xref: /openbmc/linux/fs/btrfs/tests/btrfs-tests.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2013 Fusion IO.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/mount.h>
8 #include <linux/pseudo_fs.h>
9 #include <linux/magic.h>
10 #include "btrfs-tests.h"
11 #include "../ctree.h"
12 #include "../free-space-cache.h"
13 #include "../free-space-tree.h"
14 #include "../transaction.h"
15 #include "../volumes.h"
16 #include "../disk-io.h"
17 #include "../qgroup.h"
18 #include "../block-group.h"
19 
20 static struct vfsmount *test_mnt = NULL;
21 
22 const char *test_error[] = {
23 	[TEST_ALLOC_FS_INFO]	     = "cannot allocate fs_info",
24 	[TEST_ALLOC_ROOT]	     = "cannot allocate root",
25 	[TEST_ALLOC_EXTENT_BUFFER]   = "cannot extent buffer",
26 	[TEST_ALLOC_PATH]	     = "cannot allocate path",
27 	[TEST_ALLOC_INODE]	     = "cannot allocate inode",
28 	[TEST_ALLOC_BLOCK_GROUP]     = "cannot allocate block group",
29 	[TEST_ALLOC_EXTENT_MAP]      = "cannot allocate extent map",
30 };
31 
32 static const struct super_operations btrfs_test_super_ops = {
33 	.alloc_inode	= btrfs_alloc_inode,
34 	.destroy_inode	= btrfs_test_destroy_inode,
35 };
36 
37 
38 static int btrfs_test_init_fs_context(struct fs_context *fc)
39 {
40 	struct pseudo_fs_context *ctx = init_pseudo(fc, BTRFS_TEST_MAGIC);
41 	if (!ctx)
42 		return -ENOMEM;
43 	ctx->ops = &btrfs_test_super_ops;
44 	return 0;
45 }
46 
47 static struct file_system_type test_type = {
48 	.name		= "btrfs_test_fs",
49 	.init_fs_context = btrfs_test_init_fs_context,
50 	.kill_sb	= kill_anon_super,
51 };
52 
53 struct inode *btrfs_new_test_inode(void)
54 {
55 	struct inode *inode;
56 
57 	inode = new_inode(test_mnt->mnt_sb);
58 	if (inode)
59 		inode_init_owner(inode, NULL, S_IFREG);
60 
61 	return inode;
62 }
63 
64 static int btrfs_init_test_fs(void)
65 {
66 	int ret;
67 
68 	ret = register_filesystem(&test_type);
69 	if (ret) {
70 		printk(KERN_ERR "btrfs: cannot register test file system\n");
71 		return ret;
72 	}
73 
74 	test_mnt = kern_mount(&test_type);
75 	if (IS_ERR(test_mnt)) {
76 		printk(KERN_ERR "btrfs: cannot mount test file system\n");
77 		unregister_filesystem(&test_type);
78 		return PTR_ERR(test_mnt);
79 	}
80 	return 0;
81 }
82 
83 static void btrfs_destroy_test_fs(void)
84 {
85 	kern_unmount(test_mnt);
86 	unregister_filesystem(&test_type);
87 }
88 
89 struct btrfs_device *btrfs_alloc_dummy_device(struct btrfs_fs_info *fs_info)
90 {
91 	struct btrfs_device *dev;
92 
93 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
94 	if (!dev)
95 		return ERR_PTR(-ENOMEM);
96 
97 	extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
98 	INIT_LIST_HEAD(&dev->dev_list);
99 	list_add(&dev->dev_list, &fs_info->fs_devices->devices);
100 
101 	return dev;
102 }
103 
104 static void btrfs_free_dummy_device(struct btrfs_device *dev)
105 {
106 	extent_io_tree_release(&dev->alloc_state);
107 	kfree(dev);
108 }
109 
110 struct btrfs_fs_info *btrfs_alloc_dummy_fs_info(u32 nodesize, u32 sectorsize)
111 {
112 	struct btrfs_fs_info *fs_info = kzalloc(sizeof(struct btrfs_fs_info),
113 						GFP_KERNEL);
114 
115 	if (!fs_info)
116 		return fs_info;
