1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2013 Fusion IO. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/mount.h> 8 #include <linux/pseudo_fs.h> 9 #include <linux/magic.h> 10 #include "btrfs-tests.h" 11 #include "../ctree.h" 12 #include "../free-space-cache.h" 13 #include "../free-space-tree.h" 14 #include "../transaction.h" 15 #include "../volumes.h" 16 #include "../disk-io.h" 17 #include "../qgroup.h" 18 #include "../block-group.h" 19 20 static struct vfsmount *test_mnt = NULL; 21 22 const char *test_error[] = { 23 [TEST_ALLOC_FS_INFO] = "cannot allocate fs_info", 24 [TEST_ALLOC_ROOT] = "cannot allocate root", 25 [TEST_ALLOC_EXTENT_BUFFER] = "cannot extent buffer", 26 [TEST_ALLOC_PATH] = "cannot allocate path", 27 [TEST_ALLOC_INODE] = "cannot allocate inode", 28 [TEST_ALLOC_BLOCK_GROUP] = "cannot allocate block group", 29 [TEST_ALLOC_EXTENT_MAP] = "cannot allocate extent map", 30 }; 31 32 static const struct super_operations btrfs_test_super_ops = { 33 .alloc_inode = btrfs_alloc_inode, 34 .destroy_inode = btrfs_test_destroy_inode, 35 }; 36 37 38 static int btrfs_test_init_fs_context(struct fs_context *fc) 39 { 40 struct pseudo_fs_context *ctx = init_pseudo(fc, BTRFS_TEST_MAGIC); 41 if (!ctx) 42 return -ENOMEM; 43 ctx->ops = &btrfs_test_super_ops; 44 return 0; 45 } 46 47 static struct file_system_type test_type = { 48 .name = "btrfs_test_fs", 49 .init_fs_context = btrfs_test_init_fs_context, 50 .kill_sb = kill_anon_super, 51 }; 52 53 struct inode *btrfs_new_test_inode(void) 54 { 55 struct inode *inode; 56 57 inode = new_inode(test_mnt->mnt_sb); 58 if (inode) 59 inode_init_owner(inode, NULL, S_IFREG); 60 61 return inode; 62 } 63 64 static int btrfs_init_test_fs(void) 65 { 66 int ret; 67 68 ret = register_filesystem(&test_type); 69 if (ret) { 70 printk(KERN_ERR "btrfs: cannot register test file system\n"); 71 return ret; 72 } 73 74 test_mnt = kern_mount(&test_type); 75 if (IS_ERR(test_mnt)) { 76 printk(KERN_ERR "btrfs: cannot mount test file system\n"); 77 unregister_filesystem(&test_type); 78 return PTR_ERR(test_mnt); 79 } 80 return 0; 81 } 82 83 static void btrfs_destroy_test_fs(void) 84 { 85 kern_unmount(test_mnt); 86 unregister_filesystem(&test_type); 87 } 88 89 struct btrfs_fs_info *btrfs_alloc_dummy_fs_info(u32 nodesize, u32 sectorsize) 90 { 91 struct btrfs_fs_info *fs_info = kzalloc(sizeof(struct btrfs_fs_info), 92 GFP_KERNEL); 93 94 if (!fs_info) 95 return fs_info; 96 fs_info->fs_devices = kzalloc(sizeof(struct btrfs_fs_devices), 97 GFP_KERNEL); 98 if (!fs_info->fs_devices) { 99 kfree(fs_info); 100 return NULL; 101 } 102 fs_info->super_copy = kzalloc(sizeof(struct btrfs_super_block), 103 GFP_KERNEL); 104 if (!fs_info->super_copy) { 105 kfree(fs_info->fs_devices); 106 kfree(fs_info); 107 return NULL; 108 } 109 110 fs_info->nodesize = nodesize; 111 fs_info->sectorsize = sectorsize; 112 113 if (init_srcu_struct(&fs_info->subvol_srcu)) { 114 kfree(fs_info->fs_devices); 115 kfree(fs_info->super_copy); 116 kfree(fs_info); 117 return NULL; 118 } 119 120 spin_lock_init(&fs_info->buffer_lock); 121 spin_lock_init(&fs_info->qgroup_lock); 122 spin_lock_init(&fs_info->super_lock); 123 spin_lock_init(&fs_info->fs_roots_radix_lock); 124 spin_lock_init(&fs_info->tree_mod_seq_lock); 125 mutex_init(&fs_info->qgroup_ioctl_lock); 126 mutex_init(&fs_info->qgroup_rescan_lock); 127 rwlock_init(&fs_info->tree_mod_log_lock); 128 fs_info->running_transaction = NULL; 129 fs_info->qgroup_tree = RB_ROOT; 130 fs_info->qgroup_ulist = NULL; 131 atomic64_set(&fs_info->tree_mod_seq, 0); 132 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 133 INIT_LIST_HEAD(&fs_info->dead_roots); 134 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 135 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 136 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 137 extent_io_tree_init(fs_info, &fs_info->freed_extents[0], 138 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL); 139 extent_io_tree_init(fs_info, &fs_info->freed_extents[1], 140 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL); 141 fs_info->pinned_extents = &fs_info->freed_extents[0]; 142 set_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 143 144 test_mnt->mnt_sb->s_fs_info = fs_info; 145 146 return fs_info; 147 } 148 149 void btrfs_free_dummy_fs_info(struct btrfs_fs_info *fs_info) 150 { 151 struct radix_tree_iter iter; 152 void **slot; 153 154 if (!fs_info) 155 return; 156 157 if (WARN_ON(!