xref: /openbmc/linux/fs/btrfs/transaction.c (revision 05bcf503)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 
34 #define BTRFS_ROOT_TRANS_TAG 0
35 
36 void put_transaction(struct btrfs_transaction *transaction)
37 {
38 	WARN_ON(atomic_read(&transaction->use_count) == 0);
39 	if (atomic_dec_and_test(&transaction->use_count)) {
40 		BUG_ON(!list_empty(&transaction->list));
41 		WARN_ON(transaction->delayed_refs.root.rb_node);
42 		memset(transaction, 0, sizeof(*transaction));
43 		kmem_cache_free(btrfs_transaction_cachep, transaction);
44 	}
45 }
46 
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 	free_extent_buffer(root->commit_root);
50 	root->commit_root = btrfs_root_node(root);
51 }
52 
53 /*
54  * either allocate a new transaction or hop into the existing one
55  */
56 static noinline int join_transaction(struct btrfs_root *root, int type)
57 {
58 	struct btrfs_transaction *cur_trans;
59 	struct btrfs_fs_info *fs_info = root->fs_info;
60 
61 	spin_lock(&fs_info->trans_lock);
62 loop:
63 	/* The file system has been taken offline. No new transactions. */
64 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
65 		spin_unlock(&fs_info->trans_lock);
66 		return -EROFS;
67 	}
68 
69 	if (fs_info->trans_no_join) {
70 		/*
71 		 * If we are JOIN_NOLOCK we're already committing a current
72 		 * transaction, we just need a handle to deal with something
73 		 * when committing the transaction, such as inode cache and
74 		 * space cache. It is a special case.
75 		 */
76 		if (type != TRANS_JOIN_NOLOCK) {
77 			spin_unlock(&fs_info->trans_lock);
78 			return -EBUSY;
79 		}
80 	}
81 
82 	cur_trans = fs_info->running_transaction;
83 	if (cur_trans) {
84 		if (cur_trans->aborted) {
85 			spin_unlock(&fs_info->trans_lock);
86 			return cur_trans->aborted;
87 		}
88 		atomic_inc(&cur_trans->use_count);
89 		atomic_inc(&cur_trans->num_writers);
90 		cur_trans->num_joined++;
91 		spin_unlock(&fs_info->trans_lock);
92 		return 0;
93 	}
94 	spin_unlock(&fs_info->trans_lock);
95 
96 	/*
97 	 * If we are ATTACH, we just want to catch the current transaction,
98 	 * and commit it. If there is no transaction, just return ENOENT.
99 	 */
100 	if (type == TRANS_ATTACH)
101 		return -ENOENT;
102 
103 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
104 	if (!cur_trans)
105 		return -ENOMEM;
106 
107 	spin_lock(&fs_info->trans_lock);
108 	if (fs_info->running_transaction) {
109 		/*
110 		 * someone started a transaction after we unlocked.  Make sure
111 		 * to redo the trans_no_join checks above
112 		 */
113 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
114 		cur_trans = fs_info->running_transaction;
115 		goto loop;
116 	} else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117 		spin_unlock(&fs_info->trans_lock);
118 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
119 		return -EROFS;
120 	}
121 
122 	atomic_set(&cur_trans->num_writers, 1);
123 	cur_trans->num_joined = 0;
124 	init_waitqueue_head(&cur_trans->writer_wait);
125 	init_waitqueue_head(&cur_trans->commit_wait);
126 	cur_trans->in_commit = 0;
127 	cur_trans->blocked = 0;
128 	/*
129 	 * One for this trans handle, one so it will live on until we
130 	 * commit the transaction.
131 	 */
132 	atomic_set(&cur_trans->use_count, 2);
133 	cur_trans->commit_done = 0;
134 	cur_trans->start_time = get_seconds();
135 
136 	cur_trans->delayed_refs.root = RB_ROOT;
137 	cur_trans->delayed_refs.num_entries = 0;
138 	cur_trans->delayed_refs.num_heads_ready = 0;
139 	cur_trans->delayed_refs.num_heads = 0;
140 	cur_trans->delayed_refs.flushing = 0;
141 	cur_trans->delayed_refs.run_delayed_start = 0;
142 
143 	/*
144 	 * although the tree mod log is per file system and not per transaction,
145 	 * the log must never go across transaction boundaries.
146 	 */
147 	smp_mb();
148 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
149 		printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when "
150 			"creating a fresh transaction\n");
151 		WARN_ON(1);
152 	}
153 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) {
154 		printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
155 			"creating a fresh transaction\n");
156 		WARN_ON(1);
157 	}
158 	atomic_set(&fs_info->tree_mod_seq, 0);
159 
160 	spin_lock_init(&cur_trans->commit_lock);
161 	spin_lock_init(&cur_trans->delayed_refs.lock);
162 
163 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
164 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
165 	extent_io_tree_init(&cur_trans->dirty_pages,
166 			     fs_info->btree_inode->i_mapping);
167 	fs_info->generation++;
168 	cur_trans->transid = fs_info->generation;
169 	fs_info->running_transaction = cur_trans;
170 	cur_trans->aborted = 0;
171 	spin_unlock(&fs_info->trans_lock);
172 
173 	return 0;
174 }
175 
176 /*
177  * this does all the record keeping required to make sure that a reference
178  * counted root is properly recorded in a given transaction.  This is required
179  * to make sure the old root from before we joined the transaction is deleted
180  * when the transaction commits
181  */
182 static int record_root_in_trans(struct btrfs_trans_handle *trans,
183 			       struct btrfs_root *root)
184 {
185 	if (root->ref_cows && root->last_trans < trans->transid) {
186 		WARN_ON(root == root->fs_info->extent_root);
187 		WARN_ON(root->commit_root != root->node);
188 
189 		/*
190 		 * see below for in_trans_setup usage rules
191 		 * we have the reloc mutex held now, so there
192 		 * is only one writer in this function
193 		 */
194 		root->in_trans_setup = 1;
195 
196 		/* make sure readers find in_trans_setup before
197 		 * they find our root->last_trans update
198 		 */
199 		smp_wmb();
200 
201 		spin_lock(&root->fs_info->fs_roots_radix_lock);
202 		if (root->last_trans == trans->transid) {
203 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
204 			return 0;
205 		}
206 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
207 			   (unsigned long)root->root_key.objectid,
208 			   BTRFS_ROOT_TRANS_TAG);
209 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
210 		root->last_trans = trans->transid;
211 
212 		/* this is pretty tricky.  We don't want to
213 		 * take the relocation lock in btrfs_record_root_in_trans
214 		 * unless we're really doing the first setup for this root in
215 		 * this transaction.
216 		 *
217 		 * Normally we'd use root->last_trans as a flag to decide
218 		 * if we want to take the expensive mutex.
219 		 *
220 		 * But, we have to set root->last_trans before we
221 		 * init the relocation root, otherwise, we trip over warnings
222 		 * in ctree.c.  The solution used here is to flag ourselves
223 		 * with root->in_trans_setup.  When this is 1, we're still
224 		 * fixing up the reloc trees and everyone must wait.
