1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "hash.h" 52 #include "props.h" 53 #include "xattr.h" 54 #include "volumes.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 #include "dev-replace.h" 59 #include "free-space-cache.h" 60 #include "backref.h" 61 #include "tests/btrfs-tests.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/btrfs.h> 65 66 static const struct super_operations btrfs_super_ops; 67 static struct file_system_type btrfs_fs_type; 68 69 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 70 71 static const char *btrfs_decode_error(int errno) 72 { 73 char *errstr = "unknown"; 74 75 switch (errno) { 76 case -EIO: 77 errstr = "IO failure"; 78 break; 79 case -ENOMEM: 80 errstr = "Out of memory"; 81 break; 82 case -EROFS: 83 errstr = "Readonly filesystem"; 84 break; 85 case -EEXIST: 86 errstr = "Object already exists"; 87 break; 88 case -ENOSPC: 89 errstr = "No space left"; 90 break; 91 case -ENOENT: 92 errstr = "No such entry"; 93 break; 94 } 95 96 return errstr; 97 } 98 99 static void save_error_info(struct btrfs_fs_info *fs_info) 100 { 101 /* 102 * today we only save the error info into ram. Long term we'll 103 * also send it down to the disk 104 */ 105 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 106 } 107 108 /* btrfs handle error by forcing the filesystem readonly */ 109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 110 { 111 struct super_block *sb = fs_info->sb; 112 113 if (sb->s_flags & MS_RDONLY) 114 return; 115 116 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 117 sb->s_flags |= MS_RDONLY; 118 btrfs_info(fs_info, "forced readonly"); 119 /* 120 * Note that a running device replace operation is not 121 * canceled here although there is no way to update 122 * the progress. It would add the risk of a deadlock, 123 * therefore the canceling is ommited. The only penalty 124 * is that some I/O remains active until the procedure 125 * completes. The next time when the filesystem is 126 * mounted writeable again, the device replace 127 * operation continues. 128 */ 129 } 130 } 131 132 #ifdef CONFIG_PRINTK 133 /* 134 * __btrfs_std_error decodes expected errors from the caller and 135 * invokes the approciate error response. 136 */ 137 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 138 unsigned int line, int errno, const char *fmt, ...) 139 { 140 struct super_block *sb = fs_info->sb; 141 const char *errstr; 142 143 /* 144 * Special case: if the error is EROFS, and we're already 145 * under MS_RDONLY, then it is safe here. 146 */ 147 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 148 return; 149 150 errstr = btrfs_decode_error(errno); 151 if (fmt) { 152 struct va_format vaf; 153 va_list args; 154 155 va_start(args, fmt); 156 vaf.fmt = fmt; 157 vaf.va = &args; 158 159 printk(KERN_CRIT 160 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 161 sb->s_id, function, line, errno, errstr, &vaf); 162 va_end(args); 163 } else { 164 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 165 sb->s_id, function, line, errno, errstr); 166 } 167 168 /* Don't go through full error handling during mount */ 169 save_error_info(fs_info); 170 if (sb->s_flags & MS_BORN) 171 btrfs_handle_error(fs_info); 172 } 173 174 static const char * const logtypes[] = { 175 "emergency", 176 "alert", 177 "critical", 178 "error", 179 "warning", 180 "notice", 181 "info", 182 "debug", 183 }; 184 185 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 186 { 187 struct super_block *sb = fs_info->sb; 188 char lvl[4]; 189 struct va_format vaf; 190 va_list args; 191 const char *type = logtypes[4]; 192 int kern_level; 193 194 va_start(args, fmt); 195 196 kern_level = printk_get_level(fmt); 197 if (kern_level) { 198 size_t size = printk_skip_level(fmt) - fmt; 199 memcpy(lvl, fmt, size); 200 lvl[size] = '\0'; 201 fmt += size; 202 type = logtypes[kern_level - '0']; 203 } else 204 *lvl = '\0'; 205 206 vaf.fmt = fmt; 207 vaf.va = &args; 208 209 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); 210 211 va_end(args); 212 } 213 214 #else 215 216 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 217 unsigned int line, int errno, const char *fmt, ...) 218 { 219 struct super_block *sb = fs_info->sb; 220 221 /* 222 * Special case: if the error is EROFS, and we're already 223 * under MS_RDONLY, then it is safe here. 224 */ 225 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 226 return; 227 228 /* Don't go through full error handling during mount */ 229 if (sb->s_flags & MS_BORN) { 230 save_error_info(fs_info); 231 btrfs_handle_error(fs_info); 232 } 233 } 234 #endif 235 236 /* 237 * We only mark the transaction aborted and then set the file system read-only. 238 * This will prevent new transactions from starting or trying to join this 239 * one. 240 * 241 * This means that error recovery at the call site is limited to freeing 242 * any local memory allocations and passing the error code up without 243 * further cleanup. The transaction should complete as it normally would 244 * in the call path but will return -EIO. 245 * 246 * We'll complete the cleanup in btrfs_end_transaction and 247 * btrfs_commit_transaction. 248 */ 249 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 250 struct btrfs_root *root, const char *function, 251 unsigned int line, int errno) 252 { 253 /* 254 * Report first abort since mount 255 */ 256 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, 257 &root->fs_info->fs_state)) { 258 WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n", 259 errno); 260 } 261 trans->aborted = errno; 262 /* Nothing used. The other threads that have joined this 263 * transaction may be able to continue. */ 264 if (!trans->blocks_used) { 265 const char *errstr; 266 267 errstr = btrfs_decode_error(errno); 268 btrfs_warn(root->fs_info, 269 "%s:%d: Aborting unused transaction(%s).", 270 function, line, errstr); 271 return; 272 } 273 ACCESS_ONCE(trans->transaction->aborted) = errno; 274 /* Wake up anybody who may be waiting on this transaction */ 275 wake_up(&root->fs_info->transaction_wait); 276 wake_up(&root->fs_info->transaction_blocked_wait); 277 __btrfs_std_error(root->fs_info, function, line, errno, NULL); 278 } 279 /* 280 * __btrfs_panic decodes unexpected, fatal errors from the caller, 281 * issues an alert, and either panics or BUGs, depending on mount options. 282 */ 283 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 284 unsigned int line, int errno, const char *fmt, ...) 