xref: /openbmc/linux/fs/btrfs/transaction.c (revision 002dff36)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
24 #include "space-info.h"
25 
26 #define BTRFS_ROOT_TRANS_TAG 0
27 
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |						    Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update	    |
83  * | super blocks.				    |
84  * |						    |
85  * | At this stage, new transaction is allowed to   |
86  * | start.					    |
87  * | All new start_transaction() calls will be	    |
88  * | attached to transid N+1.			    |
89  * |						    |
90  * | To next stage:				    |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices			    |
93  * V						    |
94  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.	    | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100 	[TRANS_STATE_RUNNING]		= 0U,
101 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
102 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
103 					   __TRANS_ATTACH |
104 					   __TRANS_JOIN |
105 					   __TRANS_JOIN_NOSTART),
106 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
107 					   __TRANS_ATTACH |
108 					   __TRANS_JOIN |
109 					   __TRANS_JOIN_NOLOCK |
110 					   __TRANS_JOIN_NOSTART),
111 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
112 					   __TRANS_ATTACH |
113 					   __TRANS_JOIN |
114 					   __TRANS_JOIN_NOLOCK |
115 					   __TRANS_JOIN_NOSTART),
116 };
117 
118 void btrfs_put_transaction(struct btrfs_transaction *transaction)
119 {
120 	WARN_ON(refcount_read(&transaction->use_count) == 0);
121 	if (refcount_dec_and_test(&transaction->use_count)) {
122 		BUG_ON(!list_empty(&transaction->list));
123 		WARN_ON(!RB_EMPTY_ROOT(
124 				&transaction->delayed_refs.href_root.rb_root));
125 		WARN_ON(!RB_EMPTY_ROOT(
126 				&transaction->delayed_refs.dirty_extent_root));
127 		if (transaction->delayed_refs.pending_csums)
128 			btrfs_err(transaction->fs_info,
129 				  "pending csums is %llu",
130 				  transaction->delayed_refs.pending_csums);
131 		/*
132 		 * If any block groups are found in ->deleted_bgs then it's
133 		 * because the transaction was aborted and a commit did not
134 		 * happen (things failed before writing the new superblock
135 		 * and calling btrfs_finish_extent_commit()), so we can not
136 		 * discard the physical locations of the block groups.
137 		 */
138 		while (!list_empty(&transaction->deleted_bgs)) {
139 			struct btrfs_block_group *cache;
140 
141 			cache = list_first_entry(&transaction->deleted_bgs,
142 						 struct btrfs_block_group,
143 						 bg_list);
144 			list_del_init(&cache->bg_list);
145 			btrfs_unfreeze_block_group(cache);
146 			btrfs_put_block_group(cache);
147 		}
148 		WARN_ON(!list_empty(&transaction->dev_update_list));
149 		kfree(transaction);
150 	}
151 }
152 
153 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
154 {
155 	struct btrfs_transaction *cur_trans = trans->transaction;
156 	struct btrfs_fs_info *fs_info = trans->fs_info;
157 	struct btrfs_root *root, *tmp;
158 
159 	down_write(&fs_info->commit_root_sem);
160 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
161 				 dirty_list) {
162 		list_del_init(&root->dirty_list);
163 		free_extent_buffer(root->commit_root);
164 		root->commit_root = btrfs_root_node(root);
165 		if (is_fstree(root->root_key.objectid))
166 			btrfs_unpin_free_ino(root);
167 		extent_io_tree_release(&root->dirty_log_pages);
168 		btrfs_qgroup_clean_swapped_blocks(root);
169 	}
170 
171 	/* We can free old roots now. */
172 	spin_lock(&cur_trans->dropped_roots_lock);
173 	while (!list_empty(&cur_trans->dropped_roots)) {
174 		root = list_first_entry(&cur_trans->dropped_roots,
175 					struct btrfs_root, root_list);
176 		list_del_init(&root->root_list);
177 		spin_unlock(&cur_trans->dropped_roots_lock);
178 		btrfs_free_log(trans, root);
179 		btrfs_drop_and_free_fs_root(fs_info, root);
180 		spin_lock(&cur_trans->dropped_roots_lock);
181 	}
182 	spin_unlock(&cur_trans->dropped_roots_lock);
183 	up_write(&fs_info->commit_root_sem);
184 }
185 
186 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
187 					 unsigned int type)
188 {
189 	if (type & TRANS_EXTWRITERS)
190 		atomic_inc(&trans->num_extwriters);
191 }
192 
193 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
194 					 unsigned int type)
195 {
196 	if (type & TRANS_EXTWRITERS)
197 		atomic_dec(&trans->num_extwriters);
198 }
199 
200 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
201 					  unsigned int type)
202 {
203 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
204 }
205 
206 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
207 {
208 	return atomic_read(&trans->num_extwriters);
209 }
210 
211 /*
212  * To be called after all the new block groups attached to the transaction
213  * handle have been created (btrfs_create_pending_block_groups()).
214  */
215 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
216 {
217 	struct btrfs_fs_info *fs_info = trans->fs_info;
218 
219 	if (!trans->chunk_bytes_reserved)
220 		return;
221 
222 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
223 
224 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
225 				trans->chunk_bytes_reserved, NULL);
226 	trans->chunk_bytes_reserved = 0;
227 }
228 
229 /*
230  * either allocate a new transaction or hop into the existing one
231  */
232 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
233 				     unsigned int type)
234 {
235 	struct btrfs_transaction *cur_trans;
236 
237 	spin_lock(&fs_info->trans_lock);
238 loop:
239 	/* The file system has been taken offline. No new transactions. */
240 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
241 		spin_unlock(&fs_info->trans_lock);
242 		return -EROFS;
243 	}
244 
245 	cur_trans = fs_info->running_transaction;
246 	if (cur_trans) {
247 		if (TRANS_ABORTED(cur_trans)) {
248 			spin_unlock(&fs_info->trans_lock);
249 			return cur_trans->aborted;
250 		}
251 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
252 			spin_unlock(&fs_info->trans_lock);
253 			return -EBUSY;
254 		}
255 		refcount_inc(&cur_trans->use_count);
256 		atomic_inc(&cur_trans->num_writers);
257 		extwriter_counter_inc(cur_trans, type);
258 		spin_unlock(&fs_info->trans_lock);
259 		return 0;
260 	}
261 	spin_unlock(&fs_info->trans_lock);
262 
263 	/*
264 	 * If we are ATTACH, we just want to catch the current transaction,
265 	 * and commit it. If there is no transaction, just return ENOENT.
266 	 */
267 	if (type == TRANS_ATTACH)
268 		return -ENOENT;
269 
270 	/*
271 	 * JOIN_NOLOCK only happens during the transaction commit, so
272 	 * it is impossible that ->running_transaction is NULL
273 	 */
274 	BUG_ON(type == TRANS_JOIN_NOLOCK);
275 
276 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
277 	if (!cur_trans)
278 		return -ENOMEM;
279 
280 	spin_lock(&fs_info->trans_lock);
281 	if (fs_info->running_transaction) {
282 		/*
283 		 * someone started a transaction after we unlocked.  Make sure
284 		 * to redo the checks above
285 		 */
286 		kfree(cur_trans);
287 		goto loop;
288 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
289 		spin_unlock(&fs_info->trans_lock);
290 		kfree(cur_trans);
291 		return -EROFS;
292 	}
293 
294 	cur_trans->fs_info = fs_info;
295 	atomic_set(&cur_trans->num_writers, 1);
296 	extwriter_counter_init(cur_trans, type);
297 	init_waitqueue_head(&cur_trans->writer_wait);
298 	init_waitqueue_head(&cur_trans->commit_wait);
299 	cur_trans->state = TRANS_STATE_RUNNING;
300 	/*
301 	 * One for this trans handle, one so it will live on until we
302 	 * commit the transaction.
303 	 */
304 	refcount_set(&cur_trans->use_count, 2);
305 	cur_trans->flags = 0;
306 	cur_trans->start_time = ktime_get_seconds();
307 
308 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
309 
310 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
311 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
312 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
313 
314 	/*
315 	 * although the tree mod log is per file system and not per transaction,
316 	 * the log must never go across transaction boundaries.
317 	 */
318 	smp_mb();
319 	if (!list_empty(&fs_info->tree_mod_seq_list))
320 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
321 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
322 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
323 	atomic64_set(&fs_info->tree_mod_seq, 0);
324 
325 	spin_lock_init(&cur_trans->delayed_refs.lock);
326 
327 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
328 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
329 	INIT_LIST_HEAD(&cur_trans->switch_commits);
330 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
331 	INIT_LIST_HEAD(&cur_trans->io_bgs);
332 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
333 	mutex_init(&cur_trans->cache_write_mutex);
334 	spin_lock_init(&cur_trans->dirty_bgs_lock);
335 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
336 	spin_lock_init(&cur_trans->dropped_roots_lock);
337 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
338 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
339 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
340 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
341 			IO_TREE_FS_PINNED_EXTENTS, NULL);
342 	fs_info->generation++;
343 	cur_trans->transid = fs_info->generation;
344 	fs_info->running_transaction = cur_trans;
345 	cur_trans->aborted = 0;
346 	spin_unlock(&fs_info->trans_lock);
347 
348 	return 0;
349 }
350 
351 /*
352  * This does all the record keeping required to make sure that a shareable root
353  * is properly recorded in a given transaction.  This is required to make sure
354  * the old root from before we joined the transaction is deleted when the
355  * transaction commits.
