1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include <linux/timekeeping.h> 14 #include "misc.h" 15 #include "ctree.h" 16 #include "disk-io.h" 17 #include "transaction.h" 18 #include "locking.h" 19 #include "tree-log.h" 20 #include "volumes.h" 21 #include "dev-replace.h" 22 #include "qgroup.h" 23 #include "block-group.h" 24 #include "space-info.h" 25 #include "zoned.h" 26 27 #define BTRFS_ROOT_TRANS_TAG 0 28 29 /* 30 * Transaction states and transitions 31 * 32 * No running transaction (fs tree blocks are not modified) 33 * | 34 * | To next stage: 35 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 36 * V 37 * Transaction N [[TRANS_STATE_RUNNING]] 38 * | 39 * | New trans handles can be attached to transaction N by calling all 40 * | start_transaction() variants. 41 * | 42 * | To next stage: 43 * | Call btrfs_commit_transaction() on any trans handle attached to 44 * | transaction N 45 * V 46 * Transaction N [[TRANS_STATE_COMMIT_START]] 47 * | 48 * | Will wait for previous running transaction to completely finish if there 49 * | is one 50 * | 51 * | Then one of the following happes: 52 * | - Wait for all other trans handle holders to release. 53 * | The btrfs_commit_transaction() caller will do the commit work. 54 * | - Wait for current transaction to be committed by others. 55 * | Other btrfs_commit_transaction() caller will do the commit work. 56 * | 57 * | At this stage, only btrfs_join_transaction*() variants can attach 58 * | to this running transaction. 59 * | All other variants will wait for current one to finish and attach to 60 * | transaction N+1. 61 * | 62 * | To next stage: 63 * | Caller is chosen to commit transaction N, and all other trans handle 64 * | haven been released. 65 * V 66 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 67 * | 68 * | The heavy lifting transaction work is started. 69 * | From running delayed refs (modifying extent tree) to creating pending 70 * | snapshots, running qgroups. 71 * | In short, modify supporting trees to reflect modifications of subvolume 72 * | trees. 73 * | 74 * | At this stage, all start_transaction() calls will wait for this 75 * | transaction to finish and attach to transaction N+1. 76 * | 77 * | To next stage: 78 * | Until all supporting trees are updated. 79 * V 80 * Transaction N [[TRANS_STATE_UNBLOCKED]] 81 * | Transaction N+1 82 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 83 * | need to write them back to disk and update | 84 * | super blocks. | 85 * | | 86 * | At this stage, new transaction is allowed to | 87 * | start. | 88 * | All new start_transaction() calls will be | 89 * | attached to transid N+1. | 90 * | | 91 * | To next stage: | 92 * | Until all tree blocks are super blocks are | 93 * | written to block devices | 94 * V | 95 * Transaction N [[TRANS_STATE_COMPLETED]] V 96 * All tree blocks and super blocks are written. Transaction N+1 97 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 98 * data structures will be cleaned up. | Life goes on 99 */ 100 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 101 [TRANS_STATE_RUNNING] = 0U, 102 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 103 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 104 __TRANS_ATTACH | 105 __TRANS_JOIN | 106 __TRANS_JOIN_NOSTART), 107 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 108 __TRANS_ATTACH | 109 __TRANS_JOIN | 110 __TRANS_JOIN_NOLOCK | 111 __TRANS_JOIN_NOSTART), 112 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 113 __TRANS_ATTACH | 114 __TRANS_JOIN | 115 __TRANS_JOIN_NOLOCK | 116 __TRANS_JOIN_NOSTART), 117 [TRANS_STATE_COMPLETED] = (__TRANS_START | 118 __TRANS_ATTACH | 119 __TRANS_JOIN | 120 __TRANS_JOIN_NOLOCK | 121 __TRANS_JOIN_NOSTART), 122 }; 123 124 void btrfs_put_transaction(struct btrfs_transaction *transaction) 125 { 126 WARN_ON(refcount_read(&transaction->use_count) == 0); 127 if (refcount_dec_and_test(&transaction->use_count)) { 128 BUG_ON(!list_empty(&transaction->list)); 129 WARN_ON(!RB_EMPTY_ROOT( 130 &transaction->delayed_refs.href_root.rb_root)); 131 WARN_ON(!RB_EMPTY_ROOT( 132 &transaction->delayed_refs.dirty_extent_root)); 133 if (transaction->delayed_refs.pending_csums) 134 btrfs_err(transaction->fs_info, 135 "pending csums is %llu", 136 transaction->delayed_refs.pending_csums); 137 /* 138 * If any block groups are found in ->deleted_bgs then it's 139 * because the transaction was aborted and a commit did not 140 * happen (things failed before writing the new superblock 141 * and calling btrfs_finish_extent_commit()), so we can not 142 * discard the physical locations of the block groups. 143 */ 144 while (!list_empty(&transaction->deleted_bgs)) { 145 struct btrfs_block_group *cache; 146 147 cache = list_first_entry(&transaction->deleted_bgs, 148 struct btrfs_block_group, 149 bg_list); 150 list_del_init(&cache->bg_list); 151 btrfs_unfreeze_block_group(cache); 152 btrfs_put_block_group(cache); 153 } 154 WARN_ON(!list_empty(&transaction->dev_update_list)); 155 kfree(transaction); 156 } 157 } 158 159 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 160 { 161 struct btrfs_transaction *cur_trans = trans->transaction; 162 struct btrfs_fs_info *fs_info = trans->fs_info; 163 struct btrfs_root *root, *tmp; 164 165 /* 166 * At this point no one can be using this transaction to modify any tree 167 * and no one can start another transaction to modify any tree either. 168 */ 169 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING); 170 171 down_write(&fs_info->commit_root_sem); 172 173 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 174 fs_info->last_reloc_trans = trans->transid; 175 176 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 177 dirty_list) { 178 list_del_init(&root->dirty_list); 179 free_extent_buffer(root->commit_root); 180 root->commit_root = btrfs_root_node(root); 181 extent_io_tree_release(&root->dirty_log_pages); 182 btrfs_qgroup_clean_swapped_blocks(root); 183 } 184 185 /* We can free old roots now. */ 186 spin_lock(&cur_trans->dropped_roots_lock); 187 while (!list_empty(&cur_trans->dropped_roots)) { 188 root = list_first_entry(&cur_trans->dropped_roots, 189 struct btrfs_root, root_list); 190 list_del_init(&root->root_list); 191 spin_unlock(&cur_trans->dropped_roots_lock); 192 btrfs_free_log(trans, root); 193 btrfs_drop_and_free_fs_root(fs_info, root); 194 spin_lock(&cur_trans->dropped_roots_lock); 195 } 196 spin_unlock(&cur_trans->dropped_roots_lock); 197 198 up_write(&fs_info->commit_root_sem); 199 } 200 201 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 202 unsigned int type) 203 { 204 if (type & TRANS_EXTWRITERS) 205 atomic_inc(&trans->num_extwriters); 206 } 207 208 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 209 unsigned int type) 210 { 211 if (type & TRANS_EXTWRITERS) 212 atomic_dec(&trans->num_extwriters); 213 } 214 215 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 216 unsigned int type) 217 { 218 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 219 } 220 221 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 222 { 223 return atomic_read(&trans->num_extwriters); 224 } 225 226 /* 227 * To be called after doing the chunk btree updates right after allocating a new 228 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a 229 * chunk after all chunk btree updates and after finishing the second phase of 230 * chunk allocation (btrfs_create_pending_block_groups()) in case some block 231 * group had its chunk item insertion delayed to the second phase. 232 */ 233 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 234 { 235 struct btrfs_fs_info *fs_info = trans->fs_info; 236 237 if (!trans->chunk_bytes_reserved) 238 return; 239 240 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 241 trans->chunk_bytes_reserved, NULL); 242 trans->chunk_bytes_reserved = 0; 243 } 244 245 /* 246 * either allocate a new transaction or hop into the existing one 247 */ 248 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 249 unsigned int type) 250 { 251 struct btrfs_transaction *cur_trans; 252 253 spin_lock(&fs_info->trans_lock); 254 loop: 255 /* The file system has been taken offline. No new transactions. */ 256 if (BTRFS_FS_ERROR(fs_info)) { 257 spin_unlock(&fs_info->trans_lock); 258 return -EROFS; 259 } 260 261 cur_trans = fs_info->running_transaction; 262 if (cur_trans) { 263 if (TRANS_ABORTED(cur_trans)) { 264 spin_unlock(&fs_info->trans_lock); 265 return cur_trans->aborted; 266 } 267 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 268 spin_unlock(&fs_info->trans_lock); 269 return -EBUSY; 270 } 271 refcount_inc(&cur_trans->use_count); 272 atomic_inc(&cur_trans->num_writers); 273 extwriter_counter_inc(cur_trans, type); 274 spin_unlock(&fs_info->trans_lock); 275 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 276 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 277 return 0; 278 } 279 spin_unlock(&fs_info->trans_lock); 280 281 /* 282 * If we are ATTACH, we just want to catch the current transaction, 283 * and commit it. If there is no transaction, just return ENOENT. 284 */ 285 if (type == TRANS_ATTACH) 286 return -ENOENT; 287 288 /* 289 * JOIN_NOLOCK only happens during the transaction commit, so 290 * it is impossible that ->running_transaction is NULL 291 */ 292 BUG_ON(type == TRANS_JOIN_NOLOCK); 293 294 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 295 if (!cur_trans) 296 return -ENOMEM; 297 298 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 299 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 300 301 spin_lock(&fs_info->trans_lock); 302 if (fs_info->running_transaction) { 303 /* 304 * someone started a transaction after we unlocked. Make sure 305 * to redo the checks above 306 */ 307 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 308 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 309 kfree(cur_trans); 310 goto loop; 311 } else if (BTRFS_FS_ERROR(fs_info)) { 312 spin_unlock(&fs_info->trans_lock); 313 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 314 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 315 kfree(cur_trans); 316 return -EROFS; 317 } 318 319 cur_trans->fs_info = fs_info; 320 atomic_set(&cur_trans->pending_ordered, 0); 321 init_waitqueue_head(&cur_trans->pending_wait); 322 atomic_set(&cur_trans->num_writers, 1); 323 extwriter_counter_init(cur_trans, type); 324 init_waitqueue_head(&cur_trans->writer_wait); 325 init_waitqueue_head(&cur_trans->commit_wait); 326 cur_trans->state = TRANS_STATE_RUNNING; 327 /* 328 * One for this trans handle, one so it will live on until we 329 * commit the transaction. 