285 { 286 char *s_id = "<unknown>"; 287 const char *errstr; 288 struct va_format vaf = { .fmt = fmt }; 289 va_list args; 290 291 if (fs_info) 292 s_id = fs_info->sb->s_id; 293 294 va_start(args, fmt); 295 vaf.va = &args; 296 297 errstr = btrfs_decode_error(errno); 298 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) 299 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 300 s_id, function, line, &vaf, errno, errstr); 301 302 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 303 function, line, &vaf, errno, errstr); 304 va_end(args); 305 /* Caller calls BUG() */ 306 } 307 308 static void btrfs_put_super(struct super_block *sb) 309 { 310 (void)close_ctree(btrfs_sb(sb)->tree_root); 311 /* FIXME: need to fix VFS to return error? */ 312 /* AV: return it _where_? ->put_super() can be triggered by any number 313 * of async events, up to and including delivery of SIGKILL to the 314 * last process that kept it busy. Or segfault in the aforementioned 315 * process... Whom would you report that to? 316 */ 317 } 318 319 enum { 320 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 321 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 322 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 323 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 324 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 325 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, 326 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache, 327 Opt_no_space_cache, Opt_recovery, Opt_skip_balance, 328 Opt_check_integrity, Opt_check_integrity_including_extent_data, 329 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, 330 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard, 331 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow, 332 Opt_datasum, Opt_treelog, Opt_noinode_cache, 333 Opt_err, 334 }; 335 336 static match_table_t tokens = { 337 {Opt_degraded, "degraded"}, 338 {Opt_subvol, "subvol=%s"}, 339 {Opt_subvolid, "subvolid=%s"}, 340 {Opt_device, "device=%s"}, 341 {Opt_nodatasum, "nodatasum"}, 342 {Opt_datasum, "datasum"}, 343 {Opt_nodatacow, "nodatacow"}, 344 {Opt_datacow, "datacow"}, 345 {Opt_nobarrier, "nobarrier"}, 346 {Opt_barrier, "barrier"}, 347 {Opt_max_inline, "max_inline=%s"}, 348 {Opt_alloc_start, "alloc_start=%s"}, 349 {Opt_thread_pool, "thread_pool=%d"}, 350 {Opt_compress, "compress"}, 351 {Opt_compress_type, "compress=%s"}, 352 {Opt_compress_force, "compress-force"}, 353 {Opt_compress_force_type, "compress-force=%s"}, 354 {Opt_ssd, "ssd"}, 355 {Opt_ssd_spread, "ssd_spread"}, 356 {Opt_nossd, "nossd"}, 357 {Opt_acl, "acl"}, 358 {Opt_noacl, "noacl"}, 359 {Opt_notreelog, "notreelog"}, 360 {Opt_treelog, "treelog"}, 361 {Opt_flushoncommit, "flushoncommit"}, 362 {Opt_noflushoncommit, "noflushoncommit"}, 363 {Opt_ratio, "metadata_ratio=%d"}, 364 {Opt_discard, "discard"}, 365 {Opt_nodiscard, "nodiscard"}, 366 {Opt_space_cache, "space_cache"}, 367 {Opt_clear_cache, "clear_cache"}, 368 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 369 {Opt_enospc_debug, "enospc_debug"}, 370 {Opt_noenospc_debug, "noenospc_debug"}, 371 {Opt_subvolrootid, "subvolrootid=%d"}, 372 {Opt_defrag, "autodefrag"}, 373 {Opt_nodefrag, "noautodefrag"}, 374 {Opt_inode_cache, "inode_cache"}, 375 {Opt_noinode_cache, "noinode_cache"}, 376 {Opt_no_space_cache, "nospace_cache"}, 377 {Opt_recovery, "recovery"}, 378 {Opt_skip_balance, "skip_balance"}, 379 {Opt_check_integrity, "check_int"}, 380 {Opt_check_integrity_including_extent_data, "check_int_data"}, 381 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 382 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 383 {Opt_fatal_errors, "fatal_errors=%s"}, 384 {Opt_commit_interval, "commit=%d"}, 385 {Opt_err, NULL}, 386 }; 387 388 /* 389 * Regular mount options parser. Everything that is needed only when 390 * reading in a new superblock is parsed here. 391 * XXX JDM: This needs to be cleaned up for remount. 392 */ 393 int btrfs_parse_options(struct btrfs_root *root, char *options) 394 { 395 struct btrfs_fs_info *info = root->fs_info; 396 substring_t args[MAX_OPT_ARGS]; 397 char *p, *num, *orig = NULL; 398 u64 cache_gen; 399 int intarg; 400 int ret = 0; 401 char *compress_type; 402 bool compress_force = false; 403 bool compress = false; 404 405 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 406 if (cache_gen) 407 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 408 409 if (!options) 410 goto out; 411 412 /* 413 * strsep changes the string, duplicate it because parse_options 414 * gets called twice 415 */ 416 options = kstrdup(options, GFP_NOFS); 417 if (!options) 418 return -ENOMEM; 419 420 orig = options; 421 422 while ((p = strsep(&options, ",")) != NULL) { 423 int token; 424 if (!*p) 425 continue; 426 427 token = match_token(p, tokens, args); 428 switch (token) { 429 case Opt_degraded: 430 btrfs_info(root->fs_info, "allowing degraded mounts"); 431 btrfs_set_opt(info->mount_opt, DEGRADED); 432 break; 433 case Opt_subvol: 434 case Opt_subvolid: 435 case Opt_subvolrootid: 436 case Opt_device: 437 /* 438 * These are parsed by btrfs_parse_early_options 439 * and can be happily ignored here. 440 */ 441 break; 442 case Opt_nodatasum: 443 btrfs_set_and_info(root, NODATASUM, 444 "setting nodatasum"); 445 break; 446 case Opt_datasum: 447 if (btrfs_test_opt(root, NODATASUM)) { 448 if (btrfs_test_opt(root, NODATACOW)) 449 btrfs_info(root->fs_info, "setting datasum, datacow enabled"); 450 else 451 btrfs_info(root->fs_info, "setting datasum"); 452 } 453 btrfs_clear_opt(info->mount_opt, NODATACOW); 454 btrfs_clear_opt(info->mount_opt, NODATASUM); 455 break; 456 case Opt_nodatacow: 457 if (!btrfs_test_opt(root, NODATACOW)) { 458 if (!btrfs_test_opt(root, COMPRESS) || 459 !btrfs_test_opt(root, FORCE_COMPRESS)) { 460 btrfs_info(root->fs_info, 461 "setting nodatacow, compression disabled"); 462 } else { 463 btrfs_info(root->fs_info, "setting nodatacow"); 464 } 465 } 466 btrfs_clear_opt(info->mount_opt, COMPRESS); 467 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 468 btrfs_set_opt(info->mount_opt, NODATACOW); 469 btrfs_set_opt(info->mount_opt, NODATASUM); 470 break; 471 case Opt_datacow: 472 btrfs_clear_and_info(root, NODATACOW, 473 "setting datacow"); 474 break; 475 case Opt_compress_force: 476 case Opt_compress_force_type: 477 compress_force = true; 478 /* Fallthrough */ 479 case Opt_compress: 480 case Opt_compress_type: 481 compress = true; 482 if (token == Opt_compress || 483 token == Opt_compress_force || 484 strcmp(args[0].from, "zlib") == 0) { 485 compress_type = "zlib"; 486 info->compress_type = BTRFS_COMPRESS_ZLIB; 487 btrfs_set_opt(info->mount_opt, COMPRESS); 488 btrfs_clear_opt(info->mount_opt, NODATACOW); 489 btrfs_clear_opt(info->mount_opt, NODATASUM); 490 } else if (strcmp(args[0].from, "lzo") == 0) { 491 compress_type = "lzo"; 492 info->compress_type = BTRFS_COMPRESS_LZO; 493 btrfs_set_opt(info->mount_opt, COMPRESS); 494 btrfs_clear_opt(info->mount_opt, NODATACOW); 495 btrfs_clear_opt(info->mount_opt, NODATASUM); 496 btrfs_set_fs_incompat(info, COMPRESS_LZO); 497 } else if (strncmp(args[0].from, "no", 2) == 0) { 498 compress_type = "no"; 499 btrfs_clear_opt(info->mount_opt, COMPRESS); 500 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 501 compress_force = false; 502 } else { 503 ret = -EINVAL; 504 goto out; 505 } 506 507 if (compress_force) { 508 btrfs_set_and_info(root, FORCE_COMPRESS, 509 "force %s compression", 510 compress_type); 511 } else if (compress) { 512 if (!btrfs_test_opt(root, COMPRESS)) 513 btrfs_info(root->fs_info, 514 "btrfs: use %s compression", 515 compress_type); 516 } 517 break; 518 case Opt_ssd: 519 btrfs_set_and_info(root, SSD, 520 "use ssd allocation scheme"); 521 break; 522 case Opt_ssd_spread: 523 btrfs_set_and_info(root, SSD_SPREAD, 524 "use spread ssd allocation scheme"); 525 btrfs_set_opt(info->mount_opt, SSD); 526 break; 527 case Opt_nossd: 528 btrfs_set_and_info(root, NOSSD, 529 "not using ssd allocation