eb); 1145 1146 if (ret) 1147 return ret; 1148 1149 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1150 if (ret) 1151 return ret; 1152 1153 ret = btrfs_run_dev_stats(trans, root->fs_info); 1154 if (ret) 1155 return ret; 1156 ret = btrfs_run_dev_replace(trans, root->fs_info); 1157 if (ret) 1158 return ret; 1159 ret = btrfs_run_qgroups(trans, root->fs_info); 1160 if (ret) 1161 return ret; 1162 1163 ret = btrfs_setup_space_cache(trans, root); 1164 if (ret) 1165 return ret; 1166 1167 /* run_qgroups might have added some more refs */ 1168 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1169 if (ret) 1170 return ret; 1171 again: 1172 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1173 next = fs_info->dirty_cowonly_roots.next; 1174 list_del_init(next); 1175 root = list_entry(next, struct btrfs_root, dirty_list); 1176 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1177 1178 if (root != fs_info->extent_root) 1179 list_add_tail(&root->dirty_list, 1180 &trans->transaction->switch_commits); 1181 ret = update_cowonly_root(trans, root); 1182 if (ret) 1183 return ret; 1184 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1185 if (ret) 1186 return ret; 1187 } 1188 1189 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1190 ret = btrfs_write_dirty_block_groups(trans, root); 1191 if (ret) 1192 return ret; 1193 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1194 if (ret) 1195 return ret; 1196 } 1197 1198 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1199 goto again; 1200 1201 list_add_tail(&fs_info->extent_root->dirty_list, 1202 &trans->transaction->switch_commits); 1203 btrfs_after_dev_replace_commit(fs_info); 1204 1205 return 0; 1206 } 1207 1208 /* 1209 * dead roots are old snapshots that need to be deleted. This allocates 1210 * a dirty root struct and adds it into the list of dead roots that need to 1211 * be deleted 1212 */ 1213 void btrfs_add_dead_root(struct btrfs_root *root) 1214 { 1215 spin_lock(&root->fs_info->trans_lock); 1216 if (list_empty(&root->root_list)) 1217 list_add_tail(&root->root_list, &root->fs_info->dead_roots); 1218 spin_unlock(&root->fs_info->trans_lock); 1219 } 1220 1221 /* 1222 * update all the cowonly tree roots on disk 1223 */ 1224 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 1225 struct btrfs_root *root) 1226 { 1227 struct btrfs_root *gang[8]; 1228 struct btrfs_fs_info *fs_info = root->fs_info; 1229 int i; 1230 int ret; 1231 int err = 0; 1232 1233 spin_lock(&fs_info->fs_roots_radix_lock); 1234 while (1) { 1235 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1236 (void **)gang, 0, 1237 ARRAY_SIZE(gang), 1238 BTRFS_ROOT_TRANS_TAG); 1239 if (ret == 0) 1240 break; 1241 for (i = 0; i < ret; i++) { 1242 root = gang[i]; 1243 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1244 (unsigned long)root->root_key.objectid, 1245 BTRFS_ROOT_TRANS_TAG); 1246 spin_unlock(&fs_info->fs_roots_radix_lock); 1247 1248 btrfs_free_log(trans, root); 1249 btrfs_update_reloc_root(trans, root); 1250 btrfs_orphan_commit_root(trans, root); 1251 1252 btrfs_save_ino_cache(root, trans); 1253 1254 /* see comments in should_cow_block() */ 1255 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1256 smp_mb__after_atomic(); 1257 1258 if (root->commit_root != root->node) { 1259 list_add_tail(&root->dirty_list, 1260 &trans->transaction->switch_commits); 1261 btrfs_set_root_node(&root->root_item, 1262 root->node); 1263 } 1264 1265 err = btrfs_update_root(trans, fs_info->tree_root, 1266 &root->root_key, 1267 &root->root_item); 1268 spin_lock(&fs_info->fs_roots_radix_lock); 1269 if (err) 1270 break; 1271 btrfs_qgroup_free_meta_all(root); 1272 } 1273 } 1274 spin_unlock(&fs_info->fs_roots_radix_lock); 1275 return err; 1276 } 1277 1278 /* 1279 * defrag a given btree. 1280 * Every leaf in the btree is read and defragged. 1281 */ 1282 int btrfs_defrag_root(struct btrfs_root *root) 1283 { 1284 struct btrfs_fs_info *info = root->fs_info; 1285 struct btrfs_trans_handle *trans; 1286 int ret; 1287 1288 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1289 return 0; 1290 1291 while (1) { 1292 trans = btrfs_start_transaction(root, 0); 1293 if (IS_ERR(trans)) 1294 return PTR_ERR(trans); 1295 1296 ret = btrfs_defrag_leaves(trans, root); 1297 1298 btrfs_end_transaction(trans, root); 1299 btrfs_btree_balance_dirty(info->tree_root); 1300 cond_resched(); 1301 1302 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 1303 break; 1304 1305 if (btrfs_defrag_cancelled(root->fs_info)) { 1306 pr_debug("BTRFS: defrag_root cancelled\n"); 1307 ret = -EAGAIN; 1308 break; 1309 } 1310 } 1311 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1312 return ret; 1313 } 1314 1315 /* 1316 * Do all special snapshot related qgroup dirty hack. 1317 * 1318 * Will do all needed qgroup inherit and dirty hack like switch commit 1319 * roots inside one transaction and write all btree into disk, to make 1320 * qgroup works. 