1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 34 #define BTRFS_ROOT_TRANS_TAG 0 35 36 void put_transaction(struct btrfs_transaction *transaction) 37 { 38 WARN_ON(atomic_read(&transaction->use_count) == 0); 39 if (atomic_dec_and_test(&transaction->use_count)) { 40 BUG_ON(!list_empty(&transaction->list)); 41 WARN_ON(transaction->delayed_refs.root.rb_node); 42 memset(transaction, 0, sizeof(*transaction)); 43 kmem_cache_free(btrfs_transaction_cachep, transaction); 44 } 45 } 46 47 static noinline void switch_commit_root(struct btrfs_root *root) 48 { 49 free_extent_buffer(root->commit_root); 50 root->commit_root = btrfs_root_node(root); 51 } 52 53 /* 54 * either allocate a new transaction or hop into the existing one 55 */ 56 static noinline int join_transaction(struct btrfs_root *root, int type) 57 { 58 struct btrfs_transaction *cur_trans; 59 struct btrfs_fs_info *fs_info = root->fs_info; 60 61 spin_lock(&fs_info->trans_lock); 62 loop: 63 /* The file system has been taken offline. No new transactions. */ 64 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 65 spin_unlock(&fs_info->trans_lock); 66 return -EROFS; 67 } 68 69 if (fs_info->trans_no_join) { 70 /* 71 * If we are JOIN_NOLOCK we're already committing a current 72 * transaction, we just need a handle to deal with something 73 * when committing the transaction, such as inode cache and 74 * space cache. It is a special case. 75 */ 76 if (type != TRANS_JOIN_NOLOCK) { 77 spin_unlock(&fs_info->trans_lock); 78 return -EBUSY; 79 } 80 } 81 82 cur_trans = fs_info->running_transaction; 83 if (cur_trans) { 84 if (cur_trans->aborted) { 85 spin_unlock(&fs_info->trans_lock); 86 return cur_trans->aborted; 87 } 88 atomic_inc(&cur_trans->use_count); 89 atomic_inc(&cur_trans->num_writers); 90 cur_trans->num_joined++; 91 spin_unlock(&fs_info->trans_lock); 92 return 0; 93 } 94 spin_unlock(&fs_info->trans_lock); 95 96 /* 97 * If we are ATTACH, we just want to catch the current transaction, 98 * and commit it. If there is no transaction, just return ENOENT. 99 */ 100 if (type == TRANS_ATTACH) 101 return -ENOENT; 102 103 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 104 if (!cur_trans) 105 return -ENOMEM; 106 107 spin_lock(&fs_info->trans_lock); 108 if (fs_info->running_transaction) { 109 /* 110 * someone started a transaction after we unlocked. Make sure 111 * to redo the trans_no_join checks above 112 */ 113 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 114 cur_trans = fs_info->running_transaction; 115 goto loop; 116 } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 117 spin_unlock(&fs_info->trans_lock); 118 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 119 return -EROFS; 120 } 121 122 atomic_set(&cur_trans->num_writers, 1); 123 cur_trans->num_joined = 0; 124 init_waitqueue_head(&cur_trans->writer_wait); 125 init_waitqueue_head(&cur_trans->commit_wait); 126 cur_trans->in_commit = 0; 127 cur_trans->blocked = 0; 128 /* 129 * One for this trans handle, one so it will live on until we 130 * commit the transaction. 131 */ 132 atomic_set(&cur_trans->use_count, 2); 133 cur_trans->commit_done = 0; 134 cur_trans->start_time = get_seconds(); 135 136 cur_trans->delayed_refs.root = RB_ROOT; 137 cur_trans->delayed_refs.num_entries = 0; 138 cur_trans->delayed_refs.num_heads_ready = 0; 139 cur_trans->delayed_refs.num_heads = 0; 140 cur_trans->delayed_refs.flushing = 0; 141 cur_trans->delayed_refs.run_delayed_start = 0; 142 143 /* 144 * although the tree mod log is per file system and not per transaction, 145 * the log must never go across transaction boundaries. 146 */ 147 smp_mb(); 148 if (!list_empty(&fs_info->tree_mod_seq_list)) { 149 printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when " 150 "creating a fresh transaction\n"); 151 WARN_ON(1); 152 } 153 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) { 154 printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when " 155 "creating a fresh transaction\n"); 156 WARN_ON(1); 157 } 158 atomic_set(&fs_info->tree_mod_seq, 0); 159 160 spin_lock_init(&cur_trans->commit_lock); 161 spin_lock_init(&cur_trans->delayed_refs.lock); 162 163 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 164 list_add_tail(&cur_trans->list, &fs_info->trans_list); 165 extent_io_tree_init(&cur_trans->dirty_pages, 166 fs_info->btree_inode->i_mapping); 167 fs_info->generation++; 168 cur_trans->transid = fs_info->generation; 169 fs_info->running_transaction = cur_trans; 170 cur_trans->aborted = 0; 171 spin_unlock(&fs_info->trans_lock); 172 173 return 0; 174 } 175 176 /* 177 * this does all the record keeping required to make sure that a reference 178 * counted root is properly recorded in a given transaction. This is required 179 * to make sure the old root from before we joined the transaction is deleted 180 * when the transaction commits 181 */ 182 static int record_root_in_trans(struct btrfs_trans_handle *trans, 183 struct btrfs_root *root) 184 { 185 if (root->ref_cows && root->last_trans < trans->transid) { 186 WARN_ON(root == root->fs_info->extent_root); 187 WARN_ON(root->commit_root != root->node); 188 189 /* 190 * see below for in_trans_setup usage rules 191 * we have the reloc mutex held now, so there 192 * is only one writer in this function 193 */ 194 root->in_trans_setup = 1; 195 196 /* make sure readers find in_trans_setup before 197 * they find our root->last_trans update 198 */ 199 smp_wmb(); 200 201 spin_lock(&root->fs_info->fs_roots_radix_lock); 202 if (root->last_trans == trans->transid) { 203 spin_unlock(&root->fs_info->fs_roots_radix_lock); 204 return 0; 205 } 206 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 207 (unsigned long)root->root_key.objectid, 208 BTRFS_ROOT_TRANS_TAG); 209 spin_unlock(&root->fs_info->fs_roots_radix_lock); 210 root->last_trans = trans->transid; 211 212 /* this is pretty tricky. We don't want to 213 * take the relocation lock in btrfs_record_root_in_trans 214 * unless we're really doing the first setup for this root in 215 * this transaction. 216 * 217 * Normally we'd use root->last_trans as a flag to decide 218 * if we want to take the expensive mutex. 