scheme"); 530 btrfs_clear_opt(info->mount_opt, SSD); 531 break; 532 case Opt_barrier: 533 btrfs_clear_and_info(root, NOBARRIER, 534 "turning on barriers"); 535 break; 536 case Opt_nobarrier: 537 btrfs_set_and_info(root, NOBARRIER, 538 "turning off barriers"); 539 break; 540 case Opt_thread_pool: 541 ret = match_int(&args[0], &intarg); 542 if (ret) { 543 goto out; 544 } else if (intarg > 0) { 545 info->thread_pool_size = intarg; 546 } else { 547 ret = -EINVAL; 548 goto out; 549 } 550 break; 551 case Opt_max_inline: 552 num = match_strdup(&args[0]); 553 if (num) { 554 info->max_inline = memparse(num, NULL); 555 kfree(num); 556 557 if (info->max_inline) { 558 info->max_inline = min_t(u64, 559 info->max_inline, 560 root->sectorsize); 561 } 562 btrfs_info(root->fs_info, "max_inline at %llu", 563 info->max_inline); 564 } else { 565 ret = -ENOMEM; 566 goto out; 567 } 568 break; 569 case Opt_alloc_start: 570 num = match_strdup(&args[0]); 571 if (num) { 572 mutex_lock(&info->chunk_mutex); 573 info->alloc_start = memparse(num, NULL); 574 mutex_unlock(&info->chunk_mutex); 575 kfree(num); 576 btrfs_info(root->fs_info, "allocations start at %llu", 577 info->alloc_start); 578 } else { 579 ret = -ENOMEM; 580 goto out; 581 } 582 break; 583 case Opt_acl: 584 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 585 root->fs_info->sb->s_flags |= MS_POSIXACL; 586 break; 587 #else 588 btrfs_err(root->fs_info, 589 "support for ACL not compiled in!"); 590 ret = -EINVAL; 591 goto out; 592 #endif 593 case Opt_noacl: 594 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 595 break; 596 case Opt_notreelog: 597 btrfs_set_and_info(root, NOTREELOG, 598 "disabling tree log"); 599 break; 600 case Opt_treelog: 601 btrfs_clear_and_info(root, NOTREELOG, 602 "enabling tree log"); 603 break; 604 case Opt_flushoncommit: 605 btrfs_set_and_info(root, FLUSHONCOMMIT, 606 "turning on flush-on-commit"); 607 break; 608 case Opt_noflushoncommit: 609 btrfs_clear_and_info(root, FLUSHONCOMMIT, 610 "turning off flush-on-commit"); 611 break; 612 case Opt_ratio: 613 ret = match_int(&args[0], &intarg); 614 if (ret) { 615 goto out; 616 } else if (intarg >= 0) { 617 info->metadata_ratio = intarg; 618 btrfs_info(root->fs_info, "metadata ratio %d", 619 info->metadata_ratio); 620 } else { 621 ret = -EINVAL; 622 goto out; 623 } 624 break; 625 case Opt_discard: 626 btrfs_set_and_info(root, DISCARD, 627 "turning on discard"); 628 break; 629 case Opt_nodiscard: 630 btrfs_clear_and_info(root, DISCARD, 631 "turning off discard"); 632 break; 633 case Opt_space_cache: 634 btrfs_set_and_info(root, SPACE_CACHE, 635 "enabling disk space caching"); 636 break; 637 case Opt_rescan_uuid_tree: 638 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 639 break; 640 case Opt_no_space_cache: 641 btrfs_clear_and_info(root, SPACE_CACHE, 642 "disabling disk space caching"); 643 break; 644 case Opt_inode_cache: 645 btrfs_set_and_info(root, CHANGE_INODE_CACHE, 646 "enabling inode map caching"); 647 break; 648 case Opt_noinode_cache: 649 btrfs_clear_and_info(root, CHANGE_INODE_CACHE, 650 "disabling inode map caching"); 651 break; 652 case Opt_clear_cache: 653 btrfs_set_and_info(root, CLEAR_CACHE, 654 "force clearing of disk cache"); 655 break; 656 case Opt_user_subvol_rm_allowed: 657 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 658 break; 659 case Opt_enospc_debug: 660 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 661 break; 662 case Opt_noenospc_debug: 663 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 664 break; 665 case Opt_defrag: 666 btrfs_set_and_info(root, AUTO_DEFRAG, 667 "enabling auto defrag"); 668 break; 669 case Opt_nodefrag: 670 btrfs_clear_and_info(root, AUTO_DEFRAG, 671 "disabling auto defrag"); 672 break; 673 case Opt_recovery: 674 btrfs_info(root->fs_info, "enabling auto recovery"); 675 btrfs_set_opt(info->mount_opt, RECOVERY); 676 break; 677 case Opt_skip_balance: 678 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 679 break; 680 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 681 case Opt_check_integrity_including_extent_data: 682 btrfs_info(root->fs_info, 683 "enabling check integrity including extent data"); 684 btrfs_set_opt(info->mount_opt, 685 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 686 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 687 break; 688 case Opt_check_integrity: 689 btrfs_info(root->fs_info, "enabling check integrity"); 690 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 691 break; 692 case Opt_check_integrity_print_mask: 693 ret = match_int(&args[0], &intarg); 694 if (ret) { 695 goto out; 696 } else if (intarg >= 0) { 697 info->check_integrity_print_mask = intarg; 698 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x", 699 info->check_integrity_print_mask); 700 } else { 701 ret = -EINVAL; 702 goto out; 703 } 704 break; 705 #else 706 case Opt_check_integrity_including_extent_data: 707 case Opt_check_integrity: 708 case Opt_check_integrity_print_mask: 709 btrfs_err(root->fs_info, 710 "support for check_integrity* not compiled in!"); 711 ret = -EINVAL; 712 goto out; 713 #endif 714 case Opt_fatal_errors: 715 if (strcmp(args[0].from, "panic") == 0) 716 btrfs_set_opt(info->mount_opt, 717 PANIC_ON_FATAL_ERROR); 718 else if (strcmp(args[0].from, "bug") == 0) 719 btrfs_clear_opt(info->mount_opt, 720 PANIC_ON_FATAL_ERROR); 721 else { 722 ret = -EINVAL; 723 goto out; 724 } 725 break; 726 case Opt_commit_interval: 727 intarg = 0; 728 ret = match_int(&args[0], &intarg); 729 if (ret < 0) { 730 btrfs_err(root->fs_info, "invalid commit interval"); 731 ret = -EINVAL; 732 goto out; 733 } 734 if (intarg > 0) { 735 if (intarg > 300) { 736 btrfs_warn(root->fs_info, "excessive commit interval %d", 737 intarg); 738 } 739 info->commit_interval = intarg; 740 } else { 741 btrfs_info(root->fs_info, "using default commit interval %ds", 742 BTRFS_DEFAULT_COMMIT_INTERVAL); 743 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 744 } 745 break; 746 case Opt_err: 747 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p); 748 ret = -EINVAL; 749 goto out; 750 default: 751 break; 752 } 753 } 754 out: 755 if (!ret && btrfs_test_opt(root, SPACE_CACHE)) 756 btrfs_info(root->fs_info, "disk space caching is enabled"); 757 kfree(orig); 758 return ret; 759 } 760 761 /* 762 * Parse mount options that are required early in the mount process. 763 * 764 * All other options will be parsed on much later in the mount process and 765 * only when we need to allocate a new super block. 766 */ 767 static int btrfs_parse_early_options(const char *options, fmode_t flags, 768 void *holder, char **subvol_name, u64 *subvol_objectid, 769 struct btrfs_fs_devices **fs_devices) 770 { 771 substring_t args[MAX_OPT_ARGS]; 772 char *device_name, *opts, *orig, *p; 773 char *num = NULL; 774 int error = 0; 775 776 if (!options) 777 return 0; 778 779 /* 780 * strsep changes the string, duplicate it because parse_options 781 * gets called twice 782 */ 783 opts = kstrdup(options, GFP_KERNEL); 784 if (!opts) 785 return -ENOMEM; 786 orig = opts; 787 788 while ((p = strsep(&opts, ",")) != NULL) { 789 int token; 790 if (!