xref: /openbmc/linux/fs/btrfs/transaction.c (revision 0984d159)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			printk(KERN_ERR "pending csums is %llu\n",
69 			       transaction->delayed_refs.pending_csums);
70 		while (!list_empty(&transaction->pending_chunks)) {
71 			struct extent_map *em;
72 
73 			em = list_first_entry(&transaction->pending_chunks,
74 					      struct extent_map, list);
75 			list_del_init(&em->list);
76 			free_extent_map(em);
77 		}
78 		/*
79 		 * If any block groups are found in ->deleted_bgs then it's
80 		 * because the transaction was aborted and a commit did not
81 		 * happen (things failed before writing the new superblock
82 		 * and calling btrfs_finish_extent_commit()), so we can not
83 		 * discard the physical locations of the block groups.
84 		 */
85 		while (!list_empty(&transaction->deleted_bgs)) {
86 			struct btrfs_block_group_cache *cache;
87 
88 			cache = list_first_entry(&transaction->deleted_bgs,
89 						 struct btrfs_block_group_cache,
90 						 bg_list);
91 			list_del_init(&cache->bg_list);
92 			btrfs_put_block_group_trimming(cache);
93 			btrfs_put_block_group(cache);
94 		}
95 		kmem_cache_free(btrfs_transaction_cachep, transaction);
96 	}
97 }
98 
99 static void clear_btree_io_tree(struct extent_io_tree *tree)
100 {
101 	spin_lock(&tree->lock);
102 	/*
103 	 * Do a single barrier for the waitqueue_active check here, the state
104 	 * of the waitqueue should not change once clear_btree_io_tree is
105 	 * called.
106 	 */
107 	smp_mb();
108 	while (!RB_EMPTY_ROOT(&tree->state)) {
109 		struct rb_node *node;
110 		struct extent_state *state;
111 
112 		node = rb_first(&tree->state);
113 		state = rb_entry(node, struct extent_state, rb_node);
114 		rb_erase(&state->rb_node, &tree->state);
115 		RB_CLEAR_NODE(&state->rb_node);
116 		/*
117 		 * btree io trees aren't supposed to have tasks waiting for
118 		 * changes in the flags of extent states ever.
119 		 */
120 		ASSERT(!waitqueue_active(&state->wq));
121 		free_extent_state(state);
122 
123 		cond_resched_lock(&tree->lock);
124 	}
125 	spin_unlock(&tree->lock);
126 }
127 
128 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
129 					 struct btrfs_fs_info *fs_info)
130 {
131 	struct btrfs_root *root, *tmp;
132 
133 	down_write(&fs_info->commit_root_sem);
134 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
135 				 dirty_list) {
136 		list_del_init(&root->dirty_list);
137 		free_extent_buffer(root->commit_root);
138 		root->commit_root = btrfs_root_node(root);
139 		if (is_fstree(root->objectid))
140 			btrfs_unpin_free_ino(root);
141 		clear_btree_io_tree(&root->dirty_log_pages);
142 	}
143 
144 	/* We can free old roots now. */
145 	spin_lock(&trans->dropped_roots_lock);
146 	while (!list_empty(&trans->dropped_roots)) {
147 		root = list_first_entry(&trans->dropped_roots,
148 					struct btrfs_root, root_list);
149 		list_del_init(&root->root_list);
150 		spin_unlock(&trans->dropped_roots_lock);
151 		btrfs_drop_and_free_fs_root(fs_info, root);
152 		spin_lock(&trans->dropped_roots_lock);
153 	}
154 	spin_unlock(&trans->dropped_roots_lock);
155 	up_write(&fs_info->commit_root_sem);
156 }
157 
158 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
159 					 unsigned int type)
160 {
161 	if (type & TRANS_EXTWRITERS)
162 		atomic_inc(&trans->num_extwriters);
163 }
164 
165 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
166 					 unsigned int type)
167 {
168 	if (type & TRANS_EXTWRITERS)
169 		atomic_dec(&trans->num_extwriters);
170 }
171 
172 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
173 					  unsigned int type)
174 {
175 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
176 }
177 
178 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
179 {
180 	return atomic_read(&trans->num_extwriters);
181 }
182 
183 /*
184  * either allocate a new transaction or hop into the existing one
185  */
186 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
187 {
188 	struct btrfs_transaction *cur_trans;
189 	struct btrfs_fs_info *fs_info = root->fs_info;
190 
191 	spin_lock(&fs_info->trans_lock);
192 loop:
193 	/* The file system has been taken offline. No new transactions. */
194 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
195 		spin_unlock(&fs_info->trans_lock);
196 		return -EROFS;
197 	}
198 
199 	cur_trans = fs_info->running_transaction;
200 	if (cur_trans) {
201 		if (cur_trans->aborted) {
202 			spin_unlock(&fs_info->trans_lock);
203 			return cur_trans->aborted;
204 		}
205 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
206 			spin_unlock(&fs_info->trans_lock);
207 			return -EBUSY;
208 		}
209 		atomic_inc(&cur_trans->use_count);
210 		atomic_inc(&cur_trans->num_writers);
211 		extwriter_counter_inc(cur_trans, type);
212 		spin_unlock(&fs_info->trans_lock);
213 		return 0;
214 	}
215 	spin_unlock(&fs_info->trans_lock);
216 
217 	/*
218 	 * If we are ATTACH, we just want to catch the current transaction,
219 	 * and commit it. If there is no transaction, just return ENOENT.
220 	 */
221 	if (type == TRANS_ATTACH)
222 		return -ENOENT;
223 
224 	/*
225 	 * JOIN_NOLOCK only happens during the transaction commit, so
226 	 * it is impossible that ->running_transaction is NULL
227 	 */
228 	BUG_ON(type == TRANS_JOIN_NOLOCK);
229 
230 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
231 	if (!cur_trans)
232 		return -ENOMEM;
233 
234 	spin_lock(&fs_info->trans_lock);
235 	if (fs_info->running_transaction) {
236 		/*
237 		 * someone started a transaction after we unlocked.  Make sure
238 		 * to redo the checks above
239 		 */
240 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
241 		goto loop;
242 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
243 		spin_unlock(&fs_info->trans_lock);
244 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
245 		return -EROFS;
246 	}
247 
248 	atomic_set(&cur_trans->num_writers, 1);
249 	extwriter_counter_init(cur_trans, type);
250 	init_waitqueue_head(&cur_trans->writer_wait);
251 	init_waitqueue_head(&cur_trans->commit_wait);
252 	init_waitqueue_head(&cur_trans->pending_wait);
253 	cur_trans->state = TRANS_STATE_RUNNING;
254 	/*
255 	 * One for this trans handle, one so it will live on until we
256 	 * commit the transaction.
257 	 */
258 	atomic_set(&cur_trans->use_count, 2);
259 	atomic_set(&cur_trans->pending_ordered, 0);
260 	cur_trans->flags = 0;
261 	cur_trans->start_time = get_seconds();
262 
263 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
264 
265 	cur_trans->delayed_refs.href_root = RB_ROOT;
266 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
267 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
268 
269 	/*
270 	 * although the tree mod log is per file system and not per transaction,
271 	 * the log must never go across transaction boundaries.
272 	 */
273 	smp_mb();
274 	if (!list_empty(&fs_info->tree_mod_seq_list))
275 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
276 			"creating a fresh transaction\n");
277 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
278 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
279 			"creating a fresh transaction\n");
280 	atomic64_set(&fs_info->tree_mod_seq, 0);
281 
282 	spin_lock_init(&cur_trans->delayed_refs.lock);
283 
284 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 	INIT_LIST_HEAD(&cur_trans->switch_commits);
287 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 	INIT_LIST_HEAD(&cur_trans->io_bgs);
289 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 	mutex_init(&cur_trans->cache_write_mutex);
291 	cur_trans->num_dirty_bgs = 0;
292 	spin_lock_init(&cur_trans->dirty_bgs_lock);
293 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 	spin_lock_init(&cur_trans->dropped_roots_lock);
295 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 	extent_io_tree_init(&cur_trans->dirty_pages,
297 			     fs_info->btree_inode->i_mapping);
298 	fs_info->generation++;
299 	cur_trans->transid = fs_info->generation;
300 	fs_info->running_transaction = cur_trans;
301 	cur_trans->aborted = 0;
302 	spin_unlock(&fs_info->trans_lock);
303 
304 	return 0;
305 }
306 
307 /*
308  * this does all the record keeping required to make sure that a reference
309  * counted root is properly recorded in a given transaction.  This is required
310  * to make sure the old root from before we joined the transaction is deleted
311  * when the transaction commits
312  */
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 			       struct btrfs_root *root,
315 			       int force)
316 {
317 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
318 	    root->last_trans < trans->transid) || force) {
319 		WARN_ON(root == root->fs_info->extent_root);
320 		WARN_ON(root->commit_root != root->node);
321 
322 		/*
323 		 * see below for IN_TRANS_SETUP usage rules
324 		 * we have the reloc mutex held now, so there
325 		 * is only one writer in this function
326 		 */
327 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
328 
329 		/* make sure readers find IN_TRANS_SETUP before
330 		 * they find our root->last_trans update
331 		 */
332 		smp_wmb();
333 
334 		spin_lock(&root->fs_info->fs_roots_radix_lock);
335 		if (root->last_trans == trans->transid && !force) {
336 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
337 			return 0;
338 		}
339 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
340 			   (unsigned long)root->root_key.objectid,
341 			   BTRFS_ROOT_TRANS_TAG);
342 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
343 		root->last_trans = trans->transid;
344 
345 		/* this is pretty tricky.  We don't want to
346 		 * take the relocation lock in btrfs_record_root_in_trans
347 		 * unless we're really doing the first setup for this root in
348 		 * this transaction.