219 * 220 * But, we have to set root->last_trans before we 221 * init the relocation root, otherwise, we trip over warnings 222 * in ctree.c. The solution used here is to flag ourselves 223 * with root->in_trans_setup. When this is 1, we're still 224 * fixing up the reloc trees and everyone must wait. 225 * 226 * When this is zero, they can trust root->last_trans and fly 227 * through btrfs_record_root_in_trans without having to take the 228 * lock. smp_wmb() makes sure that all the writes above are 229 * done before we pop in the zero below 230 */ 231 btrfs_init_reloc_root(trans, root); 232 smp_wmb(); 233 root->in_trans_setup = 0; 234 } 235 return 0; 236 } 237 238 239 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 240 struct btrfs_root *root) 241 { 242 if (!root->ref_cows) 243 return 0; 244 245 /* 246 * see record_root_in_trans for comments about in_trans_setup usage 247 * and barriers 248 */ 249 smp_rmb(); 250 if (root->last_trans == trans->transid && 251 !root->in_trans_setup) 252 return 0; 253 254 mutex_lock(&root->fs_info->reloc_mutex); 255 record_root_in_trans(trans, root); 256 mutex_unlock(&root->fs_info->reloc_mutex); 257 258 return 0; 259 } 260 261 /* wait for commit against the current transaction to become unblocked 262 * when this is done, it is safe to start a new transaction, but the current 263 * transaction might not be fully on disk. 264 */ 265 static void wait_current_trans(struct btrfs_root *root) 266 { 267 struct btrfs_transaction *cur_trans; 268 269 spin_lock(&root->fs_info->trans_lock); 270 cur_trans = root->fs_info->running_transaction; 271 if (cur_trans && cur_trans->blocked) { 272 atomic_inc(&cur_trans->use_count); 273 spin_unlock(&root->fs_info->trans_lock); 274 275 wait_event(root->fs_info->transaction_wait, 276 !cur_trans->blocked); 277 put_transaction(cur_trans); 278 } else { 279 spin_unlock(&root->fs_info->trans_lock); 280 } 281 } 282 283 static int may_wait_transaction(struct btrfs_root *root, int type) 284 { 285 if (root->fs_info->log_root_recovering) 286 return 0; 287 288 if (type == TRANS_USERSPACE) 289 return 1; 290 291 if (type == TRANS_START && 292 !atomic_read(&root->fs_info->open_ioctl_trans)) 293 return 1; 294 295 return 0; 296 } 297 298 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root, 299 u64 num_items, int type, 300 int noflush) 301 { 302 struct btrfs_trans_handle *h; 303 struct btrfs_transaction *cur_trans; 304 u64 num_bytes = 0; 305 int ret; 306 u64 qgroup_reserved = 0; 307 308 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 309 return ERR_PTR(-EROFS); 310 311 if (current->journal_info) { 312 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK); 313 h = current->journal_info; 314 h->use_count++; 315 h->orig_rsv = h->block_rsv; 316 h->block_rsv = NULL; 317 goto got_it; 318 } 319 320 /* 321 * Do the reservation before we join the transaction so we can do all 322 * the appropriate flushing if need be. 323 */ 324 if (num_items > 0 && root != root->fs_info->chunk_root) { 325 if (root->fs_info->quota_enabled && 326 is_fstree(root->root_key.objectid)) { 327 qgroup_reserved = num_items * root->leafsize; 328 ret = btrfs_qgroup_reserve(root, qgroup_reserved); 329 if (ret) 330 return ERR_PTR(ret); 331 } 332 333 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 334 if (noflush) 335 ret = btrfs_block_rsv_add_noflush(root, 336 &root->fs_info->trans_block_rsv, 337 num_bytes); 338 else 339 ret = btrfs_block_rsv_add(root, 340 &root->fs_info->trans_block_rsv, 341 num_bytes); 342 if (ret) 343 return ERR_PTR(ret); 344 } 345 again: 346 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 347 if (!h) 348 return ERR_PTR(-ENOMEM); 349 350 /* 351 * If we are JOIN_NOLOCK we're already committing a transaction and 352 * waiting on this guy, so we don't need to do the sb_start_intwrite 353 * because we're already holding a ref. We need this because we could 354 * have raced in and did an fsync() on a file which can kick a commit 355 * and then we deadlock with somebody doing a freeze. 356 * 357 * If we are ATTACH, it means we just want to catch the current 358 * transaction and commit it, so we needn't do sb_start_intwrite(). 359 */ 360 if (type < TRANS_JOIN_NOLOCK) 361 sb_start_intwrite(root->fs_info->sb); 362 363 if (may_wait_transaction(root, type)) 364 wait_current_trans(root); 365 366 do { 367 ret = join_transaction(root, type); 368 if (ret == -EBUSY) 369 wait_current_trans(root); 370 } while (ret == -EBUSY); 371 372 if (ret < 0) { 373 /* We must get the transaction if we are JOIN_NOLOCK. */ 374 BUG_ON(type == TRANS_JOIN_NOLOCK); 375 376 if (type < TRANS_JOIN_NOLOCK) 377 sb_end_intwrite(root->fs_info->sb); 378 kmem_cache_free(btrfs_trans_handle_cachep, h); 379 return ERR_PTR(ret); 380 } 381 382 cur_trans = root->fs_info->running_transaction; 383 384 h->transid = cur_trans->transid; 385 h->transaction = cur_trans; 386 h->blocks_used = 0; 387 h->bytes_reserved = 0; 388 h->root = root; 389 h->delayed_ref_updates = 0; 390 h->use_count = 1; 391 h->adding_csums = 0; 392 h->block_rsv = NULL; 393 h->orig_rsv = NULL; 394 h->aborted = 0; 395 h->qgroup_reserved = qgroup_reserved; 396 h->delayed_ref_elem.seq = 0; 397 h->type = type; 398 INIT_LIST_HEAD(&h->qgroup_ref_list); 399 INIT_LIST_HEAD(&h->new_bgs); 400 401 smp_mb(); 402 if (cur_trans->blocked && may_wait_transaction(root, type)) { 403 btrfs_commit_transaction(h, root); 404 goto again; 405 } 406 407 if (num_bytes) { 408 trace_btrfs_space_reservation(root->fs_info, "transaction", 409 h->transid, num_bytes, 1); 410 h->block_rsv = &root->fs_info->trans_block_rsv; 411 h->bytes_reserved = num_bytes; 412 } 413 414 got_it: 415 btrfs_record_root_in_trans(h, root); 416 417 if (!current->journal_info && type != TRANS_USERSPACE) 418 current->journal_info = h; 419 return h; 420 } 421 422 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 423 int num_items) 424 { 425 return start_transaction(root, num_items, TRANS_START, 0); 426 } 427 428 struct btrfs_trans_handle *btrfs_start_transaction_noflush( 429 struct btrfs_root *root, int num_items) 430 { 431 return start_transaction(root, num_items, TRANS_START, 1); 432 } 433 434 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 435 { 436 return start_transaction(root, 0, TRANS_JOIN, 0); 437 } 438 439 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 440 { 441 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 442 } 443 444 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 445 { 446 return start_transaction(root, 0, TRANS_USERSPACE, 0); 447 } 448 449 