*p) 791 continue; 792 793 token = match_token(p, tokens, args); 794 switch (token) { 795 case Opt_subvol: 796 kfree(*subvol_name); 797 *subvol_name = match_strdup(&args[0]); 798 if (!*subvol_name) { 799 error = -ENOMEM; 800 goto out; 801 } 802 break; 803 case Opt_subvolid: 804 num = match_strdup(&args[0]); 805 if (num) { 806 *subvol_objectid = memparse(num, NULL); 807 kfree(num); 808 /* we want the original fs_tree */ 809 if (!*subvol_objectid) 810 *subvol_objectid = 811 BTRFS_FS_TREE_OBJECTID; 812 } else { 813 error = -EINVAL; 814 goto out; 815 } 816 break; 817 case Opt_subvolrootid: 818 printk(KERN_WARNING 819 "BTRFS: 'subvolrootid' mount option is deprecated and has " 820 "no effect\n"); 821 break; 822 case Opt_device: 823 device_name = match_strdup(&args[0]); 824 if (!device_name) { 825 error = -ENOMEM; 826 goto out; 827 } 828 error = btrfs_scan_one_device(device_name, 829 flags, holder, fs_devices); 830 kfree(device_name); 831 if (error) 832 goto out; 833 break; 834 default: 835 break; 836 } 837 } 838 839 out: 840 kfree(orig); 841 return error; 842 } 843 844 static struct dentry *get_default_root(struct super_block *sb, 845 u64 subvol_objectid) 846 { 847 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 848 struct btrfs_root *root = fs_info->tree_root; 849 struct btrfs_root *new_root; 850 struct btrfs_dir_item *di; 851 struct btrfs_path *path; 852 struct btrfs_key location; 853 struct inode *inode; 854 u64 dir_id; 855 int new = 0; 856 857 /* 858 * We have a specific subvol we want to mount, just setup location and 859 * go look up the root. 860 */ 861 if (subvol_objectid) { 862 location.objectid = subvol_objectid; 863 location.type = BTRFS_ROOT_ITEM_KEY; 864 location.offset = (u64)-1; 865 goto find_root; 866 } 867 868 path = btrfs_alloc_path(); 869 if (!path) 870 return ERR_PTR(-ENOMEM); 871 path->leave_spinning = 1; 872 873 /* 874 * Find the "default" dir item which points to the root item that we 875 * will mount by default if we haven't been given a specific subvolume 876 * to mount. 877 */ 878 dir_id = btrfs_super_root_dir(fs_info->super_copy); 879 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 880 if (IS_ERR(di)) { 881 btrfs_free_path(path); 882 return ERR_CAST(di); 883 } 884 if (!di) { 885 /* 886 * Ok the default dir item isn't there. This is weird since 887 * it's always been there, but don't freak out, just try and 888 * mount to root most subvolume. 889 */ 890 btrfs_free_path(path); 891 dir_id = BTRFS_FIRST_FREE_OBJECTID; 892 new_root = fs_info->fs_root; 893 goto setup_root; 894 } 895 896 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 897 btrfs_free_path(path); 898 899 find_root: 900 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 901 if (IS_ERR(new_root)) 902 return ERR_CAST(new_root); 903 904 dir_id = btrfs_root_dirid(&new_root->root_item); 905 setup_root: 906 location.objectid = dir_id; 907 location.type = BTRFS_INODE_ITEM_KEY; 908 location.offset = 0; 909 910 inode = btrfs_iget(sb, &location, new_root, &new); 911 if (IS_ERR(inode)) 912 return ERR_CAST(inode); 913 914 /* 915 * If we're just mounting the root most subvol put the inode and return 916 * a reference to the dentry. We will have already gotten a reference 917 * to the inode in btrfs_fill_super so we're good to go. 918 */ 919 if (!new && sb->s_root->d_inode == inode) { 920 iput(inode); 921 return dget(sb->s_root); 922 } 923 924 return d_obtain_root(inode); 925 } 926 927 static int btrfs_fill_super(struct super_block *sb, 928 struct btrfs_fs_devices *fs_devices, 929 void *data, int silent) 930 { 931 struct inode *inode; 932 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 933 struct btrfs_key key; 934 int err; 935 936 sb->s_maxbytes = MAX_LFS_FILESIZE; 937 sb->s_magic = BTRFS_SUPER_MAGIC; 938 sb->s_op = &btrfs_super_ops; 939 sb->s_d_op = &btrfs_dentry_operations; 940 sb->s_export_op = &btrfs_export_ops; 941 sb->s_xattr = btrfs_xattr_handlers; 942 sb->s_time_gran = 1; 943 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 944 sb->s_flags |= MS_POSIXACL; 945 #endif 946 sb->s_flags |= MS_I_VERSION; 947 err = open_ctree(sb, fs_devices, (char *)data); 948 if (err) { 949 printk(KERN_ERR "BTRFS: open_ctree failed\n"); 950 return err; 951 } 952 953 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 954 key.type = BTRFS_INODE_ITEM_KEY; 955 key.offset = 0; 956 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 957 if (IS_ERR(inode)) { 958 err = PTR_ERR(inode); 959 goto fail_close; 960 } 961 962 sb->s_root = d_make_root(inode); 963 if (!sb->s_root) { 964 err = -ENOMEM; 965 goto fail_close; 966 } 967 968 save_mount_options(sb, data); 969 cleancache_init_fs(sb); 970 sb->s_flags |= MS_ACTIVE; 971 return 0; 972 973 fail_close: 974 close_ctree(fs_info->tree_root); 975 return err; 976 } 977 978 int btrfs_sync_fs(struct super_block *sb, int wait) 979 { 980 struct btrfs_trans_handle *trans; 981 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 982 struct btrfs_root *root = fs_info->tree_root; 983 984 trace_btrfs_sync_fs(wait); 985 986 if (!wait) { 987 filemap_flush(fs_info->btree_inode->i_mapping); 988 return 0; 989 } 990 991 btrfs_wait_ordered_roots(fs_info, -1); 992 993 trans = btrfs_attach_transaction_barrier(root); 994 if (IS_ERR(trans)) { 995 /* no transaction, don't bother */ 996 if (PTR_ERR(trans) == -ENOENT) 997 return 0; 998 return PTR_ERR(trans); 999 } 1000 return btrfs_commit_transaction(trans, root); 1001 } 1002 1003 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1004 { 1005 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1006 struct btrfs_root *root = info->tree_root; 1007 char *compress_type; 1008 1009 if (btrfs_test_opt(root, DEGRADED)) 1010 seq_puts(seq, ",degraded"); 1011 if (btrfs_test_opt(root, NODATASUM)) 1012 seq_puts(seq, ",nodatasum"); 1013 if (btrfs_test_opt(root, NODATACOW)) 1014 seq_puts(seq, ",nodatacow"); 1015 if (btrfs_test_opt(root, NOBARRIER)) 1016 seq_puts(seq, ",nobarrier"); 1017 if (info->max_inline != 8192 * 1024) 1018 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1019 if (info->alloc_start != 0) 1020 seq_printf(seq, ",alloc_start=%llu", info->alloc_start); 1021 if (info->thread_pool_size != min_t(unsigned long, 1022 num_online_cpus() + 2, 8)) 1023 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 1024 if (btrfs_test_opt(root, COMPRESS)) { 1025 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 1026 compress_type = "zlib"; 1027 else 1028 compress_type = "lzo"; 1029 if (btrfs_test_opt(root, FORCE_COMPRESS)) 1030 seq_printf(seq, ",compress-force=%s", compress_type); 1031 else 1032 seq_printf(seq, ",compress=%s", compress_type); 1033 } 1034 if (btrfs_test_opt(root, NOSSD)) 1035 seq_puts(seq, ",nossd"); 1036 if (btrfs_test_opt(root, SSD_SPREAD)) 1037 seq_puts(seq, ",ssd_spread"); 1038 else if (btrfs_test_opt(root, SSD)) 1039 seq_puts(seq, ",ssd"); 1040 if (btrfs_test_opt(root, NOTREELOG)) 1041 seq_puts(seq, ",notreelog"); 1042 if (btrfs_test_opt(root, FLUSHONCOMMIT)) 1043 seq_puts(seq, ",flushoncommit"); 1044 if (btrfs_test_opt(root, DISCARD)) 1045 seq_puts(seq, ",discard"); 1046 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 1047 seq_puts(seq, ",noacl"); 1048 if (btrfs_test_opt(root, SPACE_CACHE)) 1049 seq_puts(seq, ",space_cache"); 1050 else 1051 seq_puts(seq, ",nospace_cache"); 