1321 */ 1322 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1323 struct btrfs_root *src, 1324 struct btrfs_root *parent, 1325 struct btrfs_qgroup_inherit *inherit, 1326 u64 dst_objectid) 1327 { 1328 struct btrfs_fs_info *fs_info = src->fs_info; 1329 int ret; 1330 1331 /* 1332 * Save some performance in the case that qgroups are not 1333 * enabled. If this check races with the ioctl, rescan will 1334 * kick in anyway. 1335 */ 1336 mutex_lock(&fs_info->qgroup_ioctl_lock); 1337 if (!fs_info->quota_enabled) { 1338 mutex_unlock(&fs_info->qgroup_ioctl_lock); 1339 return 0; 1340 } 1341 mutex_unlock(&fs_info->qgroup_ioctl_lock); 1342 1343 /* 1344 * We are going to commit transaction, see btrfs_commit_transaction() 1345 * comment for reason locking tree_log_mutex 1346 */ 1347 mutex_lock(&fs_info->tree_log_mutex); 1348 1349 ret = commit_fs_roots(trans, src); 1350 if (ret) 1351 goto out; 1352 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info); 1353 if (ret < 0) 1354 goto out; 1355 ret = btrfs_qgroup_account_extents(trans, fs_info); 1356 if (ret < 0) 1357 goto out; 1358 1359 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1360 ret = btrfs_qgroup_inherit(trans, fs_info, 1361 src->root_key.objectid, dst_objectid, 1362 inherit); 1363 if (ret < 0) 1364 goto out; 1365 1366 /* 1367 * Now we do a simplified commit transaction, which will: 1368 * 1) commit all subvolume and extent tree 1369 * To ensure all subvolume and extent tree have a valid 1370 * commit_root to accounting later insert_dir_item() 1371 * 2) write all btree blocks onto disk 1372 * This is to make sure later btree modification will be cowed 1373 * Or commit_root can be populated and cause wrong qgroup numbers 1374 * In this simplified commit, we don't really care about other trees 1375 * like chunk and root tree, as they won't affect qgroup. 1376 * And we don't write super to avoid half committed status. 1377 */ 1378 ret = commit_cowonly_roots(trans, src); 1379 if (ret) 1380 goto out; 1381 switch_commit_roots(trans->transaction, fs_info); 1382 ret = btrfs_write_and_wait_transaction(trans, src); 1383 if (ret) 1384 btrfs_handle_fs_error(fs_info, ret, 1385 "Error while writing out transaction for qgroup"); 1386 1387 out: 1388 mutex_unlock(&fs_info->tree_log_mutex); 1389 1390 /* 1391 * Force parent root to be updated, as we recorded it before so its 1392 * last_trans == cur_transid. 1393 * Or it won't be committed again onto disk after later 1394 * insert_dir_item() 1395 */ 1396 if (!ret) 1397 record_root_in_trans(trans, parent, 1); 1398 return ret; 1399 } 1400 1401 /* 1402 * new snapshots need to be created at a very specific time in the 1403 * transaction commit. This does the actual creation. 1404 * 1405 * Note: 1406 * If the error which may affect the commitment of the current transaction 1407 * happens, we should return the error number. If the error which just affect 1408 * the creation of the pending snapshots, just return 0. 1409 */ 1410 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1411 struct btrfs_fs_info *fs_info, 1412 struct btrfs_pending_snapshot *pending) 1413 { 1414 struct btrfs_key key; 1415 struct btrfs_root_item *new_root_item; 1416 struct btrfs_root *tree_root = fs_info->tree_root; 1417 struct btrfs_root *root = pending->root; 1418 struct btrfs_root *parent_root; 1419 struct btrfs_block_rsv *rsv; 1420 struct inode *parent_inode; 1421 struct btrfs_path *path; 1422 struct btrfs_dir_item *dir_item; 1423 struct dentry *dentry; 1424 struct extent_buffer *tmp; 1425 struct extent_buffer *old; 1426 struct timespec cur_time; 1427 int ret = 0; 1428 u64 to_reserve = 0; 1429 u64 index = 0; 1430 u64 objectid; 1431 u64 root_flags; 1432 uuid_le new_uuid; 1433 1434 ASSERT(pending->path); 1435 path = pending->path; 1436 1437 ASSERT(pending->root_item); 1438 new_root_item = pending->root_item; 1439 1440 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1441 if (pending->error) 1442 goto no_free_objectid; 1443 1444 /* 1445 * Make qgroup to skip current new snapshot's qgroupid, as it is 1446 * accounted by later btrfs_qgroup_inherit(). 