225 		 *
226 		 * When this is zero, they can trust root->last_trans and fly
227 		 * through btrfs_record_root_in_trans without having to take the
228 		 * lock.  smp_wmb() makes sure that all the writes above are
229 		 * done before we pop in the zero below
230 		 */
231 		btrfs_init_reloc_root(trans, root);
232 		smp_wmb();
233 		root->in_trans_setup = 0;
234 	}
235 	return 0;
236 }
237 
238 
239 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
240 			       struct btrfs_root *root)
241 {
242 	if (!root->ref_cows)
243 		return 0;
244 
245 	/*
246 	 * see record_root_in_trans for comments about in_trans_setup usage
247 	 * and barriers
248 	 */
249 	smp_rmb();
250 	if (root->last_trans == trans->transid &&
251 	    !root->in_trans_setup)
252 		return 0;
253 
254 	mutex_lock(&root->fs_info->reloc_mutex);
255 	record_root_in_trans(trans, root);
256 	mutex_unlock(&root->fs_info->reloc_mutex);
257 
258 	return 0;
259 }
260 
261 /* wait for commit against the current transaction to become unblocked
262  * when this is done, it is safe to start a new transaction, but the current
263  * transaction might not be fully on disk.
264  */
265 static void wait_current_trans(struct btrfs_root *root)
266 {
267 	struct btrfs_transaction *cur_trans;
268 
269 	spin_lock(&root->fs_info->trans_lock);
270 	cur_trans = root->fs_info->running_transaction;
271 	if (cur_trans && cur_trans->blocked) {
272 		atomic_inc(&cur_trans->use_count);
273 		spin_unlock(&root->fs_info->trans_lock);
274 
275 		wait_event(root->fs_info->transaction_wait,
276 			   !cur_trans->blocked);
277 		put_transaction(cur_trans);
278 	} else {
279 		spin_unlock(&root->fs_info->trans_lock);
280 	}
281 }
282 
283 static int may_wait_transaction(struct btrfs_root *root, int type)
284 {
285 	if (root->fs_info->log_root_recovering)
286 		return 0;
287 
288 	if (type == TRANS_USERSPACE)
289 		return 1;
290 
291 	if (type == TRANS_START &&
292 	    !atomic_read(&root->fs_info->open_ioctl_trans))
293 		return 1;
294 
295 	return 0;
296 }
297 
298 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
299 						    u64 num_items, int type,
300 						    int noflush)
301 {
302 	struct btrfs_trans_handle *h;
303 	struct btrfs_transaction *cur_trans;
304 	u64 num_bytes = 0;
305 	int ret;
306 	u64 qgroup_reserved = 0;
307 
308 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
309 		return ERR_PTR(-EROFS);
310 
311 	if (current->journal_info) {
312 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
313 		h = current->journal_info;
314 		h->use_count++;
315 		h->orig_rsv = h->block_rsv;
316 		h->block_rsv = NULL;
317 		goto got_it;
318 	}
319 
320 	/*
321 	 * Do the reservation before we join the transaction so we can do all
322 	 * the appropriate flushing if need be.
323 	 */
324 	if (num_items > 0 && root != root->fs_info->chunk_root) {
325 		if (root->fs_info->quota_enabled &&
326 		    is_fstree(root->root_key.objectid)) {
327 			qgroup_reserved = num_items * root->leafsize;
328 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
329 			if (ret)
330 				return ERR_PTR(ret);
331 		}
332 
333 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
334 		if (noflush)
335 			ret = btrfs_block_rsv_add_noflush(root,
336 						&root->fs_info->trans_block_rsv,
337 						num_bytes);
338 		else
339 			ret = btrfs_block_rsv_add(root,
340 						&root->fs_info->trans_block_rsv,
341 						num_bytes);
342 		if (ret)
343 			return ERR_PTR(ret);
344 	}
345 again:
346 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
347 	if (!h)
348 		return ERR_PTR(-ENOMEM);
349 
350 	/*
351 	 * If we are JOIN_NOLOCK we're already committing a transaction and
352 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
353 	 * because we're already holding a ref.  We need this because we could
354 	 * have raced in and did an fsync() on a file which can kick a commit
355 	 * and then we deadlock with somebody doing a freeze.
356 	 *
357 	 * If we are ATTACH, it means we just want to catch the current
358 	 * transaction and commit it, so we needn't do sb_start_intwrite().
359 	 */
360 	if (type < TRANS_JOIN_NOLOCK)
361 		sb_start_intwrite(root->fs_info->sb);
362 
363 	if (may_wait_transaction(root, type))
364 		wait_current_trans(root);
365 
366 	do {
367 		ret = join_transaction(root, type);
368 		if (ret == -EBUSY)
369 			wait_current_trans(root);
370 	} while (ret == -EBUSY);
371 
372 	if (ret < 0) {
373 		/* We must get the transaction if we are JOIN_NOLOCK. */
374 		BUG_ON(type == TRANS_JOIN_NOLOCK);
375 
376 		if (type < TRANS_JOIN_NOLOCK)
377 			sb_end_intwrite(root->fs_info->sb);
378 		kmem_cache_free(btrfs_trans_handle_cachep, h);
379 		return ERR_PTR(ret);
380 	}
381 
382 	cur_trans = root->fs_info->running_transaction;
383 
384 	h->transid = cur_trans->transid;
385 	h->transaction = cur_trans;
386 	h->blocks_used = 0;
387 	h->bytes_reserved = 0;
388 	h->root = root;
389 	h->delayed_ref_updates = 0;
390 	h->use_count = 1;
391 	h->adding_csums = 0;
392 	h->block_rsv = NULL;
393 	h->orig_rsv = NULL;
394 	h->aborted = 0;
395 	h->qgroup_reserved = qgroup_reserved;
396 	h->delayed_ref_elem.seq = 0;
397 	h->type = type;
398 	INIT_LIST_HEAD(&h->qgroup_ref_list);
399 	INIT_LIST_HEAD(&h->new_bgs);
400 
401 	smp_mb();
402 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
403 		btrfs_commit_transaction(h, root);
404 		goto again;
405 	}
406 
407 	if (num_bytes) {
408 		trace_btrfs_space_reservation(root->fs_info, "transaction",
409 					      h->transid, num_bytes, 1);
410 		h->block_rsv = &root->fs_info->trans_block_rsv;
411 		h->bytes_reserved = num_bytes;
412 	}
413 
414 got_it:
415 	btrfs_record_root_in_trans(h, root);
416 
417 	if (!current->journal_info && type != TRANS_USERSPACE)
418 		current->journal_info = h;
419 	return h;
420 }
421 
422 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
423 						   int num_items)
424 {
425 	return start_transaction(root, num_items, TRANS_START, 0);
426 }
427 
428 struct btrfs_trans_handle *btrfs_start_transaction_noflush(
429 					struct btrfs_root *root, int num_items)
430 {
431 	return start_transaction(root, num_items, TRANS_START, 1);
432 }
433 
434 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
435 {
436 	return start_transaction(root, 0, TRANS_JOIN, 0);
437 }
438 
439 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
440 {
441 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
442 }
443 
444 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
445 {
446 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
447 }
448 
449 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
450 {
451 	return start_transaction(root, 0, TRANS_ATTACH, 0);
452 }
453 
454 /* wait for a transaction commit to be fully complete */
455 static noinline void wait_for_commit(struct btrfs_root *root,
456 				    struct btrfs_transaction *commit)
457 {
458 	wait_event(commit->commit_wait, commit->commit_done);
459 }
460 
461 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
462 {
463 	struct btrfs_transaction *cur_trans = NULL, *t;
464 	int ret;
465 
466 	ret = 0;