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 450 { 451 return start_transaction(root, 0, TRANS_ATTACH, 0); 452 } 453 454 /* wait for a transaction commit to be fully complete */ 455 static noinline void wait_for_commit(struct btrfs_root *root, 456 struct btrfs_transaction *commit) 457 { 458 wait_event(commit->commit_wait, commit->commit_done); 459 } 460 461 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 462 { 463 struct btrfs_transaction *cur_trans = NULL, *t; 464 int ret; 465 466 ret = 0; 467 if (transid) { 468 if (transid <= root->fs_info->last_trans_committed) 469 goto out; 470 471 /* find specified transaction */ 472 spin_lock(&root->fs_info->trans_lock); 473 list_for_each_entry(t, &root->fs_info->trans_list, list) { 474 if (t->transid == transid) { 475 cur_trans = t; 476 atomic_inc(&cur_trans->use_count); 477 break; 478 } 479 if (t->transid > transid) 480 break; 481 } 482 spin_unlock(&root->fs_info->trans_lock); 483 ret = -EINVAL; 484 if (!cur_trans) 485 goto out; /* bad transid */ 486 } else { 487 /* find newest transaction that is committing | committed */ 488 spin_lock(&root->fs_info->trans_lock); 489 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 490 list) { 491 if (t->in_commit) { 492 if (t->commit_done) 493 break; 494 cur_trans = t; 495 atomic_inc(&cur_trans->use_count); 496 break; 497 } 498 } 499 spin_unlock(&root->fs_info->trans_lock); 500 if (!cur_trans) 501 goto out; /* nothing committing|committed */ 502 } 503 504 wait_for_commit(root, cur_trans); 505 506 put_transaction(cur_trans); 507 ret = 0; 508 out: 509 return ret; 510 } 511 512 void btrfs_throttle(struct btrfs_root *root) 513 { 514 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 515 wait_current_trans(root); 516 } 517 518 static int should_end_transaction(struct btrfs_trans_handle *trans, 519 struct btrfs_root *root) 520 { 521 int ret; 522 523 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 524 return ret ? 1 : 0; 525 } 526 527 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 528 struct btrfs_root *root) 529 { 530 struct btrfs_transaction *cur_trans = trans->transaction; 531 int updates; 532 int err; 533 534 smp_mb(); 535 if (cur_trans->blocked || cur_trans->delayed_refs.flushing) 536 return 1; 537 538 updates = trans->delayed_ref_updates; 539 trans->delayed_ref_updates = 0; 540 if (updates) { 541 err = btrfs_run_delayed_refs(trans, root, updates); 542 if (err) /* Error code will also eval true */ 543 return err; 544 } 545 546 return should_end_transaction(trans, root); 547 } 548 549 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 550 struct btrfs_root *root, int throttle) 551 { 552 struct btrfs_transaction *cur_trans = trans->transaction; 553 struct btrfs_fs_info *info = root->fs_info; 554 int count = 0; 555 int lock = (trans->type != TRANS_JOIN_NOLOCK); 556 int err = 0; 557 558 if (--trans->use_count) { 559 trans->block_rsv = trans->orig_rsv; 560 return 0; 561 } 562 563 /* 564 * do the qgroup accounting as early as possible 565 */ 566 err = btrfs_delayed_refs_qgroup_accounting(trans, info); 567 568 btrfs_trans_release_metadata(trans, root); 569 trans->block_rsv = NULL; 570 /* 571 * the same root has to be passed to start_transaction and 572 * end_transaction. Subvolume quota depends on this. 573 */ 574 WARN_ON(trans->root != root); 575 576 if (trans->qgroup_reserved) { 577 btrfs_qgroup_free(root, trans->qgroup_reserved); 578 trans->qgroup_reserved = 0; 579 } 580 581 if (!list_empty(&trans->new_bgs)) 582 btrfs_create_pending_block_groups(trans, root); 583 584 while (count < 2) { 585 unsigned long cur = trans->delayed_ref_updates; 586 trans->delayed_ref_updates = 0; 587 if (cur && 588 trans->transaction->delayed_refs.num_heads_ready > 64) { 589 trans->delayed_ref_updates = 0; 590 btrfs_run_delayed_refs(trans, root, cur); 591 } else { 592 break; 593 } 594 count++; 595 } 596 btrfs_trans_release_metadata(trans, root); 597 trans->block_rsv = NULL; 598 599 if (!list_empty(&trans->new_bgs)) 600 btrfs_create_pending_block_groups(trans, root); 601 602 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 603 should_end_transaction(trans, root)) { 604 trans->transaction->blocked = 1; 605 smp_wmb(); 606 } 607 608 if (lock && cur_trans->blocked && !cur_trans->in_commit) { 609 if (throttle) { 610 /* 611 * We may race with somebody else here so end up having 612 * to call end_transaction on ourselves again, so inc 613 * our use_count. 614 */ 615 trans->use_count++; 616 return btrfs_commit_transaction(trans, root); 617 } else { 618 wake_up_process(info->transaction_kthread); 619 } 620 } 621 622 if (trans->type < TRANS_JOIN_NOLOCK) 623 sb_end_intwrite(root->fs_info->sb); 624 625 WARN_ON(cur_trans != info->running_transaction); 626 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 627 atomic_dec(&cur_trans->num_writers); 628 629 smp_mb(); 630 if (waitqueue_active(&cur_trans->writer_wait)) 631 wake_up(&cur_trans->writer_wait); 632 put_transaction(cur_trans); 633 634 if (current->journal_info == trans) 635 current->journal_info = NULL; 636 637 if (throttle) 638 btrfs_run_delayed_iputs(root); 639 640 if (trans->aborted || 641 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 642 err = -EIO; 643 } 644 assert_qgroups_uptodate(trans); 645 646 memset(trans, 0, sizeof(*trans)); 647 kmem_cache_free(btrfs_trans_handle_cachep, trans); 648 return err; 649 } 650 651 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 652 struct btrfs_root *root) 653 { 654 int ret; 655 656 ret = __btrfs_end_transaction(trans, root, 0); 657 if (ret) 658 return ret; 659 return 0; 660 } 661 662 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 663 struct btrfs_root *root) 664 { 665 int ret; 666 667 ret = __btrfs_end_transaction(trans, root, 1); 668 if (ret) 669 return ret; 670 return 0; 671 } 672 673 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans, 674 struct btrfs_root *root) 675 { 676 return __btrfs_end_transaction(trans, root, 1); 677 } 678 679 /* 680 * when btree blocks are allocated, they have some corresponding bits set for 681 * them in one of two extent_io trees. This is used to make sure all of 682 * those extents are sent to disk but does not wait on them 683 */ 684 int btrfs_write_marked_extents(struct btrfs_root *root, 685 struct extent_io_tree *dirty_pages, int mark) 686 { 687 int err = 0; 688 int werr = 0; 689 