1447 */ 1448 btrfs_set_skip_qgroup(trans, objectid); 1449 1450 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1451 1452 if (to_reserve > 0) { 1453 pending->error = btrfs_block_rsv_add(root, 1454 &pending->block_rsv, 1455 to_reserve, 1456 BTRFS_RESERVE_NO_FLUSH); 1457 if (pending->error) 1458 goto clear_skip_qgroup; 1459 } 1460 1461 key.objectid = objectid; 1462 key.offset = (u64)-1; 1463 key.type = BTRFS_ROOT_ITEM_KEY; 1464 1465 rsv = trans->block_rsv; 1466 trans->block_rsv = &pending->block_rsv; 1467 trans->bytes_reserved = trans->block_rsv->reserved; 1468 trace_btrfs_space_reservation(root->fs_info, "transaction", 1469 trans->transid, 1470 trans->bytes_reserved, 1); 1471 dentry = pending->dentry; 1472 parent_inode = pending->dir; 1473 parent_root = BTRFS_I(parent_inode)->root; 1474 record_root_in_trans(trans, parent_root, 0); 1475 1476 cur_time = current_fs_time(parent_inode->i_sb); 1477 1478 /* 1479 * insert the directory item 1480 */ 1481 ret = btrfs_set_inode_index(parent_inode, &index); 1482 BUG_ON(ret); /* -ENOMEM */ 1483 1484 /* check if there is a file/dir which has the same name. */ 1485 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1486 btrfs_ino(parent_inode), 1487 dentry->d_name.name, 1488 dentry->d_name.len, 0); 1489 if (dir_item != NULL && !IS_ERR(dir_item)) { 1490 pending->error = -EEXIST; 1491 goto dir_item_existed; 1492 } else if (IS_ERR(dir_item)) { 1493 ret = PTR_ERR(dir_item); 1494 btrfs_abort_transaction(trans, root, ret); 1495 goto fail; 1496 } 1497 btrfs_release_path(path); 1498 1499 /* 1500 * pull in the delayed directory update 1501 * and the delayed inode item 1502 * otherwise we corrupt the FS during 1503 * snapshot 1504 */ 1505 ret = btrfs_run_delayed_items(trans, root); 1506 if (ret) { /* Transaction aborted */ 1507 btrfs_abort_transaction(trans, root, ret); 1508 goto fail; 1509 } 1510 1511 record_root_in_trans(trans, root, 0); 1512 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1513 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1514 btrfs_check_and_init_root_item(new_root_item); 1515 1516 root_flags = btrfs_root_flags(new_root_item); 1517 if (pending->readonly) 1518 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1519 else 1520 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1521 btrfs_set_root_flags(new_root_item, root_flags); 1522 1523 btrfs_set_root_generation_v2(new_root_item, 1524 trans->transid); 1525 uuid_le_gen(&new_uuid); 1526 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1527 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1528 BTRFS_UUID_SIZE); 1529 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1530 memset(new_root_item->received_uuid, 0, 1531 sizeof(new_root_item->received_uuid)); 1532 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1533 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1534 btrfs_set_root_stransid(new_root_item, 0); 1535 btrfs_set_root_rtransid(new_root_item, 0); 1536 } 1537 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1538 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1539 btrfs_set_root_otransid(new_root_item, trans->transid); 1540 1541 old = btrfs_lock_root_node(root); 1542 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1543 if (ret) { 1544 btrfs_tree_unlock(old); 1545 free_extent_buffer(old); 1546 btrfs_abort_transaction(trans, root, ret); 1547 goto fail; 1548 } 1549 1550 btrfs_set_lock_blocking(old); 1551 1552 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1553 /* clean up in any case */ 1554 btrfs_tree_unlock(old); 1555 free_extent_buffer(old); 1556 if (ret) { 1557 btrfs_abort_transaction(trans, root, ret); 1558 goto fail; 1559 } 1560 /* see comments in should_cow_block() */ 1561 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1562 smp_wmb(); 1563 1564 btrfs_set_root_node(new_root_item, tmp); 1565 /* record when the snapshot was created in key.offset */ 1566 key.offset = trans->transid; 1567 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1568 btrfs_tree_unlock(tmp); 1569 free_extent_buffer(tmp); 1570 if (ret) { 1571 btrfs_abort_transaction(trans, root, ret); 1572 goto fail; 1573 } 1574 1575 /* 1576 * insert root back/forward references 1577 */ 1578 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1579 parent_root->root_key.objectid, 1580 btrfs_ino(parent_inode), index, 1581 dentry->d_name.name, dentry->d_name.len); 1582 if (ret) { 1583 btrfs_abort_transaction(trans, root, ret); 1584 goto fail; 1585 } 1586 1587 key.offset = (u64)-1; 1588 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1589 if (IS_ERR(pending->snap)) { 1590 ret = PTR_ERR(pending->snap); 1591 btrfs_abort_transaction(trans, root, ret); 1592 goto fail; 1593 } 1594 1595 ret = btrfs_reloc_post_snapshot(trans, pending); 1596 if (ret) { 1597 btrfs_abort_transaction(trans, root, ret); 1598 goto fail; 1599 } 1600 1601 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1602 if (ret) { 1603 btrfs_abort_transaction(trans, root, ret); 1604 goto fail; 1605 } 1606 1607 /* 1608 * Do special qgroup accounting for snapshot, as we do some qgroup 1609 * snapshot hack to do fast snapshot. 1610 * To co-operate with that hack, we do hack again. 