467 	if (transid) {
468 		if (transid <= root->fs_info->last_trans_committed)
469 			goto out;
470 
471 		/* find specified transaction */
472 		spin_lock(&root->fs_info->trans_lock);
473 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
474 			if (t->transid == transid) {
475 				cur_trans = t;
476 				atomic_inc(&cur_trans->use_count);
477 				break;
478 			}
479 			if (t->transid > transid)
480 				break;
481 		}
482 		spin_unlock(&root->fs_info->trans_lock);
483 		ret = -EINVAL;
484 		if (!cur_trans)
485 			goto out;  /* bad transid */
486 	} else {
487 		/* find newest transaction that is committing | committed */
488 		spin_lock(&root->fs_info->trans_lock);
489 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
490 					    list) {
491 			if (t->in_commit) {
492 				if (t->commit_done)
493 					break;
494 				cur_trans = t;
495 				atomic_inc(&cur_trans->use_count);
496 				break;
497 			}
498 		}
499 		spin_unlock(&root->fs_info->trans_lock);
500 		if (!cur_trans)
501 			goto out;  /* nothing committing|committed */
502 	}
503 
504 	wait_for_commit(root, cur_trans);
505 
506 	put_transaction(cur_trans);
507 	ret = 0;
508 out:
509 	return ret;
510 }
511 
512 void btrfs_throttle(struct btrfs_root *root)
513 {
514 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
515 		wait_current_trans(root);
516 }
517 
518 static int should_end_transaction(struct btrfs_trans_handle *trans,
519 				  struct btrfs_root *root)
520 {
521 	int ret;
522 
523 	ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
524 	return ret ? 1 : 0;
525 }
526 
527 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
528 				 struct btrfs_root *root)
529 {
530 	struct btrfs_transaction *cur_trans = trans->transaction;
531 	int updates;
532 	int err;
533 
534 	smp_mb();
535 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
536 		return 1;
537 
538 	updates = trans->delayed_ref_updates;
539 	trans->delayed_ref_updates = 0;
540 	if (updates) {
541 		err = btrfs_run_delayed_refs(trans, root, updates);
542 		if (err) /* Error code will also eval true */
543 			return err;
544 	}
545 
546 	return should_end_transaction(trans, root);
547 }
548 
549 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
550 			  struct btrfs_root *root, int throttle)
551 {
552 	struct btrfs_transaction *cur_trans = trans->transaction;
553 	struct btrfs_fs_info *info = root->fs_info;
554 	int count = 0;
555 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
556 	int err = 0;
557 
558 	if (--trans->use_count) {
559 		trans->block_rsv = trans->orig_rsv;
560 		return 0;
561 	}
562 
563 	/*
564 	 * do the qgroup accounting as early as possible
565 	 */
566 	err = btrfs_delayed_refs_qgroup_accounting(trans, info);
567 
568 	btrfs_trans_release_metadata(trans, root);
569 	trans->block_rsv = NULL;
570 	/*
571 	 * the same root has to be passed to start_transaction and
572 	 * end_transaction. Subvolume quota depends on this.
573 	 */
574 	WARN_ON(trans->root != root);
575 
576 	if (trans->qgroup_reserved) {
577 		btrfs_qgroup_free(root, trans->qgroup_reserved);
578 		trans->qgroup_reserved = 0;
579 	}
580 
581 	if (!list_empty(&trans->new_bgs))
582 		btrfs_create_pending_block_groups(trans, root);
583 
584 	while (count < 2) {
585 		unsigned long cur = trans->delayed_ref_updates;
586 		trans->delayed_ref_updates = 0;
587 		if (cur &&
588 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
589 			trans->delayed_ref_updates = 0;
590 			btrfs_run_delayed_refs(trans, root, cur);
591 		} else {
592 			break;
593 		}
594 		count++;
595 	}
596 	btrfs_trans_release_metadata(trans, root);
597 	trans->block_rsv = NULL;
598 
599 	if (!list_empty(&trans->new_bgs))
600 		btrfs_create_pending_block_groups(trans, root);
601 
602 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
603 	    should_end_transaction(trans, root)) {
604 		trans->transaction->blocked = 1;
605 		smp_wmb();
606 	}
607 
608 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
609 		if (throttle) {
610 			/*
611 			 * We may race with somebody else here so end up having
612 			 * to call end_transaction on ourselves again, so inc
613 			 * our use_count.
614 			 */
615 			trans->use_count++;
616 			return btrfs_commit_transaction(trans, root);
617 		} else {
618 			wake_up_process(info->transaction_kthread);
619 		}
620 	}
621 
622 	if (trans->type < TRANS_JOIN_NOLOCK)
623 		sb_end_intwrite(root->fs_info->sb);
624 
625 	WARN_ON(cur_trans != info->running_transaction);
626 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
627 	atomic_dec(&cur_trans->num_writers);
628 
629 	smp_mb();
630 	if (waitqueue_active(&cur_trans->writer_wait))
631 		wake_up(&cur_trans->writer_wait);
632 	put_transaction(cur_trans);
633 
634 	if (current->journal_info == trans)
635 		current->journal_info = NULL;
636 
637 	if (throttle)
638 		btrfs_run_delayed_iputs(root);
639 
640 	if (trans->aborted ||
641 	    root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
642 		err = -EIO;
643 	}
644 	assert_qgroups_uptodate(trans);
645 
646 	memset(trans, 0, sizeof(*trans));
647 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
648 	return err;
649 }
650 
651 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
652 			  struct btrfs_root *root)
653 {
654 	int ret;
655 
656 	ret = __btrfs_end_transaction(trans, root, 0);
657 	if (ret)
658 		return ret;
659 	return 0;
660 }
661 
662 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
663 				   struct btrfs_root *root)
664 {
665 	int ret;
666 
667 	ret = __btrfs_end_transaction(trans, root, 1);
668 	if (ret)
669 		return ret;
670 	return 0;
671 }
672 
673 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
674 				struct btrfs_root *root)
675 {
676 	return __btrfs_end_transaction(trans, root, 1);
677 }
678 
679 /*
680  * when btree blocks are allocated, they have some corresponding bits set for
681  * them in one of two extent_io trees.  This is used to make sure all of
682  * those extents are sent to disk but does not wait on them
683  */
684 int btrfs_write_marked_extents(struct btrfs_root *root,
685 			       struct extent_io_tree *dirty_pages, int mark)
686 {
687 	int err = 0;
688 	int werr = 0;
689 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
690 	struct extent_state *cached_state = NULL;
691 	u64 start = 0;
692 	u64 end;
693 
694 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
695 				      mark, &cached_state)) {
696 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
697 				   mark, &cached_state, GFP_NOFS);
698 		cached_state = NULL;
699 		err = filemap_fdatawrite_range(mapping, start, end);
700 		if (err)
701 			werr = err;
702 		cond_resched();
703 		start = end + 1;
704 	}
705 	if (err)
706 		werr = err;
707 	return werr;
708 }
709 
710 /*
711  * when btree blocks are allocated, they have some corresponding bits set for
712  * them in one of two extent_io trees.  This is used to make sure all of
713  * those extents are on disk for transaction or log commit.  We wait
714  * on all the pages and clear them from the dirty pages state tree
715  */
