1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2013 Fusion IO. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/mount.h> 8 #include <linux/pseudo_fs.h> 9 #include <linux/magic.h> 10 #include "btrfs-tests.h" 11 #include "../ctree.h" 12 #include "../free-space-cache.h" 13 #include "../free-space-tree.h" 14 #include "../transaction.h" 15 #include "../volumes.h" 16 #include "../disk-io.h" 17 #include "../qgroup.h" 18 #include "../block-group.h" 19 20 static struct vfsmount *test_mnt = NULL; 21 22 const char *test_error[] = { 23 [TEST_ALLOC_FS_INFO] = "cannot allocate fs_info", 24 [TEST_ALLOC_ROOT] = "cannot allocate root", 25 [TEST_ALLOC_EXTENT_BUFFER] = "cannot extent buffer", 26 [TEST_ALLOC_PATH] = "cannot allocate path", 27 [TEST_ALLOC_INODE] = "cannot allocate inode", 28 [TEST_ALLOC_BLOCK_GROUP] = "cannot allocate block group", 29 [TEST_ALLOC_EXTENT_MAP] = "cannot allocate extent map", 30 }; 31 32 static const struct super_operations btrfs_test_super_ops = { 33 .alloc_inode = btrfs_alloc_inode, 34 .destroy_inode = btrfs_test_destroy_inode, 35 }; 36 37 38 static int btrfs_test_init_fs_context(struct fs_context *fc) 39 { 40 struct pseudo_fs_context *ctx = init_pseudo(fc, BTRFS_TEST_MAGIC); 41 if (!ctx) 42 return -ENOMEM; 43 ctx->ops = &btrfs_test_super_ops; 44 return 0; 45 } 46 47 static struct file_system_type test_type = { 48 .name = "btrfs_test_fs", 49 .init_fs_context = btrfs_test_init_fs_context, 50 .kill_sb = kill_anon_super, 51 }; 52 53 struct inode *btrfs_new_test_inode(void) 54 { 55 struct inode *inode; 56 57 inode = new_inode(test_mnt->mnt_sb); 58 if (inode) 59 inode_init_owner(inode, NULL, S_IFREG); 60 61 return inode; 62 } 63 64 static int btrfs_init_test_fs(void) 65 { 66 int ret; 67 68 ret = register_filesystem(&test_type); 69 if (ret) { 70 printk(KERN_ERR "btrfs: cannot register test file system\n"); 71 return ret; 72 } 73 74 test_mnt = kern_mount(&test_type); 75 if (IS_ERR(test_mnt)) { 76 printk(KERN_ERR "btrfs: cannot mount test file system\n"); 77 unregister_filesystem(&test_type); 78 return PTR_ERR(test_mnt); 79 } 80 return 0; 81 } 82 83 static void btrfs_destroy_test_fs(void) 84 { 85 kern_unmount(test_mnt); 86 unregister_filesystem(&test_type); 87 } 88 89 struct btrfs_device *btrfs_alloc_dummy_device(struct btrfs_fs_info *fs_info) 90 { 91 struct btrfs_device *dev; 92 93 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 94 if (!dev) 95 return ERR_PTR(-ENOMEM); 96 97 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL); 98 INIT_LIST_HEAD(&dev->dev_list); 99 list_add(&dev->dev_list, &fs_info->fs_devices->devices); 100 101 return dev; 102 } 103 104 static void btrfs_free_dummy_device(struct btrfs_device *dev) 105 { 106 extent_io_tree_release(&dev->alloc_state); 107 kfree(dev); 108 } 109 110 struct btrfs_fs_info *btrfs_alloc_dummy_fs_info(u32 nodesize, u32 sectorsize) 111 { 112 struct btrfs_fs_info *fs_info = kzalloc(sizeof(struct btrfs_fs_info), 113 GFP_KERNEL); 114 115 if (!fs_info) 116 return fs_info; 117 fs_info->fs_devices = kzalloc(sizeof(struct btrfs_fs_devices), 118 GFP_KERNEL); 119 if (!fs_info->fs_devices) { 120 kfree(fs_info); 121 return NULL; 122 } 123 INIT_LIST_HEAD(&fs_info->fs_devices->devices); 124 125 fs_info->super_copy = kzalloc(sizeof(struct btrfs_super_block), 126 GFP_KERNEL); 127 if (!fs_info->super_copy) { 128 kfree(fs_info->fs_devices); 129 kfree(fs_info); 130 return NULL; 131 } 132 133 btrfs_init_fs_info(fs_info); 134 135 fs_info->nodesize = nodesize; 136 fs_info->sectorsize = sectorsize; 137 fs_info->sectorsize_bits = ilog2(sectorsize); 138 set_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 139 140 test_mnt->mnt_sb->s_fs_info = fs_info; 141 142 return fs_info; 143 } 144 145 void btrfs_free_dummy_fs_info(struct btrfs_fs_info *fs_info) 146 { 147 struct radix_tree_iter iter; 148 void **slot; 149 struct btrfs_device *dev, *tmp; 150 151 if (!fs_info) 152 return; 153 154 if (WARN_ON(!