1611 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1612 */ 1613 ret = qgroup_account_snapshot(trans, root, parent_root, 1614 pending->inherit, objectid); 1615 if (ret < 0) 1616 goto fail; 1617 1618 ret = btrfs_insert_dir_item(trans, parent_root, 1619 dentry->d_name.name, dentry->d_name.len, 1620 parent_inode, &key, 1621 BTRFS_FT_DIR, index); 1622 /* We have check then name at the beginning, so it is impossible. */ 1623 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1624 if (ret) { 1625 btrfs_abort_transaction(trans, root, ret); 1626 goto fail; 1627 } 1628 1629 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1630 dentry->d_name.len * 2); 1631 parent_inode->i_mtime = parent_inode->i_ctime = 1632 current_fs_time(parent_inode->i_sb); 1633 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1634 if (ret) { 1635 btrfs_abort_transaction(trans, root, ret); 1636 goto fail; 1637 } 1638 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b, 1639 BTRFS_UUID_KEY_SUBVOL, objectid); 1640 if (ret) { 1641 btrfs_abort_transaction(trans, root, ret); 1642 goto fail; 1643 } 1644 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1645 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 1646 new_root_item->received_uuid, 1647 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1648 objectid); 1649 if (ret && ret != -EEXIST) { 1650 btrfs_abort_transaction(trans, root, ret); 1651 goto fail; 1652 } 1653 } 1654 1655 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1656 if (ret) { 1657 btrfs_abort_transaction(trans, root, ret); 1658 goto fail; 1659 } 1660 1661 fail: 1662 pending->error = ret; 1663 dir_item_existed: 1664 trans->block_rsv = rsv; 1665 trans->bytes_reserved = 0; 1666 clear_skip_qgroup: 1667 btrfs_clear_skip_qgroup(trans); 1668 no_free_objectid: 1669 kfree(new_root_item); 1670 pending->root_item = NULL; 1671 btrfs_free_path(path); 1672 pending->path = NULL; 1673 1674 return ret; 1675 } 1676 1677 /* 1678 * create all the snapshots we've scheduled for creation 1679 */ 1680 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1681 struct btrfs_fs_info *fs_info) 1682 { 1683 struct btrfs_pending_snapshot *pending, *next; 1684 struct list_head *head = &trans->transaction->pending_snapshots; 1685 int ret = 0; 1686 1687 list_for_each_entry_safe(pending, next, head, list) { 1688 list_del(&pending->list); 1689 ret = create_pending_snapshot(trans, fs_info, pending); 1690 if (ret) 1691 break; 1692 } 1693 return ret; 1694 } 1695 1696 static void update_super_roots(struct btrfs_root *root) 1697 { 1698 struct btrfs_root_item *root_item; 1699 struct btrfs_super_block *super; 1700 1701 super = root->fs_info->super_copy; 1702 1703 root_item = &root->fs_info->chunk_root->root_item; 1704 super->chunk_root = root_item->bytenr; 1705 super->chunk_root_generation = root_item->generation; 1706 super->chunk_root_level = root_item->level; 1707 1708 root_item = &root->fs_info->tree_root->root_item; 1709 super->root = root_item->bytenr; 1710 super->generation = root_item->generation; 1711 super->root_level = root_item->level; 1712 if (btrfs_test_opt(root, SPACE_CACHE)) 1713 super->cache_generation = root_item->generation; 1714 if (root->fs_info->update_uuid_tree_gen) 1715 super->uuid_tree_generation = root_item->generation; 1716 } 1717 1718 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1719 { 1720 struct btrfs_transaction *trans; 1721 int ret = 0; 1722 1723 spin_lock(&info->trans_lock); 1724 trans = info->running_transaction; 1725 if (trans) 1726 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1727 spin_unlock(&info->trans_lock); 1728 return ret; 1729 } 1730 1731 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1732 { 1733 struct btrfs_transaction *trans; 1734 int ret = 0; 1735 1736 spin_lock(&info->trans_lock); 1737 trans = info->running_transaction; 1738 if (trans) 1739 ret = is_transaction_blocked(trans); 1740 spin_unlock(&info->trans_lock); 1741 return ret; 1742 } 1743 1744 /* 1745 * wait for the current transaction commit to start and block subsequent 1746 * transaction joins 1747 */ 1748 static void wait_current_trans_commit_start(struct btrfs_root *root, 1749 struct btrfs_transaction *trans) 1750 { 1751 wait_event(root->fs_info->transaction_blocked_wait, 1752 trans->state >= TRANS_STATE_COMMIT_START || 1753 trans->aborted); 1754 } 1755 1756 /* 1757 * wait for the current transaction to start and then become unblocked. 