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, 158 &fs_info->fs_state))) 159 return; 160 161 test_mnt->mnt_sb->s_fs_info = NULL; 162 163 spin_lock(&fs_info->buffer_lock); 164 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 0) { 165 struct extent_buffer *eb; 166 167 eb = radix_tree_deref_slot_protected(slot, &fs_info->buffer_lock); 168 if (!eb) 169 continue; 170 /* Shouldn't happen but that kind of thinking creates CVE's */ 171 if (radix_tree_exception(eb)) { 172 if (radix_tree_deref_retry(eb)) 173 slot = radix_tree_iter_retry(&iter); 174 continue; 175 } 176 slot = radix_tree_iter_resume(slot, &iter); 177 spin_unlock(&fs_info->buffer_lock); 178 free_extent_buffer_stale(eb); 179 spin_lock(&fs_info->buffer_lock); 180 } 181 spin_unlock(&fs_info->buffer_lock); 182 183 btrfs_free_qgroup_config(fs_info); 184 btrfs_free_fs_roots(fs_info); 185 cleanup_srcu_struct(&fs_info->subvol_srcu); 186 kfree(fs_info->super_copy); 187 kfree(fs_info->fs_devices); 188 kfree(fs_info); 189 } 190 191 void btrfs_free_dummy_root(struct btrfs_root *root) 192 { 193 if (!root) 194 return; 195 /* Will be freed by btrfs_free_fs_roots */ 196 if (WARN_ON(test_bit(BTRFS_ROOT_IN_RADIX, &root->state))) 197 return; 198 if (root->node) { 199 /* One for allocate_extent_buffer */ 200 free_extent_buffer(root->node); 201 } 202 kfree(root); 203 } 204 205 struct btrfs_block_group_cache * 206 btrfs_alloc_dummy_block_group(struct btrfs_fs_info *fs_info, 207 unsigned long length) 208 { 209 struct btrfs_block_group_cache *cache; 210 211 cache = kzalloc(sizeof(*cache), GFP_KERNEL); 212 if (!cache) 213 return NULL; 214 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 215 GFP_KERNEL); 216 if (!cache->free_space_ctl) { 217 kfree(cache); 218 return NULL; 219 } 220 221 cache->key.objectid = 0; 222 cache->key.offset = length; 223 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 224 cache->full_stripe_len = fs_info->sectorsize; 225 cache->fs_info = fs_info; 226 227 INIT_LIST_HEAD(&cache->list); 228 INIT_LIST_HEAD(&cache->cluster_list); 229 INIT_LIST_HEAD(&cache->bg_list); 230 btrfs_init_free_space_ctl(cache); 231 mutex_init(&cache->free_space_lock); 232 233 return cache; 234 } 235 236 void btrfs_free_dummy_block_group(struct btrfs_block_group_cache *cache) 237 { 238 if (!cache) 239 return; 240 __btrfs_remove_free_space_cache(cache->free_space_ctl); 241 kfree(cache->free_space_ctl); 242 kfree(cache); 243 } 244 245 void btrfs_init_dummy_trans(struct btrfs_trans_handle *trans, 246 struct btrfs_fs_info *fs_info) 247 { 248 memset(trans, 0, sizeof(*trans)); 249 trans->transid = 1; 250 trans->type = __TRANS_DUMMY; 251 trans->fs_info = fs_info; 252 } 253 254 int btrfs_run_sanity_tests(void) 255 { 256 int ret, i; 257 u32 sectorsize, nodesize; 258 u32 test_sectorsize[] = { 259 PAGE_SIZE, 260 }; 261 ret = btrfs_init_test_fs(); 262 if (ret) 263 return ret; 264 for (i = 0; i < ARRAY_SIZE(test_sectorsize); i++) { 265 sectorsize = test_sectorsize[i]; 266 for (nodesize = sectorsize; 267 nodesize <= BTRFS_MAX_METADATA_BLOCKSIZE; 268 nodesize <<= 1) { 269 pr_info("BTRFS: selftest: sectorsize: %u nodesize: %u\n", 270 sectorsize, nodesize); 271 ret = btrfs_test_free_space_cache(sectorsize, nodesize); 272 if (ret) 273 goto out; 274 ret = btrfs_test_extent_buffer_operations(sectorsize, 275 nodesize); 276 if (ret) 277 goto out; 278 ret = btrfs_test_extent_io(sectorsize, nodesize); 279 if (ret) 280 goto out; 281 ret = btrfs_test_inodes(sectorsize, nodesize); 282 if (ret) 283 goto out; 284 ret = btrfs_test_qgroups(sectorsize, nodesize); 285 if (ret) 286 goto out; 287 ret = btrfs_test_free_space_tree(sectorsize, nodesize); 288 if (ret) 289 goto out; 290 } 291 } 292 ret = btrfs_test_extent_map(); 293 294 out: 295 btrfs_destroy_test_fs(); 296 return ret; 297 } 298