1052 if (btrfs_test_opt(root, RESCAN_UUID_TREE)) 1053 seq_puts(seq, ",rescan_uuid_tree"); 1054 if (btrfs_test_opt(root, CLEAR_CACHE)) 1055 seq_puts(seq, ",clear_cache"); 1056 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 1057 seq_puts(seq, ",user_subvol_rm_allowed"); 1058 if (btrfs_test_opt(root, ENOSPC_DEBUG)) 1059 seq_puts(seq, ",enospc_debug"); 1060 if (btrfs_test_opt(root, AUTO_DEFRAG)) 1061 seq_puts(seq, ",autodefrag"); 1062 if (btrfs_test_opt(root, INODE_MAP_CACHE)) 1063 seq_puts(seq, ",inode_cache"); 1064 if (btrfs_test_opt(root, SKIP_BALANCE)) 1065 seq_puts(seq, ",skip_balance"); 1066 if (btrfs_test_opt(root, RECOVERY)) 1067 seq_puts(seq, ",recovery"); 1068 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1069 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1070 seq_puts(seq, ",check_int_data"); 1071 else if (btrfs_test_opt(root, CHECK_INTEGRITY)) 1072 seq_puts(seq, ",check_int"); 1073 if (info->check_integrity_print_mask) 1074 seq_printf(seq, ",check_int_print_mask=%d", 1075 info->check_integrity_print_mask); 1076 #endif 1077 if (info->metadata_ratio) 1078 seq_printf(seq, ",metadata_ratio=%d", 1079 info->metadata_ratio); 1080 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR)) 1081 seq_puts(seq, ",fatal_errors=panic"); 1082 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1083 seq_printf(seq, ",commit=%d", info->commit_interval); 1084 return 0; 1085 } 1086 1087 static int btrfs_test_super(struct super_block *s, void *data) 1088 { 1089 struct btrfs_fs_info *p = data; 1090 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1091 1092 return fs_info->fs_devices == p->fs_devices; 1093 } 1094 1095 static int btrfs_set_super(struct super_block *s, void *data) 1096 { 1097 int err = set_anon_super(s, data); 1098 if (!err) 1099 s->s_fs_info = data; 1100 return err; 1101 } 1102 1103 /* 1104 * subvolumes are identified by ino 256 1105 */ 1106 static inline int is_subvolume_inode(struct inode *inode) 1107 { 1108 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1109 return 1; 1110 return 0; 1111 } 1112 1113 /* 1114 * This will strip out the subvol=%s argument for an argument string and add 1115 * subvolid=0 to make sure we get the actual tree root for path walking to the 1116 * subvol we want. 1117 */ 1118 static char *setup_root_args(char *args) 1119 { 1120 unsigned len = strlen(args) + 2 + 1; 1121 char *src, *dst, *buf; 1122 1123 /* 1124 * We need the same args as before, but with this substitution: 1125 * s!subvol=[^,]+!subvolid=0! 1126 * 1127 * Since the replacement string is up to 2 bytes longer than the 1128 * original, allocate strlen(args) + 2 + 1 bytes. 1129 */ 1130 1131 src = strstr(args, "subvol="); 1132 /* This shouldn't happen, but just in case.. */ 1133 if (!src) 1134 return NULL; 1135 1136 buf = dst = kmalloc(len, GFP_NOFS); 1137 if (!buf) 1138 return NULL; 1139 1140 /* 1141 * If the subvol= arg is not at the start of the string, 1142 * copy whatever precedes it into buf. 1143 */ 1144 if (src != args) { 1145 *src++ = '\0'; 1146 strcpy(buf, args); 1147 dst += strlen(args); 1148 } 1149 1150 strcpy(dst, "subvolid=0"); 1151 dst += strlen("subvolid=0"); 1152 1153 /* 1154 * If there is a "," after the original subvol=... string, 1155 * copy that suffix into our buffer. Otherwise, we're done. 1156 */ 1157 src = strchr(src, ','); 1158 if (src) 1159 strcpy(dst, src); 1160 1161 return buf; 1162 } 1163 1164 static struct dentry *mount_subvol(const char *subvol_name, int flags, 1165 const char *device_name, char *data) 1166 { 1167 struct dentry *root; 1168 struct vfsmount *mnt; 1169 char *newargs; 1170 1171 newargs = setup_root_args(data); 1172 if (!newargs) 1173 return ERR_PTR(-ENOMEM); 1174 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, 1175 newargs); 1176 1177 if (PTR_RET(mnt) == -EBUSY) { 1178 if (flags & MS_RDONLY) { 1179 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name, 1180 newargs); 1181 } else { 1182 int r; 1183 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name, 1184 newargs); 1185 if (IS_ERR(mnt)) { 1186 kfree(newargs); 1187 return ERR_CAST(mnt); 1188 } 1189 1190 r = btrfs_remount(mnt->mnt_sb, &flags, NULL); 1191 if (r < 0) { 1192 /* FIXME: release vfsmount mnt ??*/ 1193 kfree(newargs); 1194 return ERR_PTR(r); 1195 } 1196 } 1197 } 1198 1199 kfree(newargs); 1200 1201 if (IS_ERR(mnt)) 1202 return ERR_CAST(mnt); 1203 1204 root = mount_subtree(mnt, subvol_name); 1205 1206 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) { 1207 struct super_block *s = root->d_sb; 1208 dput(root); 1209 root = ERR_PTR(-EINVAL); 1210 deactivate_locked_super(s); 1211 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n", 1212 subvol_name); 1213 } 1214 1215 return root; 1216 } 1217 1218 /* 1219 * Find a superblock for the given device / mount point. 1220 * 1221 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1222 * for multiple device setup. Make sure to keep it in sync. 1223 */ 1224 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1225 const char *device_name, void *data) 1226 { 1227 struct block_device *bdev = NULL; 1228 struct super_block *s; 1229 struct dentry *root; 1230 struct btrfs_fs_devices *fs_devices = NULL; 1231 struct btrfs_fs_info *fs_info = NULL; 1232 fmode_t mode = FMODE_READ; 1233 char *subvol_name = NULL; 1234 u64 subvol_objectid = 0; 1235 int error = 0; 1236 1237 if (!(flags & MS_RDONLY)) 1238 mode |= FMODE_WRITE; 1239 1240 error = btrfs_parse_early_options(data, mode, fs_type, 1241 &subvol_name, &subvol_objectid, 1242 &fs_devices); 1243 if (error) { 1244 kfree(subvol_name); 1245 return ERR_PTR(error); 1246 } 1247 1248 if (subvol_name) { 1249 root = mount_subvol(subvol_name, flags, device_name, data); 1250 kfree(subvol_name); 1251 return root; 1252 } 1253 1254 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1255 if (error) 1256 return ERR_PTR(error); 1257 1258 /* 1259 * Setup a dummy root and fs_info for test/set super. This is because 1260 * we don't actually fill this stuff out until open_ctree, but we need 1261 * it for searching for existing supers, so this lets us do that and 1262 * then open_ctree will properly initialize everything later. 1263 */ 1264 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 1265 if (!fs_info) 1266 return ERR_PTR(-ENOMEM); 1267 1268 fs_info->fs_devices = fs_devices; 1269 1270 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1271 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1272 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1273 error = -ENOMEM; 1274 goto error_fs_info; 1275 } 1276 1277 error = btrfs_open_devices(fs_devices, mode, fs_type); 1278 if (error) 1279 goto error_fs_info; 1280 1281 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1282 error = -EACCES; 1283 goto error_close_devices; 1284 } 1285 1286 bdev = fs_devices->latest_bdev; 1287 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1288 fs_info); 1289 if (IS_ERR(s)) { 1290 error = PTR_ERR(s); 1291 goto error_close_devices; 1292 } 1293 1294 if (s->s_root) { 1295 btrfs_close_devices(fs_devices); 1296 free_fs_info(fs_info); 1297 if ((flags ^ s->s_flags) & MS_RDONLY) 1298 error = -EBUSY; 1299 } else { 1300 char b[BDEVNAME_SIZE]; 1301 1302 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1303 btrfs_sb(s)->bdev_holder = fs_type; 1304 error = btrfs_fill_super(s, fs_devices, data, 1305 flags & MS_SILENT ? 