1758 * caller holds ref. 1759 */ 1760 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1761 struct btrfs_transaction *trans) 1762 { 1763 wait_event(root->fs_info->transaction_wait, 1764 trans->state >= TRANS_STATE_UNBLOCKED || 1765 trans->aborted); 1766 } 1767 1768 /* 1769 * commit transactions asynchronously. once btrfs_commit_transaction_async 1770 * returns, any subsequent transaction will not be allowed to join. 1771 */ 1772 struct btrfs_async_commit { 1773 struct btrfs_trans_handle *newtrans; 1774 struct btrfs_root *root; 1775 struct work_struct work; 1776 }; 1777 1778 static void do_async_commit(struct work_struct *work) 1779 { 1780 struct btrfs_async_commit *ac = 1781 container_of(work, struct btrfs_async_commit, work); 1782 1783 /* 1784 * We've got freeze protection passed with the transaction. 1785 * Tell lockdep about it. 1786 */ 1787 if (ac->newtrans->type & __TRANS_FREEZABLE) 1788 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS); 1789 1790 current->journal_info = ac->newtrans; 1791 1792 btrfs_commit_transaction(ac->newtrans, ac->root); 1793 kfree(ac); 1794 } 1795 1796 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1797 struct btrfs_root *root, 1798 int wait_for_unblock) 1799 { 1800 struct btrfs_async_commit *ac; 1801 struct btrfs_transaction *cur_trans; 1802 1803 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1804 if (!ac) 1805 return -ENOMEM; 1806 1807 INIT_WORK(&ac->work, do_async_commit); 1808 ac->root = root; 1809 ac->newtrans = btrfs_join_transaction(root); 1810 if (IS_ERR(ac->newtrans)) { 1811 int err = PTR_ERR(ac->newtrans); 1812 kfree(ac); 1813 return err; 1814 } 1815 1816 /* take transaction reference */ 1817 cur_trans = trans->transaction; 1818 atomic_inc(&cur_trans->use_count); 1819 1820 btrfs_end_transaction(trans, root); 1821 1822 /* 1823 * Tell lockdep we've released the freeze rwsem, since the 1824 * async commit thread will be the one to unlock it. 1825 */ 1826 if (ac->newtrans->type & __TRANS_FREEZABLE) 1827 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS); 1828 1829 schedule_work(&ac->work); 1830 1831 /* wait for transaction to start and unblock */ 1832 if (wait_for_unblock) 1833 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1834 else 1835 wait_current_trans_commit_start(root, cur_trans); 1836 1837 if (current->journal_info == trans) 1838 current->journal_info = NULL; 1839 1840 btrfs_put_transaction(cur_trans); 1841 return 0; 1842 } 1843 1844 1845 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1846 struct btrfs_root *root, int err) 1847 { 1848 struct btrfs_transaction *cur_trans = trans->transaction; 1849 DEFINE_WAIT(wait); 1850 1851 WARN_ON(trans->use_count > 1); 1852 1853 btrfs_abort_transaction(trans, root, err); 1854 1855 spin_lock(&root->fs_info->trans_lock); 1856 1857 /* 1858 * If the transaction is removed from the list, it means this 1859 * transaction has been committed successfully, so it is impossible 1860 * to call the cleanup function. 1861 */ 1862 BUG_ON(list_empty(&cur_trans->list)); 1863 1864 list_del_init(&cur_trans->list); 1865 if (cur_trans == root->fs_info->running_transaction) { 1866 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1867 spin_unlock(&root->fs_info->trans_lock); 1868 wait_event(cur_trans->writer_wait, 1869 atomic_read(&cur_trans->num_writers) == 1); 1870 1871 spin_lock(&root->fs_info->trans_lock); 1872 } 1873 spin_unlock(&root->fs_info->trans_lock); 1874 1875 btrfs_cleanup_one_transaction(trans->transaction, root); 1876 1877 spin_lock(&root->fs_info->trans_lock); 1878 if (cur_trans == root->fs_info->running_transaction) 1879 root->fs_info->running_transaction = NULL; 1880 spin_unlock(&root->fs_info->trans_lock); 1881 1882 if (trans->type & __TRANS_FREEZABLE) 1883 sb_end_intwrite(root->fs_info->sb); 1884 btrfs_put_transaction(cur_trans); 1885 btrfs_put_transaction(cur_trans); 1886 1887 trace_btrfs_transaction_commit(root); 1888 1889 if (current->journal_info == trans) 1890 current->journal_info = NULL; 1891 btrfs_scrub_cancel(root->fs_info); 1892 1893 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1894 } 1895 1896 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1897 { 1898 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1899 return btrfs_start_delalloc_roots(fs_info, 1, -1); 1900 return 0; 1901 } 1902 1903 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1904 { 1905 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1906 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1); 1907 } 1908 1909 static inline void 1910 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans) 1911 { 1912 wait_event(cur_trans->pending_wait, 1913 atomic_read(&cur_trans->pending_ordered) == 0); 1914 } 1915 1916 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1917 struct btrfs_root *root) 1918 { 1919 struct btrfs_transaction *cur_trans = trans->transaction; 1920 struct btrfs_transaction *prev_trans = NULL; 1921 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 1922 int ret; 1923 1924 /* Stop