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, 155 &fs_info->fs_state))) 156 return; 157 158 test_mnt->mnt_sb->s_fs_info = NULL; 159 160 spin_lock(&fs_info->buffer_lock); 161 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 0) { 162 struct extent_buffer *eb; 163 164 eb = radix_tree_deref_slot_protected(slot, &fs_info->buffer_lock); 165 if (!eb) 166 continue; 167 /* Shouldn't happen but that kind of thinking creates CVE's */ 168 if (radix_tree_exception(eb)) { 169 if (radix_tree_deref_retry(eb)) 170 slot = radix_tree_iter_retry(&iter); 171 continue; 172 } 173 slot = radix_tree_iter_resume(slot, &iter); 174 spin_unlock(&fs_info->buffer_lock); 175 free_extent_buffer_stale(eb); 176 spin_lock(&fs_info->buffer_lock); 177 } 178 spin_unlock(&fs_info->buffer_lock); 179 180 btrfs_mapping_tree_free(&fs_info->mapping_tree); 181 list_for_each_entry_safe(dev, tmp, &fs_info->fs_devices->devices, 182 dev_list) { 183 btrfs_free_dummy_device(dev); 184 } 185 btrfs_free_qgroup_config(fs_info); 186 btrfs_free_fs_roots(fs_info); 187 kfree(fs_info->super_copy); 188 btrfs_check_leaked_roots(fs_info); 189 btrfs_extent_buffer_leak_debug_check(fs_info); 190 kfree(fs_info->fs_devices); 191 kfree(fs_info); 192 } 193 194 void btrfs_free_dummy_root(struct btrfs_root *root) 195 { 196 if (!root) 197 return; 198 /* Will be freed by btrfs_free_fs_roots */ 199 if (WARN_ON(test_bit(BTRFS_ROOT_IN_RADIX, &root->state))) 200 return; 201 btrfs_put_root(root); 202 } 203 204 struct btrfs_block_group * 205 btrfs_alloc_dummy_block_group(struct btrfs_fs_info *fs_info, 206 unsigned long length) 207 { 208 struct btrfs_block_group *cache; 209 210 cache = kzalloc(sizeof(*cache), GFP_KERNEL); 211 if (!cache) 212 return NULL; 213 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 214 GFP_KERNEL); 215 if (!cache->free_space_ctl) { 216 kfree(cache); 217 return NULL; 218 } 219 220 cache->start = 0; 221 cache->length = length; 222 cache->full_stripe_len = fs_info->sectorsize; 223 cache->fs_info = fs_info; 224 225 INIT_LIST_HEAD(&cache->list); 226 INIT_LIST_HEAD(&cache->cluster_list); 227 INIT_LIST_HEAD(&cache->bg_list); 228 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 229 mutex_init(&cache->free_space_lock); 230 231 return cache; 232 } 233 234 void btrfs_free_dummy_block_group(struct btrfs_block_group *cache) 235 { 236 if (!cache) 237 return; 238 __btrfs_remove_free_space_cache(cache->free_space_ctl); 239 kfree(cache->free_space_ctl); 240 kfree(cache); 241 } 242 243 void btrfs_init_dummy_trans(struct btrfs_trans_handle *trans, 244 struct btrfs_fs_info *fs_info) 245 { 246 memset(trans, 0, sizeof(*trans)); 247 trans->transid = 1; 248 trans->type = __TRANS_DUMMY; 249 trans->fs_info = fs_info; 250 } 251 252 int btrfs_run_sanity_tests(void) 253 { 254 int ret, i; 255 u32 sectorsize, nodesize; 256 u32 test_sectorsize[] = { 257 PAGE_SIZE, 258 }; 259 ret = btrfs_init_test_fs(); 260 if (ret) 261 return ret; 262 for (i = 0; i < ARRAY_SIZE(test_sectorsize); i++) { 263 sectorsize = test_sectorsize[i]; 264 for (nodesize = sectorsize; 265 nodesize <= BTRFS_MAX_METADATA_BLOCKSIZE; 266 nodesize <<= 1) { 267 pr_info("BTRFS: selftest: sectorsize: %u nodesize: %u\n", 268 sectorsize, nodesize); 269 ret = btrfs_test_free_space_cache(sectorsize, nodesize); 270 if (ret) 271 goto out; 272 ret = btrfs_test_extent_buffer_operations(sectorsize, 273 nodesize); 274 if (ret) 275 goto out; 276 ret = btrfs_test_extent_io(sectorsize, nodesize); 277 if (ret) 278 goto out; 279 ret = btrfs_test_inodes(sectorsize, nodesize); 280 if (ret) 281 goto out; 282 ret = btrfs_test_qgroups(sectorsize, nodesize); 283 if (ret) 284 goto out; 285 ret = btrfs_test_free_space_tree(sectorsize, nodesize); 286 if (ret) 287 goto out; 288 } 289 } 290 ret = btrfs_test_extent_map(); 291 292 out: 293 btrfs_destroy_test_fs(); 294 return ret; 295 } 296