117 	fs_info->fs_devices = kzalloc(sizeof(struct btrfs_fs_devices),
118 				      GFP_KERNEL);
119 	if (!fs_info->fs_devices) {
120 		kfree(fs_info);
121 		return NULL;
122 	}
123 	fs_info->super_copy = kzalloc(sizeof(struct btrfs_super_block),
124 				      GFP_KERNEL);
125 	if (!fs_info->super_copy) {
126 		kfree(fs_info->fs_devices);
127 		kfree(fs_info);
128 		return NULL;
129 	}
130 
131 	fs_info->nodesize = nodesize;
132 	fs_info->sectorsize = sectorsize;
133 
134 	if (init_srcu_struct(&fs_info->subvol_srcu)) {
135 		kfree(fs_info->fs_devices);
136 		kfree(fs_info->super_copy);
137 		kfree(fs_info);
138 		return NULL;
139 	}
140 
141 	spin_lock_init(&fs_info->buffer_lock);
142 	spin_lock_init(&fs_info->qgroup_lock);
143 	spin_lock_init(&fs_info->super_lock);
144 	spin_lock_init(&fs_info->fs_roots_radix_lock);
145 	mutex_init(&fs_info->qgroup_ioctl_lock);
146 	mutex_init(&fs_info->qgroup_rescan_lock);
147 	rwlock_init(&fs_info->tree_mod_log_lock);
148 	fs_info->running_transaction = NULL;
149 	fs_info->qgroup_tree = RB_ROOT;
150 	fs_info->qgroup_ulist = NULL;
151 	atomic64_set(&fs_info->tree_mod_seq, 0);
152 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
153 	INIT_LIST_HEAD(&fs_info->dead_roots);
154 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
155 	INIT_LIST_HEAD(&fs_info->fs_devices->devices);
156 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
157 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
158 	extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
159 			    IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
160 	extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
161 			    IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
162 	extent_map_tree_init(&fs_info->mapping_tree);
163 	fs_info->pinned_extents = &fs_info->freed_extents[0];
164 	set_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
165 
166 	test_mnt->mnt_sb->s_fs_info = fs_info;
167 
168 	return fs_info;
169 }
170 
171 void btrfs_free_dummy_fs_info(struct btrfs_fs_info *fs_info)
172 {
173 	struct radix_tree_iter iter;
174 	void **slot;
175 	struct btrfs_device *dev, *tmp;
176 
177 	if (!fs_info)
178 		return;
179 
180 	if (WARN_ON(!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO,
181 			      &fs_info->fs_state)))
182 		return;
183 
184 	test_mnt->mnt_sb->s_fs_info = NULL;
185 
186 	spin_lock(&fs_info->buffer_lock);
187 	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 0) {
188 		struct extent_buffer *eb;
189 
190 		eb = radix_tree_deref_slot_protected(slot, &fs_info->buffer_lock);
191 		if (!eb)
192 			continue;
193 		/* Shouldn't happen but that kind of thinking creates CVE's */
194 		if (radix_tree_exception(eb)) {
195 			if (radix_tree_deref_retry(eb))
196 				slot = radix_tree_iter_retry(&iter);
197 			continue;
198 		}
199 		slot = radix_tree_iter_resume(slot, &iter);
200 		spin_unlock(&fs_info->buffer_lock);
201 		free_extent_buffer_stale(eb);
202 		spin_lock(&fs_info->buffer_lock);
203 	}
204 	spin_unlock(&fs_info->buffer_lock);
205 
206 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
207 	list_for_each_entry_safe(dev, tmp, &fs_info->fs_devices->devices,