the commit early if ->aborted is set */ 1925 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1926 ret = cur_trans->aborted; 1927 btrfs_end_transaction(trans, root); 1928 return ret; 1929 } 1930 1931 /* make a pass through all the delayed refs we have so far 1932 * any runnings procs may add more while we are here 1933 */ 1934 ret = btrfs_run_delayed_refs(trans, root, 0); 1935 if (ret) { 1936 btrfs_end_transaction(trans, root); 1937 return ret; 1938 } 1939 1940 btrfs_trans_release_metadata(trans, root); 1941 trans->block_rsv = NULL; 1942 1943 cur_trans = trans->transaction; 1944 1945 /* 1946 * set the flushing flag so procs in this transaction have to 1947 * start sending their work down. 1948 */ 1949 cur_trans->delayed_refs.flushing = 1; 1950 smp_wmb(); 1951 1952 if (!list_empty(&trans->new_bgs)) 1953 btrfs_create_pending_block_groups(trans, root); 1954 1955 ret = btrfs_run_delayed_refs(trans, root, 0); 1956 if (ret) { 1957 btrfs_end_transaction(trans, root); 1958 return ret; 1959 } 1960 1961 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 1962 int run_it = 0; 1963 1964 /* this mutex is also taken before trying to set 1965 * block groups readonly. We need to make sure 1966 * that nobody has set a block group readonly 1967 * after a extents from that block group have been 1968 * allocated for cache files. btrfs_set_block_group_ro 1969 * will wait for the transaction to commit if it 1970 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 1971 * 1972 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 1973 * only one process starts all the block group IO. It wouldn't 1974 * hurt to have more than one go through, but there's no 1975 * real advantage to it either. 1976 */ 1977 mutex_lock(&root->fs_info->ro_block_group_mutex); 1978 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 1979 &cur_trans->flags)) 1980 run_it = 1; 1981 mutex_unlock(&root->fs_info->ro_block_group_mutex); 1982 1983 if (run_it) 1984 ret = btrfs_start_dirty_block_groups(trans, root); 1985 } 1986 if (ret) { 1987 btrfs_end_transaction(trans, root); 1988 return ret; 1989 } 1990 1991 spin_lock(&root->fs_info->trans_lock); 1992 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1993 spin_unlock(&root->fs_info->trans_lock); 1994 atomic_inc(&cur_trans->use_count); 1995 ret = btrfs_end_transaction(trans, root); 1996 1997 wait_for_commit(root, cur_trans); 1998 1999 if (unlikely(cur_trans->aborted)) 2000 ret = cur_trans->aborted; 2001 2002 btrfs_put_transaction(cur_trans); 2003 2004 return ret; 2005 } 2006 2007 cur_trans->state = TRANS_STATE_COMMIT_START; 2008 wake_up(&root->fs_info->transaction_blocked_wait); 2009 2010 if (cur_trans->list.prev != &root->fs_info->trans_list) { 2011 prev_trans = list_entry(cur_trans->list.prev, 2012 struct btrfs_transaction, list); 2013 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2014 atomic_inc(&prev_trans->use_count); 2015 spin_unlock(&root->fs_info->trans_lock); 2016 2017 wait_for_commit(root, prev_trans); 2018 ret = prev_trans->aborted; 2019 2020 btrfs_put_transaction(prev_trans); 2021 if (ret) 2022 goto cleanup_transaction; 2023 } else { 2024 spin_unlock(&root->fs_info->trans_lock); 2025 } 2026 } else { 2027 spin_unlock(&root->fs_info->trans_lock); 2028 } 2029 2030 extwriter_counter_dec(cur_trans, trans->type); 2031 2032 ret = btrfs_start_delalloc_flush(root->fs_info); 2033 if (ret) 2034 goto cleanup_transaction; 2035 2036 ret = btrfs_run_delayed_items(trans, root); 2037 if (ret) 2038 goto cleanup_transaction; 2039 2040 wait_event(cur_trans->writer_wait, 2041 extwriter_counter_read(cur_trans) == 0); 2042 2043 /* some pending stuffs might be added after the previous flush. */ 2044 ret = btrfs_run_delayed_items(trans, root); 2045 if (ret) 2046 goto cleanup_transaction; 2047 2048 btrfs_wait_delalloc_flush(root->fs_info); 2049 2050 btrfs_wait_pending_ordered(cur_trans); 2051 2052 btrfs_scrub_pause(root); 2053 /* 2054 * Ok now we need to make sure to block out any other joins while we 2055 * commit the transaction. We could have started a join before setting 2056 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2057 */ 2058 spin_lock(&root->fs_info->trans_lock); 2059 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2060 spin_unlock(&root->fs_info->trans_lock); 2061 wait_event(cur_trans->writer_wait, 2062 atomic_read(&cur_trans->num_writers) == 1); 2063 2064 /* ->aborted might be set after the previous check, so check it */ 2065 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 2066 ret = cur_trans->aborted; 2067 goto scrub_continue; 2068 } 2069 /* 2070 * the reloc mutex makes sure that we stop 2071 * the balancing code from coming in and moving 2072 * extents around in the middle of the commit 2073 */ 2074 mutex_lock(&root->fs_info->reloc_mutex); 2075 2076 /* 2077 * We needn't worry about the delayed items because we will 2078 * deal with them in create_pending_snapshot(), which is the 2079 * core function of the snapshot creation. 