716 int btrfs_wait_marked_extents(struct btrfs_root *root,
717 			      struct extent_io_tree *dirty_pages, int mark)
718 {
719 	int err = 0;
720 	int werr = 0;
721 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
722 	struct extent_state *cached_state = NULL;
723 	u64 start = 0;
724 	u64 end;
725 
726 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
727 				      EXTENT_NEED_WAIT, &cached_state)) {
728 		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
729 				 0, 0, &cached_state, GFP_NOFS);
730 		err = filemap_fdatawait_range(mapping, start, end);
731 		if (err)
732 			werr = err;
733 		cond_resched();
734 		start = end + 1;
735 	}
736 	if (err)
737 		werr = err;
738 	return werr;
739 }
740 
741 /*
742  * when btree blocks are allocated, they have some corresponding bits set for
743  * them in one of two extent_io trees.  This is used to make sure all of
744  * those extents are on disk for transaction or log commit
745  */
746 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
747 				struct extent_io_tree *dirty_pages, int mark)
748 {
749 	int ret;
750 	int ret2;
751 
752 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
753 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
754 
755 	if (ret)
756 		return ret;
757 	if (ret2)
758 		return ret2;
759 	return 0;
760 }
761 
762 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
763 				     struct btrfs_root *root)
764 {
765 	if (!trans || !trans->transaction) {
766 		struct inode *btree_inode;
767 		btree_inode = root->fs_info->btree_inode;
768 		return filemap_write_and_wait(btree_inode->i_mapping);
769 	}
770 	return btrfs_write_and_wait_marked_extents(root,
771 					   &trans->transaction->dirty_pages,
772 					   EXTENT_DIRTY);
773 }
774 
775 /*
776  * this is used to update the root pointer in the tree of tree roots.
777  *
778  * But, in the case of the extent allocation tree, updating the root
779  * pointer may allocate blocks which may change the root of the extent
780  * allocation tree.
781  *
782  * So, this loops and repeats and makes sure the cowonly root didn't
783  * change while the root pointer was being updated in the metadata.
784  */
785 static int update_cowonly_root(struct btrfs_trans_handle *trans,
786 			       struct btrfs_root *root)
787 {
788 	int ret;
789 	u64 old_root_bytenr;
790 	u64 old_root_used;
791 	struct btrfs_root *tree_root = root->fs_info->tree_root;
792 
793 	old_root_used = btrfs_root_used(&root->root_item);
794 	btrfs_write_dirty_block_groups(trans, root);
795 
796 	while (1) {
797 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
798 		if (old_root_bytenr == root->node->start &&
799 		    old_root_used == btrfs_root_used(&root->root_item))
800 			break;
801 
802 		btrfs_set_root_node(&root->root_item, root->node);
803 		ret = btrfs_update_root(trans, tree_root,
804 					&root->root_key,
805 					&root->root_item);
806 		if (ret)
807 			return ret;
808 
809 		old_root_used = btrfs_root_used(&root->root_item);
810 		ret = btrfs_write_dirty_block_groups(trans, root);
811 		if (ret)
812 			return ret;
813 	}
814 
815 	if (root != root->fs_info->extent_root)
816 		switch_commit_root(root);
817 
818 	return 0;
819 }
820 
821 /*
822  * update all the cowonly tree roots on disk
823  *
824  * The error handling in this function may not be obvious. Any of the
825  * failures will cause the file system to go offline. We still need
826  * to clean up the delayed refs.
827  */
828 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
829 					 struct btrfs_root *root)
830 {
831 	struct btrfs_fs_info *fs_info = root->fs_info;
832 	struct list_head *next;
833 	struct extent_buffer *eb;
834 	int ret;
835 
836 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
837 	if (ret)
838 		return ret;
839 
840 	eb = btrfs_lock_root_node(fs_info->tree_root);
841 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
842 			      0, &eb);
843 	btrfs_tree_unlock(eb);
844 	free_extent_buffer(eb);
845 
846 	if (ret)
847 		return ret;
848 
849 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
850 	if (ret)
851 		return ret;
852 
853 	ret = btrfs_run_dev_stats(trans, root->fs_info);
854 	BUG_ON(ret);
855 
856 	ret = btrfs_run_qgroups(trans, root->fs_info);
857 	BUG_ON(ret);
858 
859 	/* run_qgroups might have added some more refs */
860 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
861 	BUG_ON(ret);
862 
863 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
864 		next = fs_info->dirty_cowonly_roots.next;
865 		list_del_init(next);
866 		root = list_entry(next, struct btrfs_root, dirty_list);
867 
868 		ret = update_cowonly_root(trans, root);
869 		if (ret)
870 			return ret;
871 	}
872 
873 	down_write(&fs_info->extent_commit_sem);
874 	switch_commit_root(fs_info->extent_root);
875 	up_write(&fs_info->extent_commit_sem);
876 
877 	return 0;
878 }
879 
880 /*
881  * dead roots are old snapshots that need to be deleted.  This allocates
882  * a dirty root struct and adds it into the list of dead roots that need to
883  * be deleted
884  */
885 int btrfs_add_dead_root(struct btrfs_root *root)
886 {
887 	spin_lock(&root->fs_info->trans_lock);
888 	list_add(&root->root_list, &root->fs_info->dead_roots);
889 	spin_unlock(&root->fs_info->trans_lock);
890 	return 0;
891 }
892 
893 /*
894  * update all the cowonly tree roots on disk
895  */
896 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
897 				    struct btrfs_root *root)
898 {
899 	struct btrfs_root *gang[8];
900 	struct btrfs_fs_info *fs_info = root->fs_info;
901 	int i;
902 	int ret;
903 	int err = 0;
904 
905 	spin_lock(&fs_info->fs_roots_radix_lock);
906 	while (1) {
907 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
908 						 (void **)gang, 0,
909 						 ARRAY_SIZE(gang),
910 						 BTRFS_ROOT_TRANS_TAG);
911 		if (ret == 0)
912 			break;
913 		for (i = 0; i < ret; i++) {
914 			root = gang[i];
915 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
916 					(unsigned long)root->root_key.objectid,
917 					BTRFS_ROOT_TRANS_TAG);
918 			spin_unlock(&fs_info->fs_roots_radix_lock);
919 
920 			btrfs_free_log(trans, root);
921 			btrfs_update_reloc_root(trans, root);
922 			btrfs_orphan_commit_root(trans, root);
923 
924 			btrfs_save_ino_cache(root, trans);
925 
926 			/* see comments in should_cow_block() */
927 			root->force_cow = 0;
928 			smp_wmb();
929 
930 			if (root->commit_root != root->node) {
931 				mutex_lock(&root->fs_commit_mutex);
932 				switch_commit_root(root);
933 				btrfs_unpin_free_ino(root);
934 				mutex_unlock(&root->fs_commit_mutex);
935 
936 				btrfs_set_root_node(&root->root_item,
937 						    root->node);
938 			}
939 
940 			err = btrfs_update_root(trans, fs_info->tree_root,
941 						&root->root_key,
942 						&root->root_item);
943 			spin_lock(&fs_info->fs_roots_radix_lock);
944 			if (err)
945 				break;
946 		}
947 	}
948 	spin_unlock(&fs_info->fs_roots_radix_lock);
949 	return err;
950 }
951 
952 /*
953  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
954  * otherwise every leaf in the btree is read and defragged.