330 */ 331 refcount_set(&cur_trans->use_count, 2); 332 cur_trans->flags = 0; 333 cur_trans->start_time = ktime_get_seconds(); 334 335 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 336 337 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 338 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 339 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 340 341 /* 342 * although the tree mod log is per file system and not per transaction, 343 * the log must never go across transaction boundaries. 344 */ 345 smp_mb(); 346 if (!list_empty(&fs_info->tree_mod_seq_list)) 347 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 348 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 349 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 350 atomic64_set(&fs_info->tree_mod_seq, 0); 351 352 spin_lock_init(&cur_trans->delayed_refs.lock); 353 354 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 355 INIT_LIST_HEAD(&cur_trans->dev_update_list); 356 INIT_LIST_HEAD(&cur_trans->switch_commits); 357 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 358 INIT_LIST_HEAD(&cur_trans->io_bgs); 359 INIT_LIST_HEAD(&cur_trans->dropped_roots); 360 mutex_init(&cur_trans->cache_write_mutex); 361 spin_lock_init(&cur_trans->dirty_bgs_lock); 362 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 363 spin_lock_init(&cur_trans->dropped_roots_lock); 364 INIT_LIST_HEAD(&cur_trans->releasing_ebs); 365 spin_lock_init(&cur_trans->releasing_ebs_lock); 366 list_add_tail(&cur_trans->list, &fs_info->trans_list); 367 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 368 IO_TREE_TRANS_DIRTY_PAGES, NULL); 369 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 370 IO_TREE_FS_PINNED_EXTENTS, NULL); 371 fs_info->generation++; 372 cur_trans->transid = fs_info->generation; 373 fs_info->running_transaction = cur_trans; 374 cur_trans->aborted = 0; 375 spin_unlock(&fs_info->trans_lock); 376 377 return 0; 378 } 379 380 /* 381 * This does all the record keeping required to make sure that a shareable root 382 * is properly recorded in a given transaction. This is required to make sure 383 * the old root from before we joined the transaction is deleted when the 384 * transaction commits. 385 */ 386 static int record_root_in_trans(struct btrfs_trans_handle *trans, 387 struct btrfs_root *root, 388 int force) 389 { 390 struct btrfs_fs_info *fs_info = root->fs_info; 391 int ret = 0; 392 393 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 394 root->last_trans < trans->transid) || force) { 395 WARN_ON(!force && root->commit_root != root->node); 396 397 /* 398 * see below for IN_TRANS_SETUP usage rules 399 * we have the reloc mutex held now, so there 400 * is only one writer in this function 401 */ 402 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 403 404 /* make sure readers find IN_TRANS_SETUP before 405 * they find our root->last_trans update 406 */ 407 smp_wmb(); 408 409 spin_lock(&fs_info->fs_roots_radix_lock); 410 if (root->last_trans == trans->transid && !force) { 411 spin_unlock(&fs_info->fs_roots_radix_lock); 412 return 0; 413 } 414 radix_tree_tag_set(&fs_info->fs_roots_radix, 415 (unsigned long)root->root_key.objectid, 416 BTRFS_ROOT_TRANS_TAG); 417 spin_unlock(&fs_info->fs_roots_radix_lock); 418 root->last_trans = trans->transid; 419 420 /* this is pretty tricky. We don't want to 421 * take the relocation lock in btrfs_record_root_in_trans 422 * unless we're really doing the first setup for this root in 423 * this transaction. 424 * 425 * Normally we'd use root->last_trans as a flag to decide 426 * if we want to take the expensive mutex. 427 * 428 * But, we have to set root->last_trans before we 429 * init the relocation root, otherwise, we trip over warnings 430 * in ctree.c. The solution used here is to flag ourselves 431 * with root IN_TRANS_SETUP. When this is 1, we're still 432 * fixing up the reloc trees and everyone must wait. 433 * 434 * When this is zero, they can trust root->last_trans and fly 435 * through btrfs_record_root_in_trans without having to take the 436 * lock. smp_wmb() makes sure that all the writes above are 437 * done before we pop in the zero below 438 */ 439 ret = btrfs_init_reloc_root(trans, root); 440 smp_mb__before_atomic(); 441 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 442 } 443 return ret; 444 } 445 446 447 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 448 struct btrfs_root *root) 449 { 450 struct btrfs_fs_info *fs_info = root->fs_info; 451 struct btrfs_transaction *cur_trans = trans->transaction; 452 453 /* Add ourselves to the transaction dropped list */ 454 spin_lock(&cur_trans->dropped_roots_lock); 455 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 456 spin_unlock(&cur_trans->dropped_roots_lock); 457 458 /* Make sure we don't try to update the root at commit time */ 459 spin_lock(&fs_info->fs_roots_radix_lock); 460 radix_tree_tag_clear(&fs_info->fs_roots_radix, 461 (unsigned long)root->root_key.objectid, 462 BTRFS_ROOT_TRANS_TAG); 463 spin_unlock(&fs_info->fs_roots_radix_lock); 464 } 465 466 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 467 struct btrfs_root *root) 468 { 469 struct btrfs_fs_info *fs_info = root->fs_info; 470 int ret; 471 472 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 473 return 0; 474 475 /* 476 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 477 * and barriers 478 */ 479 smp_rmb(); 480 if (root->last_trans == trans->transid && 481 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 482 return 0; 483 484 mutex_lock(&fs_info->reloc_mutex); 485 ret = record_root_in_trans(trans, root, 0); 486 mutex_unlock(&fs_info->reloc_mutex); 487 488 return ret; 489 } 490 491 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 492 { 493 return (trans->state >= TRANS_STATE_COMMIT_START && 494 trans->state < TRANS_STATE_UNBLOCKED && 495 !TRANS_ABORTED(trans)); 496 } 497 498 /* wait for commit against the current transaction to become unblocked 499 * when this is done, it is safe to start a new transaction, but the current 500 * transaction might not be fully on disk. 501 */ 502 static void wait_current_trans(struct btrfs_fs_info *fs_info) 503 { 504 struct btrfs_transaction *cur_trans; 505 506 spin_lock(&fs_info->trans_lock); 507 cur_trans = fs_info->running_transaction; 508 if (cur_trans && is_transaction_blocked(cur_trans)) { 509 refcount_inc(&cur_trans->use_count); 510 spin_unlock(&fs_info->trans_lock); 511 512 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 513 wait_event(fs_info->transaction_wait, 514 cur_trans->state >= TRANS_STATE_UNBLOCKED || 515 TRANS_ABORTED(cur_trans)); 516 btrfs_put_transaction(cur_trans); 517 } else { 518 spin_unlock(&fs_info->trans_lock); 519 } 520 } 521 522 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 523 { 524 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 525 return 0; 526 527 if (type == TRANS_START) 528 return 1; 529 530 return 0; 531 } 532 533 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 534 { 535 struct btrfs_fs_info *fs_info = root->fs_info; 536 537 if (!fs_info->reloc_ctl || 538 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 539 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 540 root->reloc_root) 541 return false; 542 543 return true; 544 } 545 546 static struct btrfs_trans_handle * 547 start_transaction(struct btrfs_root *root, unsigned int num_items, 548 unsigned int type, enum btrfs_reserve_flush_enum flush, 549 bool enforce_qgroups) 550 { 551 struct btrfs_fs_info *fs_info = root->fs_info; 552 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 553 struct btrfs_trans_handle *h; 554 struct btrfs_transaction *cur_trans; 555 u64 num_bytes = 0; 556 u64 qgroup_reserved = 0; 557 bool reloc_reserved = false; 558 bool do_chunk_alloc = false; 559 int ret; 560 561 if (BTRFS_FS_ERROR(fs_info)) 562 return ERR_PTR(-EROFS); 563 564 if (current->journal_info) { 565 WARN_ON(type & TRANS_EXTWRITERS); 566 h = current->journal_info; 567 refcount_inc(&h->use_count); 568 WARN_ON(refcount_read(&h->use_count) > 2); 569 h->orig_rsv = h->block_rsv; 570 h->block_rsv = NULL; 571 goto got_it; 572 } 573 574 /* 575 * Do the reservation before we join the transaction so we can do all 576 * the appropriate flushing if need be. 577 */ 578 if (num_items && root != fs_info->chunk_root) { 579 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 580 u64 delayed_refs_bytes = 0; 581 582 qgroup_reserved = num_items * fs_info->nodesize; 583 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 584 enforce_qgroups); 585 if (ret) 586 return ERR_PTR(ret); 587 588 /* 589 * We want to reserve all the bytes we may need all at once, so 590 * we only do 1 enospc flushing cycle per transaction start. We 591 * accomplish this by simply assuming we'll do 2 x num_items 592 * worth of delayed refs updates in this trans handle, and 593 * refill that amount for whatever is missing in the reserve. 594 */ 595 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 596 if (flush == BTRFS_RESERVE_FLUSH_ALL && 597 btrfs_block_rsv_full(delayed_refs_rsv) == 0) { 598 delayed_refs_bytes = num_bytes; 599 num_bytes <<= 1; 600 } 601 602 /* 603 * Do the reservation for the relocation root creation 604 */ 605 if (need_reserve_reloc_root(root)) { 606 num_bytes += fs_info->nodesize; 607 reloc_reserved = true; 608 } 609 610 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush); 611 if (ret) 612 goto reserve_fail; 613 if (delayed_refs_bytes) { 614 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 615 delayed_refs_bytes); 616 num_bytes -= delayed_refs_bytes; 617 } 618 619 if (rsv->space_info->force_alloc) 620 do_chunk_alloc = true; 621 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 622 !btrfs_block_rsv_full(delayed_refs_rsv)) { 623 /* 624 * Some people call with btrfs_start_transaction(root, 0) 625 * because they can be throttled, but have some other mechanism 626 * for reserving space. We still want these guys to refill the 627 * delayed block_rsv so just add 1 items worth of reservation 628 * here. 629 */ 630 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 631 if (ret) 632 goto reserve_fail; 633 } 634 again: 635 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 636 if (!h) { 637 ret = -ENOMEM; 638 goto alloc_fail; 639 } 640 641 /* 642 * If we are JOIN_NOLOCK we're already committing a transaction and 643 * waiting on this guy, so we don't need to do the sb_start_intwrite 644 * because we're already holding a ref. We need this because we could 645 * have raced in and did an fsync() on a file which can kick a commit 646 * and then we deadlock with somebody doing a freeze. 