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 690 struct extent_state *cached_state = NULL; 691 u64 start = 0; 692 u64 end; 693 694 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 695 mark, &cached_state)) { 696 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 697 mark, &cached_state, GFP_NOFS); 698 cached_state = NULL; 699 err = filemap_fdatawrite_range(mapping, start, end); 700 if (err) 701 werr = err; 702 cond_resched(); 703 start = end + 1; 704 } 705 if (err) 706 werr = err; 707 return werr; 708 } 709 710 /* 711 * when btree blocks are allocated, they have some corresponding bits set for 712 * them in one of two extent_io trees. This is used to make sure all of 713 * those extents are on disk for transaction or log commit. We wait 714 * on all the pages and clear them from the dirty pages state tree 715 */ 716 int btrfs_wait_marked_extents(struct btrfs_root *root, 717 struct extent_io_tree *dirty_pages, int mark) 718 { 719 int err = 0; 720 int werr = 0; 721 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 722 struct extent_state *cached_state = NULL; 723 u64 start = 0; 724 u64 end; 725 726 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 727 EXTENT_NEED_WAIT, &cached_state)) { 728 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 729 0, 0, &cached_state, GFP_NOFS); 730 err = filemap_fdatawait_range(mapping, start, end); 731 if (err) 732 werr = err; 733 cond_resched(); 734 start = end + 1; 735 } 736 if (err) 737 werr = err; 738 return werr; 739 } 740 741 /* 742 * when btree blocks are allocated, they have some corresponding bits set for 743 * them in one of two extent_io trees. This is used to make sure all of 744 * those extents are on disk for transaction or log commit 745 */ 746 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 747 struct extent_io_tree *dirty_pages, int mark) 748 { 749 int ret; 750 int ret2; 751 752 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 753 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 754 755 if (ret) 756 return ret; 757 if (ret2) 758 return ret2; 759 return 0; 760 } 761 762 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 763 struct btrfs_root *root) 764 { 765 if (!trans || !trans->transaction) { 766 struct inode *btree_inode; 767 btree_inode = root->fs_info->btree_inode; 768 return filemap_write_and_wait(btree_inode->i_mapping); 769 } 770 return btrfs_write_and_wait_marked_extents(root, 771 &trans->transaction->dirty_pages, 772 EXTENT_DIRTY); 773 } 774 775 /* 776 * this is used to update the root pointer in the tree of tree roots. 777 * 778 * But, in the case of the extent allocation tree, updating the root 779 * pointer may allocate blocks which may change the root of the extent 780 * allocation tree. 781 * 782 * So, this loops and repeats and makes sure the cowonly root didn't 783 * change while the root pointer was being updated in the metadata. 784 */ 785 static int update_cowonly_root(struct btrfs_trans_handle *trans, 786 struct btrfs_root *root) 787 { 788 int ret; 789 u64 old_root_bytenr; 790 u64 old_root_used; 791 struct btrfs_root *tree_root = root->fs_info->tree_root; 792 793 old_root_used = btrfs_root_used(&root->root_item); 794 btrfs_write_dirty_block_groups(trans, root); 795 796 while (1) { 797 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 798 if (old_root_bytenr == root->node->start && 799 old_root_used == btrfs_root_used(&root->root_item)) 800 break; 801 802 btrfs_set_root_node(&root->root_item, root->node); 803 ret = btrfs_update_root(trans, tree_root, 804 &root->root_key, 805 &root->root_item); 806 if (ret) 807 return ret; 808 809 old_root_used = btrfs_root_used(&root->root_item); 810 ret = btrfs_write_dirty_block_groups(trans, root); 811 if (ret) 812 return ret; 813 } 814 815 if (root != root->fs_info->extent_root) 816 switch_commit_root(root); 817 818 return 0; 819 } 820 821 /* 822 * update all the cowonly tree roots on disk 823 * 824 * The error handling in this function may not be obvious. Any of the 825 * failures will cause the file system to go offline. We still need 826 * to clean up the delayed refs. 827 */ 828 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 829 struct btrfs_root *root) 830 { 831 struct btrfs_fs_info *fs_info = root->fs_info; 832 struct list_head *next; 833 struct extent_buffer *eb; 834 int ret; 835 836 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 837 if (ret) 838 return ret; 839 840 eb = btrfs_lock_root_node(fs_info->tree_root); 841 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 842 0, &eb); 843 btrfs_tree_unlock(eb); 844 free_extent_buffer(eb); 845 846 if (ret) 847 return ret; 848 849 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 850 if (ret) 851 return ret; 852 853 ret = btrfs_run_dev_stats(trans, root->fs_info); 854 BUG_ON(ret); 855 856 ret = btrfs_run_qgroups(trans, root->fs_info); 857 BUG_ON(ret); 858 859 /* run_qgroups might have added some more refs */ 860 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 861 BUG_ON(ret); 862 863 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 864 next = fs_info->dirty_cowonly_roots.next; 865 list_del_init(next); 866 root = list_entry(next, struct btrfs_root, dirty_list); 867 868 ret = update_cowonly_root(trans, root); 869 if (ret) 870 return ret; 871 } 872 873 down_write(&fs_info->extent_commit_sem); 874 switch_commit_root(fs_info->extent_root); 875 up_write(&fs_info->extent_commit_sem); 876 877 return 0; 878 } 879 880 /* 881 * dead roots are old snapshots that need to be deleted. This allocates 882 * a dirty root struct and adds it into the list of dead roots that need to 883 * be deleted 884 */ 885 int btrfs_add_dead_root(struct btrfs_root *root) 886 { 887 spin_lock(&root->fs_info->trans_lock); 888 list_add(&root->root_list, &root->fs_info->dead_roots); 889 spin_unlock(&root->fs_info->trans_lock); 890 return 0; 891 } 892 893 /* 894 * update all the cowonly tree roots on disk 895 */ 896 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 897 struct btrfs_root *root) 898 { 899 struct btrfs_root *gang[8]; 900 struct btrfs_fs_info *fs_info = root->fs_info; 901 int i; 902 int ret; 903 int err = 0; 904 905 spin_lock(&fs_info->fs_roots_radix_lock); 906 while (1) { 907 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 908 (void **)gang, 0, 909 ARRAY_SIZE(gang), 910 BTRFS_ROOT_TRANS_TAG); 