349 		 *
350 		 * Normally we'd use root->last_trans as a flag to decide
351 		 * if we want to take the expensive mutex.
352 		 *
353 		 * But, we have to set root->last_trans before we
354 		 * init the relocation root, otherwise, we trip over warnings
355 		 * in ctree.c.  The solution used here is to flag ourselves
356 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
357 		 * fixing up the reloc trees and everyone must wait.
358 		 *
359 		 * When this is zero, they can trust root->last_trans and fly
360 		 * through btrfs_record_root_in_trans without having to take the
361 		 * lock.  smp_wmb() makes sure that all the writes above are
362 		 * done before we pop in the zero below
363 		 */
364 		btrfs_init_reloc_root(trans, root);
365 		smp_mb__before_atomic();
366 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
367 	}
368 	return 0;
369 }
370 
371 
372 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
373 			    struct btrfs_root *root)
374 {
375 	struct btrfs_transaction *cur_trans = trans->transaction;
376 
377 	/* Add ourselves to the transaction dropped list */
378 	spin_lock(&cur_trans->dropped_roots_lock);
379 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
380 	spin_unlock(&cur_trans->dropped_roots_lock);
381 
382 	/* Make sure we don't try to update the root at commit time */
383 	spin_lock(&root->fs_info->fs_roots_radix_lock);
384 	radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
385 			     (unsigned long)root->root_key.objectid,
386 			     BTRFS_ROOT_TRANS_TAG);
387 	spin_unlock(&root->fs_info->fs_roots_radix_lock);
388 }
389 
390 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
391 			       struct btrfs_root *root)
392 {
393 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
394 		return 0;
395 
396 	/*
397 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
398 	 * and barriers
399 	 */
400 	smp_rmb();
401 	if (root->last_trans == trans->transid &&
402 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
403 		return 0;
404 
405 	mutex_lock(&root->fs_info->reloc_mutex);
406 	record_root_in_trans(trans, root, 0);
407 	mutex_unlock(&root->fs_info->reloc_mutex);
408 
409 	return 0;
410 }
411 
412 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
413 {
414 	return (trans->state >= TRANS_STATE_BLOCKED &&
415 		trans->state < TRANS_STATE_UNBLOCKED &&
416 		!trans->aborted);
417 }
418 
419 /* wait for commit against the current transaction to become unblocked
420  * when this is done, it is safe to start a new transaction, but the current
421  * transaction might not be fully on disk.
422  */
423 static void wait_current_trans(struct btrfs_root *root)
424 {
425 	struct btrfs_transaction *cur_trans;
426 
427 	spin_lock(&root->fs_info->trans_lock);
428 	cur_trans = root->fs_info->running_transaction;
429 	if (cur_trans && is_transaction_blocked(cur_trans)) {
430 		atomic_inc(&cur_trans->use_count);
431 		spin_unlock(&root->fs_info->trans_lock);
432 
433 		wait_event(root->fs_info->transaction_wait,
434 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
435 			   cur_trans->aborted);
436 		btrfs_put_transaction(cur_trans);
437 	} else {
438 		spin_unlock(&root->fs_info->trans_lock);
439 	}
440 }
441 
442 static int may_wait_transaction(struct btrfs_root *root, int type)
443 {
444 	if (root->fs_info->log_root_recovering)
445 		return 0;
446 
447 	if (type == TRANS_USERSPACE)
448 		return 1;
449 
450 	if (type == TRANS_START &&
451 	    !atomic_read(&root->fs_info->open_ioctl_trans))
452 		return 1;
453 
454 	return 0;
455 }
456 
457 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
458 {
459 	if (!root->fs_info->reloc_ctl ||
460 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
461 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
462 	    root->reloc_root)
463 		return false;
464 
465 	return true;
466 }
467 
468 static struct btrfs_trans_handle *
469 start_transaction(struct btrfs_root *root, unsigned int num_items,
470 		  unsigned int type, enum btrfs_reserve_flush_enum flush)
471 {
472 	struct btrfs_trans_handle *h;
473 	struct btrfs_transaction *cur_trans;
474 	u64 num_bytes = 0;
475 	u64 qgroup_reserved = 0;
476 	bool reloc_reserved = false;
477 	int ret;
478 
479 	/* Send isn't supposed to start transactions. */
480 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
481 
482 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
483 		return ERR_PTR(-EROFS);
484 
485 	if (current->journal_info) {
486 		WARN_ON(type & TRANS_EXTWRITERS);
487 		h = current->journal_info;
488 		h->use_count++;
489 		WARN_ON(h->use_count > 2);
490 		h->orig_rsv = h->block_rsv;
491 		h->block_rsv = NULL;
492 		goto got_it;
493 	}
494 
495 	/*
496 	 * Do the reservation before we join the transaction so we can do all
497 	 * the appropriate flushing if need be.
498 	 */
499 	if (num_items > 0 && root != root->fs_info->chunk_root) {
500 		qgroup_reserved = num_items * root->nodesize;
501 		ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
502 		if (ret)
503 			return ERR_PTR(ret);
504 
505 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
506 		/*
507 		 * Do the reservation for the relocation root creation
508 		 */
509 		if (need_reserve_reloc_root(root)) {
510 			num_bytes += root->nodesize;
511 			reloc_reserved = true;
512 		}
513 
514 		ret = btrfs_block_rsv_add(root,
515 					  &root->fs_info->trans_block_rsv,
516 					  num_bytes, flush);
517 		if (ret)
518 			goto reserve_fail;
519 	}
520 again:
521 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
522 	if (!h) {
523 		ret = -ENOMEM;
524 		goto alloc_fail;
525 	}
526 
527 	/*
528 	 * If we are JOIN_NOLOCK we're already committing a transaction and
529 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
530 	 * because we're already holding a ref.  We need this because we could
531 	 * have raced in and did an fsync() on a file which can kick a commit
532 	 * and then we deadlock with somebody doing a freeze.
533 	 *
534 	 * If we are ATTACH, it means we just want to catch the current
535 	 * transaction and commit it, so we needn't do sb_start_intwrite().
536 	 */
537 	if (type & __TRANS_FREEZABLE)
538 		sb_start_intwrite(root->fs_info->sb);
539 
540 	if (may_wait_transaction(root, type))
541 		wait_current_trans(root);
542 
543 	do {
544 		ret = join_transaction(root, type);
545 		if (ret == -EBUSY) {
546 			wait_current_trans(root);
547 			if (unlikely(type == TRANS_ATTACH))
548 				ret = -ENOENT;
549 		}
550 	} while (ret == -EBUSY);
551 
552 	if (ret < 0) {
553 		/* We must get the transaction if we are JOIN_NOLOCK. */
554 		BUG_ON(type == TRANS_JOIN_NOLOCK);
555 		goto join_fail;
556 	}
557 
558 	cur_trans = root->fs_info->running_transaction;
559 
560 	h->transid = cur_trans->transid;
561 	h->transaction = cur_trans;
562 	h->root = root;
563 	h->use_count = 1;
564 
565 	h->type = type;
566 	h->can_flush_pending_bgs = true;
567 	INIT_LIST_HEAD(&h->qgroup_ref_list);
568 	INIT_LIST_HEAD(&h->new_bgs);
569 
570 	smp_mb();
571 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
572 	    may_wait_transaction(root, type)) {
573 		current->journal_info = h;
574 		btrfs_commit_transaction(h, root);
575 		goto again;
576 	}
577 
578 	if (num_bytes) {
579 		trace_btrfs_space_reservation(root->fs_info, "transaction",
580 					      h->transid, num_bytes, 1);
581 		h->block_rsv = &root->fs_info->trans_block_rsv;
582 		h->bytes_reserved = num_bytes;
583 		h->reloc_reserved = reloc_reserved;
584 	}
585 
586 got_it:
587 	btrfs_record_root_in_trans(h, root);
588 
589 	if (!current->journal_info && type != TRANS_USERSPACE)
590 		current->journal_info = h;
591 	return h;
592 
593 join_fail:
594 	if (type & __TRANS_FREEZABLE)
595 		sb_end_intwrite(root->fs_info->sb);
596 	kmem_cache_free(btrfs_trans_handle_cachep, h);
597 alloc_fail:
598 	if (num_bytes)
599 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
600 					num_bytes);
601 reserve_fail:
602 	btrfs_qgroup_free_meta(root, qgroup_reserved);
603 	return ERR_PTR(ret);
604 }
605 
606 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
607 						   unsigned int num_items)
608 {
609 	return start_transaction(root, num_items, TRANS_START,
610 				 BTRFS_RESERVE_FLUSH_ALL);
611 }
612 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
613 					struct btrfs_root *root,
614 					unsigned int num_items,
615 					int min_factor)
616 {
617 	struct btrfs_trans_handle *trans;
618 	u64 num_bytes;
619 	int ret;
620 
621 	trans = btrfs_start_transaction(root, num_items);
622 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
623 		return trans;
624 
625 	trans = btrfs_start_transaction(root, 0);
626 	if (IS_ERR(trans))
627 		return trans;
628 
629 	num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
630 	ret = btrfs_cond_migrate_bytes(root->fs_info,
631 				       &root->fs_info->trans_block_rsv,
632 				       num_bytes,
633 				       min_factor);
634 	if (ret) {
635 		btrfs_end_transaction(trans, root);
636 		return ERR_PTR(ret);
637 	}
638 
639 	trans->block_rsv = &root->fs_info->trans_block_rsv;
640 	trans->bytes_reserved = num_bytes;
641 	trace_btrfs_space_reservation(root->fs_info, "transaction",
642 				      trans->transid, num_bytes, 1);
643 
644 	return trans;
645 }
646 
647 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
648 					struct btrfs_root *root,
649 					unsigned int num_items)
650 {
651 	return start_transaction(root, num_items, TRANS_START,
652 				 BTRFS_RESERVE_FLUSH_LIMIT);
653 }
654 
655 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
656 {
657 	return start_transaction(root, 0, TRANS_JOIN,
658 				 BTRFS_RESERVE_NO_FLUSH);
659 }
660 
661 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
662 {
663 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
664 				 BTRFS_RESERVE_NO_FLUSH);
665 }
666 
667 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
668 {
669 	return start_transaction(root, 0, TRANS_USERSPACE,
670 				 BTRFS_RESERVE_NO_FLUSH);
671 }
672 
673 /*
674  * btrfs_attach_transaction() - catch the running transaction
675  *
676  * It is used when we want to commit the current the transaction, but
677  * don't want to start a new one.
