xref: /openbmc/linux/fs/btrfs/transaction.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "locking.h"
17 #include "tree-log.h"
18 #include "inode-map.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 
23 #define BTRFS_ROOT_TRANS_TAG 0
24 
25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
26 	[TRANS_STATE_RUNNING]		= 0U,
27 	[TRANS_STATE_BLOCKED]		=  __TRANS_START,
28 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
29 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
30 					   __TRANS_ATTACH |
31 					   __TRANS_JOIN |
32 					   __TRANS_JOIN_NOSTART),
33 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
34 					   __TRANS_ATTACH |
35 					   __TRANS_JOIN |
36 					   __TRANS_JOIN_NOLOCK |
37 					   __TRANS_JOIN_NOSTART),
38 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
39 					   __TRANS_ATTACH |
40 					   __TRANS_JOIN |
41 					   __TRANS_JOIN_NOLOCK |
42 					   __TRANS_JOIN_NOSTART),
43 };
44 
45 void btrfs_put_transaction(struct btrfs_transaction *transaction)
46 {
47 	WARN_ON(refcount_read(&transaction->use_count) == 0);
48 	if (refcount_dec_and_test(&transaction->use_count)) {
49 		BUG_ON(!list_empty(&transaction->list));
50 		WARN_ON(!RB_EMPTY_ROOT(
51 				&transaction->delayed_refs.href_root.rb_root));
52 		if (transaction->delayed_refs.pending_csums)
53 			btrfs_err(transaction->fs_info,
54 				  "pending csums is %llu",
55 				  transaction->delayed_refs.pending_csums);
56 		/*
57 		 * If any block groups are found in ->deleted_bgs then it's
58 		 * because the transaction was aborted and a commit did not
59 		 * happen (things failed before writing the new superblock
60 		 * and calling btrfs_finish_extent_commit()), so we can not
61 		 * discard the physical locations of the block groups.
62 		 */
63 		while (!list_empty(&transaction->deleted_bgs)) {
64 			struct btrfs_block_group_cache *cache;
65 
66 			cache = list_first_entry(&transaction->deleted_bgs,
67 						 struct btrfs_block_group_cache,
68 						 bg_list);
69 			list_del_init(&cache->bg_list);
70 			btrfs_put_block_group_trimming(cache);
71 			btrfs_put_block_group(cache);
72 		}
73 		WARN_ON(!list_empty(&transaction->dev_update_list));
74 		kfree(transaction);
75 	}
76 }
77 
78 static noinline void switch_commit_roots(struct btrfs_transaction *trans)
79 {
80 	struct btrfs_fs_info *fs_info = trans->fs_info;
81 	struct btrfs_root *root, *tmp;
82 
83 	down_write(&fs_info->commit_root_sem);
84 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
85 				 dirty_list) {
86 		list_del_init(&root->dirty_list);
87 		free_extent_buffer(root->commit_root);
88 		root->commit_root = btrfs_root_node(root);
89 		if (is_fstree(root->root_key.objectid))
90 			btrfs_unpin_free_ino(root);
91 		extent_io_tree_release(&root->dirty_log_pages);
92 		btrfs_qgroup_clean_swapped_blocks(root);
93 	}
94 
95 	/* We can free old roots now. */
96 	spin_lock(&trans->dropped_roots_lock);
97 	while (!list_empty(&trans->dropped_roots)) {
98 		root = list_first_entry(&trans->dropped_roots,
99 					struct btrfs_root, root_list);
100 		list_del_init(&root->root_list);
101 		spin_unlock(&trans->dropped_roots_lock);
102 		btrfs_drop_and_free_fs_root(fs_info, root);
103 		spin_lock(&trans->dropped_roots_lock);
104 	}
105 	spin_unlock(&trans->dropped_roots_lock);
106 	up_write(&fs_info->commit_root_sem);
107 }
108 
109 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
110 					 unsigned int type)
111 {
112 	if (type & TRANS_EXTWRITERS)
113 		atomic_inc(&trans->num_extwriters);
114 }
115 
116 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
117 					 unsigned int type)
118 {
119 	if (type & TRANS_EXTWRITERS)
120 		atomic_dec(&trans->num_extwriters);
121 }
122 
123 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
124 					  unsigned int type)
125 {
126 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
127 }
128 
129 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
130 {
131 	return atomic_read(&trans->num_extwriters);
132 }
133 
134 /*
135  * To be called after all the new block groups attached to the transaction
136  * handle have been created (btrfs_create_pending_block_groups()).
137  */
138 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
139 {
140 	struct btrfs_fs_info *fs_info = trans->fs_info;
141 
142 	if (!trans->chunk_bytes_reserved)
143 		return;
144 
145 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
146 
147 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
148 				trans->chunk_bytes_reserved);
149 	trans->chunk_bytes_reserved = 0;
150 }
151 
152 /*
153  * either allocate a new transaction or hop into the existing one
154  */
155 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
156 				     unsigned int type)
157 {
158 	struct btrfs_transaction *cur_trans;
159 
160 	spin_lock(&fs_info->trans_lock);
161 loop:
162 	/* The file system has been taken offline. No new transactions. */
163 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
164 		spin_unlock(&fs_info->trans_lock);
165 		return -EROFS;
166 	}
167 
168 	cur_trans = fs_info->running_transaction;
169 	if (cur_trans) {
170 		if (cur_trans->aborted) {
171 			spin_unlock(&fs_info->trans_lock);
172 			return cur_trans->aborted;
173 		}
174 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
175 			spin_unlock(&fs_info->trans_lock);
176 			return -EBUSY;
177 		}
178 		refcount_inc(&cur_trans->use_count);
179 		atomic_inc(&cur_trans->num_writers);
180 		extwriter_counter_inc(cur_trans, type);
181 		spin_unlock(&fs_info->trans_lock);
182 		return 0;
183 	}
184 	spin_unlock(&fs_info->trans_lock);
185 
186 	/*
187 	 * If we are ATTACH, we just want to catch the current transaction,
188 	 * and commit it. If there is no transaction, just return ENOENT.
189 	 */
190 	if (type == TRANS_ATTACH)
191 		return -ENOENT;
192 
193 	/*
194 	 * JOIN_NOLOCK only happens during the transaction commit, so
195 	 * it is impossible that ->running_transaction is NULL
196 	 */
197 	BUG_ON(type == TRANS_JOIN_NOLOCK);
198 
199 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
200 	if (!cur_trans)
201 		return -ENOMEM;
202 
203 	spin_lock(&fs_info->trans_lock);
204 	if (fs_info->running_transaction) {
205 		/*
206 		 * someone started a transaction after we unlocked.  Make sure
207 		 * to redo the checks above
208 		 */
209 		kfree(cur_trans);
210 		goto loop;
211 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
212 		spin_unlock(&fs_info->trans_lock);
213 		kfree(cur_trans);
214 		return -EROFS;
215 	}
216 
217 	cur_trans->fs_info = fs_info;
218 	atomic_set(&cur_trans->num_writers, 1);
219 	extwriter_counter_init(cur_trans, type);
220 	init_waitqueue_head(&cur_trans->writer_wait);
221 	init_waitqueue_head(&cur_trans->commit_wait);
222 	cur_trans->state = TRANS_STATE_RUNNING;
223 	/*
224 	 * One for this trans handle, one so it will live on until we
225 	 * commit the transaction.
226 	 */
227 	refcount_set(&cur_trans->use_count, 2);
228 	cur_trans->flags = 0;
229 	cur_trans->start_time = ktime_get_seconds();
230 
231 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
232 
233 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
234 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
235 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
236 
237 	/*
238 	 * although the tree mod log is per file system and not per transaction,
239 	 * the log must never go across transaction boundaries.
240 	 */
241 	smp_mb();
242 	if (!list_empty(&fs_info->tree_mod_seq_list))
243 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
244 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
245 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
246 	atomic64_set(&fs_info->tree_mod_seq, 0);
247 
248 	spin_lock_init(&cur_trans->delayed_refs.lock);
249 
250 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
251 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
252 	INIT_LIST_HEAD(&cur_trans->switch_commits);
253 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
254 	INIT_LIST_HEAD(&cur_trans->io_bgs);
255 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
256 	mutex_init(&cur_trans->cache_write_mutex);
257 	spin_lock_init(&cur_trans->dirty_bgs_lock);
258 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
259 	spin_lock_init(&cur_trans->dropped_roots_lock);
260 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
261 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
262 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
263 	fs_info->generation++;
264 	cur_trans->transid = fs_info->generation;
265 	fs_info->running_transaction = cur_trans;
266 	cur_trans->aborted = 0;
267 	spin_unlock(&fs_info->trans_lock);
268 
269 	return 0;
270 }
271 
272 /*
273  * this does all the record keeping required to make sure that a reference
274  * counted root is properly recorded in a given transaction.  This is required
275  * to make sure the old root from before we joined the transaction is deleted
276  * when the transaction commits
277  */
278 static int record_root_in_trans(struct btrfs_trans_handle *trans,
279 			       struct btrfs_root *root,
280 			       int force)
281 {
282 	struct btrfs_fs_info *fs_info = root->fs_info;
283 
284 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
285 	    root->last_trans < trans->transid) || force) {
286 		WARN_ON(root == fs_info->extent_root);
287 		WARN_ON(!force && root->commit_root != root->node);
288 
289 		/*
290 		 * see below for IN_TRANS_SETUP usage rules
291 		 * we have the reloc mutex held now, so there
292 		 * is only one writer in this function
293 		 */
294 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
295 
296 		/* make sure readers find IN_TRANS_SETUP before
297 		 * they find our root->last_trans update
298 		 */
299 		smp_wmb();
300 
301 		spin_lock(&fs_info->fs_roots_radix_lock);
302 		if (root->last_trans == trans->transid && !force) {
303 			spin_unlock(&fs_info->fs_roots_radix_lock);
304 			return 0;
305 		}
306 		radix_tree_tag_set(&fs_info->fs_roots_radix,
307 				   (unsigned long)root->root_key.objectid,
308 				   BTRFS_ROOT_TRANS_TAG);
309 		spin_unlock(&fs_info->fs_roots_radix_lock);
310 		root->last_trans = trans->transid;
311 
312 		/* this is pretty tricky.  We don't want to
313 		 * take the relocation lock in btrfs_record_root_in_trans
314 		 * unless we're really doing the first setup for this root in
315 		 * this transaction.