1 : 0); 1306 } 1307 1308 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error); 1309 if (IS_ERR(root)) 1310 deactivate_locked_super(s); 1311 1312 return root; 1313 1314 error_close_devices: 1315 btrfs_close_devices(fs_devices); 1316 error_fs_info: 1317 free_fs_info(fs_info); 1318 return ERR_PTR(error); 1319 } 1320 1321 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1322 int new_pool_size, int old_pool_size) 1323 { 1324 if (new_pool_size == old_pool_size) 1325 return; 1326 1327 fs_info->thread_pool_size = new_pool_size; 1328 1329 btrfs_info(fs_info, "resize thread pool %d -> %d", 1330 old_pool_size, new_pool_size); 1331 1332 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1333 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1334 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1335 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1336 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1337 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1338 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1339 new_pool_size); 1340 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1341 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1342 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1343 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1344 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1345 new_pool_size); 1346 } 1347 1348 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1349 { 1350 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1351 } 1352 1353 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1354 unsigned long old_opts, int flags) 1355 { 1356 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1357 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1358 (flags & MS_RDONLY))) { 1359 /* wait for any defraggers to finish */ 1360 wait_event(fs_info->transaction_wait, 1361 (atomic_read(&fs_info->defrag_running) == 0)); 1362 if (flags & MS_RDONLY) 1363 sync_filesystem(fs_info->sb); 1364 } 1365 } 1366 1367 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1368 unsigned long old_opts) 1369 { 1370 /* 1371 * We need cleanup all defragable inodes if the autodefragment is 1372 * close or the fs is R/O. 1373 */ 1374 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1375 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1376 (fs_info->sb->s_flags & MS_RDONLY))) { 1377 btrfs_cleanup_defrag_inodes(fs_info); 1378 } 1379 1380 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1381 } 1382 1383 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1384 { 1385 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1386 struct btrfs_root *root = fs_info->tree_root; 1387 unsigned old_flags = sb->s_flags; 1388 unsigned long old_opts = fs_info->mount_opt; 1389 unsigned long old_compress_type = fs_info->compress_type; 1390 u64 old_max_inline = fs_info->max_inline; 1391 u64 old_alloc_start = fs_info->alloc_start; 1392 int old_thread_pool_size = fs_info->thread_pool_size; 1393 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1394 int ret; 1395 1396 sync_filesystem(sb); 1397 btrfs_remount_prepare(fs_info); 1398 1399 ret = btrfs_parse_options(root, data); 1400 if (ret) { 1401 ret = -EINVAL; 1402 goto restore; 1403 } 1404 1405 btrfs_remount_begin(fs_info, old_opts, *flags); 1406 btrfs_resize_thread_pool(fs_info, 1407 fs_info->thread_pool_size, old_thread_pool_size); 1408 1409 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1410 goto out; 1411 1412 if (*flags & MS_RDONLY) { 1413 /* 1414 * this also happens on 'umount -rf' or on shutdown, when 1415 * the filesystem is busy. 1416 */ 1417 cancel_work_sync(&fs_info->async_reclaim_work); 1418 1419 /* wait for the uuid_scan task to finish */ 1420 down(&fs_info->uuid_tree_rescan_sem); 1421 /* avoid complains from lockdep et al. */ 1422 up(&fs_info->uuid_tree_rescan_sem); 1423 1424 sb->s_flags |= MS_RDONLY; 1425 1426 btrfs_dev_replace_suspend_for_unmount(fs_info); 1427 btrfs_scrub_cancel(fs_info); 1428 btrfs_pause_balance(fs_info); 1429 1430 ret = btrfs_commit_super(root); 1431 if (ret) 1432 goto restore; 1433 } else { 1434 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1435 btrfs_err(fs_info, 1436 "Remounting read-write after error is not allowed"); 1437 ret = -EINVAL; 1438 goto restore; 1439 } 1440 if (fs_info->fs_devices->rw_devices == 0) { 1441 ret = -EACCES; 1442 goto restore; 1443 } 1444 1445 if (fs_info->fs_devices->missing_devices > 1446 fs_info->num_tolerated_disk_barrier_failures && 1447 !(*flags & MS_RDONLY)) { 1448 btrfs_warn(fs_info, 1449 "too many missing devices, writeable remount is not allowed"); 1450 ret = -EACCES; 1451 goto restore; 1452 } 1453 1454 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1455 ret = -EINVAL; 1456 goto restore; 1457 } 1458 1459 ret = btrfs_cleanup_fs_roots(fs_info); 1460 if (ret) 1461 goto restore; 1462 1463 /* recover relocation */ 1464 mutex_lock(&fs_info->cleaner_mutex); 1465 ret = btrfs_recover_relocation(root); 1466 mutex_unlock(&fs_info->cleaner_mutex); 1467 if (ret) 1468 goto restore; 1469 1470 ret = btrfs_resume_balance_async(fs_info); 1471 if (ret) 1472 goto restore; 1473 1474 ret = btrfs_resume_dev_replace_async(fs_info); 1475 if (ret) { 1476 btrfs_warn(fs_info, "failed to resume dev_replace"); 1477 goto restore; 1478 } 1479 1480 if (!fs_info->uuid_root) { 1481 btrfs_info(fs_info, "creating UUID tree"); 1482 ret = btrfs_create_uuid_tree(fs_info); 1483 if (ret) { 1484 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret); 1485 goto restore; 1486 } 1487 } 1488 sb->s_flags &= ~MS_RDONLY; 1489 } 1490 out: 1491 wake_up_process(fs_info->transaction_kthread); 1492 btrfs_remount_cleanup(fs_info, old_opts); 1493 return 0; 1494 1495 restore: 1496 /* We've hit an error - don't reset MS_RDONLY */ 1497 if (sb->s_flags & MS_RDONLY) 1498 old_flags |= MS_RDONLY; 1499 sb->s_flags = old_flags; 1500 fs_info->mount_opt = old_opts; 1501 fs_info->compress_type = old_compress_type; 1502 fs_info->max_inline = old_max_inline; 1503 mutex_lock(&fs_info->chunk_mutex); 1504 fs_info->alloc_start = old_alloc_start; 1505 mutex_unlock(&fs_info->chunk_mutex); 1506 btrfs_resize_thread_pool(fs_info, 1507 old_thread_pool_size, fs_info->thread_pool_size); 1508 fs_info->metadata_ratio = old_metadata_ratio; 1509 btrfs_remount_cleanup(fs_info, old_opts); 1510 return ret; 1511 } 1512 1513 /* Used to sort the devices by max_avail(descending sort) */ 1514 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1515 const void *dev_info2) 1516 { 1517 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1518 ((struct btrfs_device_info *)dev_info2)->max_avail) 1519 return -1; 1520 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1521 ((struct btrfs_device_info *)dev_info2)->max_avail) 1522 return 1; 1523 else 1524 return 0; 1525 } 1526 1527 /* 1528 * sort the devices by max_avail, in which max free extent size of each device 1529 * is stored.