678  *
679  * Note: If this function return -ENOENT, it just means there is no
680  * running transaction. But it is possible that the inactive transaction
681  * is still in the memory, not fully on disk. If you hope there is no
682  * inactive transaction in the fs when -ENOENT is returned, you should
683  * invoke
684  *     btrfs_attach_transaction_barrier()
685  */
686 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
687 {
688 	return start_transaction(root, 0, TRANS_ATTACH,
689 				 BTRFS_RESERVE_NO_FLUSH);
690 }
691 
692 /*
693  * btrfs_attach_transaction_barrier() - catch the running transaction
694  *
695  * It is similar to the above function, the differentia is this one
696  * will wait for all the inactive transactions until they fully
697  * complete.
698  */
699 struct btrfs_trans_handle *
700 btrfs_attach_transaction_barrier(struct btrfs_root *root)
701 {
702 	struct btrfs_trans_handle *trans;
703 
704 	trans = start_transaction(root, 0, TRANS_ATTACH,
705 				  BTRFS_RESERVE_NO_FLUSH);
706 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
707 		btrfs_wait_for_commit(root, 0);
708 
709 	return trans;
710 }
711 
712 /* wait for a transaction commit to be fully complete */
713 static noinline void wait_for_commit(struct btrfs_root *root,
714 				    struct btrfs_transaction *commit)
715 {
716 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
717 }
718 
719 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
720 {
721 	struct btrfs_transaction *cur_trans = NULL, *t;
722 	int ret = 0;
723 
724 	if (transid) {
725 		if (transid <= root->fs_info->last_trans_committed)
726 			goto out;
727 
728 		/* find specified transaction */
729 		spin_lock(&root->fs_info->trans_lock);
730 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
731 			if (t->transid == transid) {
732 				cur_trans = t;
733 				atomic_inc(&cur_trans->use_count);
734 				ret = 0;
735 				break;
736 			}
737 			if (t->transid > transid) {
738 				ret = 0;
739 				break;
740 			}
741 		}
742 		spin_unlock(&root->fs_info->trans_lock);
743 
744 		/*
745 		 * The specified transaction doesn't exist, or we
746 		 * raced with btrfs_commit_transaction
747 		 */
748 		if (!cur_trans) {
749 			if (transid > root->fs_info->last_trans_committed)
750 				ret = -EINVAL;
751 			goto out;
752 		}
753 	} else {
754 		/* find newest transaction that is committing | committed */
755 		spin_lock(&root->fs_info->trans_lock);
756 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
757 					    list) {
758 			if (t->state >= TRANS_STATE_COMMIT_START) {
759 				if (t->state == TRANS_STATE_COMPLETED)
760 					break;
761 				cur_trans = t;
762 				atomic_inc(&cur_trans->use_count);
763 				break;
764 			}
765 		}
766 		spin_unlock(&root->fs_info->trans_lock);
767 		if (!cur_trans)
768 			goto out;  /* nothing committing|committed */
769 	}
770 
771 	wait_for_commit(root, cur_trans);
772 	btrfs_put_transaction(cur_trans);
773 out:
774 	return ret;
775 }
776 
777 void btrfs_throttle(struct btrfs_root *root)
778 {
779 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
780 		wait_current_trans(root);
781 }
782 
783 static int should_end_transaction(struct btrfs_trans_handle *trans,
784 				  struct btrfs_root *root)
785 {
786 	if (root->fs_info->global_block_rsv.space_info->full &&
787 	    btrfs_check_space_for_delayed_refs(trans, root))
788 		return 1;
789 
790 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
791 }
792 
793 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
794 				 struct btrfs_root *root)
795 {
796 	struct btrfs_transaction *cur_trans = trans->transaction;
797 	int updates;
798 	int err;
799 
800 	smp_mb();
801 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
802 	    cur_trans->delayed_refs.flushing)
803 		return 1;
804 
805 	updates = trans->delayed_ref_updates;
806 	trans->delayed_ref_updates = 0;
807 	if (updates) {
808 		err = btrfs_run_delayed_refs(trans, root, updates * 2);
809 		if (err) /* Error code will also eval true */
810 			return err;
811 	}
812 
813 	return should_end_transaction(trans, root);
814 }
815 
816 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
817 			  struct btrfs_root *root, int throttle)
818 {
819 	struct btrfs_transaction *cur_trans = trans->transaction;
820 	struct btrfs_fs_info *info = root->fs_info;
821 	u64 transid = trans->transid;
822 	unsigned long cur = trans->delayed_ref_updates;
823 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
824 	int err = 0;
825 	int must_run_delayed_refs = 0;
826 
827 	if (trans->use_count > 1) {
828 		trans->use_count--;
829 		trans->block_rsv = trans->orig_rsv;
830 		return 0;
831 	}
832 
833 	btrfs_trans_release_metadata(trans, root);
834 	trans->block_rsv = NULL;
835 
836 	if (!list_empty(&trans->new_bgs))
837 		btrfs_create_pending_block_groups(trans, root);
838 
839 	trans->delayed_ref_updates = 0;
840 	if (!trans->sync) {
841 		must_run_delayed_refs =
842 			btrfs_should_throttle_delayed_refs(trans, root);
843 		cur = max_t(unsigned long, cur, 32);
844 
845 		/*
846 		 * don't make the caller wait if they are from a NOLOCK
847 		 * or ATTACH transaction, it will deadlock with commit
848 		 */
849 		if (must_run_delayed_refs == 1 &&
850 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
851 			must_run_delayed_refs = 2;
852 	}
853 
854 	btrfs_trans_release_metadata(trans, root);
855 	trans->block_rsv = NULL;
856 
857 	if (!list_empty(&trans->new_bgs))
858 		btrfs_create_pending_block_groups(trans, root);
859 
860 	btrfs_trans_release_chunk_metadata(trans);
861 
862 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
863 	    should_end_transaction(trans, root) &&
864 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
865 		spin_lock(&info->trans_lock);
866 		if (cur_trans->state == TRANS_STATE_RUNNING)
867 			cur_trans->state = TRANS_STATE_BLOCKED;
868 		spin_unlock(&info->trans_lock);
869 	}
870 
871 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
872 		if (throttle)
873 			return btrfs_commit_transaction(trans, root);
874 		else
875 			wake_up_process(info->transaction_kthread);
876 	}
877 
878 	if (trans->type & __TRANS_FREEZABLE)
879 		sb_end_intwrite(root->fs_info->sb);
880 
881 	WARN_ON(cur_trans != info->running_transaction);
882 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
883 	atomic_dec(&cur_trans->num_writers);
884 	extwriter_counter_dec(cur_trans, trans->type);
885 
886 	/*
887 	 * Make sure counter is updated before we wake up waiters.
888 	 */
889 	smp_mb();
890 	if (waitqueue_active(&cur_trans->writer_wait))
891 		wake_up(&cur_trans->writer_wait);
892 	btrfs_put_transaction(cur_trans);
893 
894 	if (current->journal_info == trans)
895 		current->journal_info = NULL;
896 
897 	if (throttle)
898 		btrfs_run_delayed_iputs(root);
899 
900 	if (trans->aborted ||
901 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
902 		wake_up_process(info->transaction_kthread);
903 		err = -EIO;
904 	}
905 	assert_qgroups_uptodate(trans);
906 
907 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
908 	if (must_run_delayed_refs) {
909 		btrfs_async_run_delayed_refs(root, cur, transid,
910 					     must_run_delayed_refs == 1);
911 	}
912 	return err;
913 }
914 
915 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
916 			  struct btrfs_root *root)
917 {
918 	return __btrfs_end_transaction(trans, root, 0);
919 }
920 
921 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
922 				   struct btrfs_root *root)
923 {
924 	return __btrfs_end_transaction(trans, root, 1);
925 }
926 
927 /*
928  * when btree blocks are allocated, they have some corresponding bits set for
929  * them in one of two extent_io trees.  This is used to make sure all of
930  * those extents are sent to disk but does not wait on them
931  */
932 int btrfs_write_marked_extents(struct btrfs_root *root,
933 			       struct extent_io_tree *dirty_pages, int mark)
934 {
935 	int err = 0;
936 	int werr = 0;
937 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
938 	struct extent_state *cached_state = NULL;
939 	u64 start = 0;
940 	u64 end;
941 
942 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
943 				      mark, &cached_state)) {
944 		bool wait_writeback = false;
945 
946 		err = convert_extent_bit(dirty_pages, start, end,
947 					 EXTENT_NEED_WAIT,
948 					 mark, &cached_state);
949 		/*
950 		 * convert_extent_bit can return -ENOMEM, which is most of the
951 		 * time a temporary error. So when it happens, ignore the error
952 		 * and wait for writeback of this range to finish - because we
953 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
954 		 * to btrfs_wait_marked_extents() would not know that writeback
955 		 * for this range started and therefore wouldn't wait for it to
956 		 * finish - we don't want to commit a superblock that points to
957 		 * btree nodes/leafs for which writeback hasn't finished yet
958 		 * (and without errors).