2080 */ 2081 ret = create_pending_snapshots(trans, root->fs_info); 2082 if (ret) { 2083 mutex_unlock(&root->fs_info->reloc_mutex); 2084 goto scrub_continue; 2085 } 2086 2087 /* 2088 * We insert the dir indexes of the snapshots and update the inode 2089 * of the snapshots' parents after the snapshot creation, so there 2090 * are some delayed items which are not dealt with. Now deal with 2091 * them. 2092 * 2093 * We needn't worry that this operation will corrupt the snapshots, 2094 * because all the tree which are snapshoted will be forced to COW 2095 * the nodes and leaves. 2096 */ 2097 ret = btrfs_run_delayed_items(trans, root); 2098 if (ret) { 2099 mutex_unlock(&root->fs_info->reloc_mutex); 2100 goto scrub_continue; 2101 } 2102 2103 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 2104 if (ret) { 2105 mutex_unlock(&root->fs_info->reloc_mutex); 2106 goto scrub_continue; 2107 } 2108 2109 /* Reocrd old roots for later qgroup accounting */ 2110 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info); 2111 if (ret) { 2112 mutex_unlock(&root->fs_info->reloc_mutex); 2113 goto scrub_continue; 2114 } 2115 2116 /* 2117 * make sure none of the code above managed to slip in a 2118 * delayed item 2119 */ 2120 btrfs_assert_delayed_root_empty(root); 2121 2122 WARN_ON(cur_trans != trans->transaction); 2123 2124 /* btrfs_commit_tree_roots is responsible for getting the 2125 * various roots consistent with each other. Every pointer 2126 * in the tree of tree roots has to point to the most up to date 2127 * root for every subvolume and other tree. So, we have to keep 2128 * the tree logging code from jumping in and changing any 2129 * of the trees. 2130 * 2131 * At this point in the commit, there can't be any tree-log 2132 * writers, but a little lower down we drop the trans mutex 2133 * and let new people in. By holding the tree_log_mutex 2134 * from now until after the super is written, we avoid races 2135 * with the tree-log code. 2136 */ 2137 mutex_lock(&root->fs_info->tree_log_mutex); 2138 2139 ret = commit_fs_roots(trans, root); 2140 if (ret) { 2141 mutex_unlock(&root->fs_info->tree_log_mutex); 2142 mutex_unlock(&root->fs_info->reloc_mutex); 2143 goto scrub_continue; 2144 } 2145 2146 /* 2147 * Since the transaction is done, we can apply the pending changes 2148 * before the next transaction. 2149 */ 2150 btrfs_apply_pending_changes(root->fs_info); 2151 2152 /* commit_fs_roots gets rid of all the tree log roots, it is now 2153 * safe to free the root of tree log roots 2154 */ 2155 btrfs_free_log_root_tree(trans, root->fs_info); 2156 2157 /* 2158 * Since fs roots are all committed, we can get a quite accurate 2159 * new_roots. So let's do quota accounting. 2160 */ 2161 ret = btrfs_qgroup_account_extents(trans, root->fs_info); 2162 if (ret < 0) { 2163 mutex_unlock(&root->fs_info->tree_log_mutex); 2164 mutex_unlock(&root->fs_info->reloc_mutex); 2165 goto scrub_continue; 2166 } 2167 2168 ret = commit_cowonly_roots(trans, root); 2169 if (ret) { 2170 mutex_unlock(&root->fs_info->tree_log_mutex); 2171 mutex_unlock(&root->fs_info->reloc_mutex); 2172 goto scrub_continue; 2173 } 2174 2175 /* 2176 * The tasks which save the space cache and inode cache may also 2177 * update ->aborted, check it. 2178 */ 2179 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 2180 ret = cur_trans->aborted; 2181 mutex_unlock(&root->fs_info->tree_log_mutex); 2182 mutex_unlock(&root->fs_info->reloc_mutex); 2183 goto scrub_continue; 2184 } 2185 2186 btrfs_prepare_extent_commit(trans, root); 2187 2188 cur_trans = root->fs_info->running_transaction; 2189 2190 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 2191 root->fs_info->tree_root->node); 2192 list_add_tail(&root->fs_info->tree_root->dirty_list, 2193 &cur_trans->switch_commits); 2194 2195 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 2196 root->fs_info->chunk_root->node); 2197 list_add_tail(&root->fs_info->chunk_root->dirty_list, 2198 &cur_trans->switch_commits); 2199 2200 switch_commit_roots(cur_trans, root->fs_info); 2201 2202 assert_qgroups_uptodate(trans); 2203 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2204 ASSERT(list_empty(&cur_trans->io_bgs)); 2205 update_super_roots(root); 2206 2207 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 2208 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 2209 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 2210 sizeof(*root->fs_info->super_copy)); 2211 2212 btrfs_update_commit_device_size(root->fs_info); 