(Descending Sort) 1530 */ 1531 static inline void btrfs_descending_sort_devices( 1532 struct btrfs_device_info *devices, 1533 size_t nr_devices) 1534 { 1535 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1536 btrfs_cmp_device_free_bytes, NULL); 1537 } 1538 1539 /* 1540 * The helper to calc the free space on the devices that can be used to store 1541 * file data. 1542 */ 1543 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 1544 { 1545 struct btrfs_fs_info *fs_info = root->fs_info; 1546 struct btrfs_device_info *devices_info; 1547 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1548 struct btrfs_device *device; 1549 u64 skip_space; 1550 u64 type; 1551 u64 avail_space; 1552 u64 used_space; 1553 u64 min_stripe_size; 1554 int min_stripes = 1, num_stripes = 1; 1555 int i = 0, nr_devices; 1556 int ret; 1557 1558 nr_devices = fs_info->fs_devices->open_devices; 1559 BUG_ON(!nr_devices); 1560 1561 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1562 GFP_NOFS); 1563 if (!devices_info) 1564 return -ENOMEM; 1565 1566 /* calc min stripe number for data space alloction */ 1567 type = btrfs_get_alloc_profile(root, 1); 1568 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1569 min_stripes = 2; 1570 num_stripes = nr_devices; 1571 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1572 min_stripes = 2; 1573 num_stripes = 2; 1574 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1575 min_stripes = 4; 1576 num_stripes = 4; 1577 } 1578 1579 if (type & BTRFS_BLOCK_GROUP_DUP) 1580 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1581 else 1582 min_stripe_size = BTRFS_STRIPE_LEN; 1583 1584 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1585 if (!device->in_fs_metadata || !device->bdev || 1586 device->is_tgtdev_for_dev_replace) 1587 continue; 1588 1589 avail_space = device->total_bytes - device->bytes_used; 1590 1591 /* align with stripe_len */ 1592 do_div(avail_space, BTRFS_STRIPE_LEN); 1593 avail_space *= BTRFS_STRIPE_LEN; 1594 1595 /* 1596 * In order to avoid overwritting the superblock on the drive, 1597 * btrfs starts at an offset of at least 1MB when doing chunk 1598 * allocation. 1599 */ 1600 skip_space = 1024 * 1024; 1601 1602 /* user can set the offset in fs_info->alloc_start. */ 1603 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1604 device->total_bytes) 1605 skip_space = max(fs_info->alloc_start, skip_space); 1606 1607 /* 1608 * btrfs can not use the free space in [0, skip_space - 1], 1609 * we must subtract it from the total. In order to implement 1610 * it, we account the used space in this range first. 1611 */ 1612 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1, 1613 &used_space); 1614 if (ret) { 1615 kfree(devices_info); 1616 return ret; 1617 } 1618 1619 /* calc the free space in [0, skip_space - 1] */ 1620 skip_space -= used_space; 1621 1622 /* 1623 * we can use the free space in [0, skip_space - 1], subtract 1624 * it from the total. 1625 */ 1626 if (avail_space && avail_space >= skip_space) 1627 avail_space -= skip_space; 1628 else 1629 avail_space = 0; 1630 1631 if (avail_space < min_stripe_size) 1632 continue; 1633 1634 devices_info[i].dev = device; 1635 devices_info[i].max_avail = avail_space; 1636 1637 i++; 1638 } 1639 1640 nr_devices = i; 1641 1642 btrfs_descending_sort_devices(devices_info, nr_devices); 1643 1644 i = nr_devices - 1; 1645 avail_space = 0; 1646 while (nr_devices >= min_stripes) { 1647 if (num_stripes > nr_devices) 1648 num_stripes = nr_devices; 1649 1650 if (devices_info[i].max_avail >= min_stripe_size) { 1651 int j; 1652 u64 alloc_size; 1653 1654 avail_space += devices_info[i].max_avail * num_stripes; 1655 alloc_size = devices_info[i].max_avail; 1656 for (j = i + 1 - num_stripes; j <= i; j++) 1657 devices_info[j].max_avail -= alloc_size; 1658 } 1659 i--; 1660 nr_devices--; 1661 } 1662 1663 kfree(devices_info); 1664 *free_bytes = avail_space; 1665 return 0; 1666 } 1667 1668 /* 1669 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 1670 * 1671 * If there's a redundant raid level at DATA block groups, use the respective 1672 * multiplier to scale the sizes. 1673 * 1674 * Unused device space usage is based on simulating the chunk allocator 1675 * algorithm that respects the device sizes, order of allocations and the 1676 * 'alloc_start' value, this is a close approximation of the actual use but 1677 * there are other factors that may change the result (like a new metadata 1678 * chunk). 1679 * 1680 * FIXME: not accurate for mixed block groups, total and free/used are ok, 1681 * available appears slightly larger. 1682 */ 1683 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1684 { 1685 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1686 struct btrfs_super_block *disk_super = fs_info->super_copy; 1687 struct list_head *head = &fs_info->space_info; 1688 struct btrfs_space_info *found; 1689 u64 total_used = 0; 1690 u64 total_free_data = 0; 1691 int bits = dentry->d_sb->s_blocksize_bits; 1692 __be32 *fsid = (__be32 *)fs_info->fsid; 1693 unsigned factor = 1; 1694 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 1695 int ret; 1696 1697 /* holding chunk_muext to avoid allocating new chunks */ 1698 mutex_lock(&fs_info->chunk_mutex); 1699 rcu_read_lock(); 1700 list_for_each_entry_rcu(found, head, list) { 1701 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1702 int i; 1703 1704 total_free_data += found->disk_total - found->disk_used; 1705 total_free_data -= 1706 btrfs_account_ro_block_groups_free_space(found); 1707 1708 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1709 if (!list_empty(&found->block_groups[i])) { 1710 switch (i) { 1711 case BTRFS_RAID_DUP: 1712 case BTRFS_RAID_RAID1: 1713 case BTRFS_RAID_RAID10: 1714 factor = 2; 1715 } 1716 } 1717 } 1718 } 1719 1720 total_used += found->disk_used; 1721 } 1722 1723 rcu_read_unlock(); 1724 1725 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 1726 buf->f_blocks >>= bits; 1727 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 1728 1729 /* Account global block reserve as used, it's in logical size already */ 1730 spin_lock(&block_rsv->lock); 1731 buf->f_bfree -= block_rsv->size >> bits; 1732 spin_unlock(&block_rsv->lock); 1733 1734 buf->f_bavail = total_free_data; 1735 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); 1736 if (ret) { 1737 mutex_unlock(&fs_info->chunk_mutex); 1738 return ret; 1739 } 1740 buf->f_bavail += div_u64(total_free_data, factor); 1741 buf->f_bavail = buf->f_bavail >> bits; 1742 mutex_unlock(&fs_info->chunk_mutex); 1743 1744 buf->f_type = BTRFS_SUPER_MAGIC; 1745 buf->f_bsize = dentry->d_sb->s_blocksize; 1746 buf->f_namelen = BTRFS_NAME_LEN; 1747 1748 /* We treat it as constant endianness (it doesn't matter _which_) 1749 because we want the fsid to come out the same whether mounted 1750 on a big-endian or little-endian host */ 1751 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1752 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1753 /* Mask in the root object ID too, to disambiguate subvols */ 1754 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32; 1755 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid; 1756 1757 return 0; 1758 } 1759 1760 static void btrfs_kill_super(struct super_block *sb) 1761 { 1762 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1763 kill_anon_super(sb); 1764 free_fs_info(fs_info); 1765 } 1766 1767 static struct file_system_type btrfs_fs_type = { 1768 .owner = THIS_MODULE, 1769 .name = "btrfs", 1770 .mount = btrfs_mount, 1771 .kill_sb = btrfs_kill_super, 1772 .fs_flags = FS_REQUIRES_DEV, 1773 }; 1774 MODULE_ALIAS_FS("btrfs"); 1775 1776 /* 1777 * used by btrfsctl to scan devices when no FS is mounted 1778 */ 1779 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 1780 unsigned long arg) 1781 { 1782 struct btrfs_ioctl_vol_args *vol; 1783 struct btrfs_fs_devices *fs_devices; 1784 int ret = -ENOTTY; 1785 1786 if (!capable(CAP_SYS_ADMIN)) 1787 return -EPERM; 1788 1789 vol = memdup_user((void __user *)arg, sizeof(*vol)); 1790 if (IS_ERR(vol)) 1791 return PTR_ERR(vol); 1792 1793 switch (cmd) { 1794 case BTRFS_IOC_SCAN_DEV: 1795 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1796 &btrfs_fs_type, &fs_devices); 1797 break; 1798 case BTRFS_IOC_DEVICES_READY: 1799 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1800 &btrfs_fs_type, &fs_devices); 1801 if (ret) 1802 break; 1803 ret = !