959 		 * We cleanup any entries left in the io tree when committing
960 		 * the transaction (through clear_btree_io_tree()).
961 		 */
962 		if (err == -ENOMEM) {
963 			err = 0;
964 			wait_writeback = true;
965 		}
966 		if (!err)
967 			err = filemap_fdatawrite_range(mapping, start, end);
968 		if (err)
969 			werr = err;
970 		else if (wait_writeback)
971 			werr = filemap_fdatawait_range(mapping, start, end);
972 		free_extent_state(cached_state);
973 		cached_state = NULL;
974 		cond_resched();
975 		start = end + 1;
976 	}
977 	return werr;
978 }
979 
980 /*
981  * when btree blocks are allocated, they have some corresponding bits set for
982  * them in one of two extent_io trees.  This is used to make sure all of
983  * those extents are on disk for transaction or log commit.  We wait
984  * on all the pages and clear them from the dirty pages state tree
985  */
986 int btrfs_wait_marked_extents(struct btrfs_root *root,
987 			      struct extent_io_tree *dirty_pages, int mark)
988 {
989 	int err = 0;
990 	int werr = 0;
991 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
992 	struct extent_state *cached_state = NULL;
993 	u64 start = 0;
994 	u64 end;
995 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
996 	bool errors = false;
997 
998 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
999 				      EXTENT_NEED_WAIT, &cached_state)) {
1000 		/*
1001 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1002 		 * When committing the transaction, we'll remove any entries
1003 		 * left in the io tree. For a log commit, we don't remove them
1004 		 * after committing the log because the tree can be accessed
1005 		 * concurrently - we do it only at transaction commit time when
1006 		 * it's safe to do it (through clear_btree_io_tree()).
1007 		 */
1008 		err = clear_extent_bit(dirty_pages, start, end,
1009 				       EXTENT_NEED_WAIT,
1010 				       0, 0, &cached_state, GFP_NOFS);
1011 		if (err == -ENOMEM)
1012 			err = 0;
1013 		if (!err)
1014 			err = filemap_fdatawait_range(mapping, start, end);
1015 		if (err)
1016 			werr = err;
1017 		free_extent_state(cached_state);
1018 		cached_state = NULL;
1019 		cond_resched();
1020 		start = end + 1;
1021 	}
1022 	if (err)
1023 		werr = err;
1024 
1025 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1026 		if ((mark & EXTENT_DIRTY) &&
1027 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1028 				       &btree_ino->runtime_flags))
1029 			errors = true;
1030 
1031 		if ((mark & EXTENT_NEW) &&
1032 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1033 				       &btree_ino->runtime_flags))
1034 			errors = true;
1035 	} else {
1036 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1037 				       &btree_ino->runtime_flags))
1038 			errors = true;
1039 	}
1040 
1041 	if (errors && !werr)
1042 		werr = -EIO;
1043 
1044 	return werr;
1045 }
1046 
1047 /*
1048  * when btree blocks are allocated, they have some corresponding bits set for
1049  * them in one of two extent_io trees.  This is used to make sure all of
1050  * those extents are on disk for transaction or log commit
1051  */
1052 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1053 				struct extent_io_tree *dirty_pages, int mark)
1054 {
1055 	int ret;
1056 	int ret2;
1057 	struct blk_plug plug;
1058 
1059 	blk_start_plug(&plug);
1060 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1061 	blk_finish_plug(&plug);
1062 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1063 
1064 	if (ret)
1065 		return ret;
1066 	if (ret2)
1067 		return ret2;
1068 	return 0;
1069 }
1070 
1071 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1072 				     struct btrfs_root *root)
1073 {
1074 	int ret;
1075 
1076 	ret = btrfs_write_and_wait_marked_extents(root,
1077 					   &trans->transaction->dirty_pages,
1078 					   EXTENT_DIRTY);
1079 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1080 
1081 	return ret;
1082 }
1083 
1084 /*
1085  * this is used to update the root pointer in the tree of tree roots.
1086  *
1087  * But, in the case of the extent allocation tree, updating the root
1088  * pointer may allocate blocks which may change the root of the extent
1089  * allocation tree.
1090  *
1091  * So, this loops and repeats and makes sure the cowonly root didn't
1092  * change while the root pointer was being updated in the metadata.
1093  */
1094 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1095 			       struct btrfs_root *root)
1096 {
1097 	int ret;
1098 	u64 old_root_bytenr;
1099 	u64 old_root_used;
1100 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1101 
1102 	old_root_used = btrfs_root_used(&root->root_item);
1103 
1104 	while (1) {
1105 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1106 		if (old_root_bytenr == root->node->start &&
1107 		    old_root_used == btrfs_root_used(&root->root_item))
1108 			break;
1109 
1110 		btrfs_set_root_node(&root->root_item, root->node);
1111 		ret = btrfs_update_root(trans, tree_root,
1112 					&root->root_key,
1113 					&root->root_item);
1114 		if (ret)
1115 			return ret;
1116 
1117 		old_root_used = btrfs_root_used(&root->root_item);
1118 	}
1119 
1120 	return 0;
1121 }
1122 
1123 /*
1124  * update all the cowonly tree roots on disk
1125  *
1126  * The error handling in this function may not be obvious. Any of the
1127  * failures will cause the file system to go offline. We still need
1128  * to clean up the delayed refs.
1129  */
1130 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1131 					 struct btrfs_root *root)
1132 {
1133 	struct btrfs_fs_info *fs_info = root->fs_info;
1134 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1135 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1136 	struct list_head *next;
1137 	struct extent_buffer *eb;
1138 	int ret;
1139 
1140 	eb = btrfs_lock_root_node(fs_info->tree_root);
1141 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1142 			      0, &eb);
1143 	btrfs_tree_unlock(eb);
1144 	free_extent_buffer(eb);
1145 
1146 	if (ret)
1147 		return ret;
1148 
1149 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1150 	if (ret)
1151 		return ret;
1152 
1153 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1154 	if (ret)
1155 		return ret;
1156 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1157 	if (ret)
1158 		return ret;
1159 	ret = btrfs_run_qgroups(trans, root->fs_info);
1160 	if (ret)
1161 		return ret;
1162 
1163 	ret = btrfs_setup_space_cache(trans, root);
1164 	if (ret)
1165 		return ret;
1166 
1167 	/* run_qgroups might have added some more refs */
1168 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1169 	if (ret)
1170 		return ret;
1171 again:
1172 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1173 		next = fs_info->dirty_cowonly_roots.next;
1174 		list_del_init(next);
1175 		root = list_entry(next, struct btrfs_root, dirty_list);
1176 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1177 
1178 		if (root != fs_info->extent_root)
1179 			list_add_tail(&root->dirty_list,
1180 				      &trans->transaction->switch_commits);
1181 		ret = update_cowonly_root(trans, root);
1182 		if (ret)
1183 			return ret;
1184 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1185 		if (ret)
1186 			return ret;
1187 	}
1188 
1189 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1190 		ret = btrfs_write_dirty_block_groups(trans, root);
1191 		if (ret)
1192 			return ret;
1193 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1194 		if (ret)
1195 			return ret;
1196 	}
1197 
1198 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1199 		goto again;
1200 
1201 	list_add_tail(&fs_info->extent_root->dirty_list,
1202 		      &trans->transaction->switch_commits);
1203 	btrfs_after_dev_replace_commit(fs_info);
1204 
1205 	return 0;
1206 }
1207 
1208 /*
1209  * dead roots are old snapshots that need to be deleted.  This allocates
1210  * a dirty root struct and adds it into the list of dead roots that need to
1211  * be deleted
1212  */
1213 void btrfs_add_dead_root(struct btrfs_root *root)
1214 {
1215 	spin_lock(&root->fs_info->trans_lock);
1216 	if (list_empty(&root->root_list))
1217 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1218 	spin_unlock(&root->fs_info->trans_lock);
1219 }
1220 
1221 /*
1222  * update all the cowonly tree roots on disk
1223  */
1224 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1225 				    struct btrfs_root *root)
1226 {
1227 	struct btrfs_root *gang[8];
1228 	struct btrfs_fs_info *fs_info = root->fs_info;
1229 	int i;
1230 	int ret;
1231 	int err = 0;
1232 
1233 	spin_lock(&fs_info->fs_roots_radix_lock);
1234 	while (1) {
1235 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1236 						 (void **)gang, 0,
1237 						 ARRAY_SIZE(gang),
1238 						 BTRFS_ROOT_TRANS_TAG);
1239 		if (ret == 0)
1240 			break;
1241 		for (i = 0; i < ret; i++) {
1242 			root = gang[i];
1243 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1244 					(unsigned long)root->root_key.objectid,
1245 					BTRFS_ROOT_TRANS_TAG);
1246 			spin_unlock(&fs_info->fs_roots_radix_lock);
1247 
1248 			btrfs_free_log(trans, root);
1249 			btrfs_update_reloc_root(trans, root);
1250 			btrfs_orphan_commit_root(trans, root);
1251 
1252 			btrfs_save_ino_cache(root, trans);
1253 
1254 			/* see comments in should_cow_block() */
1255 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1256 			smp_mb__after_atomic();
1257 
1258 			if (root->commit_root != root->node) {
1259 				list_add_tail(&root->dirty_list,
1260 					&trans->transaction->switch_commits);
1261 				btrfs_set_root_node(&root->root_item,
1262 						    root->node);
1263 			}
1264 
1265 			err = btrfs_update_root(trans, fs_info->tree_root,
1266 						&root->root_key,
1267 						&root->root_item);
1268 			spin_lock(&fs_info->fs_roots_radix_lock);
1269 			if (err)
1270 				break;
1271 			btrfs_qgroup_free_meta_all(root);
1272 		}
1273 	}
1274 	spin_unlock(&fs_info->fs_roots_radix_lock);
1275 	return err;
1276 }
1277 
1278 /*
1279  * defrag a given btree.