647 * 648 * If we are ATTACH, it means we just want to catch the current 649 * transaction and commit it, so we needn't do sb_start_intwrite(). 650 */ 651 if (type & __TRANS_FREEZABLE) 652 sb_start_intwrite(fs_info->sb); 653 654 if (may_wait_transaction(fs_info, type)) 655 wait_current_trans(fs_info); 656 657 do { 658 ret = join_transaction(fs_info, type); 659 if (ret == -EBUSY) { 660 wait_current_trans(fs_info); 661 if (unlikely(type == TRANS_ATTACH || 662 type == TRANS_JOIN_NOSTART)) 663 ret = -ENOENT; 664 } 665 } while (ret == -EBUSY); 666 667 if (ret < 0) 668 goto join_fail; 669 670 cur_trans = fs_info->running_transaction; 671 672 h->transid = cur_trans->transid; 673 h->transaction = cur_trans; 674 refcount_set(&h->use_count, 1); 675 h->fs_info = root->fs_info; 676 677 h->type = type; 678 INIT_LIST_HEAD(&h->new_bgs); 679 680 smp_mb(); 681 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 682 may_wait_transaction(fs_info, type)) { 683 current->journal_info = h; 684 btrfs_commit_transaction(h); 685 goto again; 686 } 687 688 if (num_bytes) { 689 trace_btrfs_space_reservation(fs_info, "transaction", 690 h->transid, num_bytes, 1); 691 h->block_rsv = &fs_info->trans_block_rsv; 692 h->bytes_reserved = num_bytes; 693 h->reloc_reserved = reloc_reserved; 694 } 695 696 got_it: 697 if (!current->journal_info) 698 current->journal_info = h; 699 700 /* 701 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 702 * ALLOC_FORCE the first run through, and then we won't allocate for 703 * anybody else who races in later. We don't care about the return 704 * value here. 705 */ 706 if (do_chunk_alloc && num_bytes) { 707 u64 flags = h->block_rsv->space_info->flags; 708 709 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 710 CHUNK_ALLOC_NO_FORCE); 711 } 712 713 /* 714 * btrfs_record_root_in_trans() needs to alloc new extents, and may 715 * call btrfs_join_transaction() while we're also starting a 716 * transaction. 717 * 718 * Thus it need to be called after current->journal_info initialized, 719 * or we can deadlock. 720 */ 721 ret = btrfs_record_root_in_trans(h, root); 722 if (ret) { 723 /* 724 * The transaction handle is fully initialized and linked with 725 * other structures so it needs to be ended in case of errors, 726 * not just freed. 727 */ 728 btrfs_end_transaction(h); 729 return ERR_PTR(ret); 730 } 731 732 return h; 733 734 join_fail: 735 if (type & __TRANS_FREEZABLE) 736 sb_end_intwrite(fs_info->sb); 737 kmem_cache_free(btrfs_trans_handle_cachep, h); 738 alloc_fail: 739 if (num_bytes) 740 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 741 num_bytes, NULL); 742 reserve_fail: 743 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 744 return ERR_PTR(ret); 745 } 746 747 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 748 unsigned int num_items) 749 { 750 return start_transaction(root, num_items, TRANS_START, 751 BTRFS_RESERVE_FLUSH_ALL, true); 752 } 753 754 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 755 struct btrfs_root *root, 756 unsigned int num_items) 757 { 758 return start_transaction(root, num_items, TRANS_START, 759 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 760 } 761 762 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 763 { 764 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 765 true); 766 } 767 768 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 769 { 770 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 771 BTRFS_RESERVE_NO_FLUSH, true); 772 } 773 774 /* 775 * Similar to regular join but it never starts a transaction when none is 776 * running or after waiting for the current one to finish. 777 */ 778 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 779 { 780 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 781 BTRFS_RESERVE_NO_FLUSH, true); 782 } 783 784 /* 785 * btrfs_attach_transaction() - catch the running transaction 786 * 787 * It is used when we want to commit the current the transaction, but 788 * don't want to start a new one. 789 * 790 * Note: If this function return -ENOENT, it just means there is no 791 * running transaction. But it is possible that the inactive transaction 792 * is still in the memory, not fully on disk. If you hope there is no 793 * inactive transaction in the fs when -ENOENT is returned, you should 794 * invoke 795 * btrfs_attach_transaction_barrier() 796 */ 797 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 798 { 799 return start_transaction(root, 0, TRANS_ATTACH, 800 BTRFS_RESERVE_NO_FLUSH, true); 801 } 802 803 /* 804 * btrfs_attach_transaction_barrier() - catch the running transaction 805 * 806 * It is similar to the above function, the difference is this one 807 * will wait for all the inactive transactions until they fully 808 * complete. 809 */ 810 struct btrfs_trans_handle * 811 btrfs_attach_transaction_barrier(struct btrfs_root *root) 812 { 813 struct btrfs_trans_handle *trans; 814 815 trans = start_transaction(root, 0, TRANS_ATTACH, 816 BTRFS_RESERVE_NO_FLUSH, true); 817 if (trans == ERR_PTR(-ENOENT)) 818 btrfs_wait_for_commit(root->fs_info, 0); 819 820 return trans; 821 } 822 823 /* Wait for a transaction commit to reach at least the given state. */ 824 static noinline void wait_for_commit(struct btrfs_transaction *commit, 825 const enum btrfs_trans_state min_state) 826 { 827 struct btrfs_fs_info *fs_info = commit->fs_info; 828 u64 transid = commit->transid; 829 bool put = false; 830 831 /* 832 * At the moment this function is called with min_state either being 833 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED. 834 */ 835 if (min_state == TRANS_STATE_COMPLETED) 836 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 837 else 838 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 839 840 while (1) { 841 wait_event(commit->commit_wait, commit->state >= min_state); 842 if (put) 843 btrfs_put_transaction(commit); 844 845 if (min_state < TRANS_STATE_COMPLETED) 846 break; 847 848 /* 849 * A transaction isn't really completed until all of the 850 * previous transactions are completed, but with fsync we can 851 * end up with SUPER_COMMITTED transactions before a COMPLETED 852 * transaction. Wait for those. 853 */ 854 855 spin_lock(&fs_info->trans_lock); 856 commit = list_first_entry_or_null(&fs_info->trans_list, 857 struct btrfs_transaction, 858 list); 859 if (!commit || commit->transid > transid) { 860 spin_unlock(&fs_info->trans_lock); 861 break; 862 } 863 refcount_inc(&commit->use_count); 864 put = true; 865 spin_unlock(&fs_info->trans_lock); 866 } 867 } 868 869 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 870 { 871 struct btrfs_transaction *cur_trans = NULL, *t; 872 int ret = 0; 873 874 if (transid) { 875 if (transid <= fs_info->last_trans_committed) 876 goto out; 877 878 /* find specified transaction */ 879 spin_lock(&fs_info->trans_lock); 880 list_for_each_entry(t, &fs_info->trans_list, list) { 881 if (t->transid == transid) { 882 cur_trans = t; 883 refcount_inc(&cur_trans->use_count); 884 ret = 0; 885 break; 886 } 887 if (t->transid > transid) { 888 ret = 0; 889 break; 890 } 891 } 892 spin_unlock(&fs_info->trans_lock); 893 894 /* 895 * The specified transaction doesn't exist, or we 896 * raced with btrfs_commit_transaction 897 */ 898 if (!cur_trans) { 899 if (transid > fs_info->last_trans_committed) 900 ret = -EINVAL; 901 goto out; 902 } 903 } else { 904 /* find newest transaction that is committing | committed */ 905 spin_lock(&fs_info->trans_lock); 906 list_for_each_entry_reverse(t, &fs_info->trans_list, 907 list) { 908 if (t->state >= TRANS_STATE_COMMIT_START) { 909 if (t->state == TRANS_STATE_COMPLETED) 910 break; 911 cur_trans = t; 912 refcount_inc(&cur_trans->use_count); 913 break; 914 } 915 } 916 spin_unlock(&fs_info->trans_lock); 917 if (!cur_trans) 918 goto out; /* nothing committing|committed */ 919 } 920 921 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 922 btrfs_put_transaction(cur_trans); 923 out: 924 return ret; 925 } 926 927 void btrfs_throttle(struct btrfs_fs_info *fs_info) 928 { 929 wait_current_trans(fs_info); 930 } 931 932 static bool should_end_transaction(struct btrfs_trans_handle *trans) 933 { 934 struct btrfs_fs_info *fs_info = trans->fs_info; 935 936 if (btrfs_check_space_for_delayed_refs(fs_info)) 937 return true; 938 939 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 940 } 941 942 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 943 { 944 struct btrfs_transaction *cur_trans = trans->transaction; 945 946 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 947 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 948 return true; 949 950 return should_end_transaction(trans); 951 } 952 953 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 954 955 { 956 struct btrfs_fs_info *fs_info = trans->fs_info; 957 958 if (!trans->block_rsv) { 959 ASSERT(!trans->bytes_reserved); 960 return; 961 } 962 963 if (!trans->bytes_reserved) 964 return; 965 966 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 967 trace_btrfs_space_reservation(fs_info, "transaction", 968 trans->transid, trans->bytes_reserved, 0); 969 btrfs_block_rsv_release(fs_info, trans->block_rsv, 970 trans->bytes_reserved, NULL); 971 trans->bytes_reserved = 0; 972 } 973 974 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 975 int throttle) 976 { 977 struct btrfs_fs_info *info = trans->fs_info; 978 struct btrfs_transaction *cur_trans = trans->transaction; 979 int err = 0; 980 981 if (refcount_read(&trans->use_count) > 1) { 982 refcount_dec(&trans->use_count); 983 trans->block_rsv = trans->orig_rsv; 984 return 0; 985 } 986 987 btrfs_trans_release_metadata(trans); 988 trans->block_rsv = NULL; 989 990 btrfs_create_pending_block_groups(trans); 991 992 btrfs_trans_release_chunk_metadata(trans); 993 994 if (trans->type & __TRANS_FREEZABLE) 