316 		 *
317 		 * Normally we'd use root->last_trans as a flag to decide
318 		 * if we want to take the expensive mutex.
319 		 *
320 		 * But, we have to set root->last_trans before we
321 		 * init the relocation root, otherwise, we trip over warnings
322 		 * in ctree.c.  The solution used here is to flag ourselves
323 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
324 		 * fixing up the reloc trees and everyone must wait.
325 		 *
326 		 * When this is zero, they can trust root->last_trans and fly
327 		 * through btrfs_record_root_in_trans without having to take the
328 		 * lock.  smp_wmb() makes sure that all the writes above are
329 		 * done before we pop in the zero below
330 		 */
331 		btrfs_init_reloc_root(trans, root);
332 		smp_mb__before_atomic();
333 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
334 	}
335 	return 0;
336 }
337 
338 
339 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
340 			    struct btrfs_root *root)
341 {
342 	struct btrfs_fs_info *fs_info = root->fs_info;
343 	struct btrfs_transaction *cur_trans = trans->transaction;
344 
345 	/* Add ourselves to the transaction dropped list */
346 	spin_lock(&cur_trans->dropped_roots_lock);
347 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
348 	spin_unlock(&cur_trans->dropped_roots_lock);
349 
350 	/* Make sure we don't try to update the root at commit time */
351 	spin_lock(&fs_info->fs_roots_radix_lock);
352 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
353 			     (unsigned long)root->root_key.objectid,
354 			     BTRFS_ROOT_TRANS_TAG);
355 	spin_unlock(&fs_info->fs_roots_radix_lock);
356 }
357 
358 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
359 			       struct btrfs_root *root)
360 {
361 	struct btrfs_fs_info *fs_info = root->fs_info;
362 
363 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
364 		return 0;
365 
366 	/*
367 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
368 	 * and barriers
369 	 */
370 	smp_rmb();
371 	if (root->last_trans == trans->transid &&
372 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
373 		return 0;
374 
375 	mutex_lock(&fs_info->reloc_mutex);
376 	record_root_in_trans(trans, root, 0);
377 	mutex_unlock(&fs_info->reloc_mutex);
378 
379 	return 0;
380 }
381 
382 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
383 {
384 	return (trans->state >= TRANS_STATE_BLOCKED &&
385 		trans->state < TRANS_STATE_UNBLOCKED &&
386 		!trans->aborted);
387 }
388 
389 /* wait for commit against the current transaction to become unblocked
390  * when this is done, it is safe to start a new transaction, but the current
391  * transaction might not be fully on disk.
392  */
393 static void wait_current_trans(struct btrfs_fs_info *fs_info)
394 {
395 	struct btrfs_transaction *cur_trans;
396 
397 	spin_lock(&fs_info->trans_lock);
398 	cur_trans = fs_info->running_transaction;
399 	if (cur_trans && is_transaction_blocked(cur_trans)) {
400 		refcount_inc(&cur_trans->use_count);
401 		spin_unlock(&fs_info->trans_lock);
402 
403 		wait_event(fs_info->transaction_wait,
404 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
405 			   cur_trans->aborted);
406 		btrfs_put_transaction(cur_trans);
407 	} else {
408 		spin_unlock(&fs_info->trans_lock);
409 	}
410 }
411 
412 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
413 {
414 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
415 		return 0;
416 
417 	if (type == TRANS_START)
418 		return 1;
419 
420 	return 0;
421 }
422 
423 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
424 {
425 	struct btrfs_fs_info *fs_info = root->fs_info;
426 
427 	if (!fs_info->reloc_ctl ||
428 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
429 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
430 	    root->reloc_root)
431 		return false;
432 
433 	return true;
434 }
435 
436 static struct btrfs_trans_handle *
437 start_transaction(struct btrfs_root *root, unsigned int num_items,
438 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
439 		  bool enforce_qgroups)
440 {
441 	struct btrfs_fs_info *fs_info = root->fs_info;
442 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
443 	struct btrfs_trans_handle *h;
444 	struct btrfs_transaction *cur_trans;
445 	u64 num_bytes = 0;
446 	u64 qgroup_reserved = 0;
447 	bool reloc_reserved = false;
448 	int ret;
449 
450 	/* Send isn't supposed to start transactions. */
451 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
452 
453 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
454 		return ERR_PTR(-EROFS);
455 
456 	if (current->journal_info) {
457 		WARN_ON(type & TRANS_EXTWRITERS);
458 		h = current->journal_info;
459 		refcount_inc(&h->use_count);
460 		WARN_ON(refcount_read(&h->use_count) > 2);
461 		h->orig_rsv = h->block_rsv;
462 		h->block_rsv = NULL;
463 		goto got_it;
464 	}
465 
466 	/*
467 	 * Do the reservation before we join the transaction so we can do all
468 	 * the appropriate flushing if need be.
469 	 */
470 	if (num_items && root != fs_info->chunk_root) {
471 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
472 		u64 delayed_refs_bytes = 0;
473 
474 		qgroup_reserved = num_items * fs_info->nodesize;
475 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
476 				enforce_qgroups);
477 		if (ret)
478 			return ERR_PTR(ret);
479 
480 		/*
481 		 * We want to reserve all the bytes we may need all at once, so
482 		 * we only do 1 enospc flushing cycle per transaction start.  We
483 		 * accomplish this by simply assuming we'll do 2 x num_items
484 		 * worth of delayed refs updates in this trans handle, and
485 		 * refill that amount for whatever is missing in the reserve.
486 		 */
487 		num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
488 		if (delayed_refs_rsv->full == 0) {
489 			delayed_refs_bytes = num_bytes;
490 			num_bytes <<= 1;
491 		}
492 
493 		/*
494 		 * Do the reservation for the relocation root creation
495 		 */
496 		if (need_reserve_reloc_root(root)) {
497 			num_bytes += fs_info->nodesize;
498 			reloc_reserved = true;
499 		}
500 
501 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
502 		if (ret)
503 			goto reserve_fail;
504 		if (delayed_refs_bytes) {
505 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
506 							  delayed_refs_bytes);
507 			num_bytes -= delayed_refs_bytes;
508 		}
509 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
510 		   !delayed_refs_rsv->full) {
511 		/*
512 		 * Some people call with btrfs_start_transaction(root, 0)
513 		 * because they can be throttled, but have some other mechanism
514 		 * for reserving space.  We still want these guys to refill the
515 		 * delayed block_rsv so just add 1 items worth of reservation
516 		 * here.
517 		 */
518 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
519 		if (ret)
520 			goto reserve_fail;
521 	}
522 again:
523 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
524 	if (!h) {
525 		ret = -ENOMEM;
526 		goto alloc_fail;
527 	}
528 
529 	/*
530 	 * If we are JOIN_NOLOCK we're already committing a transaction and
531 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
532 	 * because we're already holding a ref.  We need this because we could
533 	 * have raced in and did an fsync() on a file which can kick a commit
534 	 * and then we deadlock with somebody doing a freeze.
535 	 *
536 	 * If we are ATTACH, it means we just want to catch the current
537 	 * transaction and commit it, so we needn't do sb_start_intwrite().
538 	 */
539 	if (type & __TRANS_FREEZABLE)
540 		sb_start_intwrite(fs_info->sb);
541 
542 	if (may_wait_transaction(fs_info, type))
543 		wait_current_trans(fs_info);
544 
545 	do {
546 		ret = join_transaction(fs_info, type);
547 		if (ret == -EBUSY) {
548 			wait_current_trans(fs_info);
549 			if (unlikely(type == TRANS_ATTACH ||
550 				     type == TRANS_JOIN_NOSTART))
551 				ret = -ENOENT;
552 		}
553 	} while (ret == -EBUSY);
554 
555 	if (ret < 0)
556 		goto join_fail;
557 
558 	cur_trans = fs_info->running_transaction;
559 
560 	h->transid = cur_trans->transid;
561 	h->transaction = cur_trans;
562 	h->root = root;
563 	refcount_set(&h->use_count, 1);
564 	h->fs_info = root->fs_info;
565 
566 	h->type = type;
567 	h->can_flush_pending_bgs = true;
568 	INIT_LIST_HEAD(&h->new_bgs);
569 
570 	smp_mb();
571 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
572 	    may_wait_transaction(fs_info, type)) {
573 		current->journal_info = h;
574 		btrfs_commit_transaction(h);
575 		goto again;
576 	}
577 
578 	if (num_bytes) {
579 		trace_btrfs_space_reservation(fs_info, "transaction",
580 					      h->transid, num_bytes, 1);
581 		h->block_rsv = &fs_info->trans_block_rsv;
582 		h->bytes_reserved = num_bytes;
583 		h->reloc_reserved = reloc_reserved;
584 	}
585 
586 got_it:
587 	btrfs_record_root_in_trans(h, root);
588 
589 	if (!current->journal_info)
590 		current->journal_info = h;
591 	return h;
592 
593 join_fail:
594 	if (type & __TRANS_FREEZABLE)
595 		sb_end_intwrite(fs_info->sb);
596 	kmem_cache_free(btrfs_trans_handle_cachep, h);
597 alloc_fail:
598 	if (num_bytes)
599 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
600 					num_bytes);
601 reserve_fail:
602 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
603 	return ERR_PTR(ret);
604 }
605 
606 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
607 						   unsigned int num_items)
608 {
609 	return start_transaction(root, num_items, TRANS_START,
610 				 BTRFS_RESERVE_FLUSH_ALL, true);
611 }
612 
613 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
614 					struct btrfs_root *root,
615 					unsigned int num_items,
616 					int min_factor)
617 {
618 	struct btrfs_fs_info *fs_info = root->fs_info;
619 	struct btrfs_trans_handle *trans;
620 	u64 num_bytes;
621 	int ret;
622 
623 	/*
624 	 * We have two callers: unlink and block group removal.  The
625 	 * former should succeed even if we will temporarily exceed
626 	 * quota and the latter operates on the extent root so
627 	 * qgroup enforcement is ignored anyway.
