1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2013 Fusion IO. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/mount.h> 8 #include <linux/pseudo_fs.h> 9 #include <linux/magic.h> 10 #include "btrfs-tests.h" 11 #include "../ctree.h" 12 #include "../free-space-cache.h" 13 #include "../free-space-tree.h" 14 #include "../transaction.h" 15 #include "../volumes.h" 16 #include "../disk-io.h" 17 #include "../qgroup.h" 18 19 static struct vfsmount *test_mnt = NULL; 20 21 const char *test_error[] = { 22 [TEST_ALLOC_FS_INFO] = "cannot allocate fs_info", 23 [TEST_ALLOC_ROOT] = "cannot allocate root", 24 [TEST_ALLOC_EXTENT_BUFFER] = "cannot extent buffer", 25 [TEST_ALLOC_PATH] = "cannot allocate path", 26 [TEST_ALLOC_INODE] = "cannot allocate inode", 27 [TEST_ALLOC_BLOCK_GROUP] = "cannot allocate block group", 28 [TEST_ALLOC_EXTENT_MAP] = "cannot allocate extent map", 29 }; 30 31 static const struct super_operations btrfs_test_super_ops = { 32 .alloc_inode = btrfs_alloc_inode, 33 .destroy_inode = btrfs_test_destroy_inode, 34 }; 35 36 37 static int btrfs_test_init_fs_context(struct fs_context *fc) 38 { 39 struct pseudo_fs_context *ctx = init_pseudo(fc, BTRFS_TEST_MAGIC); 40 if (!ctx) 41 return -ENOMEM; 42 ctx->ops = &btrfs_test_super_ops; 43 return 0; 44 } 45 46 static struct file_system_type test_type = { 47 .name = "btrfs_test_fs", 48 .init_fs_context = btrfs_test_init_fs_context, 49 .kill_sb = kill_anon_super, 50 }; 51 52 struct inode *btrfs_new_test_inode(void) 53 { 54 return new_inode(test_mnt->mnt_sb); 55 } 56 57 static int btrfs_init_test_fs(void) 58 { 59 int ret; 60 61 ret = register_filesystem(&test_type); 62 if (ret) { 63 printk(KERN_ERR "btrfs: cannot register test file system\n"); 64 return ret; 65 } 66 67 test_mnt = kern_mount(&test_type); 68 if (IS_ERR(test_mnt)) { 69 printk(KERN_ERR "btrfs: cannot mount test file system\n"); 70 unregister_filesystem(&test_type); 71 return PTR_ERR(test_mnt); 72 } 73 return 0; 74 } 75 76 static void btrfs_destroy_test_fs(void) 77 { 78 kern_unmount(test_mnt); 79 unregister_filesystem(&test_type); 80 } 81 82 struct btrfs_fs_info *btrfs_alloc_dummy_fs_info(u32 nodesize, u32 sectorsize) 83 { 84 struct btrfs_fs_info *fs_info = kzalloc(sizeof(struct btrfs_fs_info), 85 GFP_KERNEL); 86 87 if (!fs_info) 88 return fs_info; 89 fs_info->fs_devices = kzalloc(sizeof(struct btrfs_fs_devices), 90 GFP_KERNEL); 91 if (!fs_info->fs_devices) { 92 kfree(fs_info); 93 return NULL; 94 } 95 fs_info->super_copy = kzalloc(sizeof(struct btrfs_super_block), 96 GFP_KERNEL); 97 if (!fs_info->super_copy) { 98 kfree(fs_info->fs_devices); 99 kfree(fs_info); 100 return NULL; 101 } 102 103 fs_info->nodesize = nodesize; 104 fs_info->sectorsize = sectorsize; 105 106 if (init_srcu_struct(&fs_info->subvol_srcu)) { 107 kfree(fs_info->fs_devices); 108 kfree(fs_info->super_copy); 109 kfree(fs_info); 110 return NULL; 111 } 112 113 spin_lock_init(&fs_info->buffer_lock); 114 spin_lock_init(&fs_info->qgroup_lock); 115 spin_lock_init(&fs_info->super_lock); 116 spin_lock_init(&fs_info->fs_roots_radix_lock); 117 spin_lock_init(&fs_info->tree_mod_seq_lock); 118 mutex_init(&fs_info->qgroup_ioctl_lock); 119 mutex_init(&fs_info->qgroup_rescan_lock); 120 rwlock_init(&fs_info->tree_mod_log_lock); 121 fs_info->running_transaction = NULL; 122 fs_info->qgroup_tree = RB_ROOT; 123 fs_info->qgroup_ulist = NULL; 124 atomic64_set(&fs_info->tree_mod_seq, 0); 125 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 126 INIT_LIST_HEAD(&fs_info->dead_roots); 127 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 128 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 129 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 130 extent_io_tree_init(fs_info, &fs_info->freed_extents[0], 131 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL); 132 extent_io_tree_init(fs_info, &fs_info->freed_extents[1], 133 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL); 134 fs_info->pinned_extents = &fs_info->freed_extents[0]; 135 set_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 136 137 test_mnt->mnt_sb->s_fs_info = fs_info; 138 139 return fs_info; 140 } 141 142 void btrfs_free_dummy_fs_info(struct btrfs_fs_info *fs_info) 143 { 144 struct radix_tree_iter iter; 145 void **slot; 146 147 if (!fs_info) 148 return; 149 150 if (WARN_ON(!