1280  * Every leaf in the btree is read and defragged.
1281  */
1282 int btrfs_defrag_root(struct btrfs_root *root)
1283 {
1284 	struct btrfs_fs_info *info = root->fs_info;
1285 	struct btrfs_trans_handle *trans;
1286 	int ret;
1287 
1288 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1289 		return 0;
1290 
1291 	while (1) {
1292 		trans = btrfs_start_transaction(root, 0);
1293 		if (IS_ERR(trans))
1294 			return PTR_ERR(trans);
1295 
1296 		ret = btrfs_defrag_leaves(trans, root);
1297 
1298 		btrfs_end_transaction(trans, root);
1299 		btrfs_btree_balance_dirty(info->tree_root);
1300 		cond_resched();
1301 
1302 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1303 			break;
1304 
1305 		if (btrfs_defrag_cancelled(root->fs_info)) {
1306 			pr_debug("BTRFS: defrag_root cancelled\n");
1307 			ret = -EAGAIN;
1308 			break;
1309 		}
1310 	}
1311 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1312 	return ret;
1313 }
1314 
1315 /*
1316  * Do all special snapshot related qgroup dirty hack.
1317  *
1318  * Will do all needed qgroup inherit and dirty hack like switch commit
1319  * roots inside one transaction and write all btree into disk, to make
1320  * qgroup works.
1321  */
1322 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1323 				   struct btrfs_root *src,
1324 				   struct btrfs_root *parent,
1325 				   struct btrfs_qgroup_inherit *inherit,
1326 				   u64 dst_objectid)
1327 {
1328 	struct btrfs_fs_info *fs_info = src->fs_info;
1329 	int ret;
1330 
1331 	/*
1332 	 * Save some performance in the case that qgroups are not
1333 	 * enabled. If this check races with the ioctl, rescan will
1334 	 * kick in anyway.
1335 	 */
1336 	mutex_lock(&fs_info->qgroup_ioctl_lock);
1337 	if (!fs_info->quota_enabled) {
1338 		mutex_unlock(&fs_info->qgroup_ioctl_lock);
1339 		return 0;
1340 	}
1341 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
1342 
1343 	/*
1344 	 * We are going to commit transaction, see btrfs_commit_transaction()
1345 	 * comment for reason locking tree_log_mutex
1346 	 */
1347 	mutex_lock(&fs_info->tree_log_mutex);
1348 
1349 	ret = commit_fs_roots(trans, src);
1350 	if (ret)
1351 		goto out;
1352 	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1353 	if (ret < 0)
1354 		goto out;
1355 	ret = btrfs_qgroup_account_extents(trans, fs_info);
1356 	if (ret < 0)
1357 		goto out;
1358 
1359 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1360 	ret = btrfs_qgroup_inherit(trans, fs_info,
1361 				   src->root_key.objectid, dst_objectid,
1362 				   inherit);
1363 	if (ret < 0)
1364 		goto out;
1365 
1366 	/*
1367 	 * Now we do a simplified commit transaction, which will:
1368 	 * 1) commit all subvolume and extent tree
1369 	 *    To ensure all subvolume and extent tree have a valid
1370 	 *    commit_root to accounting later insert_dir_item()
1371 	 * 2) write all btree blocks onto disk
1372 	 *    This is to make sure later btree modification will be cowed
1373 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1374 	 * In this simplified commit, we don't really care about other trees
1375 	 * like chunk and root tree, as they won't affect qgroup.
1376 	 * And we don't write super to avoid half committed status.
1377 	 */
1378 	ret = commit_cowonly_roots(trans, src);
1379 	if (ret)
1380 		goto out;
1381 	switch_commit_roots(trans->transaction, fs_info);
1382 	ret = btrfs_write_and_wait_transaction(trans, src);
1383 	if (ret)
1384 		btrfs_handle_fs_error(fs_info, ret,
1385 			"Error while writing out transaction for qgroup");
1386 
1387 out:
1388 	mutex_unlock(&fs_info->tree_log_mutex);
1389 
1390 	/*
1391 	 * Force parent root to be updated, as we recorded it before so its
1392 	 * last_trans == cur_transid.
1393 	 * Or it won't be committed again onto disk after later
1394 	 * insert_dir_item()
1395 	 */
1396 	if (!ret)
1397 		record_root_in_trans(trans, parent, 1);
1398 	return ret;
1399 }
1400 
1401 /*
1402  * new snapshots need to be created at a very specific time in the
1403  * transaction commit.  This does the actual creation.
1404  *
1405  * Note:
1406  * If the error which may affect the commitment of the current transaction
1407  * happens, we should return the error number. If the error which just affect
1408  * the creation of the pending snapshots, just return 0.
1409  */
1410 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1411 				   struct btrfs_fs_info *fs_info,
1412 				   struct btrfs_pending_snapshot *pending)
1413 {
1414 	struct btrfs_key key;
1415 	struct btrfs_root_item *new_root_item;
1416 	struct btrfs_root *tree_root = fs_info->tree_root;
1417 	struct btrfs_root *root = pending->root;
1418 	struct btrfs_root *parent_root;
1419 	struct btrfs_block_rsv *rsv;
1420 	struct inode *parent_inode;
1421 	struct btrfs_path *path;
1422 	struct btrfs_dir_item *dir_item;
1423 	struct dentry *dentry;
1424 	struct extent_buffer *tmp;
1425 	struct extent_buffer *old;
1426 	struct timespec cur_time;
1427 	int ret = 0;
1428 	u64 to_reserve = 0;
1429 	u64 index = 0;
1430 	u64 objectid;
1431 	u64 root_flags;
1432 	uuid_le new_uuid;
1433 
1434 	ASSERT(pending->path);
1435 	path = pending->path;
1436 
1437 	ASSERT(pending->root_item);
1438 	new_root_item = pending->root_item;
1439 
1440 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1441 	if (pending->error)
1442 		goto no_free_objectid;
1443 
1444 	/*
1445 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1446 	 * accounted by later btrfs_qgroup_inherit().