2213 btrfs_update_commit_device_bytes_used(root, cur_trans); 2214 2215 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 2216 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 2217 2218 btrfs_trans_release_chunk_metadata(trans); 2219 2220 spin_lock(&root->fs_info->trans_lock); 2221 cur_trans->state = TRANS_STATE_UNBLOCKED; 2222 root->fs_info->running_transaction = NULL; 2223 spin_unlock(&root->fs_info->trans_lock); 2224 mutex_unlock(&root->fs_info->reloc_mutex); 2225 2226 wake_up(&root->fs_info->transaction_wait); 2227 2228 ret = btrfs_write_and_wait_transaction(trans, root); 2229 if (ret) { 2230 btrfs_handle_fs_error(root->fs_info, ret, 2231 "Error while writing out transaction"); 2232 mutex_unlock(&root->fs_info->tree_log_mutex); 2233 goto scrub_continue; 2234 } 2235 2236 ret = write_ctree_super(trans, root, 0); 2237 if (ret) { 2238 mutex_unlock(&root->fs_info->tree_log_mutex); 2239 goto scrub_continue; 2240 } 2241 2242 /* 2243 * the super is written, we can safely allow the tree-loggers 2244 * to go about their business 2245 */ 2246 mutex_unlock(&root->fs_info->tree_log_mutex); 2247 2248 btrfs_finish_extent_commit(trans, root); 2249 2250 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2251 btrfs_clear_space_info_full(root->fs_info); 2252 2253 root->fs_info->last_trans_committed = cur_trans->transid; 2254 /* 2255 * We needn't acquire the lock here because there is no other task 2256 * which can change it. 2257 */ 2258 cur_trans->state = TRANS_STATE_COMPLETED; 2259 wake_up(&cur_trans->commit_wait); 2260 2261 spin_lock(&root->fs_info->trans_lock); 2262 list_del_init(&cur_trans->list); 2263 spin_unlock(&root->fs_info->trans_lock); 2264 2265 btrfs_put_transaction(cur_trans); 2266 btrfs_put_transaction(cur_trans); 2267 2268 if (trans->type & __TRANS_FREEZABLE) 2269 sb_end_intwrite(root->fs_info->sb); 2270 2271 trace_btrfs_transaction_commit(root); 2272 2273 btrfs_scrub_continue(root); 2274 2275 if (current->journal_info == trans) 2276 current->journal_info = NULL; 2277 2278 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2279 2280 if (current != root->fs_info->transaction_kthread && 2281 current != root->fs_info->cleaner_kthread) 2282 btrfs_run_delayed_iputs(root); 2283 2284 return ret; 2285 2286 scrub_continue: 2287 btrfs_scrub_continue(root); 2288 cleanup_transaction: 2289 btrfs_trans_release_metadata(trans, root); 2290 btrfs_trans_release_chunk_metadata(trans); 2291 trans->block_rsv = NULL; 2292 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction."); 2293 if (current->journal_info == trans) 2294 current->journal_info = NULL; 2295 cleanup_transaction(trans, root, ret); 2296 2297 return ret; 2298 } 2299 2300 /* 2301 * return < 0 if error 2302 * 0 if there are no more dead_roots at the time of call 2303 * 1 there are more to be processed, call me again 2304 * 2305 * The return value indicates there are certainly more snapshots to delete, but 2306 * if there comes a new one during processing, it may return 0. We don't mind, 2307 * because btrfs_commit_super will poke cleaner thread and it will process it a 2308 * few seconds later. 2309 */ 2310 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2311 { 2312 int ret; 2313 struct btrfs_fs_info *fs_info = root->fs_info; 2314 2315 spin_lock(&fs_info->trans_lock); 2316 if (list_empty(&fs_info->dead_roots)) { 2317 spin_unlock(&fs_info->trans_lock); 2318 return 0; 2319 } 2320 root = list_first_entry(&fs_info->dead_roots, 2321 struct btrfs_root, root_list); 2322 list_del_init(&root->root_list); 2323 spin_unlock(&fs_info->trans_lock); 2324 2325 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid); 2326 2327 btrfs_kill_all_delayed_nodes(root); 2328 2329 if (btrfs_header_backref_rev(root->node) < 2330 BTRFS_MIXED_BACKREF_REV) 2331 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2332 else 2333 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2334 2335 return (ret < 0) ? 0 : 1; 2336 } 2337 2338 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2339 { 2340 unsigned long prev; 2341 unsigned long bit; 2342 2343 prev = xchg(&fs_info->pending_changes, 0); 2344 if (!prev) 2345 return; 2346 2347 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2348 if (prev & bit) 2349 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2350 prev &= ~bit; 2351 2352 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2353 if (prev & bit) 2354 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2355 prev &= ~bit; 2356 2357 bit = 1 << BTRFS_PENDING_COMMIT; 2358 if (prev & bit) 2359 btrfs_debug(fs_info, "pending commit done"); 2360 prev &= ~bit; 2361 2362 if (prev) 2363 btrfs_warn(fs_info, 2364 "unknown pending changes left 0x%lx, ignoring", prev); 2365 } 2366