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, 151 &fs_info->fs_state))) 152 return; 153 154 test_mnt->mnt_sb->s_fs_info = NULL; 155 156 spin_lock(&fs_info->buffer_lock); 157 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 0) { 158 struct extent_buffer *eb; 159 160 eb = radix_tree_deref_slot_protected(slot, &fs_info->buffer_lock); 161 if (!eb) 162 continue; 163 /* Shouldn't happen but that kind of thinking creates CVE's */ 164 if (radix_tree_exception(eb)) { 165 if (radix_tree_deref_retry(eb)) 166 slot = radix_tree_iter_retry(&iter); 167 continue; 168 } 169 slot = radix_tree_iter_resume(slot, &iter); 170 spin_unlock(&fs_info->buffer_lock); 171 free_extent_buffer_stale(eb); 172 spin_lock(&fs_info->buffer_lock); 173 } 174 spin_unlock(&fs_info->buffer_lock); 175 176 btrfs_free_qgroup_config(fs_info); 177 btrfs_free_fs_roots(fs_info); 178 cleanup_srcu_struct(&fs_info->subvol_srcu); 179 kfree(fs_info->super_copy); 180 kfree(fs_info->fs_devices); 181 kfree(fs_info); 182 } 183 184 void btrfs_free_dummy_root(struct btrfs_root *root) 185 { 186 if (!root) 187 return; 188 /* Will be freed by btrfs_free_fs_roots */ 189 if (WARN_ON(test_bit(BTRFS_ROOT_IN_RADIX, &root->state))) 190 return; 191 if (root->node) { 192 /* One for allocate_extent_buffer */ 193 free_extent_buffer(root->node); 194 } 195 kfree(root); 196 } 197 198 struct btrfs_block_group_cache * 199 btrfs_alloc_dummy_block_group(struct btrfs_fs_info *fs_info, 200 unsigned long length) 201 { 202 struct btrfs_block_group_cache *cache; 203 204 cache = kzalloc(sizeof(*cache), GFP_KERNEL); 205 if (!cache) 206 return NULL; 207 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 208 GFP_KERNEL); 209 if (!cache->free_space_ctl) { 210 kfree(cache); 211 return NULL; 212 } 213 214 cache->key.objectid = 0; 215 cache->key.offset = length; 216 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 217 cache->full_stripe_len = fs_info->sectorsize; 218 cache->fs_info = fs_info; 219 220 INIT_LIST_HEAD(&cache->list); 221 INIT_LIST_HEAD(&cache->cluster_list); 222 INIT_LIST_HEAD(&cache->bg_list); 223 btrfs_init_free_space_ctl(cache); 224 mutex_init(&cache->free_space_lock); 225 226 return cache; 227 } 228 229 void btrfs_free_dummy_block_group(struct btrfs_block_group_cache *cache) 230 { 231 if (!cache) 232 return; 233 __btrfs_remove_free_space_cache(cache->free_space_ctl); 234 kfree(cache->free_space_ctl); 235 kfree(cache); 236 } 237 238 void btrfs_init_dummy_trans(struct btrfs_trans_handle *trans, 239 struct btrfs_fs_info *fs_info) 240 { 241 memset(trans, 0, sizeof(*trans)); 242 trans->transid = 1; 243 trans->type = __TRANS_DUMMY; 244 trans->fs_info = fs_info; 245 } 246 247 int btrfs_run_sanity_tests(void) 248 { 249 int ret, i; 250 u32 sectorsize, nodesize; 251 u32 test_sectorsize[] = { 252 PAGE_SIZE, 253 }; 254 ret = btrfs_init_test_fs(); 255 if (ret) 256 return ret; 257 for (i = 0; i < ARRAY_SIZE(test_sectorsize); i++) { 258 sectorsize = test_sectorsize[i]; 259 for (nodesize = sectorsize; 260 nodesize <= BTRFS_MAX_METADATA_BLOCKSIZE; 261 nodesize <<= 1) { 262 pr_info("BTRFS: selftest: sectorsize: %u nodesize: %u\n", 263 sectorsize, nodesize); 264 ret = btrfs_test_free_space_cache(sectorsize, nodesize); 265 if (ret) 266 goto out; 267 ret = btrfs_test_extent_buffer_operations(sectorsize, 268 nodesize); 269 if (ret) 270 goto out; 271 ret = btrfs_test_extent_io(sectorsize, nodesize); 272 if (ret) 273 goto out; 274 ret = btrfs_test_inodes(sectorsize, nodesize); 275 if (ret) 276 goto out; 277 ret = btrfs_test_qgroups(sectorsize, nodesize); 278 if (ret) 279 goto out; 280 ret = btrfs_test_free_space_tree(sectorsize, nodesize); 281 if (ret) 282 goto out; 283 } 284 } 285 ret = btrfs_test_extent_map(); 286 287 out: 288 btrfs_destroy_test_fs(); 289 return ret; 290 } 291