628 	 */
629 	trans = start_transaction(root, num_items, TRANS_START,
630 				  BTRFS_RESERVE_FLUSH_ALL, false);
631 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
632 		return trans;
633 
634 	trans = btrfs_start_transaction(root, 0);
635 	if (IS_ERR(trans))
636 		return trans;
637 
638 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
639 	ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
640 				       num_bytes, min_factor);
641 	if (ret) {
642 		btrfs_end_transaction(trans);
643 		return ERR_PTR(ret);
644 	}
645 
646 	trans->block_rsv = &fs_info->trans_block_rsv;
647 	trans->bytes_reserved = num_bytes;
648 	trace_btrfs_space_reservation(fs_info, "transaction",
649 				      trans->transid, num_bytes, 1);
650 
651 	return trans;
652 }
653 
654 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
655 {
656 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
657 				 true);
658 }
659 
660 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
661 {
662 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
663 				 BTRFS_RESERVE_NO_FLUSH, true);
664 }
665 
666 /*
667  * Similar to regular join but it never starts a transaction when none is
668  * running or after waiting for the current one to finish.
669  */
670 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
671 {
672 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
673 				 BTRFS_RESERVE_NO_FLUSH, true);
674 }
675 
676 /*
677  * btrfs_attach_transaction() - catch the running transaction
678  *
679  * It is used when we want to commit the current the transaction, but
680  * don't want to start a new one.
681  *
682  * Note: If this function return -ENOENT, it just means there is no
683  * running transaction. But it is possible that the inactive transaction
684  * is still in the memory, not fully on disk. If you hope there is no
685  * inactive transaction in the fs when -ENOENT is returned, you should
686  * invoke
687  *     btrfs_attach_transaction_barrier()
688  */
689 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
690 {
691 	return start_transaction(root, 0, TRANS_ATTACH,
692 				 BTRFS_RESERVE_NO_FLUSH, true);
693 }
694 
695 /*
696  * btrfs_attach_transaction_barrier() - catch the running transaction
697  *
698  * It is similar to the above function, the difference is this one
699  * will wait for all the inactive transactions until they fully
700  * complete.
701  */
702 struct btrfs_trans_handle *
703 btrfs_attach_transaction_barrier(struct btrfs_root *root)
704 {
705 	struct btrfs_trans_handle *trans;
706 
707 	trans = start_transaction(root, 0, TRANS_ATTACH,
708 				  BTRFS_RESERVE_NO_FLUSH, true);
709 	if (trans == ERR_PTR(-ENOENT))
710 		btrfs_wait_for_commit(root->fs_info, 0);
711 
712 	return trans;
713 }
714 
715 /* wait for a transaction commit to be fully complete */
716 static noinline void wait_for_commit(struct btrfs_transaction *commit)
717 {
718 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
719 }
720 
721 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
722 {
723 	struct btrfs_transaction *cur_trans = NULL, *t;
724 	int ret = 0;
725 
726 	if (transid) {
727 		if (transid <= fs_info->last_trans_committed)
728 			goto out;
729 
730 		/* find specified transaction */
731 		spin_lock(&fs_info->trans_lock);
732 		list_for_each_entry(t, &fs_info->trans_list, list) {
733 			if (t->transid == transid) {
734 				cur_trans = t;
735 				refcount_inc(&cur_trans->use_count);
736 				ret = 0;
737 				break;
738 			}
739 			if (t->transid > transid) {
740 				ret = 0;
741 				break;
742 			}
743 		}
744 		spin_unlock(&fs_info->trans_lock);
745 
746 		/*
747 		 * The specified transaction doesn't exist, or we
748 		 * raced with btrfs_commit_transaction
749 		 */
750 		if (!cur_trans) {
751 			if (transid > fs_info->last_trans_committed)
752 				ret = -EINVAL;
753 			goto out;
754 		}
755 	} else {
756 		/* find newest transaction that is committing | committed */
757 		spin_lock(&fs_info->trans_lock);
758 		list_for_each_entry_reverse(t, &fs_info->trans_list,
759 					    list) {
760 			if (t->state >= TRANS_STATE_COMMIT_START) {
761 				if (t->state == TRANS_STATE_COMPLETED)
762 					break;
763 				cur_trans = t;
764 				refcount_inc(&cur_trans->use_count);
765 				break;
766 			}
767 		}
768 		spin_unlock(&fs_info->trans_lock);
769 		if (!cur_trans)
770 			goto out;  /* nothing committing|committed */
771 	}
772 
773 	wait_for_commit(cur_trans);
774 	btrfs_put_transaction(cur_trans);
775 out:
776 	return ret;
777 }
778 
779 void btrfs_throttle(struct btrfs_fs_info *fs_info)
780 {
781 	wait_current_trans(fs_info);
782 }
783 
784 static int should_end_transaction(struct btrfs_trans_handle *trans)
785 {
786 	struct btrfs_fs_info *fs_info = trans->fs_info;
787 
788 	if (btrfs_check_space_for_delayed_refs(fs_info))
789 		return 1;
790 
791 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
792 }
793 
794 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
795 {
796 	struct btrfs_transaction *cur_trans = trans->transaction;
797 
798 	smp_mb();
799 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
800 	    cur_trans->delayed_refs.flushing)
801 		return 1;
802 
803 	return should_end_transaction(trans);
804 }
805 
806 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
807 
808 {
809 	struct btrfs_fs_info *fs_info = trans->fs_info;
810 
811 	if (!trans->block_rsv) {
812 		ASSERT(!trans->bytes_reserved);
813 		return;
814 	}
815 
816 	if (!trans->bytes_reserved)
817 		return;
818 
819 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
820 	trace_btrfs_space_reservation(fs_info, "transaction",
821 				      trans->transid, trans->bytes_reserved, 0);
822 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
823 				trans->bytes_reserved);
824 	trans->bytes_reserved = 0;
825 }
826 
827 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
828 				   int throttle)
829 {
830 	struct btrfs_fs_info *info = trans->fs_info;
831 	struct btrfs_transaction *cur_trans = trans->transaction;
832 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
833 	int err = 0;
834 
835 	if (refcount_read(&trans->use_count) > 1) {
836 		refcount_dec(&trans->use_count);
837 		trans->block_rsv = trans->orig_rsv;
838 		return 0;
839 	}
840 
841 	btrfs_trans_release_metadata(trans);
842 	trans->block_rsv = NULL;
843 
844 	btrfs_create_pending_block_groups(trans);
845 
846 	btrfs_trans_release_chunk_metadata(trans);
847 
848 	if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
849 		if (throttle)
850 			return btrfs_commit_transaction(trans);
851 		else
852 			wake_up_process(info->transaction_kthread);
853 	}
854 
855 	if (trans->type & __TRANS_FREEZABLE)
856 		sb_end_intwrite(info->sb);
857 
858 	WARN_ON(cur_trans != info->running_transaction);
859 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
860 	atomic_dec(&cur_trans->num_writers);
861 	extwriter_counter_dec(cur_trans, trans->type);
862 
863 	cond_wake_up(&cur_trans->writer_wait);
864 	btrfs_put_transaction(cur_trans);
865 
866 	if (current->journal_info == trans)
867 		current->journal_info = NULL;
868 
869 	if (throttle)
870 		btrfs_run_delayed_iputs(info);
871 
872 	if (trans->aborted ||
873 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
874 		wake_up_process(info->transaction_kthread);
875 		err = -EIO;
876 	}
877 
878 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
879 	return err;
880 }
881 
882 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
883 {
884 	return __btrfs_end_transaction(trans, 0);
885 }
886 
887 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
888 {
889 	return __btrfs_end_transaction(trans, 1);
890 }
891 
892 /*
893  * when btree blocks are allocated, they have some corresponding bits set for
894  * them in one of two extent_io trees.  This is used to make sure all of
895  * those extents are sent to disk but does not wait on them
896  */
897 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
898 			       struct extent_io_tree *dirty_pages, int mark)
899 {
900 	int err = 0;
901 	int werr = 0;
902 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
903 	struct extent_state *cached_state = NULL;
904 	u64 start = 0;
905 	u64 end;
906 
907 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
908 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
909 				      mark, &cached_state)) {
910 		bool wait_writeback = false;
911 
912 		err = convert_extent_bit(dirty_pages, start, end,
913 					 EXTENT_NEED_WAIT,
914 					 mark, &cached_state);
915 		/*
916 		 * convert_extent_bit can return -ENOMEM, which is most of the
917 		 * time a temporary error. So when it happens, ignore the error
918 		 * and wait for writeback of this range to finish - because we
919 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
920 		 * to __btrfs_wait_marked_extents() would not know that
921 		 * writeback for this range started and therefore wouldn't
922 		 * wait for it to finish - we don't want to commit a
923 		 * superblock that points to btree nodes/leafs for which
924 		 * writeback hasn't finished yet (and without errors).