955  */
956 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
957 {
958 	struct btrfs_fs_info *info = root->fs_info;
959 	struct btrfs_trans_handle *trans;
960 	int ret;
961 	unsigned long nr;
962 
963 	if (xchg(&root->defrag_running, 1))
964 		return 0;
965 
966 	while (1) {
967 		trans = btrfs_start_transaction(root, 0);
968 		if (IS_ERR(trans))
969 			return PTR_ERR(trans);
970 
971 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
972 
973 		nr = trans->blocks_used;
974 		btrfs_end_transaction(trans, root);
975 		btrfs_btree_balance_dirty(info->tree_root, nr);
976 		cond_resched();
977 
978 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
979 			break;
980 	}
981 	root->defrag_running = 0;
982 	return ret;
983 }
984 
985 /*
986  * new snapshots need to be created at a very specific time in the
987  * transaction commit.  This does the actual creation
988  */
989 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
990 				   struct btrfs_fs_info *fs_info,
991 				   struct btrfs_pending_snapshot *pending)
992 {
993 	struct btrfs_key key;
994 	struct btrfs_root_item *new_root_item;
995 	struct btrfs_root *tree_root = fs_info->tree_root;
996 	struct btrfs_root *root = pending->root;
997 	struct btrfs_root *parent_root;
998 	struct btrfs_block_rsv *rsv;
999 	struct inode *parent_inode;
1000 	struct btrfs_path *path;
1001 	struct btrfs_dir_item *dir_item;
1002 	struct dentry *parent;
1003 	struct dentry *dentry;
1004 	struct extent_buffer *tmp;
1005 	struct extent_buffer *old;
1006 	struct timespec cur_time = CURRENT_TIME;
1007 	int ret;
1008 	u64 to_reserve = 0;
1009 	u64 index = 0;
1010 	u64 objectid;
1011 	u64 root_flags;
1012 	uuid_le new_uuid;
1013 
1014 	path = btrfs_alloc_path();
1015 	if (!path) {
1016 		ret = pending->error = -ENOMEM;
1017 		goto path_alloc_fail;
1018 	}
1019 
1020 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1021 	if (!new_root_item) {
1022 		ret = pending->error = -ENOMEM;
1023 		goto root_item_alloc_fail;
1024 	}
1025 
1026 	ret = btrfs_find_free_objectid(tree_root, &objectid);
1027 	if (ret) {
1028 		pending->error = ret;
1029 		goto no_free_objectid;
1030 	}
1031 
1032 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1033 
1034 	if (to_reserve > 0) {
1035 		ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
1036 						  to_reserve);
1037 		if (ret) {
1038 			pending->error = ret;
1039 			goto no_free_objectid;
1040 		}
1041 	}
1042 
1043 	ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1044 				   objectid, pending->inherit);
1045 	if (ret) {
1046 		pending->error = ret;
1047 		goto no_free_objectid;
1048 	}
1049 
1050 	key.objectid = objectid;
1051 	key.offset = (u64)-1;
1052 	key.type = BTRFS_ROOT_ITEM_KEY;
1053 
1054 	rsv = trans->block_rsv;
1055 	trans->block_rsv = &pending->block_rsv;
1056 
1057 	dentry = pending->dentry;
1058 	parent = dget_parent(dentry);
1059 	parent_inode = parent->d_inode;
1060 	parent_root = BTRFS_I(parent_inode)->root;
1061 	record_root_in_trans(trans, parent_root);
1062 
1063 	/*
1064 	 * insert the directory item
1065 	 */
1066 	ret = btrfs_set_inode_index(parent_inode, &index);
1067 	BUG_ON(ret); /* -ENOMEM */
1068 
1069 	/* check if there is a file/dir which has the same name. */
1070 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1071 					 btrfs_ino(parent_inode),
1072 					 dentry->d_name.name,
1073 					 dentry->d_name.len, 0);
1074 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1075 		pending->error = -EEXIST;
1076 		goto fail;
1077 	} else if (IS_ERR(dir_item)) {
1078 		ret = PTR_ERR(dir_item);
1079 		btrfs_abort_transaction(trans, root, ret);
1080 		goto fail;
1081 	}
1082 	btrfs_release_path(path);
1083 
1084 	/*
1085 	 * pull in the delayed directory update
1086 	 * and the delayed inode item
1087 	 * otherwise we corrupt the FS during
1088 	 * snapshot
1089 	 */
1090 	ret = btrfs_run_delayed_items(trans, root);
1091 	if (ret) {	/* Transaction aborted */
1092 		btrfs_abort_transaction(trans, root, ret);
1093 		goto fail;
1094 	}
1095 
1096 	record_root_in_trans(trans, root);
1097 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1098 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1099 	btrfs_check_and_init_root_item(new_root_item);
1100 
1101 	root_flags = btrfs_root_flags(new_root_item);
1102 	if (pending->readonly)
1103 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1104 	else
1105 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1106 	btrfs_set_root_flags(new_root_item, root_flags);
1107 
1108 	btrfs_set_root_generation_v2(new_root_item,
1109 			trans->transid);
1110 	uuid_le_gen(&new_uuid);
1111 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1112 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1113 			BTRFS_UUID_SIZE);
1114 	new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1115 	new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1116 	btrfs_set_root_otransid(new_root_item, trans->transid);
1117 	memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1118 	memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1119 	btrfs_set_root_stransid(new_root_item, 0);
1120 	btrfs_set_root_rtransid(new_root_item, 0);
1121 
1122 	old = btrfs_lock_root_node(root);
1123 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1124 	if (ret) {
1125 		btrfs_tree_unlock(old);
1126 		free_extent_buffer(old);
1127 		btrfs_abort_transaction(trans, root, ret);
1128 		goto fail;
1129 	}
1130 
1131 	btrfs_set_lock_blocking(old);
1132 
1133 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1134 	/* clean up in any case */
1135 	btrfs_tree_unlock(old);
1136 	free_extent_buffer(old);
1137 	if (ret) {
1138 		btrfs_abort_transaction(trans, root, ret);
1139 		goto fail;
1140 	}
1141 
1142 	/* see comments in should_cow_block() */
1143 	root->force_cow = 1;
1144 	smp_wmb();
1145 
1146 	btrfs_set_root_node(new_root_item, tmp);
1147 	/* record when the snapshot was created in key.offset */
1148 	key.offset = trans->transid;
1149 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1150 	btrfs_tree_unlock(tmp);
1151 	free_extent_buffer(tmp);