995 sb_end_intwrite(info->sb); 996 997 WARN_ON(cur_trans != info->running_transaction); 998 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 999 atomic_dec(&cur_trans->num_writers); 1000 extwriter_counter_dec(cur_trans, trans->type); 1001 1002 cond_wake_up(&cur_trans->writer_wait); 1003 1004 btrfs_lockdep_release(info, btrfs_trans_num_extwriters); 1005 btrfs_lockdep_release(info, btrfs_trans_num_writers); 1006 1007 btrfs_put_transaction(cur_trans); 1008 1009 if (current->journal_info == trans) 1010 current->journal_info = NULL; 1011 1012 if (throttle) 1013 btrfs_run_delayed_iputs(info); 1014 1015 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) { 1016 wake_up_process(info->transaction_kthread); 1017 if (TRANS_ABORTED(trans)) 1018 err = trans->aborted; 1019 else 1020 err = -EROFS; 1021 } 1022 1023 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1024 return err; 1025 } 1026 1027 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1028 { 1029 return __btrfs_end_transaction(trans, 0); 1030 } 1031 1032 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1033 { 1034 return __btrfs_end_transaction(trans, 1); 1035 } 1036 1037 /* 1038 * when btree blocks are allocated, they have some corresponding bits set for 1039 * them in one of two extent_io trees. This is used to make sure all of 1040 * those extents are sent to disk but does not wait on them 1041 */ 1042 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1043 struct extent_io_tree *dirty_pages, int mark) 1044 { 1045 int err = 0; 1046 int werr = 0; 1047 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1048 struct extent_state *cached_state = NULL; 1049 u64 start = 0; 1050 u64 end; 1051 1052 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1053 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1054 mark, &cached_state)) { 1055 bool wait_writeback = false; 1056 1057 err = convert_extent_bit(dirty_pages, start, end, 1058 EXTENT_NEED_WAIT, 1059 mark, &cached_state); 1060 /* 1061 * convert_extent_bit can return -ENOMEM, which is most of the 1062 * time a temporary error. So when it happens, ignore the error 1063 * and wait for writeback of this range to finish - because we 1064 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1065 * to __btrfs_wait_marked_extents() would not know that 1066 * writeback for this range started and therefore wouldn't 1067 * wait for it to finish - we don't want to commit a 1068 * superblock that points to btree nodes/leafs for which 1069 * writeback hasn't finished yet (and without errors). 1070 * We cleanup any entries left in the io tree when committing 1071 * the transaction (through extent_io_tree_release()). 1072 */ 1073 if (err == -ENOMEM) { 1074 err = 0; 1075 wait_writeback = true; 1076 } 1077 if (!err) 1078 err = filemap_fdatawrite_range(mapping, start, end); 1079 if (err) 1080 werr = err; 1081 else if (wait_writeback) 1082 werr = filemap_fdatawait_range(mapping, start, end); 1083 free_extent_state(cached_state); 1084 cached_state = NULL; 1085 cond_resched(); 1086 start = end + 1; 1087 } 1088 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1089 return werr; 1090 } 1091 1092 /* 1093 * when btree blocks are allocated, they have some corresponding bits set for 1094 * them in one of two extent_io trees. This is used to make sure all of 1095 * those extents are on disk for transaction or log commit. We wait 1096 * on all the pages and clear them from the dirty pages state tree 1097 */ 1098 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1099 struct extent_io_tree *dirty_pages) 1100 { 1101 int err = 0; 1102 int werr = 0; 1103 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1104 struct extent_state *cached_state = NULL; 1105 u64 start = 0; 1106 u64 end; 1107 1108 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1109 EXTENT_NEED_WAIT, &cached_state)) { 1110 /* 1111 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1112 * When committing the transaction, we'll remove any entries 1113 * left in the io tree. For a log commit, we don't remove them 1114 * after committing the log because the tree can be accessed 1115 * concurrently - we do it only at transaction commit time when 1116 * it's safe to do it (through extent_io_tree_release()). 1117 */ 1118 err = clear_extent_bit(dirty_pages, start, end, 1119 EXTENT_NEED_WAIT, &cached_state); 1120 if (err == -ENOMEM) 1121 err = 0; 1122 if (!err) 1123 err = filemap_fdatawait_range(mapping, start, end); 1124 if (err) 1125 werr = err; 1126 free_extent_state(cached_state); 1127 cached_state = NULL; 1128 cond_resched(); 1129 start = end + 1; 1130 } 1131 if (err) 1132 werr = err; 1133 return werr; 1134 } 1135 1136 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1137 struct extent_io_tree *dirty_pages) 1138 { 1139 bool errors = false; 1140 int err; 1141 1142 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1143 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1144 errors = true; 1145 1146 if (errors && !err) 1147 err = -EIO; 1148 return err; 1149 } 1150 1151 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1152 { 1153 struct btrfs_fs_info *fs_info = log_root->fs_info; 1154 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1155 bool errors = false; 1156 int err; 1157 1158 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1159 1160 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1161 if ((mark & EXTENT_DIRTY) && 1162 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1163 errors = true; 1164 1165 if ((mark & EXTENT_NEW) && 1166 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1167 errors = true; 1168 1169 if (errors && !err) 1170 err = -EIO; 1171 return err; 1172 } 1173 1174 /* 1175 * When btree blocks are allocated the corresponding extents are marked dirty. 1176 * This function ensures such extents are persisted on disk for transaction or 1177 * log commit. 1178 * 1179 * @trans: transaction whose dirty pages we'd like to write 1180 */ 1181 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1182 { 1183 int ret; 1184 int ret2; 1185 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1186 struct btrfs_fs_info *fs_info = trans->fs_info; 1187 struct blk_plug plug; 1188 1189 blk_start_plug(&plug); 1190 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1191 blk_finish_plug(&plug); 1192 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1193 1194 extent_io_tree_release(&trans->transaction->dirty_pages); 1195 1196 if (ret) 1197 return ret; 1198 else if (ret2) 1199 return ret2; 1200 else 1201 return 0; 1202 } 1203 1204 /* 1205 * this is used to update the root pointer in the tree of tree roots. 1206 * 1207 * But, in the case of the extent allocation tree, updating the root 1208 * pointer may allocate blocks which may change the root of the extent 1209 * allocation tree. 1210 * 1211 * So, this loops and repeats and makes sure the cowonly root didn't 1212 * change while the root pointer was being updated in the metadata. 1213 */ 1214 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1215 struct btrfs_root *root) 1216 { 1217 int ret; 1218 u64 old_root_bytenr; 1219 u64 old_root_used; 1220 struct btrfs_fs_info *fs_info = root->fs_info; 1221 struct btrfs_root *tree_root = fs_info->tree_root; 1222 1223 old_root_used = btrfs_root_used(&root->root_item); 1224 1225 while (1) { 1226 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1227 if (old_root_bytenr == root->node->start && 1228 old_root_used == btrfs_root_used(&root->root_item)) 1229 break; 1230 1231 btrfs_set_root_node(&root->root_item, root->node); 1232 ret = btrfs_update_root(trans, tree_root, 1233 &root->root_key, 1234 &root->root_item); 1235 if (ret) 1236 return ret; 1237 1238 old_root_used = btrfs_root_used(&root->root_item); 1239 } 1240 1241 return 0; 1242 } 1243 1244 /* 1245 * update all the cowonly tree roots on disk 1246 * 1247 * The error handling in this function may not be obvious. Any of the 1248 * failures will cause the file system to go offline. We still need 1249 * to clean up the delayed refs. 1250 */ 1251 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1252 { 1253 struct btrfs_fs_info *fs_info = trans->fs_info; 1254 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1255 struct list_head *io_bgs = &trans->transaction->io_bgs; 1256 struct list_head *next; 1257 struct extent_buffer *eb; 1258 int ret; 1259 1260 /* 1261 * At this point no one can be using this transaction to modify any tree 1262 * and no one can start another transaction to modify any tree either. 1263 */ 1264 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1265 1266 eb = btrfs_lock_root_node(fs_info->tree_root); 1267 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1268 0, &eb, BTRFS_NESTING_COW); 1269 btrfs_tree_unlock(eb); 1270 free_extent_buffer(eb); 1271 1272 if (ret) 1273 return ret; 1274 1275 ret = btrfs_run_dev_stats(trans); 1276 if (ret) 1277 return ret; 1278 ret = btrfs_run_dev_replace(trans); 1279 if (ret) 1280 return ret; 1281 ret = btrfs_run_qgroups(trans); 1282 if (ret) 1283 return ret; 1284 1285 ret = btrfs_setup_space_cache(trans); 1286 if (ret) 1287 return ret; 1288 1289 again: 1290 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1291 struct btrfs_root *root; 1292 next = fs_info->dirty_cowonly_roots.next; 1293 list_del_init(next); 1294 root = list_entry(next, struct btrfs_root, dirty_list); 1295 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1296 1297 list_add_tail(&root->dirty_list, 1298 &trans->transaction->switch_commits); 1299 ret = update_cowonly_root(trans, root); 1300 if (ret) 1301 return ret; 1302 } 1303 1304 /* Now flush any delayed refs generated by updating all of the roots */ 1305 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1306 if (ret) 1307 return ret; 1308 1309 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1310 ret = btrfs_write_dirty_block_groups(trans); 1311 if (ret) 1312 return ret; 1313 1314 /* 1315 * We're writing the dirty block groups, which could generate 1316 * delayed refs, which could generate more dirty block groups, 1317 * so we want to keep this flushing in this loop to make sure 1318 * everything gets run. 1319 */ 1320 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1321 if (ret) 1322 return ret; 1323 } 1324 1325 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1326 goto again; 1327 1328 /* Update dev-replace pointer once everything is committed */ 1329 fs_info->dev_replace.committed_cursor_left = 1330 fs_info->dev_replace.cursor_left_last_write_of_item; 1331 1332 return 0; 1333 } 1334 1335 /* 1336 * If we had a pending drop we need to see if there are any others left in our 1337 * dead roots list, and if not clear our bit and wake any waiters. 