1447 	 */
1448 	btrfs_set_skip_qgroup(trans, objectid);
1449 
1450 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1451 
1452 	if (to_reserve > 0) {
1453 		pending->error = btrfs_block_rsv_add(root,
1454 						     &pending->block_rsv,
1455 						     to_reserve,
1456 						     BTRFS_RESERVE_NO_FLUSH);
1457 		if (pending->error)
1458 			goto clear_skip_qgroup;
1459 	}
1460 
1461 	key.objectid = objectid;
1462 	key.offset = (u64)-1;
1463 	key.type = BTRFS_ROOT_ITEM_KEY;
1464 
1465 	rsv = trans->block_rsv;
1466 	trans->block_rsv = &pending->block_rsv;
1467 	trans->bytes_reserved = trans->block_rsv->reserved;
1468 	trace_btrfs_space_reservation(root->fs_info, "transaction",
1469 				      trans->transid,
1470 				      trans->bytes_reserved, 1);
1471 	dentry = pending->dentry;
1472 	parent_inode = pending->dir;
1473 	parent_root = BTRFS_I(parent_inode)->root;
1474 	record_root_in_trans(trans, parent_root, 0);
1475 
1476 	cur_time = current_fs_time(parent_inode->i_sb);
1477 
1478 	/*
1479 	 * insert the directory item
1480 	 */
1481 	ret = btrfs_set_inode_index(parent_inode, &index);
1482 	BUG_ON(ret); /* -ENOMEM */
1483 
1484 	/* check if there is a file/dir which has the same name. */
1485 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1486 					 btrfs_ino(parent_inode),
1487 					 dentry->d_name.name,
1488 					 dentry->d_name.len, 0);
1489 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1490 		pending->error = -EEXIST;
1491 		goto dir_item_existed;
1492 	} else if (IS_ERR(dir_item)) {
1493 		ret = PTR_ERR(dir_item);
1494 		btrfs_abort_transaction(trans, root, ret);
1495 		goto fail;
1496 	}
1497 	btrfs_release_path(path);
1498 
1499 	/*
1500 	 * pull in the delayed directory update
1501 	 * and the delayed inode item
1502 	 * otherwise we corrupt the FS during
1503 	 * snapshot
1504 	 */
1505 	ret = btrfs_run_delayed_items(trans, root);
1506 	if (ret) {	/* Transaction aborted */
1507 		btrfs_abort_transaction(trans, root, ret);
1508 		goto fail;
1509 	}
1510 
1511 	record_root_in_trans(trans, root, 0);
1512 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1513 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1514 	btrfs_check_and_init_root_item(new_root_item);
1515 
1516 	root_flags = btrfs_root_flags(new_root_item);
1517 	if (pending->readonly)
1518 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1519 	else
1520 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1521 	btrfs_set_root_flags(new_root_item, root_flags);
1522 
1523 	btrfs_set_root_generation_v2(new_root_item,
1524 			trans->transid);
1525 	uuid_le_gen(&new_uuid);
1526 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1527 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1528 			BTRFS_UUID_SIZE);
1529 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1530 		memset(new_root_item->received_uuid, 0,
1531 		       sizeof(new_root_item->received_uuid));
1532 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1533 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1534 		btrfs_set_root_stransid(new_root_item, 0);
1535 		btrfs_set_root_rtransid(new_root_item, 0);
1536 	}
1537 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1538 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1539 	btrfs_set_root_otransid(new_root_item, trans->transid);
1540 
1541 	old = btrfs_lock_root_node(root);
1542 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1543 	if (ret) {
1544 		btrfs_tree_unlock(old);
1545 		free_extent_buffer(old);
1546 		btrfs_abort_transaction(trans, root, ret);
1547 		goto fail;
1548 	}
1549 
1550 	btrfs_set_lock_blocking(old);
1551 
1552 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1553 	/* clean up in any case */
1554 	btrfs_tree_unlock(old);
1555 	free_extent_buffer(old);
1556 	if (ret) {
1557 		btrfs_abort_transaction(trans, root, ret);
1558 		goto fail;
1559 	}
1560 	/* see comments in should_cow_block() */
1561 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1562 	smp_wmb();
1563 
1564 	btrfs_set_root_node(new_root_item, tmp);
1565 	/* record when the snapshot was created in key.offset */
1566 	key.offset = trans->transid;
1567 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1568 	btrfs_tree_unlock(tmp);
1569 	free_extent_buffer(tmp);
1570 	if (ret) {
1571 		btrfs_abort_transaction(trans, root, ret);
1572 		goto fail;
1573 	}
1574 
1575 	/*
1576 	 * insert root back/forward references
1577 	 */
1578 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1579 				 parent_root->root_key.objectid,
1580 				 btrfs_ino(parent_inode), index,
1581 				 dentry->d_name.name, dentry->d_name.len);
1582 	if (ret) {
1583 		btrfs_abort_transaction(trans, root, ret);
1584 		goto fail;
1585 	}
1586 
1587 	key.offset = (u64)-1;
1588 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1589 	if (IS_ERR(pending->snap)) {
1590 		ret = PTR_ERR(pending->snap);
1591 		btrfs_abort_transaction(trans, root, ret);
1592 		goto fail;
1593 	}
1594 
1595 	ret = btrfs_reloc_post_snapshot(trans, pending);
1596 	if (ret) {
1597 		btrfs_abort_transaction(trans, root, ret);
1598 		goto fail;
1599 	}
1600 
1601 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1602 	if (ret) {
1603 		btrfs_abort_transaction(trans, root, ret);
1604 		goto fail;
1605 	}
1606 
1607 	/*
1608 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1609 	 * snapshot hack to do fast snapshot.
1610 	 * To co-operate with that hack, we do hack again.
1611 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1612 	 */
1613 	ret = qgroup_account_snapshot(trans, root, parent_root,
1614 				      pending->inherit, objectid);
1615 	if (ret < 0)
1616 		goto fail;
1617 
1618 	ret = btrfs_insert_dir_item(trans, parent_root,
1619 				    dentry->d_name.name, dentry->d_name.len,
1620 				    parent_inode, &key,
1621 				    BTRFS_FT_DIR, index);
1622 	/* We have check then name at the beginning, so it is impossible. */
1623 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1624 	if (ret) {
1625 		btrfs_abort_transaction(trans, root, ret);
1626 		goto fail;
1627 	}
1628 
1629 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1630 					 dentry->d_name.len * 2);
1631 	parent_inode->i_mtime = parent_inode->i_ctime =
1632 		current_fs_time(parent_inode->i_sb);
1633 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1634 	if (ret) {
1635 		btrfs_abort_transaction(trans, root, ret);
1636 		goto fail;
1637 	}
1638 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1639 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1640 	if (ret) {
1641 		btrfs_abort_transaction(trans, root, ret);
1642 		goto fail;
1643 	}
1644 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1645 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1646 					  new_root_item->received_uuid,
1647 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1648 					  objectid);
1649 		if (ret && ret != -EEXIST) {
1650 			btrfs_abort_transaction(trans, root, ret);
1651 			goto fail;
1652 		}
1653 	}
1654 
1655 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1656 	if (ret) {
1657 		btrfs_abort_transaction(trans, root, ret);
1658 		goto fail;
1659 	}
1660 
1661 fail:
1662 	pending->error = ret;
1663 dir_item_existed:
1664 	trans->block_rsv = rsv;
1665 	trans->bytes_reserved = 0;
1666 clear_skip_qgroup:
1667 	btrfs_clear_skip_qgroup(trans);
1668 no_free_objectid:
1669 	kfree(new_root_item);
1670 	pending->root_item = NULL;
1671 	btrfs_free_path(path);
1672 	pending->path = NULL;
1673 
1674 	return ret;
1675 }
1676 
1677 /*
1678  * create all the snapshots we've scheduled for creation
1679  */
1680 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1681 					     struct btrfs_fs_info *fs_info)
1682 {
1683 	struct btrfs_pending_snapshot *pending, *next;
1684 	struct list_head *head = &trans->transaction->pending_snapshots;
1685 	int ret = 0;
1686 
1687 	list_for_each_entry_safe(pending, next, head, list) {
1688 		list_del(&pending->list);
1689 		ret = create_pending_snapshot(trans, fs_info, pending);
1690 		if (ret)
1691 			break;
1692 	}
1693 	return ret;
1694 }
1695 
1696 static void update_super_roots(struct btrfs_root *root)
1697 {
1698 	struct btrfs_root_item *root_item;
1699 	struct btrfs_super_block *super;
1700 
1701 	super = root->fs_info->super_copy;
1702 
1703 	root_item = &root->fs_info->chunk_root->root_item;
1704 	super->chunk_root = root_item->bytenr;
1705 	super->chunk_root_generation = root_item->generation;
1706 	super->chunk_root_level = root_item->level;
1707 
1708 	root_item = &root->fs_info->tree_root->root_item;
1709 	super->root = root_item->bytenr;
1710 	super->generation = root_item->generation;
1711 	super->root_level = root_item->level;
1712 	if (btrfs_test_opt(root, SPACE_CACHE))
1713 		super->cache_generation = root_item->generation;
1714 	if (root->fs_info->update_uuid_tree_gen)
1715 		super->uuid_tree_generation = root_item->generation;
1716 }
1717 
1718 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1719 {
1720 	struct btrfs_transaction *trans;
1721 	int ret = 0;
1722 
1723 	spin_lock(&info->trans_lock);
1724 	trans = info->running_transaction;
1725 	if (trans)
1726 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1727 	spin_unlock(&info->trans_lock);
1728 	return ret;
1729 }
1730 
1731 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1732 {
1733 	struct btrfs_transaction *trans;
1734 	int ret = 0;
1735 
1736 	spin_lock(&info->trans_lock);
1737 	trans = info->running_transaction;
1738 	if (trans)
1739 		ret = is_transaction_blocked(trans);
1740 	spin_unlock(&info->trans_lock);
1741 	return ret;
1742 }
1743 
1744 /*
1745  * wait for the current transaction commit to start and block subsequent
1746  * transaction joins
1747  */
1748 static void wait_current_trans_commit_start(struct btrfs_root *root,
1749 					    struct btrfs_transaction *trans)
1750 {
1751 	wait_event(root->fs_info->transaction_blocked_wait,
1752 		   trans->state >= TRANS_STATE_COMMIT_START ||
1753 		   trans->aborted);
1754 }
1755 
1756 /*
1757  * wait for the current transaction to start and then become unblocked.
1758  * caller holds ref.
1759  */
1760 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1761 					 struct btrfs_transaction *trans)
1762 {
1763 	wait_event(root->fs_info->transaction_wait,
1764 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1765 		   trans->aborted);
1766 }
1767 
1768 /*
1769  * commit transactions asynchronously. once btrfs_commit_transaction_async
1770  * returns, any subsequent transaction will not be allowed to join.
1771  */
1772 struct btrfs_async_commit {
1773 	struct btrfs_trans_handle *newtrans;
1774 	struct btrfs_root *root;
1775 	struct work_struct work;
1776 };
1777 
1778 static void do_async_commit(struct work_struct *work)
1779 {
1780 	struct btrfs_async_commit *ac =
1781 		container_of(work, struct btrfs_async_commit, work);
1782 
1783 	/*
1784 	 * We've got freeze protection passed with the transaction.
1785 	 * Tell lockdep about it.
1786 	 */
1787 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1788 		__sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1789 
1790 	current->journal_info = ac->newtrans;
1791 
1792 	btrfs_commit_transaction(ac->newtrans, ac->root);
1793 	kfree(ac);
1794 }
1795 
1796 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1797 				   struct btrfs_root *root,
1798 				   int wait_for_unblock)
1799 {
1800 	struct btrfs_async_commit *ac;
1801 	struct btrfs_transaction *cur_trans;
1802 
1803 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1804 	if (!ac)
1805 		return -ENOMEM;
1806 
1807 	INIT_WORK(&ac->work, do_async_commit);
1808 	ac->root = root;
1809 	ac->newtrans = btrfs_join_transaction(root);
1810 	if (IS_ERR(ac->newtrans)) {
1811 		int err = PTR_ERR(ac->newtrans);
1812 		kfree(ac);
1813 		return err;
1814 	}
1815 
1816 	/* take transaction reference */
1817 	cur_trans = trans->transaction;
1818 	atomic_inc(&cur_trans->use_count);
1819 
1820 	btrfs_end_transaction(trans, root);
1821 
1822 	/*
1823 	 * Tell lockdep we've released the freeze rwsem, since the
1824 	 * async commit thread will be the one to unlock it.