925 		 * We cleanup any entries left in the io tree when committing
926 		 * the transaction (through extent_io_tree_release()).
927 		 */
928 		if (err == -ENOMEM) {
929 			err = 0;
930 			wait_writeback = true;
931 		}
932 		if (!err)
933 			err = filemap_fdatawrite_range(mapping, start, end);
934 		if (err)
935 			werr = err;
936 		else if (wait_writeback)
937 			werr = filemap_fdatawait_range(mapping, start, end);
938 		free_extent_state(cached_state);
939 		cached_state = NULL;
940 		cond_resched();
941 		start = end + 1;
942 	}
943 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
944 	return werr;
945 }
946 
947 /*
948  * when btree blocks are allocated, they have some corresponding bits set for
949  * them in one of two extent_io trees.  This is used to make sure all of
950  * those extents are on disk for transaction or log commit.  We wait
951  * on all the pages and clear them from the dirty pages state tree
952  */
953 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
954 				       struct extent_io_tree *dirty_pages)
955 {
956 	int err = 0;
957 	int werr = 0;
958 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
959 	struct extent_state *cached_state = NULL;
960 	u64 start = 0;
961 	u64 end;
962 
963 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
964 				      EXTENT_NEED_WAIT, &cached_state)) {
965 		/*
966 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
967 		 * When committing the transaction, we'll remove any entries
968 		 * left in the io tree. For a log commit, we don't remove them
969 		 * after committing the log because the tree can be accessed
970 		 * concurrently - we do it only at transaction commit time when
971 		 * it's safe to do it (through extent_io_tree_release()).
972 		 */
973 		err = clear_extent_bit(dirty_pages, start, end,
974 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
975 		if (err == -ENOMEM)
976 			err = 0;
977 		if (!err)
978 			err = filemap_fdatawait_range(mapping, start, end);
979 		if (err)
980 			werr = err;
981 		free_extent_state(cached_state);
982 		cached_state = NULL;
983 		cond_resched();
984 		start = end + 1;
985 	}
986 	if (err)
987 		werr = err;
988 	return werr;
989 }
990 
991 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
992 		       struct extent_io_tree *dirty_pages)
993 {
994 	bool errors = false;
995 	int err;
996 
997 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
998 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
999 		errors = true;
1000 
1001 	if (errors && !err)
1002 		err = -EIO;
1003 	return err;
1004 }
1005 
1006 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1007 {
1008 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1009 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1010 	bool errors = false;
1011 	int err;
1012 
1013 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1014 
1015 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1016 	if ((mark & EXTENT_DIRTY) &&
1017 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1018 		errors = true;
1019 
1020 	if ((mark & EXTENT_NEW) &&
1021 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1022 		errors = true;
1023 
1024 	if (errors && !err)
1025 		err = -EIO;
1026 	return err;
1027 }
1028 
1029 /*
1030  * When btree blocks are allocated the corresponding extents are marked dirty.
1031  * This function ensures such extents are persisted on disk for transaction or
1032  * log commit.
1033  *
1034  * @trans: transaction whose dirty pages we'd like to write
1035  */
1036 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1037 {
1038 	int ret;
1039 	int ret2;
1040 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1041 	struct btrfs_fs_info *fs_info = trans->fs_info;
1042 	struct blk_plug plug;
1043 
1044 	blk_start_plug(&plug);
1045 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1046 	blk_finish_plug(&plug);
1047 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1048 
1049 	extent_io_tree_release(&trans->transaction->dirty_pages);
1050 
1051 	if (ret)
1052 		return ret;
1053 	else if (ret2)
1054 		return ret2;
1055 	else
1056 		return 0;
1057 }
1058 
1059 /*
1060  * this is used to update the root pointer in the tree of tree roots.
1061  *
1062  * But, in the case of the extent allocation tree, updating the root
1063  * pointer may allocate blocks which may change the root of the extent
1064  * allocation tree.
1065  *
1066  * So, this loops and repeats and makes sure the cowonly root didn't
1067  * change while the root pointer was being updated in the metadata.
1068  */
1069 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1070 			       struct btrfs_root *root)
1071 {
1072 	int ret;
1073 	u64 old_root_bytenr;
1074 	u64 old_root_used;
1075 	struct btrfs_fs_info *fs_info = root->fs_info;
1076 	struct btrfs_root *tree_root = fs_info->tree_root;
1077 
1078 	old_root_used = btrfs_root_used(&root->root_item);
1079 
1080 	while (1) {
1081 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1082 		if (old_root_bytenr == root->node->start &&
1083 		    old_root_used == btrfs_root_used(&root->root_item))
1084 			break;
1085 
1086 		btrfs_set_root_node(&root->root_item, root->node);
1087 		ret = btrfs_update_root(trans, tree_root,
1088 					&root->root_key,
1089 					&root->root_item);
1090 		if (ret)
1091 			return ret;
1092 
1093 		old_root_used = btrfs_root_used(&root->root_item);
1094 	}
1095 
1096 	return 0;
1097 }
1098 
1099 /*
1100  * update all the cowonly tree roots on disk
1101  *
1102  * The error handling in this function may not be obvious. Any of the
1103  * failures will cause the file system to go offline. We still need
1104  * to clean up the delayed refs.
1105  */
1106 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1107 {
1108 	struct btrfs_fs_info *fs_info = trans->fs_info;
1109 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1110 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1111 	struct list_head *next;
1112 	struct extent_buffer *eb;
1113 	int ret;
1114 
1115 	eb = btrfs_lock_root_node(fs_info->tree_root);
1116 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1117 			      0, &eb);
1118 	btrfs_tree_unlock(eb);
1119 	free_extent_buffer(eb);
1120 
1121 	if (ret)
1122 		return ret;
1123 
1124 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1125 	if (ret)
1126 		return ret;
1127 
1128 	ret = btrfs_run_dev_stats(trans);
1129 	if (ret)
1130 		return ret;
1131 	ret = btrfs_run_dev_replace(trans);
1132 	if (ret)
1133 		return ret;
1134 	ret = btrfs_run_qgroups(trans);
1135 	if (ret)
1136 		return ret;
1137 
1138 	ret = btrfs_setup_space_cache(trans);
1139 	if (ret)
1140 		return ret;
1141 
1142 	/* run_qgroups might have added some more refs */
1143 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1144 	if (ret)
1145 		return ret;
1146 again:
1147 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1148 		struct btrfs_root *root;
1149 		next = fs_info->dirty_cowonly_roots.next;
1150 		list_del_init(next);
1151 		root = list_entry(next, struct btrfs_root, dirty_list);
1152 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1153 
1154 		if (root != fs_info->extent_root)
1155 			list_add_tail(&root->dirty_list,
1156 				      &trans->transaction->switch_commits);
1157 		ret = update_cowonly_root(trans, root);
1158 		if (ret)
1159 			return ret;
1160 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1161 		if (ret)
1162 			return ret;
1163 	}
1164 
1165 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1166 		ret = btrfs_write_dirty_block_groups(trans);
1167 		if (ret)
1168 			return ret;
1169 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1170 		if (ret)
1171 			return ret;
1172 	}
1173 
1174 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1175 		goto again;
1176 
1177 	list_add_tail(&fs_info->extent_root->dirty_list,
1178 		      &trans->transaction->switch_commits);
1179 
1180 	/* Update dev-replace pointer once everything is committed */
1181 	fs_info->dev_replace.committed_cursor_left =
1182 		fs_info->dev_replace.cursor_left_last_write_of_item;
1183 
1184 	return 0;
1185 }
1186 
1187 /*
1188  * dead roots are old snapshots that need to be deleted.  This allocates
1189  * a dirty root struct and adds it into the list of dead roots that need to
1190  * be deleted
1191  */
1192 void btrfs_add_dead_root(struct btrfs_root *root)
1193 {
1194 	struct btrfs_fs_info *fs_info = root->fs_info;
1195 
1196 	spin_lock(&fs_info->trans_lock);
1197 	if (list_empty(&root->root_list))
1198 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1199 	spin_unlock(&fs_info->trans_lock);
1200 }
1201 
1202 /*
1203  * update all the cowonly tree roots on disk
1204  */
1205 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1206 {
1207 	struct btrfs_fs_info *fs_info = trans->fs_info;
1208 	struct btrfs_root *gang[8];
1209 	int i;
1210 	int ret;
1211 	int err = 0;
1212 
1213 	spin_lock(&fs_info->fs_roots_radix_lock);
1214 	while (1) {
1215 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1216 						 (void **)gang, 0,
1217 						 ARRAY_SIZE(gang),
1218 						 BTRFS_ROOT_TRANS_TAG);
1219 		if (ret == 0)
1220 			break;
1221 		for (i = 0; i < ret; i++) {
1222 			struct btrfs_root *root = gang[i];
1223 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1224 					(unsigned long)root->root_key.objectid,
1225 					BTRFS_ROOT_TRANS_TAG);
1226 			spin_unlock(&fs_info->fs_roots_radix_lock);
1227 
1228 			btrfs_free_log(trans, root);
1229 			btrfs_update_reloc_root(trans, root);
1230 
1231 			btrfs_save_ino_cache(root, trans);
1232 
1233 			/* see comments in should_cow_block() */
1234 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1235 			smp_mb__after_atomic();
1236 
1237 			if (root->commit_root != root->node) {
1238 				list_add_tail(&root->dirty_list,
1239 					&trans->transaction->switch_commits);
1240 				btrfs_set_root_node(&root->root_item,
1241 						    root->node);
1242 			}
1243 
1244 			err = btrfs_update_root(trans, fs_info->tree_root,
1245 						&root->root_key,
1246 						&root->root_item);
1247 			spin_lock(&fs_info->fs_roots_radix_lock);
1248 			if (err)
1249 				break;
1250 			btrfs_qgroup_free_meta_all_pertrans(root);
1251 		}
1252 	}
1253 	spin_unlock(&fs_info->fs_roots_radix_lock);
1254 	return err;
1255 }
1256 
1257 /*
1258  * defrag a given btree.
