xref: /openbmc/linux/fs/btrfs/tests/btrfs-tests.c (revision 7fc96d71)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2013 Fusion IO.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/mount.h>
8 #include <linux/pseudo_fs.h>
9 #include <linux/magic.h>
10 #include "btrfs-tests.h"
11 #include "../ctree.h"
12 #include "../free-space-cache.h"
13 #include "../free-space-tree.h"
14 #include "../transaction.h"
15 #include "../volumes.h"
16 #include "../disk-io.h"
17 #include "../qgroup.h"
18 #include "../block-group.h"
19 
20 static struct vfsmount *test_mnt = NULL;
21 
22 const char *test_error[] = {
23 	[TEST_ALLOC_FS_INFO]	     = "cannot allocate fs_info",
24 	[TEST_ALLOC_ROOT]	     = "cannot allocate root",
25 	[TEST_ALLOC_EXTENT_BUFFER]   = "cannot extent buffer",
26 	[TEST_ALLOC_PATH]	     = "cannot allocate path",
27 	[TEST_ALLOC_INODE]	     = "cannot allocate inode",
28 	[TEST_ALLOC_BLOCK_GROUP]     = "cannot allocate block group",
29 	[TEST_ALLOC_EXTENT_MAP]      = "cannot allocate extent map",
30 };
31 
32 static const struct super_operations btrfs_test_super_ops = {
33 	.alloc_inode	= btrfs_alloc_inode,
34 	.destroy_inode	= btrfs_test_destroy_inode,
35 };
36 
37 
38 static int btrfs_test_init_fs_context(struct fs_context *fc)
39 {
40 	struct pseudo_fs_context *ctx = init_pseudo(fc, BTRFS_TEST_MAGIC);
41 	if (!ctx)
42 		return -ENOMEM;
43 	ctx->ops = &btrfs_test_super_ops;
44 	return 0;
45 }
46 
47 static struct file_system_type test_type = {
48 	.name		= "btrfs_test_fs",
49 	.init_fs_context = btrfs_test_init_fs_context,
50 	.kill_sb	= kill_anon_super,
51 };
52 
53 struct inode *btrfs_new_test_inode(void)
54 {
55 	struct inode *inode;
56 
57 	inode = new_inode(test_mnt->mnt_sb);
58 	if (!inode)
59 		return NULL;
60 
61 	inode->i_mode = S_IFREG;
62 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
63 	BTRFS_I(inode)->location.objectid = BTRFS_FIRST_FREE_OBJECTID;
64 	BTRFS_I(inode)->location.offset = 0;
65 	inode_init_owner(&init_user_ns, inode, NULL, S_IFREG);
66 
67 	return inode;
68 }
69 
70 static int btrfs_init_test_fs(void)
71 {
72 	int ret;
73 
74 	ret = register_filesystem(&test_type);
75 	if (ret) {
76 		printk(KERN_ERR "btrfs: cannot register test file system\n");
77 		return ret;
78 	}
79 
80 	test_mnt = kern_mount(&test_type);
81 	if (IS_ERR(test_mnt)) {
82 		printk(KERN_ERR "btrfs: cannot mount test file system\n");
83 		unregister_filesystem(&test_type);
84 		return PTR_ERR(test_mnt);
85 	}
86 	return 0;
87 }
88 
89 static void btrfs_destroy_test_fs(void)
90 {
91 	kern_unmount(test_mnt);
92 	unregister_filesystem(&test_type);
93 }
94 
95 struct btrfs_device *btrfs_alloc_dummy_device(struct btrfs_fs_info *fs_info)
96 {
97 	struct btrfs_device *dev;
98 
99 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
100 	if (!dev)
101 		return ERR_PTR(-ENOMEM);
102 
103 	extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
104 	INIT_LIST_HEAD(&dev->dev_list);
105 	list_add(&dev->dev_list, &fs_info->fs_devices->devices);
106 
107 	return dev;
108 }
109 
110 static void btrfs_free_dummy_device(struct btrfs_device *dev)
111 {
112 	extent_io_tree_release(&dev->alloc_state);
113 	kfree(dev);
114 }
115 
116 struct btrfs_fs_info *btrfs_alloc_dummy_fs_info(u32 nodesize, u32 sectorsize)
117 {
118 	struct btrfs_fs_info *fs_info = kzalloc(sizeof(struct btrfs_fs_info),
119 						GFP_KERNEL);
120 
121 	if (!fs_info)
122 		return fs_info;
123 	fs_info->fs_devices = kzalloc(sizeof(struct btrfs_fs_devices),
124 				      GFP_KERNEL);
125 	if (!fs_info->fs_devices) {
126 		kfree(fs_info);
127 		return NULL;
128 	}
129 	INIT_LIST_HEAD(&fs_info->fs_devices->devices);
130 
131 	fs_info->super_copy = kzalloc(sizeof(struct btrfs_super_block),
132 				      GFP_KERNEL);
133 	if (!fs_info->super_copy) {
134 		kfree(fs_info->fs_devices);
135 		kfree(fs_info);
136 		return NULL;
137 	}
138 
139 	btrfs_init_fs_info(fs_info);
140 
141 	fs_info->nodesize = nodesize;
142 	fs_info->sectorsize = sectorsize;