911 if (ret == 0) 912 break; 913 for (i = 0; i < ret; i++) { 914 root = gang[i]; 915 radix_tree_tag_clear(&fs_info->fs_roots_radix, 916 (unsigned long)root->root_key.objectid, 917 BTRFS_ROOT_TRANS_TAG); 918 spin_unlock(&fs_info->fs_roots_radix_lock); 919 920 btrfs_free_log(trans, root); 921 btrfs_update_reloc_root(trans, root); 922 btrfs_orphan_commit_root(trans, root); 923 924 btrfs_save_ino_cache(root, trans); 925 926 /* see comments in should_cow_block() */ 927 root->force_cow = 0; 928 smp_wmb(); 929 930 if (root->commit_root != root->node) { 931 mutex_lock(&root->fs_commit_mutex); 932 switch_commit_root(root); 933 btrfs_unpin_free_ino(root); 934 mutex_unlock(&root->fs_commit_mutex); 935 936 btrfs_set_root_node(&root->root_item, 937 root->node); 938 } 939 940 err = btrfs_update_root(trans, fs_info->tree_root, 941 &root->root_key, 942 &root->root_item); 943 spin_lock(&fs_info->fs_roots_radix_lock); 944 if (err) 945 break; 946 } 947 } 948 spin_unlock(&fs_info->fs_roots_radix_lock); 949 return err; 950 } 951 952 /* 953 * defrag a given btree. If cacheonly == 1, this won't read from the disk, 954 * otherwise every leaf in the btree is read and defragged. 955 */ 956 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly) 957 { 958 struct btrfs_fs_info *info = root->fs_info; 959 struct btrfs_trans_handle *trans; 960 int ret; 961 unsigned long nr; 962 963 if (xchg(&root->defrag_running, 1)) 964 return 0; 965 966 while (1) { 967 trans = btrfs_start_transaction(root, 0); 968 if (IS_ERR(trans)) 969 return PTR_ERR(trans); 970 971 ret = btrfs_defrag_leaves(trans, root, cacheonly); 972 973 nr = trans->blocks_used; 974 btrfs_end_transaction(trans, root); 975 btrfs_btree_balance_dirty(info->tree_root, nr); 976 cond_resched(); 977 978 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 979 break; 980 } 981 root->defrag_running = 0; 982 return ret; 983 } 984 985 /* 986 * new snapshots need to be created at a very specific time in the 987 * transaction commit. This does the actual creation 988 */ 989 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 990 struct btrfs_fs_info *fs_info, 991 struct btrfs_pending_snapshot *pending) 992 { 993 struct btrfs_key key; 994 struct btrfs_root_item *new_root_item; 995 struct btrfs_root *tree_root = fs_info->tree_root; 996 struct btrfs_root *root = pending->root; 997 struct btrfs_root *parent_root; 998 struct btrfs_block_rsv *rsv; 999 struct inode *parent_inode; 1000 struct btrfs_path *path; 1001 struct btrfs_dir_item *dir_item; 1002 struct dentry *parent; 1003 struct dentry *dentry; 1004 struct extent_buffer *tmp; 1005 struct extent_buffer *old; 1006 struct timespec cur_time = CURRENT_TIME; 1007 int ret; 1008 u64 to_reserve = 0; 1009 u64 index = 0; 1010 u64 objectid; 1011 u64 root_flags; 1012 uuid_le new_uuid; 1013 1014 path = btrfs_alloc_path(); 1015 if (!path) { 1016 ret = pending->error = -ENOMEM; 1017 goto path_alloc_fail; 1018 } 1019 1020 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1021 if (!new_root_item) { 1022 ret = pending->error = -ENOMEM; 1023 goto root_item_alloc_fail; 1024 } 1025 1026 ret = btrfs_find_free_objectid(tree_root, &objectid); 1027 if (ret) { 1028 pending->error = ret; 1029 goto no_free_objectid; 1030 } 1031 1032 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); 1033 1034 if (to_reserve > 0) { 1035 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv, 1036 to_reserve); 1037 if (ret) { 1038 pending->error = ret; 1039 goto no_free_objectid; 1040 } 1041 } 1042 1043 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid, 1044 objectid, pending->inherit); 1045 if (ret) { 1046 pending->error = ret; 1047 goto no_free_objectid; 1048 } 1049 1050 key.objectid = objectid; 1051 key.offset = (u64)-1; 1052 key.type = BTRFS_ROOT_ITEM_KEY; 1053 1054 rsv = trans->block_rsv; 1055 trans->block_rsv = &pending->block_rsv; 1056 1057 dentry = pending->dentry; 1058 parent = dget_parent(dentry); 1059 parent_inode = parent->d_inode; 1060 parent_root = BTRFS_I(parent_inode)->root; 1061 record_root_in_trans(trans, parent_root); 1062 1063 /* 1064 * insert the directory item 1065 */ 1066 ret = btrfs_set_inode_index(parent_inode, &index); 1067 BUG_ON(ret); /* -ENOMEM */ 1068 1069 /* check if there is a file/dir which has the same name. */ 1070 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1071 btrfs_ino(parent_inode), 1072 dentry->d_name.name, 1073 dentry->d_name.len, 0); 1074 if (dir_item != NULL && !IS_ERR(dir_item)) { 1075 pending->error = -EEXIST; 1076 goto fail; 1077 } else if (IS_ERR(dir_item)) { 1078 ret = PTR_ERR(dir_item); 1079 btrfs_abort_transaction(trans, root, ret); 1080 goto fail; 1081 } 1082 btrfs_release_path(path); 1083 1084 /* 1085 * pull in the delayed directory update 1086 * and the delayed inode item 1087 * otherwise we corrupt the FS during 1088 * snapshot 1089 */ 1090 ret = btrfs_run_delayed_items(trans, root); 1091 if (ret) { /* Transaction aborted */ 1092 btrfs_abort_transaction(trans, root, ret); 1093 goto fail; 1094 } 1095 1096 record_root_in_trans(trans, root); 1097 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1098 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1099 btrfs_check_and_init_root_item(new_root_item); 1100 1101 root_flags = btrfs_root_flags(new_root_item); 1102 if (pending->readonly) 1103 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1104 else 1105 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1106 btrfs_set_root_flags(new_root_item, root_flags); 1107 1108 btrfs_set_root_generation_v2(new_root_item, 1109 trans->transid); 1110 uuid_le_gen(&new_uuid); 1111 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1112 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1113 BTRFS_UUID_SIZE); 1114 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec); 1115 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec); 1116 btrfs_set_root_otransid(new_root_item, trans->transid); 1117 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1118 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1119 btrfs_set_root_stransid(new_root_item, 0); 1120 btrfs_set_root_rtransid(new_root_item, 0); 1121 1122 old = btrfs_lock_root_node(root); 1123 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1124 if (ret) { 1125 btrfs_tree_unlock(old); 1126 free_extent_buffer(old); 1127 btrfs_abort_transaction(trans, root, ret); 