1152 	if (ret) {
1153 		btrfs_abort_transaction(trans, root, ret);
1154 		goto fail;
1155 	}
1156 
1157 	/*
1158 	 * insert root back/forward references
1159 	 */
1160 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1161 				 parent_root->root_key.objectid,
1162 				 btrfs_ino(parent_inode), index,
1163 				 dentry->d_name.name, dentry->d_name.len);
1164 	if (ret) {
1165 		btrfs_abort_transaction(trans, root, ret);
1166 		goto fail;
1167 	}
1168 
1169 	key.offset = (u64)-1;
1170 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1171 	if (IS_ERR(pending->snap)) {
1172 		ret = PTR_ERR(pending->snap);
1173 		btrfs_abort_transaction(trans, root, ret);
1174 		goto fail;
1175 	}
1176 
1177 	ret = btrfs_reloc_post_snapshot(trans, pending);
1178 	if (ret) {
1179 		btrfs_abort_transaction(trans, root, ret);
1180 		goto fail;
1181 	}
1182 
1183 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1184 	if (ret) {
1185 		btrfs_abort_transaction(trans, root, ret);
1186 		goto fail;
1187 	}
1188 
1189 	ret = btrfs_insert_dir_item(trans, parent_root,
1190 				    dentry->d_name.name, dentry->d_name.len,
1191 				    parent_inode, &key,
1192 				    BTRFS_FT_DIR, index);
1193 	/* We have check then name at the beginning, so it is impossible. */
1194 	BUG_ON(ret == -EEXIST);
1195 	if (ret) {
1196 		btrfs_abort_transaction(trans, root, ret);
1197 		goto fail;
1198 	}
1199 
1200 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1201 					 dentry->d_name.len * 2);
1202 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1203 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1204 	if (ret)
1205 		btrfs_abort_transaction(trans, root, ret);
1206 fail:
1207 	dput(parent);
1208 	trans->block_rsv = rsv;
1209 no_free_objectid:
1210 	kfree(new_root_item);
1211 root_item_alloc_fail:
1212 	btrfs_free_path(path);
1213 path_alloc_fail:
1214 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1215 	return ret;
1216 }
1217 
1218 /*
1219  * create all the snapshots we've scheduled for creation
1220  */
1221 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1222 					     struct btrfs_fs_info *fs_info)
1223 {
1224 	struct btrfs_pending_snapshot *pending;
1225 	struct list_head *head = &trans->transaction->pending_snapshots;
1226 
1227 	list_for_each_entry(pending, head, list)
1228 		create_pending_snapshot(trans, fs_info, pending);
1229 	return 0;
1230 }
1231 
1232 static void update_super_roots(struct btrfs_root *root)
1233 {
1234 	struct btrfs_root_item *root_item;
1235 	struct btrfs_super_block *super;
1236 
1237 	super = root->fs_info->super_copy;
1238 
1239 	root_item = &root->fs_info->chunk_root->root_item;
1240 	super->chunk_root = root_item->bytenr;
1241 	super->chunk_root_generation = root_item->generation;
1242 	super->chunk_root_level = root_item->level;
1243 
1244 	root_item = &root->fs_info->tree_root->root_item;
1245 	super->root = root_item->bytenr;
1246 	super->generation = root_item->generation;
1247 	super->root_level = root_item->level;
1248 	if (btrfs_test_opt(root, SPACE_CACHE))
1249 		super->cache_generation = root_item->generation;
1250 }
1251 
1252 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1253 {
1254 	int ret = 0;
1255 	spin_lock(&info->trans_lock);
1256 	if (info->running_transaction)
1257 		ret = info->running_transaction->in_commit;
1258 	spin_unlock(&info->trans_lock);
1259 	return ret;
1260 }
1261 
1262 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1263 {
1264 	int ret = 0;
1265 	spin_lock(&info->trans_lock);
1266 	if (info->running_transaction)
1267 		ret = info->running_transaction->blocked;
1268 	spin_unlock(&info->trans_lock);
1269 	return ret;
1270 }
1271 
1272 /*
1273  * wait for the current transaction commit to start and block subsequent
1274  * transaction joins
1275  */
1276 static void wait_current_trans_commit_start(struct btrfs_root *root,
1277 					    struct btrfs_transaction *trans)
1278 {
1279 	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1280 }
1281 
1282 /*
1283  * wait for the current transaction to start and then become unblocked.
1284  * caller holds ref.
1285  */
1286 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1287 					 struct btrfs_transaction *trans)
1288 {
1289 	wait_event(root->fs_info->transaction_wait,
1290 		   trans->commit_done || (trans->in_commit && !trans->blocked));
1291 }
1292 
1293 /*
1294  * commit transactions asynchronously. once btrfs_commit_transaction_async
1295  * returns, any subsequent transaction will not be allowed to join.
1296  */
1297 struct btrfs_async_commit {
1298 	struct btrfs_trans_handle *newtrans;
1299 	struct btrfs_root *root;
1300 	struct delayed_work work;
1301 };
1302 
1303 static void do_async_commit(struct work_struct *work)
1304 {
1305 	struct btrfs_async_commit *ac =
1306 		container_of(work, struct btrfs_async_commit, work.work);
1307 
1308 	/*
1309 	 * We've got freeze protection passed with the transaction.
1310 	 * Tell lockdep about it.
1311 	 */
1312 	rwsem_acquire_read(
1313 		&ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1314 		0, 1, _THIS_IP_);
1315 
1316 	current->journal_info = ac->newtrans;
1317 
1318 	btrfs_commit_transaction(ac->newtrans, ac->root);
1319 	kfree(ac);
1320 }
1321 
1322 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1323 				   struct btrfs_root *root,
1324 				   int wait_for_unblock)
1325 {
1326 	struct btrfs_async_commit *ac;
1327 	struct btrfs_transaction *cur_trans;
1328 
1329 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1330 	if (!ac)
1331 		return -ENOMEM;
1332 
1333 	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1334 	ac->root = root;
1335 	ac->newtrans = btrfs_join_transaction(root);
1336 	if (IS_ERR(ac->newtrans)) {
1337 		int err = PTR_ERR(ac->newtrans);
1338 		kfree(ac);
1339 		return err;
1340 	}
1341 
1342 	/* take transaction reference */
1343 	cur_trans = trans->transaction;
1344 	atomic_inc(&cur_trans->use_count);
1345 
1346 	btrfs_end_transaction(trans, root);
1347 
1348 	/*
1349 	 * Tell lockdep we've released the freeze rwsem, since the
1350 	 * async commit thread will be the one to unlock it.