356  */
357 static int record_root_in_trans(struct btrfs_trans_handle *trans,
358 			       struct btrfs_root *root,
359 			       int force)
360 {
361 	struct btrfs_fs_info *fs_info = root->fs_info;
362 
363 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
364 	    root->last_trans < trans->transid) || force) {
365 		WARN_ON(root == fs_info->extent_root);
366 		WARN_ON(!force && root->commit_root != root->node);
367 
368 		/*
369 		 * see below for IN_TRANS_SETUP usage rules
370 		 * we have the reloc mutex held now, so there
371 		 * is only one writer in this function
372 		 */
373 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
374 
375 		/* make sure readers find IN_TRANS_SETUP before
376 		 * they find our root->last_trans update
377 		 */
378 		smp_wmb();
379 
380 		spin_lock(&fs_info->fs_roots_radix_lock);
381 		if (root->last_trans == trans->transid && !force) {
382 			spin_unlock(&fs_info->fs_roots_radix_lock);
383 			return 0;
384 		}
385 		radix_tree_tag_set(&fs_info->fs_roots_radix,
386 				   (unsigned long)root->root_key.objectid,
387 				   BTRFS_ROOT_TRANS_TAG);
388 		spin_unlock(&fs_info->fs_roots_radix_lock);
389 		root->last_trans = trans->transid;
390 
391 		/* this is pretty tricky.  We don't want to
392 		 * take the relocation lock in btrfs_record_root_in_trans
393 		 * unless we're really doing the first setup for this root in
394 		 * this transaction.
395 		 *
396 		 * Normally we'd use root->last_trans as a flag to decide
397 		 * if we want to take the expensive mutex.
398 		 *
399 		 * But, we have to set root->last_trans before we
400 		 * init the relocation root, otherwise, we trip over warnings
401 		 * in ctree.c.  The solution used here is to flag ourselves
402 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
403 		 * fixing up the reloc trees and everyone must wait.
404 		 *
405 		 * When this is zero, they can trust root->last_trans and fly
406 		 * through btrfs_record_root_in_trans without having to take the
407 		 * lock.  smp_wmb() makes sure that all the writes above are
408 		 * done before we pop in the zero below
409 		 */
410 		btrfs_init_reloc_root(trans, root);
411 		smp_mb__before_atomic();
412 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
413 	}
414 	return 0;
415 }
416 
417 
418 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
419 			    struct btrfs_root *root)
420 {
421 	struct btrfs_fs_info *fs_info = root->fs_info;
422 	struct btrfs_transaction *cur_trans = trans->transaction;
423 
424 	/* Add ourselves to the transaction dropped list */
425 	spin_lock(&cur_trans->dropped_roots_lock);
426 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
427 	spin_unlock(&cur_trans->dropped_roots_lock);
428 
429 	/* Make sure we don't try to update the root at commit time */
430 	spin_lock(&fs_info->fs_roots_radix_lock);
431 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
432 			     (unsigned long)root->root_key.objectid,
433 			     BTRFS_ROOT_TRANS_TAG);
434 	spin_unlock(&fs_info->fs_roots_radix_lock);
435 }
436 
437 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
438 			       struct btrfs_root *root)
439 {
440 	struct btrfs_fs_info *fs_info = root->fs_info;
441 
442 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
443 		return 0;
444 
445 	/*
446 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
447 	 * and barriers
448 	 */
449 	smp_rmb();
450 	if (root->last_trans == trans->transid &&
451 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
452 		return 0;
453 
454 	mutex_lock(&fs_info->reloc_mutex);
455 	record_root_in_trans(trans, root, 0);
456 	mutex_unlock(&fs_info->reloc_mutex);
457 
458 	return 0;
459 }
460 
461 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
462 {
463 	return (trans->state >= TRANS_STATE_COMMIT_START &&
464 		trans->state < TRANS_STATE_UNBLOCKED &&
465 		!TRANS_ABORTED(trans));
466 }
467 
468 /* wait for commit against the current transaction to become unblocked
469  * when this is done, it is safe to start a new transaction, but the current
470  * transaction might not be fully on disk.
471  */
472 static void wait_current_trans(struct btrfs_fs_info *fs_info)
473 {
474 	struct btrfs_transaction *cur_trans;
475 
476 	spin_lock(&fs_info->trans_lock);
477 	cur_trans = fs_info->running_transaction;
478 	if (cur_trans && is_transaction_blocked(cur_trans)) {
479 		refcount_inc(&cur_trans->use_count);
480 		spin_unlock(&fs_info->trans_lock);
481 
482 		wait_event(fs_info->transaction_wait,
483 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
484 			   TRANS_ABORTED(cur_trans));
485 		btrfs_put_transaction(cur_trans);
486 	} else {
487 		spin_unlock(&fs_info->trans_lock);
488 	}
489 }
490 
491 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
492 {
493 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
494 		return 0;
495 
496 	if (type == TRANS_START)
497 		return 1;
498 
499 	return 0;
500 }
501 
502 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
503 {
504 	struct btrfs_fs_info *fs_info = root->fs_info;
505 
506 	if (!fs_info->reloc_ctl ||
507 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
508 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
509 	    root->reloc_root)
510 		return false;
511 
512 	return true;
513 }
514 
515 static struct btrfs_trans_handle *
516 start_transaction(struct btrfs_root *root, unsigned int num_items,
517 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
518 		  bool enforce_qgroups)
519 {
520 	struct btrfs_fs_info *fs_info = root->fs_info;
521 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
522 	struct btrfs_trans_handle *h;
523 	struct btrfs_transaction *cur_trans;
524 	u64 num_bytes = 0;
525 	u64 qgroup_reserved = 0;
526 	bool reloc_reserved = false;
527 	bool do_chunk_alloc = false;
528 	int ret;
529 
530 	/* Send isn't supposed to start transactions. */
531 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
532 
533 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
534 		return ERR_PTR(-EROFS);
535 
536 	if (current->journal_info) {
537 		WARN_ON(type & TRANS_EXTWRITERS);
538 		h = current->journal_info;
539 		refcount_inc(&h->use_count);
540 		WARN_ON(refcount_read(&h->use_count) > 2);
541 		h->orig_rsv = h->block_rsv;
542 		h->block_rsv = NULL;
543 		goto got_it;
544 	}
545 
546 	/*
547 	 * Do the reservation before we join the transaction so we can do all
548 	 * the appropriate flushing if need be.
549 	 */
550 	if (num_items && root != fs_info->chunk_root) {
551 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
552 		u64 delayed_refs_bytes = 0;
553 
554 		qgroup_reserved = num_items * fs_info->nodesize;
555 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
556 				enforce_qgroups);
557 		if (ret)
558 			return ERR_PTR(ret);
559 
560 		/*
561 		 * We want to reserve all the bytes we may need all at once, so
562 		 * we only do 1 enospc flushing cycle per transaction start.  We
563 		 * accomplish this by simply assuming we'll do 2 x num_items
564 		 * worth of delayed refs updates in this trans handle, and
565 		 * refill that amount for whatever is missing in the reserve.
566 		 */
567 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
568 		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
569 		    delayed_refs_rsv->full == 0) {
570 			delayed_refs_bytes = num_bytes;
571 			num_bytes <<= 1;
572 		}
573 
574 		/*
575 		 * Do the reservation for the relocation root creation
576 		 */
577 		if (need_reserve_reloc_root(root)) {
578 			num_bytes += fs_info->nodesize;
579 			reloc_reserved = true;
580 		}
581 
582 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
583 		if (ret)
584 			goto reserve_fail;
585 		if (delayed_refs_bytes) {
586 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
587 							  delayed_refs_bytes);
588 			num_bytes -= delayed_refs_bytes;
589 		}
590 
591 		if (rsv->space_info->force_alloc)
592 			do_chunk_alloc = true;
593 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
594 		   !delayed_refs_rsv->full) {
595 		/*
596 		 * Some people call with btrfs_start_transaction(root, 0)
597 		 * because they can be throttled, but have some other mechanism
598 		 * for reserving space.  We still want these guys to refill the
599 		 * delayed block_rsv so just add 1 items worth of reservation
600 		 * here.
601 		 */
602 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
603 		if (ret)
604 			goto reserve_fail;
605 	}
606 again:
607 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
608 	if (!h) {
609 		ret = -ENOMEM;
610 		goto alloc_fail;
611 	}
612 
613 	/*
614 	 * If we are JOIN_NOLOCK we're already committing a transaction and
615 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
616 	 * because we're already holding a ref.  We need this because we could
617 	 * have raced in and did an fsync() on a file which can kick a commit
618 	 * and then we deadlock with somebody doing a freeze.
619 	 *
620 	 * If we are ATTACH, it means we just want to catch the current
621 	 * transaction and commit it, so we needn't do sb_start_intwrite().
622 	 */
623 	if (type & __TRANS_FREEZABLE)
624 		sb_start_intwrite(fs_info->sb);
625 
626 	if (may_wait_transaction(fs_info, type))
627 		wait_current_trans(fs_info);
628 
629 	do {
630 		ret = join_transaction(fs_info, type);
631 		if (ret == -EBUSY) {
632 			wait_current_trans(fs_info);
633 			if (unlikely(type == TRANS_ATTACH ||
634 				     type == TRANS_JOIN_NOSTART))
635 				ret = -ENOENT;
636 		}
637 	} while (ret == -EBUSY);
638 
639 	if (ret < 0)
640 		goto join_fail;
641 
642 	cur_trans = fs_info->running_transaction;
643 
644 	h->transid = cur_trans->transid;
645 	h->transaction = cur_trans;
646 	h->root = root;
647 	refcount_set(&h->use_count, 1);
648 	h->fs_info = root->fs_info;
649 
650 	h->type = type;
651 	h->can_flush_pending_bgs = true;
652 	INIT_LIST_HEAD(&h->new_bgs);
653 
654 	smp_mb();
655 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
656 	    may_wait_transaction(fs_info, type)) {
657 		current->journal_info = h;
658 		btrfs_commit_transaction(h);
659 		goto again;
660 	}
661 
662 	if (num_bytes) {
663 		trace_btrfs_space_reservation(fs_info, "transaction",
664 					      h->transid, num_bytes, 1);
665 		h->block_rsv = &fs_info->trans_block_rsv;
666 		h->bytes_reserved = num_bytes;
667 		h->reloc_reserved = reloc_reserved;
668 	}
669 
670 got_it:
671 	if (!current->journal_info)
672 		current->journal_info = h;
673 
674 	/*
675 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
676 	 * ALLOC_FORCE the first run through, and then we won't allocate for
677 	 * anybody else who races in later.  We don't care about the return
678 	 * value here.