1128 goto fail; 1129 } 1130 1131 btrfs_set_lock_blocking(old); 1132 1133 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1134 /* clean up in any case */ 1135 btrfs_tree_unlock(old); 1136 free_extent_buffer(old); 1137 if (ret) { 1138 btrfs_abort_transaction(trans, root, ret); 1139 goto fail; 1140 } 1141 1142 /* see comments in should_cow_block() */ 1143 root->force_cow = 1; 1144 smp_wmb(); 1145 1146 btrfs_set_root_node(new_root_item, tmp); 1147 /* record when the snapshot was created in key.offset */ 1148 key.offset = trans->transid; 1149 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1150 btrfs_tree_unlock(tmp); 1151 free_extent_buffer(tmp); 1152 if (ret) { 1153 btrfs_abort_transaction(trans, root, ret); 1154 goto fail; 1155 } 1156 1157 /* 1158 * insert root back/forward references 1159 */ 1160 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1161 parent_root->root_key.objectid, 1162 btrfs_ino(parent_inode), index, 1163 dentry->d_name.name, dentry->d_name.len); 1164 if (ret) { 1165 btrfs_abort_transaction(trans, root, ret); 1166 goto fail; 1167 } 1168 1169 key.offset = (u64)-1; 1170 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1171 if (IS_ERR(pending->snap)) { 1172 ret = PTR_ERR(pending->snap); 1173 btrfs_abort_transaction(trans, root, ret); 1174 goto fail; 1175 } 1176 1177 ret = btrfs_reloc_post_snapshot(trans, pending); 1178 if (ret) { 1179 btrfs_abort_transaction(trans, root, ret); 1180 goto fail; 1181 } 1182 1183 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1184 if (ret) { 1185 btrfs_abort_transaction(trans, root, ret); 1186 goto fail; 1187 } 1188 1189 ret = btrfs_insert_dir_item(trans, parent_root, 1190 dentry->d_name.name, dentry->d_name.len, 1191 parent_inode, &key, 1192 BTRFS_FT_DIR, index); 1193 /* We have check then name at the beginning, so it is impossible. */ 1194 BUG_ON(ret == -EEXIST); 1195 if (ret) { 1196 btrfs_abort_transaction(trans, root, ret); 1197 goto fail; 1198 } 1199 1200 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1201 dentry->d_name.len * 2); 1202 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1203 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1204 if (ret) 1205 btrfs_abort_transaction(trans, root, ret); 1206 fail: 1207 dput(parent); 1208 trans->block_rsv = rsv; 1209 no_free_objectid: 1210 kfree(new_root_item); 1211 root_item_alloc_fail: 1212 btrfs_free_path(path); 1213 path_alloc_fail: 1214 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1); 1215 return ret; 1216 } 1217 1218 /* 1219 * create all the snapshots we've scheduled for creation 1220 */ 1221 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1222 struct btrfs_fs_info *fs_info) 1223 { 1224 struct btrfs_pending_snapshot *pending; 1225 struct list_head *head = &trans->transaction->pending_snapshots; 1226 1227 list_for_each_entry(pending, head, list) 1228 create_pending_snapshot(trans, fs_info, pending); 1229 return 0; 1230 } 1231 1232 static void update_super_roots(struct btrfs_root *root) 1233 { 1234 struct btrfs_root_item *root_item; 1235 struct btrfs_super_block *super; 1236 1237 super = root->fs_info->super_copy; 1238 1239 root_item = &root->fs_info->chunk_root->root_item; 1240 super->chunk_root = root_item->bytenr; 1241 super->chunk_root_generation = root_item->generation; 1242 super->chunk_root_level = root_item->level; 1243 1244 root_item = &root->fs_info->tree_root->root_item; 1245 super->root = root_item->bytenr; 1246 super->generation = root_item->generation; 1247 super->root_level = root_item->level; 1248 if (btrfs_test_opt(root, SPACE_CACHE)) 1249 super->cache_generation = root_item->generation; 1250 } 1251 1252 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1253 { 1254 int ret = 0; 1255 spin_lock(&info->trans_lock); 1256 if (info->running_transaction) 1257 ret = info->running_transaction->in_commit; 1258 spin_unlock(&info->trans_lock); 1259 return ret; 1260 } 1261 1262 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1263 { 1264 int ret = 0; 1265 spin_lock(&info->trans_lock); 1266 if (info->running_transaction) 1267 ret = info->running_transaction->blocked; 1268 spin_unlock(&info->trans_lock); 1269 return ret; 1270 } 1271 1272 /* 1273 * wait for the current transaction commit to start and block subsequent 1274 * transaction joins 1275 */ 1276 static void wait_current_trans_commit_start(struct btrfs_root *root, 1277 struct btrfs_transaction *trans) 1278 { 1279 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit); 1280 } 1281 1282 /* 1283 * wait for the current transaction to start and then become unblocked. 1284 * caller holds ref. 1285 */ 1286 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1287 struct btrfs_transaction *trans) 1288 { 1289 wait_event(root->fs_info->transaction_wait, 1290 trans->commit_done || (trans->in_commit && !trans->blocked)); 1291 } 1292 1293 /* 1294 * commit transactions asynchronously. once btrfs_commit_transaction_async 1295 * returns, any subsequent transaction will not be allowed to join. 1296 */ 1297 struct btrfs_async_commit { 1298 struct btrfs_trans_handle *newtrans; 1299 struct btrfs_root *root; 1300 struct delayed_work work; 1301 }; 1302 1303 static void do_async_commit(struct work_struct *work) 1304 { 1305 struct btrfs_async_commit *ac = 1306 container_of(work, struct btrfs_async_commit, work.work); 1307 1308 /* 1309 * We've got freeze protection passed with the transaction. 