1825 	 */
1826 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1827 		__sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1828 
1829 	schedule_work(&ac->work);
1830 
1831 	/* wait for transaction to start and unblock */
1832 	if (wait_for_unblock)
1833 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1834 	else
1835 		wait_current_trans_commit_start(root, cur_trans);
1836 
1837 	if (current->journal_info == trans)
1838 		current->journal_info = NULL;
1839 
1840 	btrfs_put_transaction(cur_trans);
1841 	return 0;
1842 }
1843 
1844 
1845 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1846 				struct btrfs_root *root, int err)
1847 {
1848 	struct btrfs_transaction *cur_trans = trans->transaction;
1849 	DEFINE_WAIT(wait);
1850 
1851 	WARN_ON(trans->use_count > 1);
1852 
1853 	btrfs_abort_transaction(trans, root, err);
1854 
1855 	spin_lock(&root->fs_info->trans_lock);
1856 
1857 	/*
1858 	 * If the transaction is removed from the list, it means this
1859 	 * transaction has been committed successfully, so it is impossible
1860 	 * to call the cleanup function.
1861 	 */
1862 	BUG_ON(list_empty(&cur_trans->list));
1863 
1864 	list_del_init(&cur_trans->list);
1865 	if (cur_trans == root->fs_info->running_transaction) {
1866 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1867 		spin_unlock(&root->fs_info->trans_lock);
1868 		wait_event(cur_trans->writer_wait,
1869 			   atomic_read(&cur_trans->num_writers) == 1);
1870 
1871 		spin_lock(&root->fs_info->trans_lock);
1872 	}
1873 	spin_unlock(&root->fs_info->trans_lock);
1874 
1875 	btrfs_cleanup_one_transaction(trans->transaction, root);
1876 
1877 	spin_lock(&root->fs_info->trans_lock);
1878 	if (cur_trans == root->fs_info->running_transaction)
1879 		root->fs_info->running_transaction = NULL;
1880 	spin_unlock(&root->fs_info->trans_lock);
1881 
1882 	if (trans->type & __TRANS_FREEZABLE)
1883 		sb_end_intwrite(root->fs_info->sb);
1884 	btrfs_put_transaction(cur_trans);
1885 	btrfs_put_transaction(cur_trans);
1886 
1887 	trace_btrfs_transaction_commit(root);
1888 
1889 	if (current->journal_info == trans)
1890 		current->journal_info = NULL;
1891 	btrfs_scrub_cancel(root->fs_info);
1892 
1893 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1894 }
1895 
1896 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1897 {
1898 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1899 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1900 	return 0;
1901 }
1902 
1903 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1904 {
1905 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1906 		btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1907 }
1908 
1909 static inline void
1910 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1911 {
1912 	wait_event(cur_trans->pending_wait,
1913 		   atomic_read(&cur_trans->pending_ordered) == 0);
1914 }
1915 
1916 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1917 			     struct btrfs_root *root)
1918 {
1919 	struct btrfs_transaction *cur_trans = trans->transaction;
1920 	struct btrfs_transaction *prev_trans = NULL;
1921 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1922 	int ret;
1923 
1924 	/* Stop the commit early if ->aborted is set */
1925 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1926 		ret = cur_trans->aborted;
1927 		btrfs_end_transaction(trans, root);
1928 		return ret;
1929 	}
1930 
1931 	/* make a pass through all the delayed refs we have so far
1932 	 * any runnings procs may add more while we are here
1933 	 */
1934 	ret = btrfs_run_delayed_refs(trans, root, 0);
1935 	if (ret) {
1936 		btrfs_end_transaction(trans, root);
1937 		return ret;
1938 	}
1939 
1940 	btrfs_trans_release_metadata(trans, root);
1941 	trans->block_rsv = NULL;
1942 
1943 	cur_trans = trans->transaction;
1944 
1945 	/*
1946 	 * set the flushing flag so procs in this transaction have to
1947 	 * start sending their work down.
1948 	 */
1949 	cur_trans->delayed_refs.flushing = 1;
1950 	smp_wmb();
1951 
1952 	if (!list_empty(&trans->new_bgs))
1953 		btrfs_create_pending_block_groups(trans, root);
1954 
1955 	ret = btrfs_run_delayed_refs(trans, root, 0);
1956 	if (ret) {
1957 		btrfs_end_transaction(trans, root);
1958 		return ret;
1959 	}
1960 
1961 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1962 		int run_it = 0;
1963 
1964 		/* this mutex is also taken before trying to set
1965 		 * block groups readonly.  We need to make sure
1966 		 * that nobody has set a block group readonly
1967 		 * after a extents from that block group have been
1968 		 * allocated for cache files.  btrfs_set_block_group_ro
1969 		 * will wait for the transaction to commit if it
1970 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1971 		 *
1972 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1973 		 * only one process starts all the block group IO.  It wouldn't
1974 		 * hurt to have more than one go through, but there's no
1975 		 * real advantage to it either.
1976 		 */
1977 		mutex_lock(&root->fs_info->ro_block_group_mutex);
1978 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1979 				      &cur_trans->flags))
1980 			run_it = 1;
1981 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1982 
1983 		if (run_it)
1984 			ret = btrfs_start_dirty_block_groups(trans, root);
1985 	}
1986 	if (ret) {
1987 		btrfs_end_transaction(trans, root);
1988 		return ret;
1989 	}
1990 
1991 	spin_lock(&root->fs_info->trans_lock);
1992 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1993 		spin_unlock(&root->fs_info->trans_lock);
1994 		atomic_inc(&cur_trans->use_count);
1995 		ret = btrfs_end_transaction(trans, root);
1996 
1997 		wait_for_commit(root, cur_trans);
1998 
1999 		if (unlikely(cur_trans->aborted))
2000 			ret = cur_trans->aborted;
2001 
2002 		btrfs_put_transaction(cur_trans);
2003 
2004 		return ret;
2005 	}
2006 
2007 	cur_trans->state = TRANS_STATE_COMMIT_START;
2008 	wake_up(&root->fs_info->transaction_blocked_wait);
2009 
2010 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
2011 		prev_trans = list_entry(cur_trans->list.prev,
2012 					struct btrfs_transaction, list);
2013 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2014 			atomic_inc(&prev_trans->use_count);
2015 			spin_unlock(&root->fs_info->trans_lock);
2016 
2017 			wait_for_commit(root, prev_trans);
2018 			ret = prev_trans->aborted;
2019 
2020 			btrfs_put_transaction(prev_trans);
2021 			if (ret)
2022 				goto cleanup_transaction;
2023 		} else {
2024 			spin_unlock(&root->fs_info->trans_lock);
2025 		}
2026 	} else {
2027 		spin_unlock(&root->fs_info->trans_lock);
2028 	}
2029 
2030 	extwriter_counter_dec(cur_trans, trans->type);
2031 
2032 	ret = btrfs_start_delalloc_flush(root->fs_info);
2033 	if (ret)
2034 		goto cleanup_transaction;
2035 
2036 	ret = btrfs_run_delayed_items(trans, root);
2037 	if (ret)
2038 		goto cleanup_transaction;
2039 
2040 	wait_event(cur_trans->writer_wait,
2041 		   extwriter_counter_read(cur_trans) == 0);
2042 
2043 	/* some pending stuffs might be added after the previous flush. */
2044 	ret = btrfs_run_delayed_items(trans, root);
2045 	if (ret)
2046 		goto cleanup_transaction;
2047 
2048 	btrfs_wait_delalloc_flush(root->fs_info);
2049 
2050 	btrfs_wait_pending_ordered(cur_trans);
2051 
2052 	btrfs_scrub_pause(root);
2053 	/*
2054 	 * Ok now we need to make sure to block out any other joins while we
2055 	 * commit the transaction.  We could have started a join before setting
2056 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2057 	 */
2058 	spin_lock(&root->fs_info->trans_lock);
2059 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2060 	spin_unlock(&root->fs_info->trans_lock);
2061 	wait_event(cur_trans->writer_wait,
2062 		   atomic_read(&cur_trans->num_writers) == 1);
2063 
2064 	/* ->aborted might be set after the previous check, so check it */
2065 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2066 		ret = cur_trans->aborted;
2067 		goto scrub_continue;
2068 	}
2069 	/*
2070 	 * the reloc mutex makes sure that we stop
2071 	 * the balancing code from coming in and moving
2072 	 * extents around in the middle of the commit
2073 	 */
2074 	mutex_lock(&root->fs_info->reloc_mutex);
2075 
2076 	/*
2077 	 * We needn't worry about the delayed items because we will
2078 	 * deal with them in create_pending_snapshot(), which is the
2079 	 * core function of the snapshot creation.
2080 	 */
2081 	ret = create_pending_snapshots(trans, root->fs_info);
2082 	if (ret) {
2083 		mutex_unlock(&root->fs_info->reloc_mutex);
2084 		goto scrub_continue;
2085 	}
2086 
2087 	/*
2088 	 * We insert the dir indexes of the snapshots and update the inode
2089 	 * of the snapshots' parents after the snapshot creation, so there
2090 	 * are some delayed items which are not dealt with. Now deal with
2091 	 * them.