679 	 */
680 	if (do_chunk_alloc && num_bytes) {
681 		u64 flags = h->block_rsv->space_info->flags;
682 
683 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
684 				  CHUNK_ALLOC_NO_FORCE);
685 	}
686 
687 	/*
688 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
689 	 * call btrfs_join_transaction() while we're also starting a
690 	 * transaction.
691 	 *
692 	 * Thus it need to be called after current->journal_info initialized,
693 	 * or we can deadlock.
694 	 */
695 	btrfs_record_root_in_trans(h, root);
696 
697 	return h;
698 
699 join_fail:
700 	if (type & __TRANS_FREEZABLE)
701 		sb_end_intwrite(fs_info->sb);
702 	kmem_cache_free(btrfs_trans_handle_cachep, h);
703 alloc_fail:
704 	if (num_bytes)
705 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
706 					num_bytes, NULL);
707 reserve_fail:
708 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
709 	return ERR_PTR(ret);
710 }
711 
712 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
713 						   unsigned int num_items)
714 {
715 	return start_transaction(root, num_items, TRANS_START,
716 				 BTRFS_RESERVE_FLUSH_ALL, true);
717 }
718 
719 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
720 					struct btrfs_root *root,
721 					unsigned int num_items)
722 {
723 	return start_transaction(root, num_items, TRANS_START,
724 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
725 }
726 
727 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
728 {
729 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
730 				 true);
731 }
732 
733 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
734 {
735 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
736 				 BTRFS_RESERVE_NO_FLUSH, true);
737 }
738 
739 /*
740  * Similar to regular join but it never starts a transaction when none is
741  * running or after waiting for the current one to finish.
742  */
743 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
744 {
745 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
746 				 BTRFS_RESERVE_NO_FLUSH, true);
747 }
748 
749 /*
750  * btrfs_attach_transaction() - catch the running transaction
751  *
752  * It is used when we want to commit the current the transaction, but
753  * don't want to start a new one.
754  *
755  * Note: If this function return -ENOENT, it just means there is no
756  * running transaction. But it is possible that the inactive transaction
757  * is still in the memory, not fully on disk. If you hope there is no
758  * inactive transaction in the fs when -ENOENT is returned, you should
759  * invoke
760  *     btrfs_attach_transaction_barrier()
761  */
762 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
763 {
764 	return start_transaction(root, 0, TRANS_ATTACH,
765 				 BTRFS_RESERVE_NO_FLUSH, true);
766 }
767 
768 /*
769  * btrfs_attach_transaction_barrier() - catch the running transaction
770  *
771  * It is similar to the above function, the difference is this one
772  * will wait for all the inactive transactions until they fully
773  * complete.
774  */
775 struct btrfs_trans_handle *
776 btrfs_attach_transaction_barrier(struct btrfs_root *root)
777 {
778 	struct btrfs_trans_handle *trans;
779 
780 	trans = start_transaction(root, 0, TRANS_ATTACH,
781 				  BTRFS_RESERVE_NO_FLUSH, true);
782 	if (trans == ERR_PTR(-ENOENT))
783 		btrfs_wait_for_commit(root->fs_info, 0);
784 
785 	return trans;
786 }
787 
788 /* wait for a transaction commit to be fully complete */
789 static noinline void wait_for_commit(struct btrfs_transaction *commit)
790 {
791 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
792 }
793 
794 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
795 {
796 	struct btrfs_transaction *cur_trans = NULL, *t;
797 	int ret = 0;
798 
799 	if (transid) {
800 		if (transid <= fs_info->last_trans_committed)
801 			goto out;
802 
803 		/* find specified transaction */
804 		spin_lock(&fs_info->trans_lock);
805 		list_for_each_entry(t, &fs_info->trans_list, list) {
806 			if (t->transid == transid) {
807 				cur_trans = t;
808 				refcount_inc(&cur_trans->use_count);
809 				ret = 0;
810 				break;
811 			}
812 			if (t->transid > transid) {
813 				ret = 0;
814 				break;
815 			}
816 		}
817 		spin_unlock(&fs_info->trans_lock);
818 
819 		/*
820 		 * The specified transaction doesn't exist, or we
821 		 * raced with btrfs_commit_transaction
822 		 */
823 		if (!cur_trans) {
824 			if (transid > fs_info->last_trans_committed)
825 				ret = -EINVAL;
826 			goto out;
827 		}
828 	} else {
829 		/* find newest transaction that is committing | committed */
830 		spin_lock(&fs_info->trans_lock);
831 		list_for_each_entry_reverse(t, &fs_info->trans_list,
832 					    list) {
833 			if (t->state >= TRANS_STATE_COMMIT_START) {
834 				if (t->state == TRANS_STATE_COMPLETED)
835 					break;
836 				cur_trans = t;
837 				refcount_inc(&cur_trans->use_count);
838 				break;
839 			}
840 		}
841 		spin_unlock(&fs_info->trans_lock);
842 		if (!cur_trans)
843 			goto out;  /* nothing committing|committed */
844 	}
845 
846 	wait_for_commit(cur_trans);
847 	btrfs_put_transaction(cur_trans);
848 out:
849 	return ret;
850 }
851 
852 void btrfs_throttle(struct btrfs_fs_info *fs_info)
853 {
854 	wait_current_trans(fs_info);
855 }
856 
857 static int should_end_transaction(struct btrfs_trans_handle *trans)
858 {
859 	struct btrfs_fs_info *fs_info = trans->fs_info;
860 
861 	if (btrfs_check_space_for_delayed_refs(fs_info))
862 		return 1;
863 
864 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
865 }
866 
867 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
868 {
869 	struct btrfs_transaction *cur_trans = trans->transaction;
870 
871 	smp_mb();
872 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
873 	    cur_trans->delayed_refs.flushing)
874 		return 1;
875 
876 	return should_end_transaction(trans);
877 }
878 
879 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
880 
881 {
882 	struct btrfs_fs_info *fs_info = trans->fs_info;
883 
884 	if (!trans->block_rsv) {
885 		ASSERT(!trans->bytes_reserved);
886 		return;
887 	}
888 
889 	if (!trans->bytes_reserved)
890 		return;
891 
892 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
893 	trace_btrfs_space_reservation(fs_info, "transaction",
894 				      trans->transid, trans->bytes_reserved, 0);
895 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
896 				trans->bytes_reserved, NULL);
897 	trans->bytes_reserved = 0;
898 }
899 
900 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
901 				   int throttle)
902 {
903 	struct btrfs_fs_info *info = trans->fs_info;
904 	struct btrfs_transaction *cur_trans = trans->transaction;
905 	int err = 0;
906 
907 	if (refcount_read(&trans->use_count) > 1) {
908 		refcount_dec(&trans->use_count);
909 		trans->block_rsv = trans->orig_rsv;
910 		return 0;
911 	}
912 
913 	btrfs_trans_release_metadata(trans);
914 	trans->block_rsv = NULL;
915 
916 	btrfs_create_pending_block_groups(trans);
917 
918 	btrfs_trans_release_chunk_metadata(trans);
919 
920 	if (trans->type & __TRANS_FREEZABLE)
921 		sb_end_intwrite(info->sb);
922 
923 	WARN_ON(cur_trans != info->running_transaction);
924 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
925 	atomic_dec(&cur_trans->num_writers);
926 	extwriter_counter_dec(cur_trans, trans->type);
927 
928 	cond_wake_up(&cur_trans->writer_wait);
929 	btrfs_put_transaction(cur_trans);
930 
931 	if (current->journal_info == trans)
932 		current->journal_info = NULL;
933 
934 	if (throttle)
935 		btrfs_run_delayed_iputs(info);
936 
937 	if (TRANS_ABORTED(trans) ||
938 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
939 		wake_up_process(info->transaction_kthread);
940 		err = -EIO;
941 	}
942 
943 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
944 	return err;
945 }
946 
947 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
948 {
949 	return __btrfs_end_transaction(trans, 0);
950 }
951 
952 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
953 {
954 	return __btrfs_end_transaction(trans, 1);
955 }
956 
957 /*
958  * when btree blocks are allocated, they have some corresponding bits set for
959  * them in one of two extent_io trees.  This is used to make sure all of
960  * those extents are sent to disk but does not wait on them
961  */
962 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
963 			       struct extent_io_tree *dirty_pages, int mark)
964 {
965 	int err = 0;
966 	int werr = 0;
967 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
968 	struct extent_state *cached_state = NULL;
969 	u64 start = 0;
970 	u64 end;
971 
972 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
973 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
974 				      mark, &cached_state)) {
975 		bool wait_writeback = false;
976 
977 		err = convert_extent_bit(dirty_pages, start, end,
978 					 EXTENT_NEED_WAIT,
979 					 mark, &cached_state);
980 		/*
981 		 * convert_extent_bit can return -ENOMEM, which is most of the
982 		 * time a temporary error. So when it happens, ignore the error
983 		 * and wait for writeback of this range to finish - because we
984 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
985 		 * to __btrfs_wait_marked_extents() would not know that
986 		 * writeback for this range started and therefore wouldn't
987 		 * wait for it to finish - we don't want to commit a
988 		 * superblock that points to btree nodes/leafs for which
989 		 * writeback hasn't finished yet (and without errors).
990 		 * We cleanup any entries left in the io tree when committing
991 		 * the transaction (through extent_io_tree_release()).