1259  * Every leaf in the btree is read and defragged.
1260  */
1261 int btrfs_defrag_root(struct btrfs_root *root)
1262 {
1263 	struct btrfs_fs_info *info = root->fs_info;
1264 	struct btrfs_trans_handle *trans;
1265 	int ret;
1266 
1267 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1268 		return 0;
1269 
1270 	while (1) {
1271 		trans = btrfs_start_transaction(root, 0);
1272 		if (IS_ERR(trans))
1273 			return PTR_ERR(trans);
1274 
1275 		ret = btrfs_defrag_leaves(trans, root);
1276 
1277 		btrfs_end_transaction(trans);
1278 		btrfs_btree_balance_dirty(info);
1279 		cond_resched();
1280 
1281 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1282 			break;
1283 
1284 		if (btrfs_defrag_cancelled(info)) {
1285 			btrfs_debug(info, "defrag_root cancelled");
1286 			ret = -EAGAIN;
1287 			break;
1288 		}
1289 	}
1290 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1291 	return ret;
1292 }
1293 
1294 /*
1295  * Do all special snapshot related qgroup dirty hack.
1296  *
1297  * Will do all needed qgroup inherit and dirty hack like switch commit
1298  * roots inside one transaction and write all btree into disk, to make
1299  * qgroup works.
1300  */
1301 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1302 				   struct btrfs_root *src,
1303 				   struct btrfs_root *parent,
1304 				   struct btrfs_qgroup_inherit *inherit,
1305 				   u64 dst_objectid)
1306 {
1307 	struct btrfs_fs_info *fs_info = src->fs_info;
1308 	int ret;
1309 
1310 	/*
1311 	 * Save some performance in the case that qgroups are not
1312 	 * enabled. If this check races with the ioctl, rescan will
1313 	 * kick in anyway.
1314 	 */
1315 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1316 		return 0;
1317 
1318 	/*
1319 	 * Ensure dirty @src will be committed.  Or, after coming
1320 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1321 	 * recorded root will never be updated again, causing an outdated root
1322 	 * item.
1323 	 */
1324 	record_root_in_trans(trans, src, 1);
1325 
1326 	/*
1327 	 * We are going to commit transaction, see btrfs_commit_transaction()
1328 	 * comment for reason locking tree_log_mutex
1329 	 */
1330 	mutex_lock(&fs_info->tree_log_mutex);
1331 
1332 	ret = commit_fs_roots(trans);
1333 	if (ret)
1334 		goto out;
1335 	ret = btrfs_qgroup_account_extents(trans);
1336 	if (ret < 0)
1337 		goto out;
1338 
1339 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1340 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1341 				   inherit);
1342 	if (ret < 0)
1343 		goto out;
1344 
1345 	/*
1346 	 * Now we do a simplified commit transaction, which will:
1347 	 * 1) commit all subvolume and extent tree
1348 	 *    To ensure all subvolume and extent tree have a valid
1349 	 *    commit_root to accounting later insert_dir_item()
1350 	 * 2) write all btree blocks onto disk
1351 	 *    This is to make sure later btree modification will be cowed
1352 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1353 	 * In this simplified commit, we don't really care about other trees
1354 	 * like chunk and root tree, as they won't affect qgroup.
1355 	 * And we don't write super to avoid half committed status.
1356 	 */
1357 	ret = commit_cowonly_roots(trans);
1358 	if (ret)
1359 		goto out;
1360 	switch_commit_roots(trans->transaction);
1361 	ret = btrfs_write_and_wait_transaction(trans);
1362 	if (ret)
1363 		btrfs_handle_fs_error(fs_info, ret,
1364 			"Error while writing out transaction for qgroup");
1365 
1366 out:
1367 	mutex_unlock(&fs_info->tree_log_mutex);
1368 
1369 	/*
1370 	 * Force parent root to be updated, as we recorded it before so its
1371 	 * last_trans == cur_transid.
1372 	 * Or it won't be committed again onto disk after later
1373 	 * insert_dir_item()
1374 	 */
1375 	if (!ret)
1376 		record_root_in_trans(trans, parent, 1);
1377 	return ret;
1378 }
1379 
1380 /*
1381  * new snapshots need to be created at a very specific time in the
1382  * transaction commit.  This does the actual creation.
1383  *
1384  * Note:
1385  * If the error which may affect the commitment of the current transaction
1386  * happens, we should return the error number. If the error which just affect
1387  * the creation of the pending snapshots, just return 0.
1388  */
1389 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1390 				   struct btrfs_pending_snapshot *pending)
1391 {
1392 
1393 	struct btrfs_fs_info *fs_info = trans->fs_info;
1394 	struct btrfs_key key;
1395 	struct btrfs_root_item *new_root_item;
1396 	struct btrfs_root *tree_root = fs_info->tree_root;
1397 	struct btrfs_root *root = pending->root;
1398 	struct btrfs_root *parent_root;
1399 	struct btrfs_block_rsv *rsv;
1400 	struct inode *parent_inode;
1401 	struct btrfs_path *path;
1402 	struct btrfs_dir_item *dir_item;
1403 	struct dentry *dentry;
1404 	struct extent_buffer *tmp;
1405 	struct extent_buffer *old;
1406 	struct timespec64 cur_time;
1407 	int ret = 0;
1408 	u64 to_reserve = 0;
1409 	u64 index = 0;
1410 	u64 objectid;
1411 	u64 root_flags;
1412 	uuid_le new_uuid;
1413 
1414 	ASSERT(pending->path);
1415 	path = pending->path;
1416 
1417 	ASSERT(pending->root_item);
1418 	new_root_item = pending->root_item;
1419 
1420 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1421 	if (pending->error)
1422 		goto no_free_objectid;
1423 
1424 	/*
1425 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1426 	 * accounted by later btrfs_qgroup_inherit().
1427 	 */
1428 	btrfs_set_skip_qgroup(trans, objectid);
1429 
1430 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1431 
1432 	if (to_reserve > 0) {
1433 		pending->error = btrfs_block_rsv_add(root,
1434 						     &pending->block_rsv,
1435 						     to_reserve,
1436 						     BTRFS_RESERVE_NO_FLUSH);
1437 		if (pending->error)
1438 			goto clear_skip_qgroup;
1439 	}
1440 
1441 	key.objectid = objectid;
1442 	key.offset = (u64)-1;
1443 	key.type = BTRFS_ROOT_ITEM_KEY;
1444 
1445 	rsv = trans->block_rsv;
1446 	trans->block_rsv = &pending->block_rsv;
1447 	trans->bytes_reserved = trans->block_rsv->reserved;
1448 	trace_btrfs_space_reservation(fs_info, "transaction",
1449 				      trans->transid,
1450 				      trans->bytes_reserved, 1);
1451 	dentry = pending->dentry;
1452 	parent_inode = pending->dir;
1453 	parent_root = BTRFS_I(parent_inode)->root;
1454 	record_root_in_trans(trans, parent_root, 0);
1455 
1456 	cur_time = current_time(parent_inode);
1457 
1458 	/*
1459 	 * insert the directory item
1460 	 */
1461 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1462 	BUG_ON(ret); /* -ENOMEM */
1463 
1464 	/* check if there is a file/dir which has the same name. */
1465 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1466 					 btrfs_ino(BTRFS_I(parent_inode)),
1467 					 dentry->d_name.name,
1468 					 dentry->d_name.len, 0);
1469 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1470 		pending->error = -EEXIST;
1471 		goto dir_item_existed;
1472 	} else if (IS_ERR(dir_item)) {
1473 		ret = PTR_ERR(dir_item);
1474 		btrfs_abort_transaction(trans, ret);
1475 		goto fail;
1476 	}
1477 	btrfs_release_path(path);
1478 
1479 	/*
1480 	 * pull in the delayed directory update
1481 	 * and the delayed inode item
1482 	 * otherwise we corrupt the FS during
1483 	 * snapshot
1484 	 */
1485 	ret = btrfs_run_delayed_items(trans);
1486 	if (ret) {	/* Transaction aborted */
1487 		btrfs_abort_transaction(trans, ret);
1488 		goto fail;
1489 	}
1490 
1491 	record_root_in_trans(trans, root, 0);
1492 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1493 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1494 	btrfs_check_and_init_root_item(new_root_item);
1495 
1496 	root_flags = btrfs_root_flags(new_root_item);
1497 	if (pending->readonly)
1498 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1499 	else
1500 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1501 	btrfs_set_root_flags(new_root_item, root_flags);
1502 
1503 	btrfs_set_root_generation_v2(new_root_item,
1504 			trans->transid);
1505 	uuid_le_gen(&new_uuid);
1506 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1507 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1508 			BTRFS_UUID_SIZE);
1509 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1510 		memset(new_root_item->received_uuid, 0,
1511 		       sizeof(new_root_item->received_uuid));
1512 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1513 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1514 		btrfs_set_root_stransid(new_root_item, 0);
1515 		btrfs_set_root_rtransid(new_root_item, 0);
1516 	}
1517 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1518 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1519 	btrfs_set_root_otransid(new_root_item, trans->transid);
1520 
1521 	old = btrfs_lock_root_node(root);
1522 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1523 	if (ret) {
1524 		btrfs_tree_unlock(old);
1525 		free_extent_buffer(old);
1526 		btrfs_abort_transaction(trans, ret);
1527 		goto fail;
1528 	}
1529 
1530 	btrfs_set_lock_blocking_write(old);
1531 
1532 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1533 	/* clean up in any case */
1534 	btrfs_tree_unlock(old);
1535 	free_extent_buffer(old);
1536 	if (ret) {
1537 		btrfs_abort_transaction(trans, ret);
1538 		goto fail;
1539 	}
1540 	/* see comments in should_cow_block() */
1541 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1542 	smp_wmb();
1543 
1544 	btrfs_set_root_node(new_root_item, tmp);
1545 	/* record when the snapshot was created in key.offset */
1546 	key.offset = trans->transid;
1547 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1548 	btrfs_tree_unlock(tmp);
1549 	free_extent_buffer(tmp);
1550 	if (ret) {
1551 		btrfs_abort_transaction(trans, ret);
1552 		goto fail;
1553 	}
1554 
1555 	/*
1556 	 * insert root back/forward references
1557 	 */
1558 	ret = btrfs_add_root_ref(trans, objectid,
1559 				 parent_root->root_key.objectid,
1560 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1561 				 dentry->d_name.name, dentry->d_name.len);
1562 	if (ret) {
1563 		btrfs_abort_transaction(trans, ret);
1564 		goto fail;
1565 	}
1566 
1567 	key.offset = (u64)-1;
1568 	pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1569 	if (IS_ERR(pending->snap)) {
1570 		ret = PTR_ERR(pending->snap);
1571 		btrfs_abort_transaction(trans, ret);
1572 		goto fail;
1573 	}
1574 
1575 	ret = btrfs_reloc_post_snapshot(trans, pending);
1576 	if (ret) {
1577 		btrfs_abort_transaction(trans, ret);
1578 		goto fail;
1579 	}
1580 
1581 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1582 	if (ret) {
1583 		btrfs_abort_transaction(trans, ret);
1584 		goto fail;
1585 	}
1586 
1587 	/*
1588 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1589 	 * snapshot hack to do fast snapshot.