2092 	 *
2093 	 * We needn't worry that this operation will corrupt the snapshots,
2094 	 * because all the tree which are snapshoted will be forced to COW
2095 	 * the nodes and leaves.
2096 	 */
2097 	ret = btrfs_run_delayed_items(trans, root);
2098 	if (ret) {
2099 		mutex_unlock(&root->fs_info->reloc_mutex);
2100 		goto scrub_continue;
2101 	}
2102 
2103 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2104 	if (ret) {
2105 		mutex_unlock(&root->fs_info->reloc_mutex);
2106 		goto scrub_continue;
2107 	}
2108 
2109 	/* Reocrd old roots for later qgroup accounting */
2110 	ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2111 	if (ret) {
2112 		mutex_unlock(&root->fs_info->reloc_mutex);
2113 		goto scrub_continue;
2114 	}
2115 
2116 	/*
2117 	 * make sure none of the code above managed to slip in a
2118 	 * delayed item
2119 	 */
2120 	btrfs_assert_delayed_root_empty(root);
2121 
2122 	WARN_ON(cur_trans != trans->transaction);
2123 
2124 	/* btrfs_commit_tree_roots is responsible for getting the
2125 	 * various roots consistent with each other.  Every pointer
2126 	 * in the tree of tree roots has to point to the most up to date
2127 	 * root for every subvolume and other tree.  So, we have to keep
2128 	 * the tree logging code from jumping in and changing any
2129 	 * of the trees.
2130 	 *
2131 	 * At this point in the commit, there can't be any tree-log
2132 	 * writers, but a little lower down we drop the trans mutex
2133 	 * and let new people in.  By holding the tree_log_mutex
2134 	 * from now until after the super is written, we avoid races
2135 	 * with the tree-log code.
2136 	 */
2137 	mutex_lock(&root->fs_info->tree_log_mutex);
2138 
2139 	ret = commit_fs_roots(trans, root);
2140 	if (ret) {
2141 		mutex_unlock(&root->fs_info->tree_log_mutex);
2142 		mutex_unlock(&root->fs_info->reloc_mutex);
2143 		goto scrub_continue;
2144 	}
2145 
2146 	/*
2147 	 * Since the transaction is done, we can apply the pending changes
2148 	 * before the next transaction.
2149 	 */
2150 	btrfs_apply_pending_changes(root->fs_info);
2151 
2152 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2153 	 * safe to free the root of tree log roots
2154 	 */
2155 	btrfs_free_log_root_tree(trans, root->fs_info);
2156 
2157 	/*
2158 	 * Since fs roots are all committed, we can get a quite accurate
2159 	 * new_roots. So let's do quota accounting.
2160 	 */
2161 	ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2162 	if (ret < 0) {
2163 		mutex_unlock(&root->fs_info->tree_log_mutex);
2164 		mutex_unlock(&root->fs_info->reloc_mutex);
2165 		goto scrub_continue;
2166 	}
2167 
2168 	ret = commit_cowonly_roots(trans, root);
2169 	if (ret) {
2170 		mutex_unlock(&root->fs_info->tree_log_mutex);
2171 		mutex_unlock(&root->fs_info->reloc_mutex);
2172 		goto scrub_continue;
2173 	}
2174 
2175 	/*
2176 	 * The tasks which save the space cache and inode cache may also
2177 	 * update ->aborted, check it.
2178 	 */
2179 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2180 		ret = cur_trans->aborted;
2181 		mutex_unlock(&root->fs_info->tree_log_mutex);
2182 		mutex_unlock(&root->fs_info->reloc_mutex);
2183 		goto scrub_continue;
2184 	}
2185 
2186 	btrfs_prepare_extent_commit(trans, root);
2187 
2188 	cur_trans = root->fs_info->running_transaction;
2189 
2190 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2191 			    root->fs_info->tree_root->node);
2192 	list_add_tail(&root->fs_info->tree_root->dirty_list,
2193 		      &cur_trans->switch_commits);
2194 
2195 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2196 			    root->fs_info->chunk_root->node);
2197 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2198 		      &cur_trans->switch_commits);
2199 
2200 	switch_commit_roots(cur_trans, root->fs_info);
2201 
2202 	assert_qgroups_uptodate(trans);
2203 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2204 	ASSERT(list_empty(&cur_trans->io_bgs));
2205 	update_super_roots(root);
2206 
2207 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2208 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2209 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2210 	       sizeof(*root->fs_info->super_copy));
2211 
2212 	btrfs_update_commit_device_size(root->fs_info);
2213 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2214 
2215 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2216 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2217 
2218 	btrfs_trans_release_chunk_metadata(trans);
2219 
2220 	spin_lock(&root->fs_info->trans_lock);
2221 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2222 	root->fs_info->running_transaction = NULL;
2223 	spin_unlock(&root->fs_info->trans_lock);
2224 	mutex_unlock(&root->fs_info->reloc_mutex);
2225 
2226 	wake_up(&root->fs_info->transaction_wait);
2227 
2228 	ret = btrfs_write_and_wait_transaction(trans, root);
2229 	if (ret) {
2230 		btrfs_handle_fs_error(root->fs_info, ret,
2231 			    "Error while writing out transaction");
2232 		mutex_unlock(&root->fs_info->tree_log_mutex);
2233 		goto scrub_continue;
2234 	}
2235 
2236 	ret = write_ctree_super(trans, root, 0);
2237 	if (ret) {
2238 		mutex_unlock(&root->fs_info->tree_log_mutex);
2239 		goto scrub_continue;
2240 	}
2241 
2242 	/*
2243 	 * the super is written, we can safely allow the tree-loggers
2244 	 * to go about their business
2245 	 */
2246 	mutex_unlock(&root->fs_info->tree_log_mutex);
2247 
2248 	btrfs_finish_extent_commit(trans, root);
2249 
2250 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2251 		btrfs_clear_space_info_full(root->fs_info);
2252 
2253 	root->fs_info->last_trans_committed = cur_trans->transid;
2254 	/*
2255 	 * We needn't acquire the lock here because there is no other task
2256 	 * which can change it.
2257 	 */
2258 	cur_trans->state = TRANS_STATE_COMPLETED;
2259 	wake_up(&cur_trans->commit_wait);
2260 
2261 	spin_lock(&root->fs_info->trans_lock);
2262 	list_del_init(&cur_trans->list);
2263 	spin_unlock(&root->fs_info->trans_lock);
2264 
2265 	btrfs_put_transaction(cur_trans);
2266 	btrfs_put_transaction(cur_trans);
2267 
2268 	if (trans->type & __TRANS_FREEZABLE)
2269 		sb_end_intwrite(root->fs_info->sb);
2270 
2271 	trace_btrfs_transaction_commit(root);
2272 
2273 	btrfs_scrub_continue(root);
2274 
2275 	if (current->journal_info == trans)
2276 		current->journal_info = NULL;
2277 
2278 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2279 
2280 	if (current != root->fs_info->transaction_kthread &&
2281 	    current != root->fs_info->cleaner_kthread)
2282 		btrfs_run_delayed_iputs(root);
2283 
2284 	return ret;
2285 
2286 scrub_continue:
2287 	btrfs_scrub_continue(root);
2288 cleanup_transaction:
2289 	btrfs_trans_release_metadata(trans, root);
2290 	btrfs_trans_release_chunk_metadata(trans);
2291 	trans->block_rsv = NULL;
2292 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2293 	if (current->journal_info == trans)
2294 		current->journal_info = NULL;
2295 	cleanup_transaction(trans, root, ret);
2296 
2297 	return ret;
2298 }
2299 
2300 /*
2301  * return < 0 if error
2302  * 0 if there are no more dead_roots at the time of call
2303  * 1 there are more to be processed, call me again
2304  *
2305  * The return value indicates there are certainly more snapshots to delete, but
2306  * if there comes a new one during processing, it may return 0. We don't mind,
2307  * because btrfs_commit_super will poke cleaner thread and it will process it a
2308  * few seconds later.
2309  */
2310 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2311 {
2312 	int ret;
2313 	struct btrfs_fs_info *fs_info = root->fs_info;
2314 
2315 	spin_lock(&fs_info->trans_lock);
2316 	if (list_empty(&fs_info->dead_roots)) {
2317 		spin_unlock(&fs_info->trans_lock);
2318 		return 0;
2319 	}
2320 	root = list_first_entry(&fs_info->dead_roots,
2321 			struct btrfs_root, root_list);
2322 	list_del_init(&root->root_list);
2323 	spin_unlock(&fs_info->trans_lock);
2324 
2325 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2326 
2327 	btrfs_kill_all_delayed_nodes(root);
2328 
2329 	if (btrfs_header_backref_rev(root->node) <
2330 			BTRFS_MIXED_BACKREF_REV)
2331 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2332 	else
2333 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2334 
2335 	return (ret < 0) ? 0 : 1;
2336 }
2337 
2338 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2339 {
2340 	unsigned long prev;
2341 	unsigned long bit;
2342 
2343 	prev = xchg(&fs_info->pending_changes, 0);
2344 	if (!prev)
2345 		return;
2346 
2347 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2348 	if (prev & bit)
2349 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2350 	prev &= ~bit;
2351 
2352 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2353 	if (prev & bit)
2354 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2355 	prev &= ~bit;
2356 
2357 	bit = 1 << BTRFS_PENDING_COMMIT;
2358 	if (prev & bit)
2359 		btrfs_debug(fs_info, "pending commit done");
2360 	prev &= ~bit;
2361 
2362 	if (prev)
2363 		btrfs_warn(fs_info,
2364 			"unknown pending changes left 0x%lx, ignoring", prev);
2365 }
2366