208 				 dev_list) {
209 		btrfs_free_dummy_device(dev);
210 	}
211 	btrfs_free_qgroup_config(fs_info);
212 	btrfs_free_fs_roots(fs_info);
213 	cleanup_srcu_struct(&fs_info->subvol_srcu);
214 	kfree(fs_info->super_copy);
215 	kfree(fs_info->fs_devices);
216 	kfree(fs_info);
217 }
218 
219 void btrfs_free_dummy_root(struct btrfs_root *root)
220 {
221 	if (!root)
222 		return;
223 	/* Will be freed by btrfs_free_fs_roots */
224 	if (WARN_ON(test_bit(BTRFS_ROOT_IN_RADIX, &root->state)))
225 		return;
226 	if (root->node) {
227 		/* One for allocate_extent_buffer */
228 		free_extent_buffer(root->node);
229 	}
230 	kfree(root);
231 }
232 
233 struct btrfs_block_group *
234 btrfs_alloc_dummy_block_group(struct btrfs_fs_info *fs_info,
235 			      unsigned long length)
236 {
237 	struct btrfs_block_group *cache;
238 
239 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
240 	if (!cache)
241 		return NULL;
242 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
243 					GFP_KERNEL);
244 	if (!cache->free_space_ctl) {
245 		kfree(cache);
246 		return NULL;
247 	}
248 
249 	cache->start = 0;
250 	cache->length = length;
251 	cache->full_stripe_len = fs_info->sectorsize;
252 	cache->fs_info = fs_info;
253 
254 	INIT_LIST_HEAD(&cache->list);
255 	INIT_LIST_HEAD(&cache->cluster_list);
256 	INIT_LIST_HEAD(&cache->bg_list);
257 	btrfs_init_free_space_ctl(cache);
258 	mutex_init(&cache->free_space_lock);
259 
260 	return cache;
261 }
262 
263 void btrfs_free_dummy_block_group(struct btrfs_block_group *cache)
264 {
265 	if (!cache)
266 		return;
267 	__btrfs_remove_free_space_cache(cache->free_space_ctl);
268 	kfree(cache->free_space_ctl);
269 	kfree(cache);
270 }
271 
272 void btrfs_init_dummy_trans(struct btrfs_trans_handle *trans,
273 			    struct btrfs_fs_info *fs_info)
274 {
275 	memset(trans, 0, sizeof(*trans));
276 	trans->transid = 1;
277 	trans->type = __TRANS_DUMMY;
278 	trans->fs_info = fs_info;
279 }
280 
281 int btrfs_run_sanity_tests(void)
282 {
283 	int ret, i;
284 	u32 sectorsize, nodesize;
285 	u32 test_sectorsize[] = {
286 		PAGE_SIZE,
287 	};
288 	ret = btrfs_init_test_fs();
289 	if (ret)
290 		return ret;
291 	for (i = 0; i < ARRAY_SIZE(test_sectorsize); i++) {
292 		sectorsize = test_sectorsize[i];
293 		for (nodesize = sectorsize;
294 		     nodesize <= BTRFS_MAX_METADATA_BLOCKSIZE;
295 		     nodesize <<= 1) {
296 			pr_info("BTRFS: selftest: sectorsize: %u  nodesize: %u\n",
297 				sectorsize, nodesize);
298 			ret = btrfs_test_free_space_cache(sectorsize, nodesize);
299 			if (ret)
300 				goto out;
301 			ret = btrfs_test_extent_buffer_operations(sectorsize,
302 				nodesize);
303 			if (ret)
304 				goto out;
305 			ret = btrfs_test_extent_io(sectorsize, nodesize);
306 			if (ret)
307 				goto out;
308 			ret = btrfs_test_inodes(sectorsize, nodesize);
309 			if (ret)
310 				goto out;
311 			ret = btrfs_test_qgroups(sectorsize, nodesize);
312 			if (ret)
313 				goto out;
314 			ret = btrfs_test_free_space_tree(sectorsize, nodesize);
315 			if (ret)
316 				goto out;
317 		}
318 	}
319 	ret = btrfs_test_extent_map();
320 
321 out:
322 	btrfs_destroy_test_fs();
323 	return ret;
324 }
325