992 		 */
993 		if (err == -ENOMEM) {
994 			err = 0;
995 			wait_writeback = true;
996 		}
997 		if (!err)
998 			err = filemap_fdatawrite_range(mapping, start, end);
999 		if (err)
1000 			werr = err;
1001 		else if (wait_writeback)
1002 			werr = filemap_fdatawait_range(mapping, start, end);
1003 		free_extent_state(cached_state);
1004 		cached_state = NULL;
1005 		cond_resched();
1006 		start = end + 1;
1007 	}
1008 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1009 	return werr;
1010 }
1011 
1012 /*
1013  * when btree blocks are allocated, they have some corresponding bits set for
1014  * them in one of two extent_io trees.  This is used to make sure all of
1015  * those extents are on disk for transaction or log commit.  We wait
1016  * on all the pages and clear them from the dirty pages state tree
1017  */
1018 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1019 				       struct extent_io_tree *dirty_pages)
1020 {
1021 	int err = 0;
1022 	int werr = 0;
1023 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1024 	struct extent_state *cached_state = NULL;
1025 	u64 start = 0;
1026 	u64 end;
1027 
1028 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1029 				      EXTENT_NEED_WAIT, &cached_state)) {
1030 		/*
1031 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1032 		 * When committing the transaction, we'll remove any entries
1033 		 * left in the io tree. For a log commit, we don't remove them
1034 		 * after committing the log because the tree can be accessed
1035 		 * concurrently - we do it only at transaction commit time when
1036 		 * it's safe to do it (through extent_io_tree_release()).
1037 		 */
1038 		err = clear_extent_bit(dirty_pages, start, end,
1039 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1040 		if (err == -ENOMEM)
1041 			err = 0;
1042 		if (!err)
1043 			err = filemap_fdatawait_range(mapping, start, end);
1044 		if (err)
1045 			werr = err;
1046 		free_extent_state(cached_state);
1047 		cached_state = NULL;
1048 		cond_resched();
1049 		start = end + 1;
1050 	}
1051 	if (err)
1052 		werr = err;
1053 	return werr;
1054 }
1055 
1056 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1057 		       struct extent_io_tree *dirty_pages)
1058 {
1059 	bool errors = false;
1060 	int err;
1061 
1062 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1063 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1064 		errors = true;
1065 
1066 	if (errors && !err)
1067 		err = -EIO;
1068 	return err;
1069 }
1070 
1071 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1072 {
1073 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1074 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1075 	bool errors = false;
1076 	int err;
1077 
1078 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1079 
1080 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1081 	if ((mark & EXTENT_DIRTY) &&
1082 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1083 		errors = true;
1084 
1085 	if ((mark & EXTENT_NEW) &&
1086 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1087 		errors = true;
1088 
1089 	if (errors && !err)
1090 		err = -EIO;
1091 	return err;
1092 }
1093 
1094 /*
1095  * When btree blocks are allocated the corresponding extents are marked dirty.
1096  * This function ensures such extents are persisted on disk for transaction or
1097  * log commit.
1098  *
1099  * @trans: transaction whose dirty pages we'd like to write
1100  */
1101 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1102 {
1103 	int ret;
1104 	int ret2;
1105 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1106 	struct btrfs_fs_info *fs_info = trans->fs_info;
1107 	struct blk_plug plug;
1108 
1109 	blk_start_plug(&plug);
1110 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1111 	blk_finish_plug(&plug);
1112 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1113 
1114 	extent_io_tree_release(&trans->transaction->dirty_pages);
1115 
1116 	if (ret)
1117 		return ret;
1118 	else if (ret2)
1119 		return ret2;
1120 	else
1121 		return 0;
1122 }
1123 
1124 /*
1125  * this is used to update the root pointer in the tree of tree roots.
1126  *
1127  * But, in the case of the extent allocation tree, updating the root
1128  * pointer may allocate blocks which may change the root of the extent
1129  * allocation tree.
1130  *
1131  * So, this loops and repeats and makes sure the cowonly root didn't
1132  * change while the root pointer was being updated in the metadata.
1133  */
1134 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1135 			       struct btrfs_root *root)
1136 {
1137 	int ret;
1138 	u64 old_root_bytenr;
1139 	u64 old_root_used;
1140 	struct btrfs_fs_info *fs_info = root->fs_info;
1141 	struct btrfs_root *tree_root = fs_info->tree_root;
1142 
1143 	old_root_used = btrfs_root_used(&root->root_item);
1144 
1145 	while (1) {
1146 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1147 		if (old_root_bytenr == root->node->start &&
1148 		    old_root_used == btrfs_root_used(&root->root_item))
1149 			break;
1150 
1151 		btrfs_set_root_node(&root->root_item, root->node);
1152 		ret = btrfs_update_root(trans, tree_root,
1153 					&root->root_key,
1154 					&root->root_item);
1155 		if (ret)
1156 			return ret;
1157 
1158 		old_root_used = btrfs_root_used(&root->root_item);
1159 	}
1160 
1161 	return 0;
1162 }
1163 
1164 /*
1165  * update all the cowonly tree roots on disk
1166  *
1167  * The error handling in this function may not be obvious. Any of the
1168  * failures will cause the file system to go offline. We still need
1169  * to clean up the delayed refs.
1170  */
1171 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1172 {
1173 	struct btrfs_fs_info *fs_info = trans->fs_info;
1174 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1175 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1176 	struct list_head *next;
1177 	struct extent_buffer *eb;
1178 	int ret;
1179 
1180 	eb = btrfs_lock_root_node(fs_info->tree_root);
1181 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1182 			      0, &eb);
1183 	btrfs_tree_unlock(eb);
1184 	free_extent_buffer(eb);
1185 
1186 	if (ret)
1187 		return ret;
1188 
1189 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1190 	if (ret)
1191 		return ret;
1192 
1193 	ret = btrfs_run_dev_stats(trans);
1194 	if (ret)
1195 		return ret;
1196 	ret = btrfs_run_dev_replace(trans);
1197 	if (ret)
1198 		return ret;
1199 	ret = btrfs_run_qgroups(trans);
1200 	if (ret)
1201 		return ret;
1202 
1203 	ret = btrfs_setup_space_cache(trans);
1204 	if (ret)
1205 		return ret;
1206 
1207 	/* run_qgroups might have added some more refs */
1208 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1209 	if (ret)
1210 		return ret;
1211 again:
1212 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1213 		struct btrfs_root *root;
1214 		next = fs_info->dirty_cowonly_roots.next;
1215 		list_del_init(next);
1216 		root = list_entry(next, struct btrfs_root, dirty_list);
1217 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1218 
1219 		if (root != fs_info->extent_root)
1220 			list_add_tail(&root->dirty_list,
1221 				      &trans->transaction->switch_commits);
1222 		ret = update_cowonly_root(trans, root);
1223 		if (ret)
1224 			return ret;
1225 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1226 		if (ret)
1227 			return ret;
1228 	}
1229 
1230 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1231 		ret = btrfs_write_dirty_block_groups(trans);
1232 		if (ret)
1233 			return ret;
1234 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1235 		if (ret)
1236 			return ret;
1237 	}
1238 
1239 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1240 		goto again;
1241 
1242 	list_add_tail(&fs_info->extent_root->dirty_list,
1243 		      &trans->transaction->switch_commits);
1244 
1245 	/* Update dev-replace pointer once everything is committed */
1246 	fs_info->dev_replace.committed_cursor_left =
1247 		fs_info->dev_replace.cursor_left_last_write_of_item;
1248 
1249 	return 0;
1250 }
1251 
1252 /*
1253  * dead roots are old snapshots that need to be deleted.  This allocates
1254  * a dirty root struct and adds it into the list of dead roots that need to
1255  * be deleted
1256  */
1257 void btrfs_add_dead_root(struct btrfs_root *root)
1258 {
1259 	struct btrfs_fs_info *fs_info = root->fs_info;
1260 
1261 	spin_lock(&fs_info->trans_lock);
1262 	if (list_empty(&root->root_list)) {
1263 		btrfs_grab_root(root);
1264 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1265 	}
1266 	spin_unlock(&fs_info->trans_lock);
1267 }
1268 
1269 /*
1270  * update all the cowonly tree roots on disk
1271  */
1272 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1273 {
1274 	struct btrfs_fs_info *fs_info = trans->fs_info;
1275 	struct btrfs_root *gang[8];
1276 	int i;
1277 	int ret;
1278 	int err = 0;
1279 
1280 	spin_lock(&fs_info->fs_roots_radix_lock);
1281 	while (1) {
1282 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1283 						 (void **)gang, 0,
1284 						 ARRAY_SIZE(gang),
1285 						 BTRFS_ROOT_TRANS_TAG);
1286 		if (ret == 0)
1287 			break;
1288 		for (i = 0; i < ret; i++) {
1289 			struct btrfs_root *root = gang[i];
1290 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1291 					(unsigned long)root->root_key.objectid,
1292 					BTRFS_ROOT_TRANS_TAG);
1293 			spin_unlock(&fs_info->fs_roots_radix_lock);
1294 
1295 			btrfs_free_log(trans, root);
1296 			btrfs_update_reloc_root(trans, root);
1297 
1298 			btrfs_save_ino_cache(root, trans);
1299 
1300 			/* see comments in should_cow_block() */
1301 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1302 			smp_mb__after_atomic();
1303 
1304 			if (root->commit_root != root->node) {
1305 				list_add_tail(&root->dirty_list,
1306 					&trans->transaction->switch_commits);
1307 				btrfs_set_root_node(&root->root_item,
1308 						    root->node);
1309 			}
1310 
1311 			err = btrfs_update_root(trans, fs_info->tree_root,
1312 						&root->root_key,
1313 						&root->root_item);
1314 			spin_lock(&fs_info->fs_roots_radix_lock);
1315 			if (err)
1316 				break;
1317 			btrfs_qgroup_free_meta_all_pertrans(root);
1318 		}
1319 	}
1320 	spin_unlock(&fs_info->fs_roots_radix_lock);
1321 	return err;
1322 }
1323 
1324 /*
1325  * defrag a given btree.