1338 */ 1339 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1340 { 1341 /* 1342 * We put the drop in progress roots at the front of the list, so if the 1343 * first entry doesn't have UNFINISHED_DROP set we can wake everybody 1344 * up. 1345 */ 1346 spin_lock(&fs_info->trans_lock); 1347 if (!list_empty(&fs_info->dead_roots)) { 1348 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots, 1349 struct btrfs_root, 1350 root_list); 1351 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) { 1352 spin_unlock(&fs_info->trans_lock); 1353 return; 1354 } 1355 } 1356 spin_unlock(&fs_info->trans_lock); 1357 1358 btrfs_wake_unfinished_drop(fs_info); 1359 } 1360 1361 /* 1362 * dead roots are old snapshots that need to be deleted. This allocates 1363 * a dirty root struct and adds it into the list of dead roots that need to 1364 * be deleted 1365 */ 1366 void btrfs_add_dead_root(struct btrfs_root *root) 1367 { 1368 struct btrfs_fs_info *fs_info = root->fs_info; 1369 1370 spin_lock(&fs_info->trans_lock); 1371 if (list_empty(&root->root_list)) { 1372 btrfs_grab_root(root); 1373 1374 /* We want to process the partially complete drops first. */ 1375 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) 1376 list_add(&root->root_list, &fs_info->dead_roots); 1377 else 1378 list_add_tail(&root->root_list, &fs_info->dead_roots); 1379 } 1380 spin_unlock(&fs_info->trans_lock); 1381 } 1382 1383 /* 1384 * Update each subvolume root and its relocation root, if it exists, in the tree 1385 * of tree roots. Also free log roots if they exist. 1386 */ 1387 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1388 { 1389 struct btrfs_fs_info *fs_info = trans->fs_info; 1390 struct btrfs_root *gang[8]; 1391 int i; 1392 int ret; 1393 1394 /* 1395 * At this point no one can be using this transaction to modify any tree 1396 * and no one can start another transaction to modify any tree either. 1397 */ 1398 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1399 1400 spin_lock(&fs_info->fs_roots_radix_lock); 1401 while (1) { 1402 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1403 (void **)gang, 0, 1404 ARRAY_SIZE(gang), 1405 BTRFS_ROOT_TRANS_TAG); 1406 if (ret == 0) 1407 break; 1408 for (i = 0; i < ret; i++) { 1409 struct btrfs_root *root = gang[i]; 1410 int ret2; 1411 1412 /* 1413 * At this point we can neither have tasks logging inodes 1414 * from a root nor trying to commit a log tree. 1415 */ 1416 ASSERT(atomic_read(&root->log_writers) == 0); 1417 ASSERT(atomic_read(&root->log_commit[0]) == 0); 1418 ASSERT(atomic_read(&root->log_commit[1]) == 0); 1419 1420 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1421 (unsigned long)root->root_key.objectid, 1422 BTRFS_ROOT_TRANS_TAG); 1423 spin_unlock(&fs_info->fs_roots_radix_lock); 1424 1425 btrfs_free_log(trans, root); 1426 ret2 = btrfs_update_reloc_root(trans, root); 1427 if (ret2) 1428 return ret2; 1429 1430 /* see comments in should_cow_block() */ 1431 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1432 smp_mb__after_atomic(); 1433 1434 if (root->commit_root != root->node) { 1435 list_add_tail(&root->dirty_list, 1436 &trans->transaction->switch_commits); 1437 btrfs_set_root_node(&root->root_item, 1438 root->node); 1439 } 1440 1441 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1442 &root->root_key, 1443 &root->root_item); 1444 if (ret2) 1445 return ret2; 1446 spin_lock(&fs_info->fs_roots_radix_lock); 1447 btrfs_qgroup_free_meta_all_pertrans(root); 1448 } 1449 } 1450 spin_unlock(&fs_info->fs_roots_radix_lock); 1451 return 0; 1452 } 1453 1454 /* 1455 * defrag a given btree. 1456 * Every leaf in the btree is read and defragged. 1457 */ 1458 int btrfs_defrag_root(struct btrfs_root *root) 1459 { 1460 struct btrfs_fs_info *info = root->fs_info; 1461 struct btrfs_trans_handle *trans; 1462 int ret; 1463 1464 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1465 return 0; 1466 1467 while (1) { 1468 trans = btrfs_start_transaction(root, 0); 1469 if (IS_ERR(trans)) { 1470 ret = PTR_ERR(trans); 1471 break; 1472 } 1473 1474 ret = btrfs_defrag_leaves(trans, root); 1475 1476 btrfs_end_transaction(trans); 1477 btrfs_btree_balance_dirty(info); 1478 cond_resched(); 1479 1480 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1481 break; 1482 1483 if (btrfs_defrag_cancelled(info)) { 1484 btrfs_debug(info, "defrag_root cancelled"); 1485 ret = -EAGAIN; 1486 break; 1487 } 1488 } 1489 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1490 return ret; 1491 } 1492 1493 /* 1494 * Do all special snapshot related qgroup dirty hack. 1495 * 1496 * Will do all needed qgroup inherit and dirty hack like switch commit 1497 * roots inside one transaction and write all btree into disk, to make 1498 * qgroup works. 1499 */ 1500 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1501 struct btrfs_root *src, 1502 struct btrfs_root *parent, 1503 struct btrfs_qgroup_inherit *inherit, 1504 u64 dst_objectid) 1505 { 1506 struct btrfs_fs_info *fs_info = src->fs_info; 1507 int ret; 1508 1509 /* 1510 * Save some performance in the case that qgroups are not 1511 * enabled. If this check races with the ioctl, rescan will 1512 * kick in anyway. 1513 */ 1514 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1515 return 0; 1516 1517 /* 1518 * Ensure dirty @src will be committed. Or, after coming 1519 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1520 * recorded root will never be updated again, causing an outdated root 1521 * item. 1522 */ 1523 ret = record_root_in_trans(trans, src, 1); 1524 if (ret) 1525 return ret; 1526 1527 /* 1528 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1529 * src root, so we must run the delayed refs here. 1530 * 1531 * However this isn't particularly fool proof, because there's no 1532 * synchronization keeping us from changing the tree after this point 1533 * before we do the qgroup_inherit, or even from making changes while 1534 * we're doing the qgroup_inherit. But that's a problem for the future, 1535 * for now flush the delayed refs to narrow the race window where the 1536 * qgroup counters could end up wrong. 1537 */ 1538 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1539 if (ret) { 1540 btrfs_abort_transaction(trans, ret); 1541 return ret; 1542 } 1543 1544 ret = commit_fs_roots(trans); 1545 if (ret) 1546 goto out; 1547 ret = btrfs_qgroup_account_extents(trans); 1548 if (ret < 0) 1549 goto out; 1550 1551 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1552 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1553 inherit); 1554 if (ret < 0) 1555 goto out; 1556 1557 /* 1558 * Now we do a simplified commit transaction, which will: 1559 * 1) commit all subvolume and extent tree 1560 * To ensure all subvolume and extent tree have a valid 1561 * commit_root to accounting later insert_dir_item() 1562 * 2) write all btree blocks onto disk 1563 * This is to make sure later btree modification will be cowed 1564 * Or commit_root can be populated and cause wrong qgroup numbers 1565 * In this simplified commit, we don't really care about other trees 1566 * like chunk and root tree, as they won't affect qgroup. 1567 * And we don't write super to avoid half committed status. 1568 */ 1569 ret = commit_cowonly_roots(trans); 1570 if (ret) 1571 goto out; 1572 switch_commit_roots(trans); 1573 ret = btrfs_write_and_wait_transaction(trans); 1574 if (ret) 1575 btrfs_handle_fs_error(fs_info, ret, 1576 "Error while writing out transaction for qgroup"); 1577 1578 out: 1579 /* 1580 * Force parent root to be updated, as we recorded it before so its 1581 * last_trans == cur_transid. 1582 * Or it won't be committed again onto disk after later 1583 * insert_dir_item() 1584 */ 1585 if (!ret) 1586 ret = record_root_in_trans(trans, parent, 1); 1587 return ret; 1588 } 1589 1590 /* 1591 * new snapshots need to be created at a very specific time in the 1592 * transaction commit. This does the actual creation. 1593 * 1594 * Note: 1595 * If the error which may affect the commitment of the current transaction 1596 * happens, we should return the error number. If the error which just affect 1597 * the creation of the pending snapshots, just return 0. 1598 */ 1599 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1600 struct btrfs_pending_snapshot *pending) 1601 { 1602 1603 struct btrfs_fs_info *fs_info = trans->fs_info; 1604 struct btrfs_key key; 1605 struct btrfs_root_item *new_root_item; 1606 struct btrfs_root *tree_root = fs_info->tree_root; 1607 struct btrfs_root *root = pending->root; 1608 struct btrfs_root *parent_root; 1609 struct btrfs_block_rsv *rsv; 1610 struct inode *parent_inode; 1611 struct btrfs_path *path; 1612 struct btrfs_dir_item *dir_item; 1613 struct dentry *dentry; 1614 struct extent_buffer *tmp; 1615 struct extent_buffer *old; 1616 struct timespec64 cur_time; 1617 int ret = 0; 1618 u64 to_reserve = 0; 1619 u64 index = 0; 1620 u64 objectid; 1621 u64 root_flags; 1622 1623 ASSERT(pending->path); 1624 path = pending->path; 1625 1626 ASSERT(pending->root_item); 1627 new_root_item = pending->root_item; 1628 1629 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1630 if (pending->error) 1631 goto no_free_objectid; 1632 1633 /* 1634 * Make qgroup to skip current new snapshot's qgroupid, as it is 1635 * accounted by later btrfs_qgroup_inherit(). 