1590 	 * To co-operate with that hack, we do hack again.
1591 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1592 	 */
1593 	ret = qgroup_account_snapshot(trans, root, parent_root,
1594 				      pending->inherit, objectid);
1595 	if (ret < 0)
1596 		goto fail;
1597 
1598 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1599 				    dentry->d_name.len, BTRFS_I(parent_inode),
1600 				    &key, BTRFS_FT_DIR, index);
1601 	/* We have check then name at the beginning, so it is impossible. */
1602 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1603 	if (ret) {
1604 		btrfs_abort_transaction(trans, ret);
1605 		goto fail;
1606 	}
1607 
1608 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1609 					 dentry->d_name.len * 2);
1610 	parent_inode->i_mtime = parent_inode->i_ctime =
1611 		current_time(parent_inode);
1612 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1613 	if (ret) {
1614 		btrfs_abort_transaction(trans, ret);
1615 		goto fail;
1616 	}
1617 	ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1618 				  objectid);
1619 	if (ret) {
1620 		btrfs_abort_transaction(trans, ret);
1621 		goto fail;
1622 	}
1623 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1624 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1625 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1626 					  objectid);
1627 		if (ret && ret != -EEXIST) {
1628 			btrfs_abort_transaction(trans, ret);
1629 			goto fail;
1630 		}
1631 	}
1632 
1633 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1634 	if (ret) {
1635 		btrfs_abort_transaction(trans, ret);
1636 		goto fail;
1637 	}
1638 
1639 fail:
1640 	pending->error = ret;
1641 dir_item_existed:
1642 	trans->block_rsv = rsv;
1643 	trans->bytes_reserved = 0;
1644 clear_skip_qgroup:
1645 	btrfs_clear_skip_qgroup(trans);
1646 no_free_objectid:
1647 	kfree(new_root_item);
1648 	pending->root_item = NULL;
1649 	btrfs_free_path(path);
1650 	pending->path = NULL;
1651 
1652 	return ret;
1653 }
1654 
1655 /*
1656  * create all the snapshots we've scheduled for creation
1657  */
1658 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1659 {
1660 	struct btrfs_pending_snapshot *pending, *next;
1661 	struct list_head *head = &trans->transaction->pending_snapshots;
1662 	int ret = 0;
1663 
1664 	list_for_each_entry_safe(pending, next, head, list) {
1665 		list_del(&pending->list);
1666 		ret = create_pending_snapshot(trans, pending);
1667 		if (ret)
1668 			break;
1669 	}
1670 	return ret;
1671 }
1672 
1673 static void update_super_roots(struct btrfs_fs_info *fs_info)
1674 {
1675 	struct btrfs_root_item *root_item;
1676 	struct btrfs_super_block *super;
1677 
1678 	super = fs_info->super_copy;
1679 
1680 	root_item = &fs_info->chunk_root->root_item;
1681 	super->chunk_root = root_item->bytenr;
1682 	super->chunk_root_generation = root_item->generation;
1683 	super->chunk_root_level = root_item->level;
1684 
1685 	root_item = &fs_info->tree_root->root_item;
1686 	super->root = root_item->bytenr;
1687 	super->generation = root_item->generation;
1688 	super->root_level = root_item->level;
1689 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1690 		super->cache_generation = root_item->generation;
1691 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1692 		super->uuid_tree_generation = root_item->generation;
1693 }
1694 
1695 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1696 {
1697 	struct btrfs_transaction *trans;
1698 	int ret = 0;
1699 
1700 	spin_lock(&info->trans_lock);
1701 	trans = info->running_transaction;
1702 	if (trans)
1703 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1704 	spin_unlock(&info->trans_lock);
1705 	return ret;
1706 }
1707 
1708 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1709 {
1710 	struct btrfs_transaction *trans;
1711 	int ret = 0;
1712 
1713 	spin_lock(&info->trans_lock);
1714 	trans = info->running_transaction;
1715 	if (trans)
1716 		ret = is_transaction_blocked(trans);
1717 	spin_unlock(&info->trans_lock);
1718 	return ret;
1719 }
1720 
1721 /*
1722  * wait for the current transaction commit to start and block subsequent
1723  * transaction joins
1724  */
1725 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1726 					    struct btrfs_transaction *trans)
1727 {
1728 	wait_event(fs_info->transaction_blocked_wait,
1729 		   trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1730 }
1731 
1732 /*
1733  * wait for the current transaction to start and then become unblocked.
1734  * caller holds ref.
1735  */
1736 static void wait_current_trans_commit_start_and_unblock(
1737 					struct btrfs_fs_info *fs_info,
1738 					struct btrfs_transaction *trans)
1739 {
1740 	wait_event(fs_info->transaction_wait,
1741 		   trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1742 }
1743 
1744 /*
1745  * commit transactions asynchronously. once btrfs_commit_transaction_async
1746  * returns, any subsequent transaction will not be allowed to join.
1747  */
1748 struct btrfs_async_commit {
1749 	struct btrfs_trans_handle *newtrans;
1750 	struct work_struct work;
1751 };
1752 
1753 static void do_async_commit(struct work_struct *work)
1754 {
1755 	struct btrfs_async_commit *ac =
1756 		container_of(work, struct btrfs_async_commit, work);
1757 
1758 	/*
1759 	 * We've got freeze protection passed with the transaction.
1760 	 * Tell lockdep about it.
1761 	 */
1762 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1763 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1764 
1765 	current->journal_info = ac->newtrans;
1766 
1767 	btrfs_commit_transaction(ac->newtrans);
1768 	kfree(ac);
1769 }
1770 
1771 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1772 				   int wait_for_unblock)
1773 {
1774 	struct btrfs_fs_info *fs_info = trans->fs_info;
1775 	struct btrfs_async_commit *ac;
1776 	struct btrfs_transaction *cur_trans;
1777 
1778 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1779 	if (!ac)
1780 		return -ENOMEM;
1781 
1782 	INIT_WORK(&ac->work, do_async_commit);
1783 	ac->newtrans = btrfs_join_transaction(trans->root);
1784 	if (IS_ERR(ac->newtrans)) {
1785 		int err = PTR_ERR(ac->newtrans);
1786 		kfree(ac);
1787 		return err;
1788 	}
1789 
1790 	/* take transaction reference */
1791 	cur_trans = trans->transaction;
1792 	refcount_inc(&cur_trans->use_count);
1793 
1794 	btrfs_end_transaction(trans);
1795 
1796 	/*
1797 	 * Tell lockdep we've released the freeze rwsem, since the
1798 	 * async commit thread will be the one to unlock it.
1799 	 */
1800 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1801 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1802 
1803 	schedule_work(&ac->work);
1804 
1805 	/* wait for transaction to start and unblock */
1806 	if (wait_for_unblock)
1807 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1808 	else
1809 		wait_current_trans_commit_start(fs_info, cur_trans);
1810 
1811 	if (current->journal_info == trans)
1812 		current->journal_info = NULL;
1813 
1814 	btrfs_put_transaction(cur_trans);
1815 	return 0;
1816 }
1817 
1818 
1819 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1820 {
1821 	struct btrfs_fs_info *fs_info = trans->fs_info;
1822 	struct btrfs_transaction *cur_trans = trans->transaction;
1823 
1824 	WARN_ON(refcount_read(&trans->use_count) > 1);
1825 
1826 	btrfs_abort_transaction(trans, err);
1827 
1828 	spin_lock(&fs_info->trans_lock);
1829 
1830 	/*
1831 	 * If the transaction is removed from the list, it means this
1832 	 * transaction has been committed successfully, so it is impossible
1833 	 * to call the cleanup function.