1326  * Every leaf in the btree is read and defragged.
1327  */
1328 int btrfs_defrag_root(struct btrfs_root *root)
1329 {
1330 	struct btrfs_fs_info *info = root->fs_info;
1331 	struct btrfs_trans_handle *trans;
1332 	int ret;
1333 
1334 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1335 		return 0;
1336 
1337 	while (1) {
1338 		trans = btrfs_start_transaction(root, 0);
1339 		if (IS_ERR(trans))
1340 			return PTR_ERR(trans);
1341 
1342 		ret = btrfs_defrag_leaves(trans, root);
1343 
1344 		btrfs_end_transaction(trans);
1345 		btrfs_btree_balance_dirty(info);
1346 		cond_resched();
1347 
1348 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1349 			break;
1350 
1351 		if (btrfs_defrag_cancelled(info)) {
1352 			btrfs_debug(info, "defrag_root cancelled");
1353 			ret = -EAGAIN;
1354 			break;
1355 		}
1356 	}
1357 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1358 	return ret;
1359 }
1360 
1361 /*
1362  * Do all special snapshot related qgroup dirty hack.
1363  *
1364  * Will do all needed qgroup inherit and dirty hack like switch commit
1365  * roots inside one transaction and write all btree into disk, to make
1366  * qgroup works.
1367  */
1368 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1369 				   struct btrfs_root *src,
1370 				   struct btrfs_root *parent,
1371 				   struct btrfs_qgroup_inherit *inherit,
1372 				   u64 dst_objectid)
1373 {
1374 	struct btrfs_fs_info *fs_info = src->fs_info;
1375 	int ret;
1376 
1377 	/*
1378 	 * Save some performance in the case that qgroups are not
1379 	 * enabled. If this check races with the ioctl, rescan will
1380 	 * kick in anyway.
1381 	 */
1382 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1383 		return 0;
1384 
1385 	/*
1386 	 * Ensure dirty @src will be committed.  Or, after coming
1387 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1388 	 * recorded root will never be updated again, causing an outdated root
1389 	 * item.
1390 	 */
1391 	record_root_in_trans(trans, src, 1);
1392 
1393 	/*
1394 	 * We are going to commit transaction, see btrfs_commit_transaction()
1395 	 * comment for reason locking tree_log_mutex
1396 	 */
1397 	mutex_lock(&fs_info->tree_log_mutex);
1398 
1399 	ret = commit_fs_roots(trans);
1400 	if (ret)
1401 		goto out;
1402 	ret = btrfs_qgroup_account_extents(trans);
1403 	if (ret < 0)
1404 		goto out;
1405 
1406 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1407 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1408 				   inherit);
1409 	if (ret < 0)
1410 		goto out;
1411 
1412 	/*
1413 	 * Now we do a simplified commit transaction, which will:
1414 	 * 1) commit all subvolume and extent tree
1415 	 *    To ensure all subvolume and extent tree have a valid
1416 	 *    commit_root to accounting later insert_dir_item()
1417 	 * 2) write all btree blocks onto disk
1418 	 *    This is to make sure later btree modification will be cowed
1419 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1420 	 * In this simplified commit, we don't really care about other trees
1421 	 * like chunk and root tree, as they won't affect qgroup.
1422 	 * And we don't write super to avoid half committed status.
1423 	 */
1424 	ret = commit_cowonly_roots(trans);
1425 	if (ret)
1426 		goto out;
1427 	switch_commit_roots(trans);
1428 	ret = btrfs_write_and_wait_transaction(trans);
1429 	if (ret)
1430 		btrfs_handle_fs_error(fs_info, ret,
1431 			"Error while writing out transaction for qgroup");
1432 
1433 out:
1434 	mutex_unlock(&fs_info->tree_log_mutex);
1435 
1436 	/*
1437 	 * Force parent root to be updated, as we recorded it before so its
1438 	 * last_trans == cur_transid.
1439 	 * Or it won't be committed again onto disk after later
1440 	 * insert_dir_item()
1441 	 */
1442 	if (!ret)
1443 		record_root_in_trans(trans, parent, 1);
1444 	return ret;
1445 }
1446 
1447 /*
1448  * new snapshots need to be created at a very specific time in the
1449  * transaction commit.  This does the actual creation.
1450  *
1451  * Note:
1452  * If the error which may affect the commitment of the current transaction
1453  * happens, we should return the error number. If the error which just affect
1454  * the creation of the pending snapshots, just return 0.
1455  */
1456 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1457 				   struct btrfs_pending_snapshot *pending)
1458 {
1459 
1460 	struct btrfs_fs_info *fs_info = trans->fs_info;
1461 	struct btrfs_key key;
1462 	struct btrfs_root_item *new_root_item;
1463 	struct btrfs_root *tree_root = fs_info->tree_root;
1464 	struct btrfs_root *root = pending->root;
1465 	struct btrfs_root *parent_root;
1466 	struct btrfs_block_rsv *rsv;
1467 	struct inode *parent_inode;
1468 	struct btrfs_path *path;
1469 	struct btrfs_dir_item *dir_item;
1470 	struct dentry *dentry;
1471 	struct extent_buffer *tmp;
1472 	struct extent_buffer *old;
1473 	struct timespec64 cur_time;
1474 	int ret = 0;
1475 	u64 to_reserve = 0;
1476 	u64 index = 0;
1477 	u64 objectid;
1478 	u64 root_flags;
1479 
1480 	ASSERT(pending->path);
1481 	path = pending->path;
1482 
1483 	ASSERT(pending->root_item);
1484 	new_root_item = pending->root_item;
1485 
1486 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1487 	if (pending->error)
1488 		goto no_free_objectid;
1489 
1490 	/*
1491 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1492 	 * accounted by later btrfs_qgroup_inherit().
1493 	 */
1494 	btrfs_set_skip_qgroup(trans, objectid);
1495 
1496 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1497 
1498 	if (to_reserve > 0) {
1499 		pending->error = btrfs_block_rsv_add(root,
1500 						     &pending->block_rsv,
1501 						     to_reserve,
1502 						     BTRFS_RESERVE_NO_FLUSH);
1503 		if (pending->error)
1504 			goto clear_skip_qgroup;
1505 	}
1506 
1507 	key.objectid = objectid;
1508 	key.offset = (u64)-1;
1509 	key.type = BTRFS_ROOT_ITEM_KEY;
1510 
1511 	rsv = trans->block_rsv;
1512 	trans->block_rsv = &pending->block_rsv;
1513 	trans->bytes_reserved = trans->block_rsv->reserved;
1514 	trace_btrfs_space_reservation(fs_info, "transaction",
1515 				      trans->transid,
1516 				      trans->bytes_reserved, 1);
1517 	dentry = pending->dentry;
1518 	parent_inode = pending->dir;
1519 	parent_root = BTRFS_I(parent_inode)->root;
1520 	record_root_in_trans(trans, parent_root, 0);
1521 
1522 	cur_time = current_time(parent_inode);
1523 
1524 	/*
1525 	 * insert the directory item
1526 	 */
1527 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1528 	BUG_ON(ret); /* -ENOMEM */
1529 
1530 	/* check if there is a file/dir which has the same name. */
1531 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1532 					 btrfs_ino(BTRFS_I(parent_inode)),
1533 					 dentry->d_name.name,
1534 					 dentry->d_name.len, 0);
1535 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1536 		pending->error = -EEXIST;
1537 		goto dir_item_existed;
1538 	} else if (IS_ERR(dir_item)) {
1539 		ret = PTR_ERR(dir_item);
1540 		btrfs_abort_transaction(trans, ret);
1541 		goto fail;
1542 	}
1543 	btrfs_release_path(path);
1544 
1545 	/*
1546 	 * pull in the delayed directory update
1547 	 * and the delayed inode item
1548 	 * otherwise we corrupt the FS during
1549 	 * snapshot
1550 	 */
1551 	ret = btrfs_run_delayed_items(trans);
1552 	if (ret) {	/* Transaction aborted */
1553 		btrfs_abort_transaction(trans, ret);
1554 		goto fail;
1555 	}
1556 
1557 	record_root_in_trans(trans, root, 0);
1558 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1559 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1560 	btrfs_check_and_init_root_item(new_root_item);
1561 
1562 	root_flags = btrfs_root_flags(new_root_item);
1563 	if (pending->readonly)
1564 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1565 	else
1566 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1567 	btrfs_set_root_flags(new_root_item, root_flags);
1568 
1569 	btrfs_set_root_generation_v2(new_root_item,
1570 			trans->transid);
1571 	generate_random_guid(new_root_item->uuid);
1572 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1573 			BTRFS_UUID_SIZE);
1574 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1575 		memset(new_root_item->received_uuid, 0,
1576 		       sizeof(new_root_item->received_uuid));
1577 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1578 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1579 		btrfs_set_root_stransid(new_root_item, 0);
1580 		btrfs_set_root_rtransid(new_root_item, 0);
1581 	}
1582 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1583 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1584 	btrfs_set_root_otransid(new_root_item, trans->transid);
1585 
1586 	old = btrfs_lock_root_node(root);
1587 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1588 	if (ret) {
1589 		btrfs_tree_unlock(old);
1590 		free_extent_buffer(old);
1591 		btrfs_abort_transaction(trans, ret);
1592 		goto fail;
1593 	}
1594 
1595 	btrfs_set_lock_blocking_write(old);
1596 
1597 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1598 	/* clean up in any case */
1599 	btrfs_tree_unlock(old);
1600 	free_extent_buffer(old);
1601 	if (ret) {
1602 		btrfs_abort_transaction(trans, ret);
1603 		goto fail;
1604 	}
1605 	/* see comments in should_cow_block() */
1606 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1607 	smp_wmb();
1608 
1609 	btrfs_set_root_node(new_root_item, tmp);
1610 	/* record when the snapshot was created in key.offset */
1611 	key.offset = trans->transid;
1612 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1613 	btrfs_tree_unlock(tmp);
1614 	free_extent_buffer(tmp);
1615 	if (ret) {
1616 		btrfs_abort_transaction(trans, ret);
1617 		goto fail;
1618 	}
1619 
1620 	/*
1621 	 * insert root back/forward references
1622 	 */
1623 	ret = btrfs_add_root_ref(trans, objectid,
1624 				 parent_root->root_key.objectid,
1625 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1626 				 dentry->d_name.name, dentry->d_name.len);
1627 	if (ret) {
1628 		btrfs_abort_transaction(trans, ret);
1629 		goto fail;
1630 	}
1631 
1632 	key.offset = (u64)-1;
1633 	pending->snap = btrfs_get_fs_root(fs_info, objectid, true);
1634 	if (IS_ERR(pending->snap)) {
1635 		ret = PTR_ERR(pending->snap);
1636 		btrfs_abort_transaction(trans, ret);
1637 		goto fail;
1638 	}
1639 
1640 	ret = btrfs_reloc_post_snapshot(trans, pending);
1641 	if (ret) {
1642 		btrfs_abort_transaction(trans, ret);
1643 		goto fail;
1644 	}
1645 
1646 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1647 	if (ret) {
1648 		btrfs_abort_transaction(trans, ret);
1649 		goto fail;
1650 	}
1651 
1652 	/*
1653 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1654 	 * snapshot hack to do fast snapshot.