143 	fs_info->sectorsize_bits = ilog2(sectorsize);
144 	set_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
145 
146 	test_mnt->mnt_sb->s_fs_info = fs_info;
147 
148 	return fs_info;
149 }
150 
151 void btrfs_free_dummy_fs_info(struct btrfs_fs_info *fs_info)
152 {
153 	unsigned long index;
154 	struct extent_buffer *eb;
155 	struct btrfs_device *dev, *tmp;
156 
157 	if (!fs_info)
158 		return;
159 
160 	if (WARN_ON(!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO,
161 			      &fs_info->fs_state)))
162 		return;
163 
164 	test_mnt->mnt_sb->s_fs_info = NULL;
165 
166 	xa_for_each(&fs_info->extent_buffers, index, eb) {
167 		free_extent_buffer_stale(eb);
168 	}
169 
170 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
171 	list_for_each_entry_safe(dev, tmp, &fs_info->fs_devices->devices,
172 				 dev_list) {
173 		btrfs_free_dummy_device(dev);
174 	}
175 	btrfs_free_qgroup_config(fs_info);
176 	btrfs_free_fs_roots(fs_info);
177 	kfree(fs_info->super_copy);
178 	btrfs_check_leaked_roots(fs_info);
179 	btrfs_extent_buffer_leak_debug_check(fs_info);
180 	kfree(fs_info->fs_devices);
181 	kfree(fs_info);
182 }
183 
184 void btrfs_free_dummy_root(struct btrfs_root *root)
185 {
186 	if (!root)
187 		return;
188 	/* Will be freed by btrfs_free_fs_roots */
189 	if (WARN_ON(test_bit(BTRFS_ROOT_REGISTERED, &root->state)))
190 		return;
191 	btrfs_global_root_delete(root);
192 	btrfs_put_root(root);
193 }
194 
195 struct btrfs_block_group *
196 btrfs_alloc_dummy_block_group(struct btrfs_fs_info *fs_info,
197 			      unsigned long length)
198 {
199 	struct btrfs_block_group *cache;
200 
201 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
202 	if (!cache)
203 		return NULL;
204 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
205 					GFP_KERNEL);
206 	if (!cache->free_space_ctl) {
207 		kfree(cache);
208 		return NULL;
209 	}
210 
211 	cache->start = 0;
212 	cache->length = length;
213 	cache->full_stripe_len = fs_info->sectorsize;
214 	cache->fs_info = fs_info;
215 
216 	INIT_LIST_HEAD(&cache->list);
217 	INIT_LIST_HEAD(&cache->cluster_list);
218 	INIT_LIST_HEAD(&cache->bg_list);
219 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
220 	mutex_init(&cache->free_space_lock);
221 
222 	return cache;
223 }
224 
225 void btrfs_free_dummy_block_group(struct btrfs_block_group *cache)
226 {
227 	if (!cache)
228 		return;
229 	__btrfs_remove_free_space_cache(cache->free_space_ctl);
230 	kfree(cache->free_space_ctl);
231 	kfree(cache);
232 }
233 
234 void btrfs_init_dummy_trans(struct btrfs_trans_handle *trans,
235 			    struct btrfs_fs_info *fs_info)
236 {
237 	memset(trans, 0, sizeof(*trans));
238 	trans->transid = 1;
239 	trans->type = __TRANS_DUMMY;
240 	trans->fs_info = fs_info;
241 }
242 
243 int btrfs_run_sanity_tests(void)
244 {
245 	int ret, i;
246 	u32 sectorsize, nodesize;
247 	u32 test_sectorsize[] = {
248 		PAGE_SIZE,
249 	};
250 	ret = btrfs_init_test_fs();
251 	if (ret)
252 		return ret;
253 	for (i = 0; i < ARRAY_SIZE(test_sectorsize); i++) {
254 		sectorsize = test_sectorsize[i];
255 		for (nodesize = sectorsize;
256 		     nodesize <= BTRFS_MAX_METADATA_BLOCKSIZE;
257 		     nodesize <<= 1) {
258 			pr_info("BTRFS: selftest: sectorsize: %u  nodesize: %u\n",
259 				sectorsize, nodesize);
260 			ret = btrfs_test_free_space_cache(sectorsize, nodesize);
261 			if (ret)
262 				goto out;
263 			ret = btrfs_test_extent_buffer_operations(sectorsize,
264 				nodesize);
265 			if (ret)
266 				goto out;
267 			ret = btrfs_test_extent_io(sectorsize, nodesize);
268 			if (ret)
269 				goto out;
270 			ret = btrfs_test_inodes(sectorsize, nodesize);
271 			if (ret)
272 				goto out;
273 			ret = btrfs_test_qgroups(sectorsize, nodesize);
274 			if (ret)
275 				goto out;
276 			ret = btrfs_test_free_space_tree(sectorsize, nodesize);
277 			if (ret)
278 				goto out;
279 		}
280 	}
281 	ret = btrfs_test_extent_map();
282 
283 out:
284 	btrfs_destroy_test_fs();
285 	return ret;
286 }
287