1351 	 */
1352 	rwsem_release(&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1353 		      1, _THIS_IP_);
1354 
1355 	schedule_delayed_work(&ac->work, 0);
1356 
1357 	/* wait for transaction to start and unblock */
1358 	if (wait_for_unblock)
1359 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1360 	else
1361 		wait_current_trans_commit_start(root, cur_trans);
1362 
1363 	if (current->journal_info == trans)
1364 		current->journal_info = NULL;
1365 
1366 	put_transaction(cur_trans);
1367 	return 0;
1368 }
1369 
1370 
1371 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1372 				struct btrfs_root *root, int err)
1373 {
1374 	struct btrfs_transaction *cur_trans = trans->transaction;
1375 
1376 	WARN_ON(trans->use_count > 1);
1377 
1378 	btrfs_abort_transaction(trans, root, err);
1379 
1380 	spin_lock(&root->fs_info->trans_lock);
1381 	list_del_init(&cur_trans->list);
1382 	if (cur_trans == root->fs_info->running_transaction) {
1383 		root->fs_info->running_transaction = NULL;
1384 		root->fs_info->trans_no_join = 0;
1385 	}
1386 	spin_unlock(&root->fs_info->trans_lock);
1387 
1388 	btrfs_cleanup_one_transaction(trans->transaction, root);
1389 
1390 	put_transaction(cur_trans);
1391 	put_transaction(cur_trans);
1392 
1393 	trace_btrfs_transaction_commit(root);
1394 
1395 	btrfs_scrub_continue(root);
1396 
1397 	if (current->journal_info == trans)
1398 		current->journal_info = NULL;
1399 
1400 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1401 }
1402 
1403 /*
1404  * btrfs_transaction state sequence:
1405  *    in_commit = 0, blocked = 0  (initial)
1406  *    in_commit = 1, blocked = 1
1407  *    blocked = 0
1408  *    commit_done = 1
1409  */
1410 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1411 			     struct btrfs_root *root)
1412 {
1413 	unsigned long joined = 0;
1414 	struct btrfs_transaction *cur_trans = trans->transaction;
1415 	struct btrfs_transaction *prev_trans = NULL;
1416 	DEFINE_WAIT(wait);
1417 	int ret = -EIO;
1418 	int should_grow = 0;
1419 	unsigned long now = get_seconds();
1420 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1421 
1422 	btrfs_run_ordered_operations(root, 0);
1423 
1424 	if (cur_trans->aborted)
1425 		goto cleanup_transaction;
1426 
1427 	/* make a pass through all the delayed refs we have so far
1428 	 * any runnings procs may add more while we are here
1429 	 */
1430 	ret = btrfs_run_delayed_refs(trans, root, 0);
1431 	if (ret)
1432 		goto cleanup_transaction;
1433 
1434 	btrfs_trans_release_metadata(trans, root);
1435 	trans->block_rsv = NULL;
1436 
1437 	cur_trans = trans->transaction;
1438 
1439 	/*
1440 	 * set the flushing flag so procs in this transaction have to
1441 	 * start sending their work down.
1442 	 */
1443 	cur_trans->delayed_refs.flushing = 1;
1444 
1445 	if (!list_empty(&trans->new_bgs))
1446 		btrfs_create_pending_block_groups(trans, root);
1447 
1448 	ret = btrfs_run_delayed_refs(trans, root, 0);
1449 	if (ret)
1450 		goto cleanup_transaction;
1451 
1452 	spin_lock(&cur_trans->commit_lock);
1453 	if (cur_trans->in_commit) {
1454 		spin_unlock(&cur_trans->commit_lock);
1455 		atomic_inc(&cur_trans->use_count);
1456 		ret = btrfs_end_transaction(trans, root);
1457 
1458 		wait_for_commit(root, cur_trans);
1459 
1460 		put_transaction(cur_trans);
1461 
1462 		return ret;
1463 	}
1464 
1465 	trans->transaction->in_commit = 1;
1466 	trans->transaction->blocked = 1;
1467 	spin_unlock(&cur_trans->commit_lock);
1468 	wake_up(&root->fs_info->transaction_blocked_wait);
1469 
1470 	spin_lock(&root->fs_info->trans_lock);
1471 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1472 		prev_trans = list_entry(cur_trans->list.prev,
1473 					struct btrfs_transaction, list);
1474 		if (!prev_trans->commit_done) {
1475 			atomic_inc(&prev_trans->use_count);
1476 			spin_unlock(&root->fs_info->trans_lock);
1477 
1478 			wait_for_commit(root, prev_trans);
1479 
1480 			put_transaction(prev_trans);
1481 		} else {
1482 			spin_unlock(&root->fs_info->trans_lock);
1483 		}
1484 	} else {
1485 		spin_unlock(&root->fs_info->trans_lock);
1486 	}
1487 
1488 	if (!btrfs_test_opt(root, SSD) &&
1489 	    (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1490 		should_grow = 1;
1491 
1492 	do {
1493 		int snap_pending = 0;
1494 
1495 		joined = cur_trans->num_joined;
1496 		if (!list_empty(&trans->transaction->pending_snapshots))
1497 			snap_pending = 1;
1498 
1499 		WARN_ON(cur_trans != trans->transaction);
1500 
1501 		if (flush_on_commit || snap_pending) {
1502 			btrfs_start_delalloc_inodes(root, 1);
1503 			btrfs_wait_ordered_extents(root, 1);
1504 		}
1505 
1506 		ret = btrfs_run_delayed_items(trans, root);
1507 		if (ret)
1508 			goto cleanup_transaction;
1509 
1510 		/*
1511 		 * running the delayed items may have added new refs. account
1512 		 * them now so that they hinder processing of more delayed refs
1513 		 * as little as possible.
1514 		 */
1515 		btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1516 
1517 		/*
1518 		 * rename don't use btrfs_join_transaction, so, once we
1519 		 * set the transaction to blocked above, we aren't going
1520 		 * to get any new ordered operations.  We can safely run
1521 		 * it here and no for sure that nothing new will be added
1522 		 * to the list
1523 		 */
1524 		btrfs_run_ordered_operations(root, 1);
1525 
1526 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1527 				TASK_UNINTERRUPTIBLE);
1528 
1529 		if (atomic_read(&cur_trans->num_writers) > 1)
1530 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1531 		else if (should_grow)
1532 			schedule_timeout(1);
1533 
1534 		finish_wait(&cur_trans->writer_wait, &wait);
1535 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1536 		 (should_grow && cur_trans->num_joined != joined));
1537 
1538 	/*
1539 	 * Ok now we need to make sure to block out any other joins while we
1540 	 * commit the transaction.  We could have started a join before setting
1541 	 * no_join so make sure to wait for num_writers to == 1 again.
1542 	 */
1543 	spin_lock(&root->fs_info->trans_lock);
1544 	root->fs_info->trans_no_join = 1;
1545 	spin_unlock(&root->fs_info->trans_lock);
1546 	wait_event(cur_trans->writer_wait,
1547 		   atomic_read(&cur_trans->num_writers) == 1);
1548 
1549 	/*
1550 	 * the reloc mutex makes sure that we stop
1551 	 * the balancing code from coming in and moving
1552 	 * extents around in the middle of the commit
1553 	 */
1554 	mutex_lock(&root->fs_info->reloc_mutex);
1555 
1556 	/*
1557 	 * We needn't worry about the delayed items because we will
1558 	 * deal with them in create_pending_snapshot(), which is the
1559 	 * core function of the snapshot creation.