1310 * Tell lockdep about it. 1311 */ 1312 rwsem_acquire_read( 1313 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1314 0, 1, _THIS_IP_); 1315 1316 current->journal_info = ac->newtrans; 1317 1318 btrfs_commit_transaction(ac->newtrans, ac->root); 1319 kfree(ac); 1320 } 1321 1322 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1323 struct btrfs_root *root, 1324 int wait_for_unblock) 1325 { 1326 struct btrfs_async_commit *ac; 1327 struct btrfs_transaction *cur_trans; 1328 1329 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1330 if (!ac) 1331 return -ENOMEM; 1332 1333 INIT_DELAYED_WORK(&ac->work, do_async_commit); 1334 ac->root = root; 1335 ac->newtrans = btrfs_join_transaction(root); 1336 if (IS_ERR(ac->newtrans)) { 1337 int err = PTR_ERR(ac->newtrans); 1338 kfree(ac); 1339 return err; 1340 } 1341 1342 /* take transaction reference */ 1343 cur_trans = trans->transaction; 1344 atomic_inc(&cur_trans->use_count); 1345 1346 btrfs_end_transaction(trans, root); 1347 1348 /* 1349 * Tell lockdep we've released the freeze rwsem, since the 1350 * async commit thread will be the one to unlock it. 1351 */ 1352 rwsem_release(&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1353 1, _THIS_IP_); 1354 1355 schedule_delayed_work(&ac->work, 0); 1356 1357 /* wait for transaction to start and unblock */ 1358 if (wait_for_unblock) 1359 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1360 else 1361 wait_current_trans_commit_start(root, cur_trans); 1362 1363 if (current->journal_info == trans) 1364 current->journal_info = NULL; 1365 1366 put_transaction(cur_trans); 1367 return 0; 1368 } 1369 1370 1371 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1372 struct btrfs_root *root, int err) 1373 { 1374 struct btrfs_transaction *cur_trans = trans->transaction; 1375 1376 WARN_ON(trans->use_count > 1); 1377 1378 btrfs_abort_transaction(trans, root, err); 1379 1380 spin_lock(&root->fs_info->trans_lock); 1381 list_del_init(&cur_trans->list); 1382 if (cur_trans == root->fs_info->running_transaction) { 1383 root->fs_info->running_transaction = NULL; 1384 root->fs_info->trans_no_join = 0; 1385 } 1386 spin_unlock(&root->fs_info->trans_lock); 1387 1388 btrfs_cleanup_one_transaction(trans->transaction, root); 1389 1390 put_transaction(cur_trans); 1391 put_transaction(cur_trans); 1392 1393 trace_btrfs_transaction_commit(root); 1394 1395 btrfs_scrub_continue(root); 1396 1397 if (current->journal_info == trans) 1398 current->journal_info = NULL; 1399 1400 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1401 } 1402 1403 /* 1404 * btrfs_transaction state sequence: 1405 * in_commit = 0, blocked = 0 (initial) 1406 * in_commit = 1, blocked = 1 1407 * blocked = 0 1408 * commit_done = 1 1409 */ 1410 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1411 struct btrfs_root *root) 1412 { 1413 unsigned long joined = 0; 1414 struct btrfs_transaction *cur_trans = trans->transaction; 1415 struct btrfs_transaction *prev_trans = NULL; 1416 DEFINE_WAIT(wait); 1417 int ret = -EIO; 1418 int should_grow = 0; 1419 unsigned long now = get_seconds(); 1420 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT); 1421 1422 btrfs_run_ordered_operations(root, 0); 1423 1424 if (cur_trans->aborted) 1425 goto cleanup_transaction; 1426 1427 /* make a pass through all the delayed refs we have so far 1428 * any runnings procs may add more while we are here 1429 */ 1430 ret = btrfs_run_delayed_refs(trans, root, 0); 1431 if (ret) 1432 goto cleanup_transaction; 1433 1434 btrfs_trans_release_metadata(trans, root); 1435 trans->block_rsv = NULL; 1436 1437 cur_trans = trans->transaction; 1438 1439 /* 1440 * set the flushing flag so procs in this transaction have to 1441 * start sending their work down. 1442 */ 1443 cur_trans->delayed_refs.flushing = 1; 1444 1445 if (!list_empty(&trans->new_bgs)) 1446 btrfs_create_pending_block_groups(trans, root); 1447 1448 ret = btrfs_run_delayed_refs(trans, root, 0); 1449 if (ret) 1450 goto cleanup_transaction; 1451 1452 spin_lock(&cur_trans->commit_lock); 1453 if (cur_trans->in_commit) { 1454 spin_unlock(&cur_trans->commit_lock); 1455 atomic_inc(&cur_trans->use_count); 1456 ret = btrfs_end_transaction(trans, root); 1457 1458 wait_for_commit(root, cur_trans); 1459 1460 put_transaction(cur_trans); 1461 1462 return ret; 1463 } 1464 1465 trans->transaction->in_commit = 1; 1466 trans->transaction->blocked = 1; 1467 spin_unlock(&cur_trans->commit_lock); 1468 wake_up(&root->fs_info->transaction_blocked_wait); 1469 1470 spin_lock(&root->fs_info->trans_lock); 1471 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1472 prev_trans = list_entry(cur_trans->list.prev, 1473 struct btrfs_transaction, list); 1474 if (!prev_trans->commit_done) { 1475 atomic_inc(&prev_trans->use_count); 1476 spin_unlock(&root->fs_info->trans_lock); 1477 1478 wait_for_commit(root, prev_trans); 1479 1480 put_transaction(prev_trans); 1481 } else { 1482 spin_unlock(&root->fs_info->trans_lock); 1483 } 1484 } else { 1485 spin_unlock(&root->fs_info->trans_lock); 1486 } 1487 1488 if (!btrfs_test_opt(root, SSD) && 1489 (now < cur_trans->start_time || now - cur_trans->start_time < 1)) 1490 should_grow = 1; 1491 1492 do { 1493 int snap_pending = 0; 1494 1495 joined = cur_trans->num_joined; 1496 if (!list_empty(&trans->transaction->pending_snapshots)) 1497 snap_pending = 1; 1498 1499 WARN_ON(cur_trans != trans->transaction); 1500 1501 if (flush_on_commit || snap_pending) { 1502 btrfs_start_delalloc_inodes(root, 1); 1503 btrfs_wait_ordered_extents(root, 1); 1504 } 1505 1506 ret = btrfs_run_delayed_items(trans, root); 1507 if (ret) 1508 goto cleanup_transaction; 1509 1510 /* 1511 * running the delayed items may have added new refs. account 1512 * them now so that they hinder processing of more delayed refs 1513 * as little as possible. 1514 */ 1515 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 1516 1517 /* 1518 * rename don't use btrfs_join_transaction, so, once we 1519 * set the transaction to blocked above, we aren't going 1520 * to get any new ordered operations. We can safely run 1521 * it here and no for sure that nothing new will be added 1522 * to the list 1523 */ 1524 btrfs_run_ordered_operations(root, 1); 1525 1526 prepare_to_wait(&cur_trans->writer_wait, &wait, 1527 TASK_UNINTERRUPTIBLE); 1528 1529 if (atomic_read(&cur_trans->num_writers) > 1) 1530 schedule_timeout(MAX_SCHEDULE_TIMEOUT); 1531 else if (should_grow) 1532 schedule_timeout(1); 1533 1534 finish_wait(&cur_trans->writer_wait, &wait); 1535 } while (atomic_read(&cur_trans->num_writers) > 1 || 1536 (should_grow && cur_trans->num_joined != joined)); 1537 1538 /* 1539 * Ok now we need to make sure to block out any other joins while we 1540 * commit the transaction. We could have started a join before setting 1541 * no_join so make sure to wait for num_writers to == 1 again. 1542 */ 1543 spin_lock(&root->fs_info->trans_lock); 1544 root->fs_info->trans_no_join = 1; 1545 spin_unlock(&root->fs_info->trans_lock); 1546 wait_event(cur_trans->writer_wait, 1547 atomic_read(&cur_trans->num_writers) == 1); 1548 1549 /* 1550 * the reloc mutex makes sure that we stop 1551 * the balancing code from coming in and moving 1552 * extents around in the middle of the commit 1553 */ 1554 mutex_lock(&root->fs_info->reloc_mutex); 1555 1556 /* 1557 * We needn't worry about the delayed items because we will 1558 * deal with them in create_pending_snapshot(), which is the 1559 * core function of the snapshot creation. 