1636 */ 1637 btrfs_set_skip_qgroup(trans, objectid); 1638 1639 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1640 1641 if (to_reserve > 0) { 1642 pending->error = btrfs_block_rsv_add(fs_info, 1643 &pending->block_rsv, 1644 to_reserve, 1645 BTRFS_RESERVE_NO_FLUSH); 1646 if (pending->error) 1647 goto clear_skip_qgroup; 1648 } 1649 1650 key.objectid = objectid; 1651 key.offset = (u64)-1; 1652 key.type = BTRFS_ROOT_ITEM_KEY; 1653 1654 rsv = trans->block_rsv; 1655 trans->block_rsv = &pending->block_rsv; 1656 trans->bytes_reserved = trans->block_rsv->reserved; 1657 trace_btrfs_space_reservation(fs_info, "transaction", 1658 trans->transid, 1659 trans->bytes_reserved, 1); 1660 dentry = pending->dentry; 1661 parent_inode = pending->dir; 1662 parent_root = BTRFS_I(parent_inode)->root; 1663 ret = record_root_in_trans(trans, parent_root, 0); 1664 if (ret) 1665 goto fail; 1666 cur_time = current_time(parent_inode); 1667 1668 /* 1669 * insert the directory item 1670 */ 1671 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1672 BUG_ON(ret); /* -ENOMEM */ 1673 1674 /* check if there is a file/dir which has the same name. */ 1675 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1676 btrfs_ino(BTRFS_I(parent_inode)), 1677 dentry->d_name.name, 1678 dentry->d_name.len, 0); 1679 if (dir_item != NULL && !IS_ERR(dir_item)) { 1680 pending->error = -EEXIST; 1681 goto dir_item_existed; 1682 } else if (IS_ERR(dir_item)) { 1683 ret = PTR_ERR(dir_item); 1684 btrfs_abort_transaction(trans, ret); 1685 goto fail; 1686 } 1687 btrfs_release_path(path); 1688 1689 /* 1690 * pull in the delayed directory update 1691 * and the delayed inode item 1692 * otherwise we corrupt the FS during 1693 * snapshot 1694 */ 1695 ret = btrfs_run_delayed_items(trans); 1696 if (ret) { /* Transaction aborted */ 1697 btrfs_abort_transaction(trans, ret); 1698 goto fail; 1699 } 1700 1701 ret = record_root_in_trans(trans, root, 0); 1702 if (ret) { 1703 btrfs_abort_transaction(trans, ret); 1704 goto fail; 1705 } 1706 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1707 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1708 btrfs_check_and_init_root_item(new_root_item); 1709 1710 root_flags = btrfs_root_flags(new_root_item); 1711 if (pending->readonly) 1712 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1713 else 1714 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1715 btrfs_set_root_flags(new_root_item, root_flags); 1716 1717 btrfs_set_root_generation_v2(new_root_item, 1718 trans->transid); 1719 generate_random_guid(new_root_item->uuid); 1720 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1721 BTRFS_UUID_SIZE); 1722 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1723 memset(new_root_item->received_uuid, 0, 1724 sizeof(new_root_item->received_uuid)); 1725 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1726 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1727 btrfs_set_root_stransid(new_root_item, 0); 1728 btrfs_set_root_rtransid(new_root_item, 0); 1729 } 1730 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1731 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1732 btrfs_set_root_otransid(new_root_item, trans->transid); 1733 1734 old = btrfs_lock_root_node(root); 1735 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1736 BTRFS_NESTING_COW); 1737 if (ret) { 1738 btrfs_tree_unlock(old); 1739 free_extent_buffer(old); 1740 btrfs_abort_transaction(trans, ret); 1741 goto fail; 1742 } 1743 1744 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1745 /* clean up in any case */ 1746 btrfs_tree_unlock(old); 1747 free_extent_buffer(old); 1748 if (ret) { 1749 btrfs_abort_transaction(trans, ret); 1750 goto fail; 1751 } 1752 /* see comments in should_cow_block() */ 1753 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1754 smp_wmb(); 1755 1756 btrfs_set_root_node(new_root_item, tmp); 1757 /* record when the snapshot was created in key.offset */ 1758 key.offset = trans->transid; 1759 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1760 btrfs_tree_unlock(tmp); 1761 free_extent_buffer(tmp); 1762 if (ret) { 1763 btrfs_abort_transaction(trans, ret); 1764 goto fail; 1765 } 1766 1767 /* 1768 * insert root back/forward references 1769 */ 1770 ret = btrfs_add_root_ref(trans, objectid, 1771 parent_root->root_key.objectid, 1772 btrfs_ino(BTRFS_I(parent_inode)), index, 1773 dentry->d_name.name, dentry->d_name.len); 1774 if (ret) { 1775 btrfs_abort_transaction(trans, ret); 1776 goto fail; 1777 } 1778 1779 key.offset = (u64)-1; 1780 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1781 if (IS_ERR(pending->snap)) { 1782 ret = PTR_ERR(pending->snap); 1783 pending->snap = NULL; 1784 btrfs_abort_transaction(trans, ret); 1785 goto fail; 1786 } 1787 1788 ret = btrfs_reloc_post_snapshot(trans, pending); 1789 if (ret) { 1790 btrfs_abort_transaction(trans, ret); 1791 goto fail; 1792 } 1793 1794 /* 1795 * Do special qgroup accounting for snapshot, as we do some qgroup 1796 * snapshot hack to do fast snapshot. 1797 * To co-operate with that hack, we do hack again. 1798 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1799 */ 1800 ret = qgroup_account_snapshot(trans, root, parent_root, 1801 pending->inherit, objectid); 1802 if (ret < 0) 1803 goto fail; 1804 1805 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1806 dentry->d_name.len, BTRFS_I(parent_inode), 1807 &key, BTRFS_FT_DIR, index); 1808 /* We have check then name at the beginning, so it is impossible. */ 1809 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1810 if (ret) { 1811 btrfs_abort_transaction(trans, ret); 1812 goto fail; 1813 } 1814 1815 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1816 dentry->d_name.len * 2); 1817 parent_inode->i_mtime = current_time(parent_inode); 1818 parent_inode->i_ctime = parent_inode->i_mtime; 1819 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode)); 1820 if (ret) { 1821 btrfs_abort_transaction(trans, ret); 1822 goto fail; 1823 } 1824 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1825 BTRFS_UUID_KEY_SUBVOL, 1826 objectid); 1827 if (ret) { 1828 btrfs_abort_transaction(trans, ret); 1829 goto fail; 1830 } 1831 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1832 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1833 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1834 objectid); 1835 if (ret && ret != -EEXIST) { 1836 btrfs_abort_transaction(trans, ret); 1837 goto fail; 1838 } 1839 } 1840 1841 fail: 1842 pending->error = ret; 1843 dir_item_existed: 1844 trans->block_rsv = rsv; 1845 trans->bytes_reserved = 0; 1846 clear_skip_qgroup: 1847 btrfs_clear_skip_qgroup(trans); 1848 no_free_objectid: 1849 kfree(new_root_item); 1850 pending->root_item = NULL; 1851 btrfs_free_path(path); 1852 pending->path = NULL; 1853 1854 return ret; 1855 } 1856 1857 /* 1858 * create all the snapshots we've scheduled for creation 1859 */ 1860 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1861 { 1862 struct btrfs_pending_snapshot *pending, *next; 1863 struct list_head *head = &trans->transaction->pending_snapshots; 1864 int ret = 0; 1865 1866 list_for_each_entry_safe(pending, next, head, list) { 1867 list_del(&pending->list); 1868 ret = create_pending_snapshot(trans, pending); 1869 if (ret) 1870 break; 1871 } 1872 return ret; 1873 } 1874 1875 static void update_super_roots(struct btrfs_fs_info *fs_info) 1876 { 1877 struct btrfs_root_item *root_item; 1878 struct btrfs_super_block *super; 1879 1880 super = fs_info->super_copy; 1881 1882 root_item = &fs_info->chunk_root->root_item; 1883 super->chunk_root = root_item->bytenr; 1884 super->chunk_root_generation = root_item->generation; 1885 super->chunk_root_level = root_item->level; 1886 1887 root_item = &fs_info->tree_root->root_item; 1888 super->root = root_item->bytenr; 1889 super->generation = root_item->generation; 1890 super->root_level = root_item->level; 1891 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1892 super->cache_generation = root_item->generation; 1893 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1894 super->cache_generation = 0; 1895 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1896 super->uuid_tree_generation = root_item->generation; 1897 } 1898 1899 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1900 { 1901 struct btrfs_transaction *trans; 1902 int ret = 0; 1903 1904 spin_lock(&info->trans_lock); 1905 trans = info->running_transaction; 1906 if (trans) 1907 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1908 spin_unlock(&info->trans_lock); 1909 return ret; 1910 } 1911 1912 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1913 { 1914 struct btrfs_transaction *trans; 1915 int ret = 0; 1916 1917 spin_lock(&info->trans_lock); 1918 trans = info->running_transaction; 1919 if (trans) 1920 ret = is_transaction_blocked(trans); 1921 spin_unlock(&info->trans_lock); 1922 return ret; 1923 } 1924 1925 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 1926 { 1927 struct btrfs_fs_info *fs_info = trans->fs_info; 1928 struct btrfs_transaction *cur_trans; 1929 1930 /* Kick the transaction kthread. */ 1931 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 1932 wake_up_process(fs_info->transaction_kthread); 1933 1934 /* take transaction reference */ 1935 cur_trans = trans->transaction; 1936 refcount_inc(&cur_trans->use_count); 1937 1938 btrfs_end_transaction(trans); 1939 1940 /* 1941 * Wait for the current transaction commit to start and block 1942 * subsequent transaction joins 1943 */ 1944 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START); 1945 wait_event(fs_info->transaction_blocked_wait, 1946 cur_trans->state >= TRANS_STATE_COMMIT_START || 1947 TRANS_ABORTED(cur_trans)); 1948 btrfs_put_transaction(cur_trans); 1949 } 1950 1951 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1952 { 1953 struct btrfs_fs_info *fs_info = trans->fs_info; 1954 struct btrfs_transaction *cur_trans = trans->transaction; 1955 1956 WARN_ON(refcount_read(&trans->use_count) > 1); 1957 1958 btrfs_abort_transaction(trans, err); 1959 1960 spin_lock(&fs_info->trans_lock); 1961 1962 /* 1963 * If the transaction is removed from the list, it means this 1964 * transaction has been committed successfully, so it is impossible 1965 * to call the cleanup function. 1966 */ 1967 BUG_ON(list_empty(&cur_trans->list)); 1968 1969 if (cur_trans == fs_info->running_transaction) { 1970 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1971 spin_unlock(&fs_info->trans_lock); 1972 1973 /* 1974 * The thread has already released the lockdep map as reader 1975 * already in btrfs_commit_transaction(). 