1560 	 */
1561 	ret = create_pending_snapshots(trans, root->fs_info);
1562 	if (ret) {
1563 		mutex_unlock(&root->fs_info->reloc_mutex);
1564 		goto cleanup_transaction;
1565 	}
1566 
1567 	/*
1568 	 * We insert the dir indexes of the snapshots and update the inode
1569 	 * of the snapshots' parents after the snapshot creation, so there
1570 	 * are some delayed items which are not dealt with. Now deal with
1571 	 * them.
1572 	 *
1573 	 * We needn't worry that this operation will corrupt the snapshots,
1574 	 * because all the tree which are snapshoted will be forced to COW
1575 	 * the nodes and leaves.
1576 	 */
1577 	ret = btrfs_run_delayed_items(trans, root);
1578 	if (ret) {
1579 		mutex_unlock(&root->fs_info->reloc_mutex);
1580 		goto cleanup_transaction;
1581 	}
1582 
1583 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1584 	if (ret) {
1585 		mutex_unlock(&root->fs_info->reloc_mutex);
1586 		goto cleanup_transaction;
1587 	}
1588 
1589 	/*
1590 	 * make sure none of the code above managed to slip in a
1591 	 * delayed item
1592 	 */
1593 	btrfs_assert_delayed_root_empty(root);
1594 
1595 	WARN_ON(cur_trans != trans->transaction);
1596 
1597 	btrfs_scrub_pause(root);
1598 	/* btrfs_commit_tree_roots is responsible for getting the
1599 	 * various roots consistent with each other.  Every pointer
1600 	 * in the tree of tree roots has to point to the most up to date
1601 	 * root for every subvolume and other tree.  So, we have to keep
1602 	 * the tree logging code from jumping in and changing any
1603 	 * of the trees.
1604 	 *
1605 	 * At this point in the commit, there can't be any tree-log
1606 	 * writers, but a little lower down we drop the trans mutex
1607 	 * and let new people in.  By holding the tree_log_mutex
1608 	 * from now until after the super is written, we avoid races
1609 	 * with the tree-log code.
1610 	 */
1611 	mutex_lock(&root->fs_info->tree_log_mutex);
1612 
1613 	ret = commit_fs_roots(trans, root);
1614 	if (ret) {
1615 		mutex_unlock(&root->fs_info->tree_log_mutex);
1616 		mutex_unlock(&root->fs_info->reloc_mutex);
1617 		goto cleanup_transaction;
1618 	}
1619 
1620 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1621 	 * safe to free the root of tree log roots
1622 	 */
1623 	btrfs_free_log_root_tree(trans, root->fs_info);
1624 
1625 	ret = commit_cowonly_roots(trans, root);
1626 	if (ret) {
1627 		mutex_unlock(&root->fs_info->tree_log_mutex);
1628 		mutex_unlock(&root->fs_info->reloc_mutex);
1629 		goto cleanup_transaction;
1630 	}
1631 
1632 	btrfs_prepare_extent_commit(trans, root);
1633 
1634 	cur_trans = root->fs_info->running_transaction;
1635 
1636 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1637 			    root->fs_info->tree_root->node);
1638 	switch_commit_root(root->fs_info->tree_root);
1639 
1640 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1641 			    root->fs_info->chunk_root->node);
1642 	switch_commit_root(root->fs_info->chunk_root);
1643 
1644 	assert_qgroups_uptodate(trans);
1645 	update_super_roots(root);
1646 
1647 	if (!root->fs_info->log_root_recovering) {
1648 		btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1649 		btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1650 	}
1651 
1652 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1653 	       sizeof(*root->fs_info->super_copy));
1654 
1655 	trans->transaction->blocked = 0;
1656 	spin_lock(&root->fs_info->trans_lock);
1657 	root->fs_info->running_transaction = NULL;
1658 	root->fs_info->trans_no_join = 0;
1659 	spin_unlock(&root->fs_info->trans_lock);
1660 	mutex_unlock(&root->fs_info->reloc_mutex);
1661 
1662 	wake_up(&root->fs_info->transaction_wait);
1663 
1664 	ret = btrfs_write_and_wait_transaction(trans, root);
1665 	if (ret) {
1666 		btrfs_error(root->fs_info, ret,
1667 			    "Error while writing out transaction.");
1668 		mutex_unlock(&root->fs_info->tree_log_mutex);
1669 		goto cleanup_transaction;
1670 	}
1671 
1672 	ret = write_ctree_super(trans, root, 0);
1673 	if (ret) {
1674 		mutex_unlock(&root->fs_info->tree_log_mutex);
1675 		goto cleanup_transaction;
1676 	}
1677 
1678 	/*
1679 	 * the super is written, we can safely allow the tree-loggers
1680 	 * to go about their business
1681 	 */
1682 	mutex_unlock(&root->fs_info->tree_log_mutex);
1683 
1684 	btrfs_finish_extent_commit(trans, root);
1685 
1686 	cur_trans->commit_done = 1;
1687 
1688 	root->fs_info->last_trans_committed = cur_trans->transid;
1689 
1690 	wake_up(&cur_trans->commit_wait);
1691 
1692 	spin_lock(&root->fs_info->trans_lock);
1693 	list_del_init(&cur_trans->list);
1694 	spin_unlock(&root->fs_info->trans_lock);
1695 
1696 	put_transaction(cur_trans);
1697 	put_transaction(cur_trans);
1698 
1699 	if (trans->type < TRANS_JOIN_NOLOCK)
1700 		sb_end_intwrite(root->fs_info->sb);
1701 
1702 	trace_btrfs_transaction_commit(root);
1703 
1704 	btrfs_scrub_continue(root);
1705 
1706 	if (current->journal_info == trans)
1707 		current->journal_info = NULL;
1708 
1709 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1710 
1711 	if (current != root->fs_info->transaction_kthread)
1712 		btrfs_run_delayed_iputs(root);
1713 
1714 	return ret;
1715 
1716 cleanup_transaction:
1717 	btrfs_trans_release_metadata(trans, root);
1718 	trans->block_rsv = NULL;
1719 	btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1720 //	WARN_ON(1);
1721 	if (current->journal_info == trans)
1722 		current->journal_info = NULL;
1723 	cleanup_transaction(trans, root, ret);
1724 
1725 	return ret;
1726 }
1727 
1728 /*
1729  * interface function to delete all the snapshots we have scheduled for deletion
1730  */
1731 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1732 {
1733 	LIST_HEAD(list);
1734 	struct btrfs_fs_info *fs_info = root->fs_info;
1735 
1736 	spin_lock(&fs_info->trans_lock);
1737 	list_splice_init(&fs_info->dead_roots, &list);
1738 	spin_unlock(&fs_info->trans_lock);
1739 
1740 	while (!list_empty(&list)) {
1741 		int ret;
1742 
1743 		root = list_entry(list.next, struct btrfs_root, root_list);
1744 		list_del(&root->root_list);
1745 
1746 		btrfs_kill_all_delayed_nodes(root);
1747 
1748 		if (btrfs_header_backref_rev(root->node) <
1749 		    BTRFS_MIXED_BACKREF_REV)
1750 			ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1751 		else
1752 			ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1753 		BUG_ON(ret < 0);
1754 	}
1755 	return 0;
1756 }
1757