1560 */ 1561 ret = create_pending_snapshots(trans, root->fs_info); 1562 if (ret) { 1563 mutex_unlock(&root->fs_info->reloc_mutex); 1564 goto cleanup_transaction; 1565 } 1566 1567 /* 1568 * We insert the dir indexes of the snapshots and update the inode 1569 * of the snapshots' parents after the snapshot creation, so there 1570 * are some delayed items which are not dealt with. Now deal with 1571 * them. 1572 * 1573 * We needn't worry that this operation will corrupt the snapshots, 1574 * because all the tree which are snapshoted will be forced to COW 1575 * the nodes and leaves. 1576 */ 1577 ret = btrfs_run_delayed_items(trans, root); 1578 if (ret) { 1579 mutex_unlock(&root->fs_info->reloc_mutex); 1580 goto cleanup_transaction; 1581 } 1582 1583 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1584 if (ret) { 1585 mutex_unlock(&root->fs_info->reloc_mutex); 1586 goto cleanup_transaction; 1587 } 1588 1589 /* 1590 * make sure none of the code above managed to slip in a 1591 * delayed item 1592 */ 1593 btrfs_assert_delayed_root_empty(root); 1594 1595 WARN_ON(cur_trans != trans->transaction); 1596 1597 btrfs_scrub_pause(root); 1598 /* btrfs_commit_tree_roots is responsible for getting the 1599 * various roots consistent with each other. Every pointer 1600 * in the tree of tree roots has to point to the most up to date 1601 * root for every subvolume and other tree. So, we have to keep 1602 * the tree logging code from jumping in and changing any 1603 * of the trees. 1604 * 1605 * At this point in the commit, there can't be any tree-log 1606 * writers, but a little lower down we drop the trans mutex 1607 * and let new people in. By holding the tree_log_mutex 1608 * from now until after the super is written, we avoid races 1609 * with the tree-log code. 1610 */ 1611 mutex_lock(&root->fs_info->tree_log_mutex); 1612 1613 ret = commit_fs_roots(trans, root); 1614 if (ret) { 1615 mutex_unlock(&root->fs_info->tree_log_mutex); 1616 mutex_unlock(&root->fs_info->reloc_mutex); 1617 goto cleanup_transaction; 1618 } 1619 1620 /* commit_fs_roots gets rid of all the tree log roots, it is now 1621 * safe to free the root of tree log roots 1622 */ 1623 btrfs_free_log_root_tree(trans, root->fs_info); 1624 1625 ret = commit_cowonly_roots(trans, root); 1626 if (ret) { 1627 mutex_unlock(&root->fs_info->tree_log_mutex); 1628 mutex_unlock(&root->fs_info->reloc_mutex); 1629 goto cleanup_transaction; 1630 } 1631 1632 btrfs_prepare_extent_commit(trans, root); 1633 1634 cur_trans = root->fs_info->running_transaction; 1635 1636 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1637 root->fs_info->tree_root->node); 1638 switch_commit_root(root->fs_info->tree_root); 1639 1640 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1641 root->fs_info->chunk_root->node); 1642 switch_commit_root(root->fs_info->chunk_root); 1643 1644 assert_qgroups_uptodate(trans); 1645 update_super_roots(root); 1646 1647 if (!root->fs_info->log_root_recovering) { 1648 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 1649 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 1650 } 1651 1652 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 1653 sizeof(*root->fs_info->super_copy)); 1654 1655 trans->transaction->blocked = 0; 1656 spin_lock(&root->fs_info->trans_lock); 1657 root->fs_info->running_transaction = NULL; 1658 root->fs_info->trans_no_join = 0; 1659 spin_unlock(&root->fs_info->trans_lock); 1660 mutex_unlock(&root->fs_info->reloc_mutex); 1661 1662 wake_up(&root->fs_info->transaction_wait); 1663 1664 ret = btrfs_write_and_wait_transaction(trans, root); 1665 if (ret) { 1666 btrfs_error(root->fs_info, ret, 1667 "Error while writing out transaction."); 1668 mutex_unlock(&root->fs_info->tree_log_mutex); 1669 goto cleanup_transaction; 1670 } 1671 1672 ret = write_ctree_super(trans, root, 0); 1673 if (ret) { 1674 mutex_unlock(&root->fs_info->tree_log_mutex); 1675 goto cleanup_transaction; 1676 } 1677 1678 /* 1679 * the super is written, we can safely allow the tree-loggers 1680 * to go about their business 1681 */ 1682 mutex_unlock(&root->fs_info->tree_log_mutex); 1683 1684 btrfs_finish_extent_commit(trans, root); 1685 1686 cur_trans->commit_done = 1; 1687 1688 root->fs_info->last_trans_committed = cur_trans->transid; 1689 1690 wake_up(&cur_trans->commit_wait); 1691 1692 spin_lock(&root->fs_info->trans_lock); 1693 list_del_init(&cur_trans->list); 1694 spin_unlock(&root->fs_info->trans_lock); 1695 1696 put_transaction(cur_trans); 1697 put_transaction(cur_trans); 1698 1699 if (trans->type < TRANS_JOIN_NOLOCK) 1700 sb_end_intwrite(root->fs_info->sb); 1701 1702 trace_btrfs_transaction_commit(root); 1703 1704 btrfs_scrub_continue(root); 1705 1706 if (current->journal_info == trans) 1707 current->journal_info = NULL; 1708 1709 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1710 1711 if (current != root->fs_info->transaction_kthread) 1712 btrfs_run_delayed_iputs(root); 1713 1714 return ret; 1715 1716 cleanup_transaction: 1717 btrfs_trans_release_metadata(trans, root); 1718 trans->block_rsv = NULL; 1719 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n"); 1720 // WARN_ON(1); 1721 if (current->journal_info == trans) 1722 current->journal_info = NULL; 1723 cleanup_transaction(trans, root, ret); 1724 1725 return ret; 1726 } 1727 1728 /* 1729 * interface function to delete all the snapshots we have scheduled for deletion 1730 */ 1731 int btrfs_clean_old_snapshots(struct btrfs_root *root) 1732 { 1733 LIST_HEAD(list); 1734 struct btrfs_fs_info *fs_info = root->fs_info; 1735 1736 spin_lock(&fs_info->trans_lock); 1737 list_splice_init(&fs_info->dead_roots, &list); 1738 spin_unlock(&fs_info->trans_lock); 1739 1740 while (!list_empty(&list)) { 1741 int ret; 1742 1743 root = list_entry(list.next, struct btrfs_root, root_list); 1744 list_del(&root->root_list); 1745 1746 btrfs_kill_all_delayed_nodes(root); 1747 1748 if (btrfs_header_backref_rev(root->node) < 1749 BTRFS_MIXED_BACKREF_REV) 1750 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 1751 else 1752 ret =btrfs_drop_snapshot(root, NULL, 1, 0); 1753 BUG_ON(ret < 0); 1754 } 1755 return 0; 1756 } 1757