1976 */ 1977 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 1978 wait_event(cur_trans->writer_wait, 1979 atomic_read(&cur_trans->num_writers) == 1); 1980 1981 spin_lock(&fs_info->trans_lock); 1982 } 1983 1984 /* 1985 * Now that we know no one else is still using the transaction we can 1986 * remove the transaction from the list of transactions. This avoids 1987 * the transaction kthread from cleaning up the transaction while some 1988 * other task is still using it, which could result in a use-after-free 1989 * on things like log trees, as it forces the transaction kthread to 1990 * wait for this transaction to be cleaned up by us. 1991 */ 1992 list_del_init(&cur_trans->list); 1993 1994 spin_unlock(&fs_info->trans_lock); 1995 1996 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1997 1998 spin_lock(&fs_info->trans_lock); 1999 if (cur_trans == fs_info->running_transaction) 2000 fs_info->running_transaction = NULL; 2001 spin_unlock(&fs_info->trans_lock); 2002 2003 if (trans->type & __TRANS_FREEZABLE) 2004 sb_end_intwrite(fs_info->sb); 2005 btrfs_put_transaction(cur_trans); 2006 btrfs_put_transaction(cur_trans); 2007 2008 trace_btrfs_transaction_commit(fs_info); 2009 2010 if (current->journal_info == trans) 2011 current->journal_info = NULL; 2012 btrfs_scrub_cancel(fs_info); 2013 2014 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2015 } 2016 2017 /* 2018 * Release reserved delayed ref space of all pending block groups of the 2019 * transaction and remove them from the list 2020 */ 2021 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2022 { 2023 struct btrfs_fs_info *fs_info = trans->fs_info; 2024 struct btrfs_block_group *block_group, *tmp; 2025 2026 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2027 btrfs_delayed_refs_rsv_release(fs_info, 1); 2028 list_del_init(&block_group->bg_list); 2029 } 2030 } 2031 2032 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2033 { 2034 /* 2035 * We use try_to_writeback_inodes_sb() here because if we used 2036 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2037 * Currently are holding the fs freeze lock, if we do an async flush 2038 * we'll do btrfs_join_transaction() and deadlock because we need to 2039 * wait for the fs freeze lock. Using the direct flushing we benefit 2040 * from already being in a transaction and our join_transaction doesn't 2041 * have to re-take the fs freeze lock. 2042 * 2043 * Note that try_to_writeback_inodes_sb() will only trigger writeback 2044 * if it can read lock sb->s_umount. It will always be able to lock it, 2045 * except when the filesystem is being unmounted or being frozen, but in 2046 * those cases sync_filesystem() is called, which results in calling 2047 * writeback_inodes_sb() while holding a write lock on sb->s_umount. 2048 * Note that we don't call writeback_inodes_sb() directly, because it 2049 * will emit a warning if sb->s_umount is not locked. 2050 */ 2051 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2052 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2053 return 0; 2054 } 2055 2056 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2057 { 2058 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2059 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2060 } 2061 2062 /* 2063 * Add a pending snapshot associated with the given transaction handle to the 2064 * respective handle. This must be called after the transaction commit started 2065 * and while holding fs_info->trans_lock. 2066 * This serves to guarantee a caller of btrfs_commit_transaction() that it can 2067 * safely free the pending snapshot pointer in case btrfs_commit_transaction() 2068 * returns an error. 2069 */ 2070 static void add_pending_snapshot(struct btrfs_trans_handle *trans) 2071 { 2072 struct btrfs_transaction *cur_trans = trans->transaction; 2073 2074 if (!trans->pending_snapshot) 2075 return; 2076 2077 lockdep_assert_held(&trans->fs_info->trans_lock); 2078 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START); 2079 2080 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots); 2081 } 2082 2083 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval) 2084 { 2085 fs_info->commit_stats.commit_count++; 2086 fs_info->commit_stats.last_commit_dur = interval; 2087 fs_info->commit_stats.max_commit_dur = 2088 max_t(u64, fs_info->commit_stats.max_commit_dur, interval); 2089 fs_info->commit_stats.total_commit_dur += interval; 2090 } 2091 2092 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2093 { 2094 struct btrfs_fs_info *fs_info = trans->fs_info; 2095 struct btrfs_transaction *cur_trans = trans->transaction; 2096 struct btrfs_transaction *prev_trans = NULL; 2097 int ret; 2098 ktime_t start_time; 2099 ktime_t interval; 2100 2101 ASSERT(refcount_read(&trans->use_count) == 1); 2102 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START); 2103 2104 /* Stop the commit early if ->aborted is set */ 2105 if (TRANS_ABORTED(cur_trans)) { 2106 ret = cur_trans->aborted; 2107 goto lockdep_trans_commit_start_release; 2108 } 2109 2110 btrfs_trans_release_metadata(trans); 2111 trans->block_rsv = NULL; 2112 2113 /* 2114 * We only want one transaction commit doing the flushing so we do not 2115 * waste a bunch of time on lock contention on the extent root node. 2116 */ 2117 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2118 &cur_trans->delayed_refs.flags)) { 2119 /* 2120 * Make a pass through all the delayed refs we have so far. 2121 * Any running threads may add more while we are here. 2122 */ 2123 ret = btrfs_run_delayed_refs(trans, 0); 2124 if (ret) 2125 goto lockdep_trans_commit_start_release; 2126 } 2127 2128 btrfs_create_pending_block_groups(trans); 2129 2130 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2131 int run_it = 0; 2132 2133 /* this mutex is also taken before trying to set 2134 * block groups readonly. We need to make sure 2135 * that nobody has set a block group readonly 2136 * after a extents from that block group have been 2137 * allocated for cache files. btrfs_set_block_group_ro 2138 * will wait for the transaction to commit if it 2139 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2140 * 2141 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2142 * only one process starts all the block group IO. It wouldn't 2143 * hurt to have more than one go through, but there's no 2144 * real advantage to it either. 2145 */ 2146 mutex_lock(&fs_info->ro_block_group_mutex); 2147 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2148 &cur_trans->flags)) 2149 run_it = 1; 2150 mutex_unlock(&fs_info->ro_block_group_mutex); 2151 2152 if (run_it) { 2153 ret = btrfs_start_dirty_block_groups(trans); 2154 if (ret) 2155 goto lockdep_trans_commit_start_release; 2156 } 2157 } 2158 2159 spin_lock(&fs_info->trans_lock); 2160 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2161 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2162 2163 add_pending_snapshot(trans); 2164 2165 spin_unlock(&fs_info->trans_lock); 2166 refcount_inc(&cur_trans->use_count); 2167 2168 if (trans->in_fsync) 2169 want_state = TRANS_STATE_SUPER_COMMITTED; 2170 2171 btrfs_trans_state_lockdep_release(fs_info, 2172 BTRFS_LOCKDEP_TRANS_COMMIT_START); 2173 ret = btrfs_end_transaction(trans); 2174 wait_for_commit(cur_trans, want_state); 2175 2176 if (TRANS_ABORTED(cur_trans)) 2177 ret = cur_trans->aborted; 2178 2179 btrfs_put_transaction(cur_trans); 2180 2181 return ret; 2182 } 2183 2184 cur_trans->state = TRANS_STATE_COMMIT_START; 2185 wake_up(&fs_info->transaction_blocked_wait); 2186 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START); 2187 2188 if (cur_trans->list.prev != &fs_info->trans_list) { 2189 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2190 2191 if (trans->in_fsync) 2192 want_state = TRANS_STATE_SUPER_COMMITTED; 2193 2194 prev_trans = list_entry(cur_trans->list.prev, 2195 struct btrfs_transaction, list); 2196 if (prev_trans->state < want_state) { 2197 refcount_inc(&prev_trans->use_count); 2198 spin_unlock(&fs_info->trans_lock); 2199 2200 wait_for_commit(prev_trans, want_state); 2201 2202 ret = READ_ONCE(prev_trans->aborted); 2203 2204 btrfs_put_transaction(prev_trans); 2205 if (ret) 2206 goto lockdep_release; 2207 } else { 2208 spin_unlock(&fs_info->trans_lock); 2209 } 2210 } else { 2211 spin_unlock(&fs_info->trans_lock); 2212 /* 2213 * The previous transaction was aborted and was already removed 2214 * from the list of transactions at fs_info->trans_list. So we 2215 * abort to prevent writing a new superblock that reflects a 2216 * corrupt state (pointing to trees with unwritten nodes/leafs). 2217 */ 2218 if (BTRFS_FS_ERROR(fs_info)) { 2219 ret = -EROFS; 2220 goto lockdep_release; 2221 } 2222 } 2223 2224 /* 2225 * Get the time spent on the work done by the commit thread and not 2226 * the time spent waiting on a previous commit 2227 */ 2228 start_time = ktime_get_ns(); 2229 2230 extwriter_counter_dec(cur_trans, trans->type); 2231 2232 ret = btrfs_start_delalloc_flush(fs_info); 2233 if (ret) 2234 goto lockdep_release; 2235 2236 ret = btrfs_run_delayed_items(trans); 2237 if (ret) 2238 goto lockdep_release; 2239 2240 /* 2241 * The thread has started/joined the transaction thus it holds the 2242 * lockdep map as a reader. It has to release it before acquiring the 2243 * lockdep map as a writer. 2244 */ 2245 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2246 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters); 2247 wait_event(cur_trans->writer_wait, 2248 extwriter_counter_read(cur_trans) == 0); 2249 2250 /* some pending stuffs might be added after the previous flush. */ 2251 ret = btrfs_run_delayed_items(trans); 2252 if (ret) { 2253 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2254 goto cleanup_transaction; 2255 } 2256 2257 btrfs_wait_delalloc_flush(fs_info); 2258 2259 /* 2260 * Wait for all ordered extents started by a fast fsync that joined this 2261 * transaction. Otherwise if this transaction commits before the ordered 2262 * extents complete we lose logged data after a power failure. 2263 */ 2264 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered); 2265 wait_event(cur_trans->pending_wait, 2266 atomic_read(&cur_trans->pending_ordered) == 0); 2267 2268 btrfs_scrub_pause(fs_info); 2269 /* 2270 * Ok now we need to make sure to block out any other joins while we 2271 * commit the transaction. We could have started a join before setting 2272 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2273 */ 2274 spin_lock(&fs_info->trans_lock); 2275 add_pending_snapshot(trans); 2276 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2277 spin_unlock(&fs_info->trans_lock); 2278 2279 /* 2280 * The thread has started/joined the transaction thus it holds the 2281 * lockdep map as a reader. It has to release it before acquiring the 2282 * lockdep map as a writer. 