1834 	 */
1835 	BUG_ON(list_empty(&cur_trans->list));
1836 
1837 	list_del_init(&cur_trans->list);
1838 	if (cur_trans == fs_info->running_transaction) {
1839 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1840 		spin_unlock(&fs_info->trans_lock);
1841 		wait_event(cur_trans->writer_wait,
1842 			   atomic_read(&cur_trans->num_writers) == 1);
1843 
1844 		spin_lock(&fs_info->trans_lock);
1845 	}
1846 	spin_unlock(&fs_info->trans_lock);
1847 
1848 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1849 
1850 	spin_lock(&fs_info->trans_lock);
1851 	if (cur_trans == fs_info->running_transaction)
1852 		fs_info->running_transaction = NULL;
1853 	spin_unlock(&fs_info->trans_lock);
1854 
1855 	if (trans->type & __TRANS_FREEZABLE)
1856 		sb_end_intwrite(fs_info->sb);
1857 	btrfs_put_transaction(cur_trans);
1858 	btrfs_put_transaction(cur_trans);
1859 
1860 	trace_btrfs_transaction_commit(trans->root);
1861 
1862 	if (current->journal_info == trans)
1863 		current->journal_info = NULL;
1864 	btrfs_scrub_cancel(fs_info);
1865 
1866 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1867 }
1868 
1869 /*
1870  * Release reserved delayed ref space of all pending block groups of the
1871  * transaction and remove them from the list
1872  */
1873 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1874 {
1875        struct btrfs_fs_info *fs_info = trans->fs_info;
1876        struct btrfs_block_group_cache *block_group, *tmp;
1877 
1878        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1879                btrfs_delayed_refs_rsv_release(fs_info, 1);
1880                list_del_init(&block_group->bg_list);
1881        }
1882 }
1883 
1884 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1885 {
1886 	struct btrfs_fs_info *fs_info = trans->fs_info;
1887 
1888 	/*
1889 	 * We use writeback_inodes_sb here because if we used
1890 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1891 	 * Currently are holding the fs freeze lock, if we do an async flush
1892 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1893 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1894 	 * from already being in a transaction and our join_transaction doesn't
1895 	 * have to re-take the fs freeze lock.
1896 	 */
1897 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1898 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1899 	} else {
1900 		struct btrfs_pending_snapshot *pending;
1901 		struct list_head *head = &trans->transaction->pending_snapshots;
1902 
1903 		/*
1904 		 * Flush dellaloc for any root that is going to be snapshotted.
1905 		 * This is done to avoid a corrupted version of files, in the
1906 		 * snapshots, that had both buffered and direct IO writes (even
1907 		 * if they were done sequentially) due to an unordered update of
1908 		 * the inode's size on disk.
1909 		 */
1910 		list_for_each_entry(pending, head, list) {
1911 			int ret;
1912 
1913 			ret = btrfs_start_delalloc_snapshot(pending->root);
1914 			if (ret)
1915 				return ret;
1916 		}
1917 	}
1918 	return 0;
1919 }
1920 
1921 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1922 {
1923 	struct btrfs_fs_info *fs_info = trans->fs_info;
1924 
1925 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1926 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1927 	} else {
1928 		struct btrfs_pending_snapshot *pending;
1929 		struct list_head *head = &trans->transaction->pending_snapshots;
1930 
1931 		/*
1932 		 * Wait for any dellaloc that we started previously for the roots
1933 		 * that are going to be snapshotted. This is to avoid a corrupted
1934 		 * version of files in the snapshots that had both buffered and
1935 		 * direct IO writes (even if they were done sequentially).
1936 		 */
1937 		list_for_each_entry(pending, head, list)
1938 			btrfs_wait_ordered_extents(pending->root,
1939 						   U64_MAX, 0, U64_MAX);
1940 	}
1941 }
1942 
1943 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1944 {
1945 	struct btrfs_fs_info *fs_info = trans->fs_info;
1946 	struct btrfs_transaction *cur_trans = trans->transaction;
1947 	struct btrfs_transaction *prev_trans = NULL;
1948 	int ret;
1949 
1950 	/* Stop the commit early if ->aborted is set */
1951 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
1952 		ret = cur_trans->aborted;
1953 		btrfs_end_transaction(trans);
1954 		return ret;
1955 	}
1956 
1957 	btrfs_trans_release_metadata(trans);
1958 	trans->block_rsv = NULL;
1959 
1960 	/* make a pass through all the delayed refs we have so far
1961 	 * any runnings procs may add more while we are here
1962 	 */
1963 	ret = btrfs_run_delayed_refs(trans, 0);
1964 	if (ret) {
1965 		btrfs_end_transaction(trans);
1966 		return ret;
1967 	}
1968 
1969 	cur_trans = trans->transaction;
1970 
1971 	/*
1972 	 * set the flushing flag so procs in this transaction have to
1973 	 * start sending their work down.
1974 	 */
1975 	cur_trans->delayed_refs.flushing = 1;
1976 	smp_wmb();
1977 
1978 	btrfs_create_pending_block_groups(trans);
1979 
1980 	ret = btrfs_run_delayed_refs(trans, 0);
1981 	if (ret) {
1982 		btrfs_end_transaction(trans);
1983 		return ret;
1984 	}
1985 
1986 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1987 		int run_it = 0;
1988 
1989 		/* this mutex is also taken before trying to set
1990 		 * block groups readonly.  We need to make sure
1991 		 * that nobody has set a block group readonly
1992 		 * after a extents from that block group have been
1993 		 * allocated for cache files.  btrfs_set_block_group_ro
1994 		 * will wait for the transaction to commit if it
1995 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1996 		 *
1997 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1998 		 * only one process starts all the block group IO.  It wouldn't
1999 		 * hurt to have more than one go through, but there's no
2000 		 * real advantage to it either.
2001 		 */
2002 		mutex_lock(&fs_info->ro_block_group_mutex);
2003 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2004 				      &cur_trans->flags))
2005 			run_it = 1;
2006 		mutex_unlock(&fs_info->ro_block_group_mutex);
2007 
2008 		if (run_it) {
2009 			ret = btrfs_start_dirty_block_groups(trans);
2010 			if (ret) {
2011 				btrfs_end_transaction(trans);
2012 				return ret;
2013 			}
2014 		}
2015 	}
2016 
2017 	spin_lock(&fs_info->trans_lock);
2018 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2019 		spin_unlock(&fs_info->trans_lock);
2020 		refcount_inc(&cur_trans->use_count);
2021 		ret = btrfs_end_transaction(trans);
2022 
2023 		wait_for_commit(cur_trans);
2024 
2025 		if (unlikely(cur_trans->aborted))
2026 			ret = cur_trans->aborted;
2027 
2028 		btrfs_put_transaction(cur_trans);
2029 
2030 		return ret;
2031 	}
2032 
2033 	cur_trans->state = TRANS_STATE_COMMIT_START;
2034 	wake_up(&fs_info->transaction_blocked_wait);
2035 
2036 	if (cur_trans->list.prev != &fs_info->trans_list) {
2037 		prev_trans = list_entry(cur_trans->list.prev,
2038 					struct btrfs_transaction, list);
2039 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2040 			refcount_inc(&prev_trans->use_count);
2041 			spin_unlock(&fs_info->trans_lock);
2042 
2043 			wait_for_commit(prev_trans);
2044 			ret = prev_trans->aborted;
2045 
2046 			btrfs_put_transaction(prev_trans);
2047 			if (ret)
2048 				goto cleanup_transaction;
2049 		} else {
2050 			spin_unlock(&fs_info->trans_lock);
2051 		}
2052 	} else {
2053 		spin_unlock(&fs_info->trans_lock);
2054 		/*
2055 		 * The previous transaction was aborted and was already removed
2056 		 * from the list of transactions at fs_info->trans_list. So we
2057 		 * abort to prevent writing a new superblock that reflects a
2058 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2059 		 */
2060 		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2061 			ret = -EROFS;
2062 			goto cleanup_transaction;
2063 		}
2064 	}
2065 
2066 	extwriter_counter_dec(cur_trans, trans->type);
2067 
2068 	ret = btrfs_start_delalloc_flush(trans);
2069 	if (ret)
2070 		goto cleanup_transaction;
2071 
2072 	ret = btrfs_run_delayed_items(trans);
2073 	if (ret)
2074 		goto cleanup_transaction;
2075 
2076 	wait_event(cur_trans->writer_wait,
2077 		   extwriter_counter_read(cur_trans) == 0);
2078 
2079 	/* some pending stuffs might be added after the previous flush. */
2080 	ret = btrfs_run_delayed_items(trans);
2081 	if (ret)
2082 		goto cleanup_transaction;
2083 
2084 	btrfs_wait_delalloc_flush(trans);
2085 
2086 	btrfs_scrub_pause(fs_info);
2087 	/*
2088 	 * Ok now we need to make sure to block out any other joins while we
2089 	 * commit the transaction.  We could have started a join before setting
2090 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2091 	 */
2092 	spin_lock(&fs_info->trans_lock);
2093 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2094 	spin_unlock(&fs_info->trans_lock);
2095 	wait_event(cur_trans->writer_wait,
2096 		   atomic_read(&cur_trans->num_writers) == 1);
2097 
2098 	/* ->aborted might be set after the previous check, so check it */
2099 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2100 		ret = cur_trans->aborted;
2101 		goto scrub_continue;
2102 	}
2103 	/*
2104 	 * the reloc mutex makes sure that we stop
2105 	 * the balancing code from coming in and moving
2106 	 * extents around in the middle of the commit
2107 	 */
2108 	mutex_lock(&fs_info->reloc_mutex);
2109 
2110 	/*
2111 	 * We needn't worry about the delayed items because we will
2112 	 * deal with them in create_pending_snapshot(), which is the
2113 	 * core function of the snapshot creation.