1655 	 * To co-operate with that hack, we do hack again.
1656 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1657 	 */
1658 	ret = qgroup_account_snapshot(trans, root, parent_root,
1659 				      pending->inherit, objectid);
1660 	if (ret < 0)
1661 		goto fail;
1662 
1663 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1664 				    dentry->d_name.len, BTRFS_I(parent_inode),
1665 				    &key, BTRFS_FT_DIR, index);
1666 	/* We have check then name at the beginning, so it is impossible. */
1667 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1668 	if (ret) {
1669 		btrfs_abort_transaction(trans, ret);
1670 		goto fail;
1671 	}
1672 
1673 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1674 					 dentry->d_name.len * 2);
1675 	parent_inode->i_mtime = parent_inode->i_ctime =
1676 		current_time(parent_inode);
1677 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1678 	if (ret) {
1679 		btrfs_abort_transaction(trans, ret);
1680 		goto fail;
1681 	}
1682 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1683 				  BTRFS_UUID_KEY_SUBVOL,
1684 				  objectid);
1685 	if (ret) {
1686 		btrfs_abort_transaction(trans, ret);
1687 		goto fail;
1688 	}
1689 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1690 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1691 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1692 					  objectid);
1693 		if (ret && ret != -EEXIST) {
1694 			btrfs_abort_transaction(trans, ret);
1695 			goto fail;
1696 		}
1697 	}
1698 
1699 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1700 	if (ret) {
1701 		btrfs_abort_transaction(trans, ret);
1702 		goto fail;
1703 	}
1704 
1705 fail:
1706 	pending->error = ret;
1707 dir_item_existed:
1708 	trans->block_rsv = rsv;
1709 	trans->bytes_reserved = 0;
1710 clear_skip_qgroup:
1711 	btrfs_clear_skip_qgroup(trans);
1712 no_free_objectid:
1713 	kfree(new_root_item);
1714 	pending->root_item = NULL;
1715 	btrfs_free_path(path);
1716 	pending->path = NULL;
1717 
1718 	return ret;
1719 }
1720 
1721 /*
1722  * create all the snapshots we've scheduled for creation
1723  */
1724 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1725 {
1726 	struct btrfs_pending_snapshot *pending, *next;
1727 	struct list_head *head = &trans->transaction->pending_snapshots;
1728 	int ret = 0;
1729 
1730 	list_for_each_entry_safe(pending, next, head, list) {
1731 		list_del(&pending->list);
1732 		ret = create_pending_snapshot(trans, pending);
1733 		if (ret)
1734 			break;
1735 	}
1736 	return ret;
1737 }
1738 
1739 static void update_super_roots(struct btrfs_fs_info *fs_info)
1740 {
1741 	struct btrfs_root_item *root_item;
1742 	struct btrfs_super_block *super;
1743 
1744 	super = fs_info->super_copy;
1745 
1746 	root_item = &fs_info->chunk_root->root_item;
1747 	super->chunk_root = root_item->bytenr;
1748 	super->chunk_root_generation = root_item->generation;
1749 	super->chunk_root_level = root_item->level;
1750 
1751 	root_item = &fs_info->tree_root->root_item;
1752 	super->root = root_item->bytenr;
1753 	super->generation = root_item->generation;
1754 	super->root_level = root_item->level;
1755 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1756 		super->cache_generation = root_item->generation;
1757 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1758 		super->uuid_tree_generation = root_item->generation;
1759 }
1760 
1761 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1762 {
1763 	struct btrfs_transaction *trans;
1764 	int ret = 0;
1765 
1766 	spin_lock(&info->trans_lock);
1767 	trans = info->running_transaction;
1768 	if (trans)
1769 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1770 	spin_unlock(&info->trans_lock);
1771 	return ret;
1772 }
1773 
1774 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1775 {
1776 	struct btrfs_transaction *trans;
1777 	int ret = 0;
1778 
1779 	spin_lock(&info->trans_lock);
1780 	trans = info->running_transaction;
1781 	if (trans)
1782 		ret = is_transaction_blocked(trans);
1783 	spin_unlock(&info->trans_lock);
1784 	return ret;
1785 }
1786 
1787 /*
1788  * wait for the current transaction commit to start and block subsequent
1789  * transaction joins
1790  */
1791 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1792 					    struct btrfs_transaction *trans)
1793 {
1794 	wait_event(fs_info->transaction_blocked_wait,
1795 		   trans->state >= TRANS_STATE_COMMIT_START ||
1796 		   TRANS_ABORTED(trans));
1797 }
1798 
1799 /*
1800  * wait for the current transaction to start and then become unblocked.
1801  * caller holds ref.
1802  */
1803 static void wait_current_trans_commit_start_and_unblock(
1804 					struct btrfs_fs_info *fs_info,
1805 					struct btrfs_transaction *trans)
1806 {
1807 	wait_event(fs_info->transaction_wait,
1808 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1809 		   TRANS_ABORTED(trans));
1810 }
1811 
1812 /*
1813  * commit transactions asynchronously. once btrfs_commit_transaction_async
1814  * returns, any subsequent transaction will not be allowed to join.
1815  */
1816 struct btrfs_async_commit {
1817 	struct btrfs_trans_handle *newtrans;
1818 	struct work_struct work;
1819 };
1820 
1821 static void do_async_commit(struct work_struct *work)
1822 {
1823 	struct btrfs_async_commit *ac =
1824 		container_of(work, struct btrfs_async_commit, work);
1825 
1826 	/*
1827 	 * We've got freeze protection passed with the transaction.
1828 	 * Tell lockdep about it.
1829 	 */
1830 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1831 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1832 
1833 	current->journal_info = ac->newtrans;
1834 
1835 	btrfs_commit_transaction(ac->newtrans);
1836 	kfree(ac);
1837 }
1838 
1839 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1840 				   int wait_for_unblock)
1841 {
1842 	struct btrfs_fs_info *fs_info = trans->fs_info;
1843 	struct btrfs_async_commit *ac;
1844 	struct btrfs_transaction *cur_trans;
1845 
1846 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1847 	if (!ac)
1848 		return -ENOMEM;
1849 
1850 	INIT_WORK(&ac->work, do_async_commit);
1851 	ac->newtrans = btrfs_join_transaction(trans->root);
1852 	if (IS_ERR(ac->newtrans)) {
1853 		int err = PTR_ERR(ac->newtrans);
1854 		kfree(ac);
1855 		return err;
1856 	}
1857 
1858 	/* take transaction reference */
1859 	cur_trans = trans->transaction;
1860 	refcount_inc(&cur_trans->use_count);
1861 
1862 	btrfs_end_transaction(trans);
1863 
1864 	/*
1865 	 * Tell lockdep we've released the freeze rwsem, since the
1866 	 * async commit thread will be the one to unlock it.
1867 	 */
1868 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1869 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1870 
1871 	schedule_work(&ac->work);
1872 
1873 	/* wait for transaction to start and unblock */
1874 	if (wait_for_unblock)
1875 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1876 	else
1877 		wait_current_trans_commit_start(fs_info, cur_trans);
1878 
1879 	if (current->journal_info == trans)
1880 		current->journal_info = NULL;
1881 
1882 	btrfs_put_transaction(cur_trans);
1883 	return 0;
1884 }
1885 
1886 
1887 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1888 {
1889 	struct btrfs_fs_info *fs_info = trans->fs_info;
1890 	struct btrfs_transaction *cur_trans = trans->transaction;
1891 
1892 	WARN_ON(refcount_read(&trans->use_count) > 1);
1893 
1894 	btrfs_abort_transaction(trans, err);
1895 
1896 	spin_lock(&fs_info->trans_lock);
1897 
1898 	/*
1899 	 * If the transaction is removed from the list, it means this
1900 	 * transaction has been committed successfully, so it is impossible
1901 	 * to call the cleanup function.