2283 */ 2284 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2285 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2286 wait_event(cur_trans->writer_wait, 2287 atomic_read(&cur_trans->num_writers) == 1); 2288 2289 /* 2290 * Make lockdep happy by acquiring the state locks after 2291 * btrfs_trans_num_writers is released. If we acquired the state locks 2292 * before releasing the btrfs_trans_num_writers lock then lockdep would 2293 * complain because we did not follow the reverse order unlocking rule. 2294 */ 2295 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2296 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2297 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2298 2299 /* 2300 * We've started the commit, clear the flag in case we were triggered to 2301 * do an async commit but somebody else started before the transaction 2302 * kthread could do the work. 2303 */ 2304 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 2305 2306 if (TRANS_ABORTED(cur_trans)) { 2307 ret = cur_trans->aborted; 2308 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2309 goto scrub_continue; 2310 } 2311 /* 2312 * the reloc mutex makes sure that we stop 2313 * the balancing code from coming in and moving 2314 * extents around in the middle of the commit 2315 */ 2316 mutex_lock(&fs_info->reloc_mutex); 2317 2318 /* 2319 * We needn't worry about the delayed items because we will 2320 * deal with them in create_pending_snapshot(), which is the 2321 * core function of the snapshot creation. 2322 */ 2323 ret = create_pending_snapshots(trans); 2324 if (ret) 2325 goto unlock_reloc; 2326 2327 /* 2328 * We insert the dir indexes of the snapshots and update the inode 2329 * of the snapshots' parents after the snapshot creation, so there 2330 * are some delayed items which are not dealt with. Now deal with 2331 * them. 2332 * 2333 * We needn't worry that this operation will corrupt the snapshots, 2334 * because all the tree which are snapshoted will be forced to COW 2335 * the nodes and leaves. 2336 */ 2337 ret = btrfs_run_delayed_items(trans); 2338 if (ret) 2339 goto unlock_reloc; 2340 2341 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2342 if (ret) 2343 goto unlock_reloc; 2344 2345 /* 2346 * make sure none of the code above managed to slip in a 2347 * delayed item 2348 */ 2349 btrfs_assert_delayed_root_empty(fs_info); 2350 2351 WARN_ON(cur_trans != trans->transaction); 2352 2353 ret = commit_fs_roots(trans); 2354 if (ret) 2355 goto unlock_reloc; 2356 2357 /* 2358 * Since the transaction is done, we can apply the pending changes 2359 * before the next transaction. 2360 */ 2361 btrfs_apply_pending_changes(fs_info); 2362 2363 /* commit_fs_roots gets rid of all the tree log roots, it is now 2364 * safe to free the root of tree log roots 2365 */ 2366 btrfs_free_log_root_tree(trans, fs_info); 2367 2368 /* 2369 * Since fs roots are all committed, we can get a quite accurate 2370 * new_roots. So let's do quota accounting. 2371 */ 2372 ret = btrfs_qgroup_account_extents(trans); 2373 if (ret < 0) 2374 goto unlock_reloc; 2375 2376 ret = commit_cowonly_roots(trans); 2377 if (ret) 2378 goto unlock_reloc; 2379 2380 /* 2381 * The tasks which save the space cache and inode cache may also 2382 * update ->aborted, check it. 2383 */ 2384 if (TRANS_ABORTED(cur_trans)) { 2385 ret = cur_trans->aborted; 2386 goto unlock_reloc; 2387 } 2388 2389 cur_trans = fs_info->running_transaction; 2390 2391 btrfs_set_root_node(&fs_info->tree_root->root_item, 2392 fs_info->tree_root->node); 2393 list_add_tail(&fs_info->tree_root->dirty_list, 2394 &cur_trans->switch_commits); 2395 2396 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2397 fs_info->chunk_root->node); 2398 list_add_tail(&fs_info->chunk_root->dirty_list, 2399 &cur_trans->switch_commits); 2400 2401 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2402 btrfs_set_root_node(&fs_info->block_group_root->root_item, 2403 fs_info->block_group_root->node); 2404 list_add_tail(&fs_info->block_group_root->dirty_list, 2405 &cur_trans->switch_commits); 2406 } 2407 2408 switch_commit_roots(trans); 2409 2410 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2411 ASSERT(list_empty(&cur_trans->io_bgs)); 2412 update_super_roots(fs_info); 2413 2414 btrfs_set_super_log_root(fs_info->super_copy, 0); 2415 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2416 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2417 sizeof(*fs_info->super_copy)); 2418 2419 btrfs_commit_device_sizes(cur_trans); 2420 2421 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2422 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2423 2424 btrfs_trans_release_chunk_metadata(trans); 2425 2426 /* 2427 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and 2428 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to 2429 * make sure that before we commit our superblock, no other task can 2430 * start a new transaction and commit a log tree before we commit our 2431 * superblock. Anyone trying to commit a log tree locks this mutex before 2432 * writing its superblock. 2433 */ 2434 mutex_lock(&fs_info->tree_log_mutex); 2435 2436 spin_lock(&fs_info->trans_lock); 2437 cur_trans->state = TRANS_STATE_UNBLOCKED; 2438 fs_info->running_transaction = NULL; 2439 spin_unlock(&fs_info->trans_lock); 2440 mutex_unlock(&fs_info->reloc_mutex); 2441 2442 wake_up(&fs_info->transaction_wait); 2443 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2444 2445 ret = btrfs_write_and_wait_transaction(trans); 2446 if (ret) { 2447 btrfs_handle_fs_error(fs_info, ret, 2448 "Error while writing out transaction"); 2449 mutex_unlock(&fs_info->tree_log_mutex); 2450 goto scrub_continue; 2451 } 2452 2453 /* 2454 * At this point, we should have written all the tree blocks allocated 2455 * in this transaction. So it's now safe to free the redirtyied extent 2456 * buffers. 2457 */ 2458 btrfs_free_redirty_list(cur_trans); 2459 2460 ret = write_all_supers(fs_info, 0); 2461 /* 2462 * the super is written, we can safely allow the tree-loggers 2463 * to go about their business 2464 */ 2465 mutex_unlock(&fs_info->tree_log_mutex); 2466 if (ret) 2467 goto scrub_continue; 2468 2469 /* 2470 * We needn't acquire the lock here because there is no other task 2471 * which can change it. 2472 */ 2473 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2474 wake_up(&cur_trans->commit_wait); 2475 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2476 2477 btrfs_finish_extent_commit(trans); 2478 2479 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2480 btrfs_clear_space_info_full(fs_info); 2481 2482 fs_info->last_trans_committed = cur_trans->transid; 2483 /* 2484 * We needn't acquire the lock here because there is no other task 2485 * which can change it. 2486 */ 2487 cur_trans->state = TRANS_STATE_COMPLETED; 2488 wake_up(&cur_trans->commit_wait); 2489 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2490 2491 spin_lock(&fs_info->trans_lock); 2492 list_del_init(&cur_trans->list); 2493 spin_unlock(&fs_info->trans_lock); 2494 2495 btrfs_put_transaction(cur_trans); 2496 btrfs_put_transaction(cur_trans); 2497 2498 if (trans->type & __TRANS_FREEZABLE) 2499 sb_end_intwrite(fs_info->sb); 2500 2501 trace_btrfs_transaction_commit(fs_info); 2502 2503 interval = ktime_get_ns() - start_time; 2504 2505 btrfs_scrub_continue(fs_info); 2506 2507 if (current->journal_info == trans) 2508 current->journal_info = NULL; 2509 2510 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2511 2512 update_commit_stats(fs_info, interval); 2513 2514 return ret; 2515 2516 unlock_reloc: 2517 mutex_unlock(&fs_info->reloc_mutex); 2518 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2519 scrub_continue: 2520 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2521 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2522 btrfs_scrub_continue(fs_info); 2523 cleanup_transaction: 2524 btrfs_trans_release_metadata(trans); 2525 btrfs_cleanup_pending_block_groups(trans); 2526 btrfs_trans_release_chunk_metadata(trans); 2527 trans->block_rsv = NULL; 2528 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2529 if (current->journal_info == trans) 2530 current->journal_info = NULL; 2531 cleanup_transaction(trans, ret); 2532 2533 return ret; 2534 2535 lockdep_release: 2536 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2537 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2538 goto cleanup_transaction; 2539 2540 lockdep_trans_commit_start_release: 2541 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START); 2542 btrfs_end_transaction(trans); 2543 return ret; 2544 } 2545 2546 /* 2547 * return < 0 if error 2548 * 0 if there are no more dead_roots at the time of call 2549 * 1 there are more to be processed, call me again 2550 * 2551 * The return value indicates there are certainly more snapshots to delete, but 2552 * if there comes a new one during processing, it may return 0. We don't mind, 2553 * because btrfs_commit_super will poke cleaner thread and it will process it a 2554 * few seconds later. 2555 */ 2556 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info) 2557 { 2558 struct btrfs_root *root; 2559 int ret; 2560 2561 spin_lock(&fs_info->trans_lock); 2562 if (list_empty(&fs_info->dead_roots)) { 2563 spin_unlock(&fs_info->trans_lock); 2564 return 0; 2565 } 2566 root = list_first_entry(&fs_info->dead_roots, 2567 struct btrfs_root, root_list); 2568 list_del_init(&root->root_list); 2569 spin_unlock(&fs_info->trans_lock); 2570 2571 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2572 2573 btrfs_kill_all_delayed_nodes(root); 2574 2575 if (btrfs_header_backref_rev(root->node) < 2576 BTRFS_MIXED_BACKREF_REV) 2577 ret = btrfs_drop_snapshot(root, 0, 0); 2578 else 2579 ret = btrfs_drop_snapshot(root, 1, 0); 2580 2581 btrfs_put_root(root); 2582 return (ret < 0) ? 0 : 1; 2583 } 2584 2585 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2586 { 2587 unsigned long prev; 2588 unsigned long bit; 2589 2590 prev = xchg(&fs_info->pending_changes, 0); 2591 if (!prev) 2592 return; 2593 2594 bit = 1 << BTRFS_PENDING_COMMIT; 2595 if (prev & bit) 2596 btrfs_debug(fs_info, "pending commit done"); 2597 prev &= ~bit; 2598 2599 if (prev) 2600 btrfs_warn(fs_info, 2601 "unknown pending changes left 0x%lx, ignoring", prev); 2602 } 2603