(fs_devices->num_devices == fs_devices->total_devices); 1804 break; 1805 } 1806 1807 kfree(vol); 1808 return ret; 1809 } 1810 1811 static int btrfs_freeze(struct super_block *sb) 1812 { 1813 struct btrfs_trans_handle *trans; 1814 struct btrfs_root *root = btrfs_sb(sb)->tree_root; 1815 1816 trans = btrfs_attach_transaction_barrier(root); 1817 if (IS_ERR(trans)) { 1818 /* no transaction, don't bother */ 1819 if (PTR_ERR(trans) == -ENOENT) 1820 return 0; 1821 return PTR_ERR(trans); 1822 } 1823 return btrfs_commit_transaction(trans, root); 1824 } 1825 1826 static int btrfs_unfreeze(struct super_block *sb) 1827 { 1828 return 0; 1829 } 1830 1831 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 1832 { 1833 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 1834 struct btrfs_fs_devices *cur_devices; 1835 struct btrfs_device *dev, *first_dev = NULL; 1836 struct list_head *head; 1837 struct rcu_string *name; 1838 1839 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1840 cur_devices = fs_info->fs_devices; 1841 while (cur_devices) { 1842 head = &cur_devices->devices; 1843 list_for_each_entry(dev, head, dev_list) { 1844 if (dev->missing) 1845 continue; 1846 if (!dev->name) 1847 continue; 1848 if (!first_dev || dev->devid < first_dev->devid) 1849 first_dev = dev; 1850 } 1851 cur_devices = cur_devices->seed; 1852 } 1853 1854 if (first_dev) { 1855 rcu_read_lock(); 1856 name = rcu_dereference(first_dev->name); 1857 seq_escape(m, name->str, " \t\n\\"); 1858 rcu_read_unlock(); 1859 } else { 1860 WARN_ON(1); 1861 } 1862 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1863 return 0; 1864 } 1865 1866 static const struct super_operations btrfs_super_ops = { 1867 .drop_inode = btrfs_drop_inode, 1868 .evict_inode = btrfs_evict_inode, 1869 .put_super = btrfs_put_super, 1870 .sync_fs = btrfs_sync_fs, 1871 .show_options = btrfs_show_options, 1872 .show_devname = btrfs_show_devname, 1873 .write_inode = btrfs_write_inode, 1874 .alloc_inode = btrfs_alloc_inode, 1875 .destroy_inode = btrfs_destroy_inode, 1876 .statfs = btrfs_statfs, 1877 .remount_fs = btrfs_remount, 1878 .freeze_fs = btrfs_freeze, 1879 .unfreeze_fs = btrfs_unfreeze, 1880 }; 1881 1882 static const struct file_operations btrfs_ctl_fops = { 1883 .unlocked_ioctl = btrfs_control_ioctl, 1884 .compat_ioctl = btrfs_control_ioctl, 1885 .owner = THIS_MODULE, 1886 .llseek = noop_llseek, 1887 }; 1888 1889 static struct miscdevice btrfs_misc = { 1890 .minor = BTRFS_MINOR, 1891 .name = "btrfs-control", 1892 .fops = &btrfs_ctl_fops 1893 }; 1894 1895 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 1896 MODULE_ALIAS("devname:btrfs-control"); 1897 1898 static int btrfs_interface_init(void) 1899 { 1900 return misc_register(&btrfs_misc); 1901 } 1902 1903 static void btrfs_interface_exit(void) 1904 { 1905 if (misc_deregister(&btrfs_misc) < 0) 1906 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n"); 1907 } 1908 1909 static void btrfs_print_info(void) 1910 { 1911 printk(KERN_INFO "Btrfs loaded" 1912 #ifdef CONFIG_BTRFS_DEBUG 1913 ", debug=on" 1914 #endif 1915 #ifdef CONFIG_BTRFS_ASSERT 1916 ", assert=on" 1917 #endif 1918 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1919 ", integrity-checker=on" 1920 #endif 1921 "\n"); 1922 } 1923 1924 static int btrfs_run_sanity_tests(void) 1925 { 1926 int ret; 1927 1928 ret = btrfs_init_test_fs(); 1929 if (ret) 1930 return ret; 1931 1932 ret = btrfs_test_free_space_cache(); 1933 if (ret) 1934 goto out; 1935 ret = btrfs_test_extent_buffer_operations(); 1936 if (ret) 1937 goto out; 1938 ret = btrfs_test_extent_io(); 1939 if (ret) 1940 goto out; 1941 ret = btrfs_test_inodes(); 1942 if (ret) 1943 goto out; 1944 ret = btrfs_test_qgroups(); 1945 out: 1946 btrfs_destroy_test_fs(); 1947 return ret; 1948 } 1949 1950 static int __init init_btrfs_fs(void) 1951 { 1952 int err; 1953 1954 err = btrfs_hash_init(); 1955 if (err) 1956 return err; 1957 1958 btrfs_props_init(); 1959 1960 err = btrfs_init_sysfs(); 1961 if (err) 1962 goto free_hash; 1963 1964 btrfs_init_compress(); 1965 1966 err = btrfs_init_cachep(); 1967 if (err) 1968 goto free_compress; 1969 1970 err = extent_io_init(); 1971 if (err) 1972 goto free_cachep; 1973 1974 err = extent_map_init(); 1975 if (err) 1976 goto free_extent_io; 1977 1978 err = ordered_data_init(); 1979 if (err) 1980 goto free_extent_map; 1981 1982 err = btrfs_delayed_inode_init(); 1983 if (err) 1984 goto free_ordered_data; 1985 1986 err = btrfs_auto_defrag_init(); 1987 if (err) 1988 goto free_delayed_inode; 1989 1990 err = btrfs_delayed_ref_init(); 1991 if (err) 1992 goto free_auto_defrag; 1993 1994 err = btrfs_prelim_ref_init(); 1995 if (err) 1996 goto free_prelim_ref; 1997 1998 err = btrfs_interface_init(); 1999 if (err) 2000 goto free_delayed_ref; 2001 2002 btrfs_init_lockdep(); 2003 2004 btrfs_print_info(); 2005 2006 err = btrfs_run_sanity_tests(); 2007 if (err) 2008 goto unregister_ioctl; 2009 2010 err = register_filesystem(&btrfs_fs_type); 2011 if (err) 2012 goto unregister_ioctl; 2013 2014 return 0; 2015 2016 unregister_ioctl: 2017 btrfs_interface_exit(); 2018 free_prelim_ref: 2019 btrfs_prelim_ref_exit(); 2020 free_delayed_ref: 2021 btrfs_delayed_ref_exit(); 2022 free_auto_defrag: 2023 btrfs_auto_defrag_exit(); 2024 free_delayed_inode: 2025 btrfs_delayed_inode_exit(); 2026 free_ordered_data: 2027 ordered_data_exit(); 2028 free_extent_map: 2029 extent_map_exit(); 2030 free_extent_io: 2031 extent_io_exit(); 2032 free_cachep: 2033 btrfs_destroy_cachep(); 2034 free_compress: 2035 btrfs_exit_compress(); 2036 btrfs_exit_sysfs(); 2037 free_hash: 2038 btrfs_hash_exit(); 2039 return err; 2040 } 2041 2042 static void __exit exit_btrfs_fs(void) 2043 { 2044 btrfs_destroy_cachep(); 2045 btrfs_delayed_ref_exit(); 2046 btrfs_auto_defrag_exit(); 2047 btrfs_delayed_inode_exit(); 2048 btrfs_prelim_ref_exit(); 2049 ordered_data_exit(); 2050 extent_map_exit(); 2051 extent_io_exit(); 2052 btrfs_interface_exit(); 2053 unregister_filesystem(&btrfs_fs_type); 2054 btrfs_exit_sysfs(); 2055 btrfs_cleanup_fs_uuids(); 2056 btrfs_exit_compress(); 2057 btrfs_hash_exit(); 2058 } 2059 2060 late_initcall(init_btrfs_fs); 2061 module_exit(exit_btrfs_fs) 2062 2063 MODULE_LICENSE("GPL"); 2064