1902 	 */
1903 	BUG_ON(list_empty(&cur_trans->list));
1904 
1905 	list_del_init(&cur_trans->list);
1906 	if (cur_trans == fs_info->running_transaction) {
1907 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1908 		spin_unlock(&fs_info->trans_lock);
1909 		wait_event(cur_trans->writer_wait,
1910 			   atomic_read(&cur_trans->num_writers) == 1);
1911 
1912 		spin_lock(&fs_info->trans_lock);
1913 	}
1914 	spin_unlock(&fs_info->trans_lock);
1915 
1916 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1917 
1918 	spin_lock(&fs_info->trans_lock);
1919 	if (cur_trans == fs_info->running_transaction)
1920 		fs_info->running_transaction = NULL;
1921 	spin_unlock(&fs_info->trans_lock);
1922 
1923 	if (trans->type & __TRANS_FREEZABLE)
1924 		sb_end_intwrite(fs_info->sb);
1925 	btrfs_put_transaction(cur_trans);
1926 	btrfs_put_transaction(cur_trans);
1927 
1928 	trace_btrfs_transaction_commit(trans->root);
1929 
1930 	if (current->journal_info == trans)
1931 		current->journal_info = NULL;
1932 	btrfs_scrub_cancel(fs_info);
1933 
1934 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1935 }
1936 
1937 /*
1938  * Release reserved delayed ref space of all pending block groups of the
1939  * transaction and remove them from the list
1940  */
1941 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1942 {
1943        struct btrfs_fs_info *fs_info = trans->fs_info;
1944        struct btrfs_block_group *block_group, *tmp;
1945 
1946        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1947                btrfs_delayed_refs_rsv_release(fs_info, 1);
1948                list_del_init(&block_group->bg_list);
1949        }
1950 }
1951 
1952 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1953 {
1954 	struct btrfs_fs_info *fs_info = trans->fs_info;
1955 
1956 	/*
1957 	 * We use writeback_inodes_sb here because if we used
1958 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1959 	 * Currently are holding the fs freeze lock, if we do an async flush
1960 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1961 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1962 	 * from already being in a transaction and our join_transaction doesn't
1963 	 * have to re-take the fs freeze lock.
1964 	 */
1965 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1966 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1967 	} else {
1968 		struct btrfs_pending_snapshot *pending;
1969 		struct list_head *head = &trans->transaction->pending_snapshots;
1970 
1971 		/*
1972 		 * Flush dellaloc for any root that is going to be snapshotted.
1973 		 * This is done to avoid a corrupted version of files, in the
1974 		 * snapshots, that had both buffered and direct IO writes (even
1975 		 * if they were done sequentially) due to an unordered update of
1976 		 * the inode's size on disk.
1977 		 */
1978 		list_for_each_entry(pending, head, list) {
1979 			int ret;
1980 
1981 			ret = btrfs_start_delalloc_snapshot(pending->root);
1982 			if (ret)
1983 				return ret;
1984 		}
1985 	}
1986 	return 0;
1987 }
1988 
1989 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1990 {
1991 	struct btrfs_fs_info *fs_info = trans->fs_info;
1992 
1993 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1994 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1995 	} else {
1996 		struct btrfs_pending_snapshot *pending;
1997 		struct list_head *head = &trans->transaction->pending_snapshots;
1998 
1999 		/*
2000 		 * Wait for any dellaloc that we started previously for the roots
2001 		 * that are going to be snapshotted. This is to avoid a corrupted
2002 		 * version of files in the snapshots that had both buffered and
2003 		 * direct IO writes (even if they were done sequentially).
2004 		 */
2005 		list_for_each_entry(pending, head, list)
2006 			btrfs_wait_ordered_extents(pending->root,
2007 						   U64_MAX, 0, U64_MAX);
2008 	}
2009 }
2010 
2011 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2012 {
2013 	struct btrfs_fs_info *fs_info = trans->fs_info;
2014 	struct btrfs_transaction *cur_trans = trans->transaction;
2015 	struct btrfs_transaction *prev_trans = NULL;
2016 	int ret;
2017 
2018 	ASSERT(refcount_read(&trans->use_count) == 1);
2019 
2020 	/*
2021 	 * Some places just start a transaction to commit it.  We need to make
2022 	 * sure that if this commit fails that the abort code actually marks the
2023 	 * transaction as failed, so set trans->dirty to make the abort code do
2024 	 * the right thing.
2025 	 */
2026 	trans->dirty = true;
2027 
2028 	/* Stop the commit early if ->aborted is set */
2029 	if (TRANS_ABORTED(cur_trans)) {
2030 		ret = cur_trans->aborted;
2031 		btrfs_end_transaction(trans);
2032 		return ret;
2033 	}
2034 
2035 	btrfs_trans_release_metadata(trans);
2036 	trans->block_rsv = NULL;
2037 
2038 	/* make a pass through all the delayed refs we have so far
2039 	 * any runnings procs may add more while we are here
2040 	 */
2041 	ret = btrfs_run_delayed_refs(trans, 0);
2042 	if (ret) {
2043 		btrfs_end_transaction(trans);
2044 		return ret;
2045 	}
2046 
2047 	cur_trans = trans->transaction;
2048 
2049 	/*
2050 	 * set the flushing flag so procs in this transaction have to
2051 	 * start sending their work down.
2052 	 */
2053 	cur_trans->delayed_refs.flushing = 1;
2054 	smp_wmb();
2055 
2056 	btrfs_create_pending_block_groups(trans);
2057 
2058 	ret = btrfs_run_delayed_refs(trans, 0);
2059 	if (ret) {
2060 		btrfs_end_transaction(trans);
2061 		return ret;
2062 	}
2063 
2064 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2065 		int run_it = 0;
2066 
2067 		/* this mutex is also taken before trying to set
2068 		 * block groups readonly.  We need to make sure
2069 		 * that nobody has set a block group readonly
2070 		 * after a extents from that block group have been
2071 		 * allocated for cache files.  btrfs_set_block_group_ro
2072 		 * will wait for the transaction to commit if it
2073 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2074 		 *
2075 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2076 		 * only one process starts all the block group IO.  It wouldn't
2077 		 * hurt to have more than one go through, but there's no
2078 		 * real advantage to it either.
2079 		 */
2080 		mutex_lock(&fs_info->ro_block_group_mutex);
2081 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2082 				      &cur_trans->flags))
2083 			run_it = 1;
2084 		mutex_unlock(&fs_info->ro_block_group_mutex);
2085 
2086 		if (run_it) {
2087 			ret = btrfs_start_dirty_block_groups(trans);
2088 			if (ret) {
2089 				btrfs_end_transaction(trans);
2090 				return ret;
2091 			}
2092 		}
2093 	}
2094 
2095 	spin_lock(&fs_info->trans_lock);
2096 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2097 		spin_unlock(&fs_info->trans_lock);
2098 		refcount_inc(&cur_trans->use_count);
2099 		ret = btrfs_end_transaction(trans);
2100 
2101 		wait_for_commit(cur_trans);
2102 
2103 		if (TRANS_ABORTED(cur_trans))
2104 			ret = cur_trans->aborted;
2105 
2106 		btrfs_put_transaction(cur_trans);
2107 
2108 		return ret;
2109 	}
2110 
2111 	cur_trans->state = TRANS_STATE_COMMIT_START;
2112 	wake_up(&fs_info->transaction_blocked_wait);
2113 
2114 	if (cur_trans->list.prev != &fs_info->trans_list) {
2115 		prev_trans = list_entry(cur_trans->list.prev,
2116 					struct btrfs_transaction, list);
2117 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2118 			refcount_inc(&prev_trans->use_count);
2119 			spin_unlock(&fs_info->trans_lock);
2120 
2121 			wait_for_commit(prev_trans);
2122 			ret = READ_ONCE(prev_trans->aborted);
2123 
2124 			btrfs_put_transaction(prev_trans);
2125 			if (ret)
2126 				goto cleanup_transaction;
2127 		} else {
2128 			spin_unlock(&fs_info->trans_lock);
2129 		}
2130 	} else {
2131 		spin_unlock(&fs_info->trans_lock);
2132 		/*
2133 		 * The previous transaction was aborted and was already removed
2134 		 * from the list of transactions at fs_info->trans_list. So we
2135 		 * abort to prevent writing a new superblock that reflects a
2136 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2137 		 */
2138 		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2139 			ret = -EROFS;
2140 			goto cleanup_transaction;
2141 		}
2142 	}
2143 
2144 	extwriter_counter_dec(cur_trans, trans->type);
2145 
2146 	ret = btrfs_start_delalloc_flush(trans);
2147 	if (ret)
2148 		goto cleanup_transaction;
2149 
2150 	ret = btrfs_run_delayed_items(trans);
2151 	if (ret)
2152 		goto cleanup_transaction;
2153 
2154 	wait_event(cur_trans->writer_wait,
2155 		   extwriter_counter_read(cur_trans) == 0);
2156 
2157 	/* some pending stuffs might be added after the previous flush. */
2158 	ret = btrfs_run_delayed_items(trans);
2159 	if (ret)
2160 		goto cleanup_transaction;
2161 
2162 	btrfs_wait_delalloc_flush(trans);
2163 
2164 	btrfs_scrub_pause(fs_info);
2165 	/*
2166 	 * Ok now we need to make sure to block out any other joins while we
2167 	 * commit the transaction.  We could have started a join before setting
2168 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2169 	 */
2170 	spin_lock(&fs_info->trans_lock);
2171 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2172 	spin_unlock(&fs_info->trans_lock);
2173 	wait_event(cur_trans->writer_wait,
2174 		   atomic_read(&cur_trans->num_writers) == 1);
2175 
2176 	if (TRANS_ABORTED(cur_trans)) {
2177 		ret = cur_trans->aborted;
2178 		goto scrub_continue;
2179 	}
2180 	/*
2181 	 * the reloc mutex makes sure that we stop
2182 	 * the balancing code from coming in and moving
2183 	 * extents around in the middle of the commit
2184 	 */
2185 	mutex_lock(&fs_info->reloc_mutex);
2186 
2187 	/*
2188 	 * We needn't worry about the delayed items because we will
2189 	 * deal with them in create_pending_snapshot(), which is the
2190 	 * core function of the snapshot creation.