2114 	 */
2115 	ret = create_pending_snapshots(trans);
2116 	if (ret) {
2117 		mutex_unlock(&fs_info->reloc_mutex);
2118 		goto scrub_continue;
2119 	}
2120 
2121 	/*
2122 	 * We insert the dir indexes of the snapshots and update the inode
2123 	 * of the snapshots' parents after the snapshot creation, so there
2124 	 * are some delayed items which are not dealt with. Now deal with
2125 	 * them.
2126 	 *
2127 	 * We needn't worry that this operation will corrupt the snapshots,
2128 	 * because all the tree which are snapshoted will be forced to COW
2129 	 * the nodes and leaves.
2130 	 */
2131 	ret = btrfs_run_delayed_items(trans);
2132 	if (ret) {
2133 		mutex_unlock(&fs_info->reloc_mutex);
2134 		goto scrub_continue;
2135 	}
2136 
2137 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2138 	if (ret) {
2139 		mutex_unlock(&fs_info->reloc_mutex);
2140 		goto scrub_continue;
2141 	}
2142 
2143 	/*
2144 	 * make sure none of the code above managed to slip in a
2145 	 * delayed item
2146 	 */
2147 	btrfs_assert_delayed_root_empty(fs_info);
2148 
2149 	WARN_ON(cur_trans != trans->transaction);
2150 
2151 	/* btrfs_commit_tree_roots is responsible for getting the
2152 	 * various roots consistent with each other.  Every pointer
2153 	 * in the tree of tree roots has to point to the most up to date
2154 	 * root for every subvolume and other tree.  So, we have to keep
2155 	 * the tree logging code from jumping in and changing any
2156 	 * of the trees.
2157 	 *
2158 	 * At this point in the commit, there can't be any tree-log
2159 	 * writers, but a little lower down we drop the trans mutex
2160 	 * and let new people in.  By holding the tree_log_mutex
2161 	 * from now until after the super is written, we avoid races
2162 	 * with the tree-log code.
2163 	 */
2164 	mutex_lock(&fs_info->tree_log_mutex);
2165 
2166 	ret = commit_fs_roots(trans);
2167 	if (ret) {
2168 		mutex_unlock(&fs_info->tree_log_mutex);
2169 		mutex_unlock(&fs_info->reloc_mutex);
2170 		goto scrub_continue;
2171 	}
2172 
2173 	/*
2174 	 * Since the transaction is done, we can apply the pending changes
2175 	 * before the next transaction.
2176 	 */
2177 	btrfs_apply_pending_changes(fs_info);
2178 
2179 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2180 	 * safe to free the root of tree log roots
2181 	 */
2182 	btrfs_free_log_root_tree(trans, fs_info);
2183 
2184 	/*
2185 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2186 	 * new delayed refs. Must handle them or qgroup can be wrong.
2187 	 */
2188 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2189 	if (ret) {
2190 		mutex_unlock(&fs_info->tree_log_mutex);
2191 		mutex_unlock(&fs_info->reloc_mutex);
2192 		goto scrub_continue;
2193 	}
2194 
2195 	/*
2196 	 * Since fs roots are all committed, we can get a quite accurate
2197 	 * new_roots. So let's do quota accounting.
2198 	 */
2199 	ret = btrfs_qgroup_account_extents(trans);
2200 	if (ret < 0) {
2201 		mutex_unlock(&fs_info->tree_log_mutex);
2202 		mutex_unlock(&fs_info->reloc_mutex);
2203 		goto scrub_continue;
2204 	}
2205 
2206 	ret = commit_cowonly_roots(trans);
2207 	if (ret) {
2208 		mutex_unlock(&fs_info->tree_log_mutex);
2209 		mutex_unlock(&fs_info->reloc_mutex);
2210 		goto scrub_continue;
2211 	}
2212 
2213 	/*
2214 	 * The tasks which save the space cache and inode cache may also
2215 	 * update ->aborted, check it.
2216 	 */
2217 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2218 		ret = cur_trans->aborted;
2219 		mutex_unlock(&fs_info->tree_log_mutex);
2220 		mutex_unlock(&fs_info->reloc_mutex);
2221 		goto scrub_continue;
2222 	}
2223 
2224 	btrfs_prepare_extent_commit(fs_info);
2225 
2226 	cur_trans = fs_info->running_transaction;
2227 
2228 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2229 			    fs_info->tree_root->node);
2230 	list_add_tail(&fs_info->tree_root->dirty_list,
2231 		      &cur_trans->switch_commits);
2232 
2233 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2234 			    fs_info->chunk_root->node);
2235 	list_add_tail(&fs_info->chunk_root->dirty_list,
2236 		      &cur_trans->switch_commits);
2237 
2238 	switch_commit_roots(cur_trans);
2239 
2240 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2241 	ASSERT(list_empty(&cur_trans->io_bgs));
2242 	update_super_roots(fs_info);
2243 
2244 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2245 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2246 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2247 	       sizeof(*fs_info->super_copy));
2248 
2249 	btrfs_commit_device_sizes(cur_trans);
2250 
2251 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2252 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2253 
2254 	btrfs_trans_release_chunk_metadata(trans);
2255 
2256 	spin_lock(&fs_info->trans_lock);
2257 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2258 	fs_info->running_transaction = NULL;
2259 	spin_unlock(&fs_info->trans_lock);
2260 	mutex_unlock(&fs_info->reloc_mutex);
2261 
2262 	wake_up(&fs_info->transaction_wait);
2263 
2264 	ret = btrfs_write_and_wait_transaction(trans);
2265 	if (ret) {
2266 		btrfs_handle_fs_error(fs_info, ret,
2267 				      "Error while writing out transaction");
2268 		mutex_unlock(&fs_info->tree_log_mutex);
2269 		goto scrub_continue;
2270 	}
2271 
2272 	ret = write_all_supers(fs_info, 0);
2273 	/*
2274 	 * the super is written, we can safely allow the tree-loggers
2275 	 * to go about their business
2276 	 */
2277 	mutex_unlock(&fs_info->tree_log_mutex);
2278 	if (ret)
2279 		goto scrub_continue;
2280 
2281 	btrfs_finish_extent_commit(trans);
2282 
2283 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2284 		btrfs_clear_space_info_full(fs_info);
2285 
2286 	fs_info->last_trans_committed = cur_trans->transid;
2287 	/*
2288 	 * We needn't acquire the lock here because there is no other task
2289 	 * which can change it.
2290 	 */
2291 	cur_trans->state = TRANS_STATE_COMPLETED;
2292 	wake_up(&cur_trans->commit_wait);
2293 	clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2294 
2295 	spin_lock(&fs_info->trans_lock);
2296 	list_del_init(&cur_trans->list);
2297 	spin_unlock(&fs_info->trans_lock);
2298 
2299 	btrfs_put_transaction(cur_trans);
2300 	btrfs_put_transaction(cur_trans);
2301 
2302 	if (trans->type & __TRANS_FREEZABLE)
2303 		sb_end_intwrite(fs_info->sb);
2304 
2305 	trace_btrfs_transaction_commit(trans->root);
2306 
2307 	btrfs_scrub_continue(fs_info);
2308 
2309 	if (current->journal_info == trans)
2310 		current->journal_info = NULL;
2311 
2312 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2313 
2314 	return ret;
2315 
2316 scrub_continue:
2317 	btrfs_scrub_continue(fs_info);
2318 cleanup_transaction:
2319 	btrfs_trans_release_metadata(trans);
2320 	btrfs_cleanup_pending_block_groups(trans);
2321 	btrfs_trans_release_chunk_metadata(trans);
2322 	trans->block_rsv = NULL;
2323 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2324 	if (current->journal_info == trans)
2325 		current->journal_info = NULL;
2326 	cleanup_transaction(trans, ret);
2327 
2328 	return ret;
2329 }
2330 
2331 /*
2332  * return < 0 if error
2333  * 0 if there are no more dead_roots at the time of call
2334  * 1 there are more to be processed, call me again
2335  *
2336  * The return value indicates there are certainly more snapshots to delete, but
2337  * if there comes a new one during processing, it may return 0. We don't mind,
2338  * because btrfs_commit_super will poke cleaner thread and it will process it a
2339  * few seconds later.
2340  */
2341 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2342 {
2343 	int ret;
2344 	struct btrfs_fs_info *fs_info = root->fs_info;
2345 
2346 	spin_lock(&fs_info->trans_lock);
2347 	if (list_empty(&fs_info->dead_roots)) {
2348 		spin_unlock(&fs_info->trans_lock);
2349 		return 0;
2350 	}
2351 	root = list_first_entry(&fs_info->dead_roots,
2352 			struct btrfs_root, root_list);
2353 	list_del_init(&root->root_list);
2354 	spin_unlock(&fs_info->trans_lock);
2355 
2356 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2357 
2358 	btrfs_kill_all_delayed_nodes(root);
2359 
2360 	if (btrfs_header_backref_rev(root->node) <
2361 			BTRFS_MIXED_BACKREF_REV)
2362 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2363 	else
2364 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2365 
2366 	return (ret < 0) ? 0 : 1;
2367 }
2368 
2369 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2370 {
2371 	unsigned long prev;
2372 	unsigned long bit;
2373 
2374 	prev = xchg(&fs_info->pending_changes, 0);
2375 	if (!prev)
2376 		return;
2377 
2378 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2379 	if (prev & bit)
2380 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2381 	prev &= ~bit;
2382 
2383 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2384 	if (prev & bit)
2385 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2386 	prev &= ~bit;
2387 
2388 	bit = 1 << BTRFS_PENDING_COMMIT;
2389 	if (prev & bit)
2390 		btrfs_debug(fs_info, "pending commit done");
2391 	prev &= ~bit;
2392 
2393 	if (prev)
2394 		btrfs_warn(fs_info,
2395 			"unknown pending changes left 0x%lx, ignoring", prev);
2396 }
2397