2191 	 */
2192 	ret = create_pending_snapshots(trans);
2193 	if (ret)
2194 		goto unlock_reloc;
2195 
2196 	/*
2197 	 * We insert the dir indexes of the snapshots and update the inode
2198 	 * of the snapshots' parents after the snapshot creation, so there
2199 	 * are some delayed items which are not dealt with. Now deal with
2200 	 * them.
2201 	 *
2202 	 * We needn't worry that this operation will corrupt the snapshots,
2203 	 * because all the tree which are snapshoted will be forced to COW
2204 	 * the nodes and leaves.
2205 	 */
2206 	ret = btrfs_run_delayed_items(trans);
2207 	if (ret)
2208 		goto unlock_reloc;
2209 
2210 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2211 	if (ret)
2212 		goto unlock_reloc;
2213 
2214 	/*
2215 	 * make sure none of the code above managed to slip in a
2216 	 * delayed item
2217 	 */
2218 	btrfs_assert_delayed_root_empty(fs_info);
2219 
2220 	WARN_ON(cur_trans != trans->transaction);
2221 
2222 	/* btrfs_commit_tree_roots is responsible for getting the
2223 	 * various roots consistent with each other.  Every pointer
2224 	 * in the tree of tree roots has to point to the most up to date
2225 	 * root for every subvolume and other tree.  So, we have to keep
2226 	 * the tree logging code from jumping in and changing any
2227 	 * of the trees.
2228 	 *
2229 	 * At this point in the commit, there can't be any tree-log
2230 	 * writers, but a little lower down we drop the trans mutex
2231 	 * and let new people in.  By holding the tree_log_mutex
2232 	 * from now until after the super is written, we avoid races
2233 	 * with the tree-log code.
2234 	 */
2235 	mutex_lock(&fs_info->tree_log_mutex);
2236 
2237 	ret = commit_fs_roots(trans);
2238 	if (ret)
2239 		goto unlock_tree_log;
2240 
2241 	/*
2242 	 * Since the transaction is done, we can apply the pending changes
2243 	 * before the next transaction.
2244 	 */
2245 	btrfs_apply_pending_changes(fs_info);
2246 
2247 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2248 	 * safe to free the root of tree log roots
2249 	 */
2250 	btrfs_free_log_root_tree(trans, fs_info);
2251 
2252 	/*
2253 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2254 	 * new delayed refs. Must handle them or qgroup can be wrong.
2255 	 */
2256 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2257 	if (ret)
2258 		goto unlock_tree_log;
2259 
2260 	/*
2261 	 * Since fs roots are all committed, we can get a quite accurate
2262 	 * new_roots. So let's do quota accounting.
2263 	 */
2264 	ret = btrfs_qgroup_account_extents(trans);
2265 	if (ret < 0)
2266 		goto unlock_tree_log;
2267 
2268 	ret = commit_cowonly_roots(trans);
2269 	if (ret)
2270 		goto unlock_tree_log;
2271 
2272 	/*
2273 	 * The tasks which save the space cache and inode cache may also
2274 	 * update ->aborted, check it.
2275 	 */
2276 	if (TRANS_ABORTED(cur_trans)) {
2277 		ret = cur_trans->aborted;
2278 		goto unlock_tree_log;
2279 	}
2280 
2281 	btrfs_prepare_extent_commit(fs_info);
2282 
2283 	cur_trans = fs_info->running_transaction;
2284 
2285 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2286 			    fs_info->tree_root->node);
2287 	list_add_tail(&fs_info->tree_root->dirty_list,
2288 		      &cur_trans->switch_commits);
2289 
2290 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2291 			    fs_info->chunk_root->node);
2292 	list_add_tail(&fs_info->chunk_root->dirty_list,
2293 		      &cur_trans->switch_commits);
2294 
2295 	switch_commit_roots(trans);
2296 
2297 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2298 	ASSERT(list_empty(&cur_trans->io_bgs));
2299 	update_super_roots(fs_info);
2300 
2301 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2302 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2303 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2304 	       sizeof(*fs_info->super_copy));
2305 
2306 	btrfs_commit_device_sizes(cur_trans);
2307 
2308 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2309 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2310 
2311 	btrfs_trans_release_chunk_metadata(trans);
2312 
2313 	spin_lock(&fs_info->trans_lock);
2314 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2315 	fs_info->running_transaction = NULL;
2316 	spin_unlock(&fs_info->trans_lock);
2317 	mutex_unlock(&fs_info->reloc_mutex);
2318 
2319 	wake_up(&fs_info->transaction_wait);
2320 
2321 	ret = btrfs_write_and_wait_transaction(trans);
2322 	if (ret) {
2323 		btrfs_handle_fs_error(fs_info, ret,
2324 				      "Error while writing out transaction");
2325 		/*
2326 		 * reloc_mutex has been unlocked, tree_log_mutex is still held
2327 		 * but we can't jump to unlock_tree_log causing double unlock
2328 		 */
2329 		mutex_unlock(&fs_info->tree_log_mutex);
2330 		goto scrub_continue;
2331 	}
2332 
2333 	ret = write_all_supers(fs_info, 0);
2334 	/*
2335 	 * the super is written, we can safely allow the tree-loggers
2336 	 * to go about their business
2337 	 */
2338 	mutex_unlock(&fs_info->tree_log_mutex);
2339 	if (ret)
2340 		goto scrub_continue;
2341 
2342 	btrfs_finish_extent_commit(trans);
2343 
2344 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2345 		btrfs_clear_space_info_full(fs_info);
2346 
2347 	fs_info->last_trans_committed = cur_trans->transid;
2348 	/*
2349 	 * We needn't acquire the lock here because there is no other task
2350 	 * which can change it.
2351 	 */
2352 	cur_trans->state = TRANS_STATE_COMPLETED;
2353 	wake_up(&cur_trans->commit_wait);
2354 	clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2355 
2356 	spin_lock(&fs_info->trans_lock);
2357 	list_del_init(&cur_trans->list);
2358 	spin_unlock(&fs_info->trans_lock);
2359 
2360 	btrfs_put_transaction(cur_trans);
2361 	btrfs_put_transaction(cur_trans);
2362 
2363 	if (trans->type & __TRANS_FREEZABLE)
2364 		sb_end_intwrite(fs_info->sb);
2365 
2366 	trace_btrfs_transaction_commit(trans->root);
2367 
2368 	btrfs_scrub_continue(fs_info);
2369 
2370 	if (current->journal_info == trans)
2371 		current->journal_info = NULL;
2372 
2373 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2374 
2375 	return ret;
2376 
2377 unlock_tree_log:
2378 	mutex_unlock(&fs_info->tree_log_mutex);
2379 unlock_reloc:
2380 	mutex_unlock(&fs_info->reloc_mutex);
2381 scrub_continue:
2382 	btrfs_scrub_continue(fs_info);
2383 cleanup_transaction:
2384 	btrfs_trans_release_metadata(trans);
2385 	btrfs_cleanup_pending_block_groups(trans);
2386 	btrfs_trans_release_chunk_metadata(trans);
2387 	trans->block_rsv = NULL;
2388 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2389 	if (current->journal_info == trans)
2390 		current->journal_info = NULL;
2391 	cleanup_transaction(trans, ret);
2392 
2393 	return ret;
2394 }
2395 
2396 /*
2397  * return < 0 if error
2398  * 0 if there are no more dead_roots at the time of call
2399  * 1 there are more to be processed, call me again
2400  *
2401  * The return value indicates there are certainly more snapshots to delete, but
2402  * if there comes a new one during processing, it may return 0. We don't mind,
2403  * because btrfs_commit_super will poke cleaner thread and it will process it a
2404  * few seconds later.
2405  */
2406 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2407 {
2408 	int ret;
2409 	struct btrfs_fs_info *fs_info = root->fs_info;
2410 
2411 	spin_lock(&fs_info->trans_lock);
2412 	if (list_empty(&fs_info->dead_roots)) {
2413 		spin_unlock(&fs_info->trans_lock);
2414 		return 0;
2415 	}
2416 	root = list_first_entry(&fs_info->dead_roots,
2417 			struct btrfs_root, root_list);
2418 	list_del_init(&root->root_list);
2419 	spin_unlock(&fs_info->trans_lock);
2420 
2421 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2422 
2423 	btrfs_kill_all_delayed_nodes(root);
2424 	if (root->ino_cache_inode) {
2425 		iput(root->ino_cache_inode);
2426 		root->ino_cache_inode = NULL;
2427 	}
2428 
2429 	if (btrfs_header_backref_rev(root->node) <
2430 			BTRFS_MIXED_BACKREF_REV)
2431 		ret = btrfs_drop_snapshot(root, 0, 0);
2432 	else
2433 		ret = btrfs_drop_snapshot(root, 1, 0);
2434 
2435 	btrfs_put_root(root);
2436 	return (ret < 0) ? 0 : 1;
2437 }
2438 
2439 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2440 {
2441 	unsigned long prev;
2442 	unsigned long bit;
2443 
2444 	prev = xchg(&fs_info->pending_changes, 0);
2445 	if (!prev)
2446 		return;
2447 
2448 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2449 	if (prev & bit)
2450 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2451 	prev &= ~bit;
2452 
2453 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2454 	if (prev & bit)
2455 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2456 	prev &= ~bit;
2457 
2458 	bit = 1 << BTRFS_PENDING_COMMIT;
2459 	if (prev & bit)
2460 		btrfs_debug(fs_info, "pending commit done");
2461 	prev &= ~bit;
2462 
2463 	if (prev)
2464 		btrfs_warn(fs_info,
2465 			"unknown pending changes left 0x%lx, ignoring", prev);
2466 }
2467