xref: /openbmc/linux/fs/btrfs/super.c (revision fff74a93)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65 
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68 
69 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
70 
71 static const char *btrfs_decode_error(int errno)
72 {
73 	char *errstr = "unknown";
74 
75 	switch (errno) {
76 	case -EIO:
77 		errstr = "IO failure";
78 		break;
79 	case -ENOMEM:
80 		errstr = "Out of memory";
81 		break;
82 	case -EROFS:
83 		errstr = "Readonly filesystem";
84 		break;
85 	case -EEXIST:
86 		errstr = "Object already exists";
87 		break;
88 	case -ENOSPC:
89 		errstr = "No space left";
90 		break;
91 	case -ENOENT:
92 		errstr = "No such entry";
93 		break;
94 	}
95 
96 	return errstr;
97 }
98 
99 static void save_error_info(struct btrfs_fs_info *fs_info)
100 {
101 	/*
102 	 * today we only save the error info into ram.  Long term we'll
103 	 * also send it down to the disk
104 	 */
105 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
106 }
107 
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111 	struct super_block *sb = fs_info->sb;
112 
113 	if (sb->s_flags & MS_RDONLY)
114 		return;
115 
116 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
117 		sb->s_flags |= MS_RDONLY;
118 		btrfs_info(fs_info, "forced readonly");
119 		/*
120 		 * Note that a running device replace operation is not
121 		 * canceled here although there is no way to update
122 		 * the progress. It would add the risk of a deadlock,
123 		 * therefore the canceling is ommited. The only penalty
124 		 * is that some I/O remains active until the procedure
125 		 * completes. The next time when the filesystem is
126 		 * mounted writeable again, the device replace
127 		 * operation continues.
128 		 */
129 	}
130 }
131 
132 #ifdef CONFIG_PRINTK
133 /*
134  * __btrfs_std_error decodes expected errors from the caller and
135  * invokes the approciate error response.
136  */
137 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
138 		       unsigned int line, int errno, const char *fmt, ...)
139 {
140 	struct super_block *sb = fs_info->sb;
141 	const char *errstr;
142 
143 	/*
144 	 * Special case: if the error is EROFS, and we're already
145 	 * under MS_RDONLY, then it is safe here.
146 	 */
147 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
148   		return;
149 
150 	errstr = btrfs_decode_error(errno);
151 	if (fmt) {
152 		struct va_format vaf;
153 		va_list args;
154 
155 		va_start(args, fmt);
156 		vaf.fmt = fmt;
157 		vaf.va = &args;
158 
159 		printk(KERN_CRIT
160 			"BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
161 			sb->s_id, function, line, errno, errstr, &vaf);
162 		va_end(args);
163 	} else {
164 		printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
165 			sb->s_id, function, line, errno, errstr);
166 	}
167 
168 	/* Don't go through full error handling during mount */
169 	save_error_info(fs_info);
170 	if (sb->s_flags & MS_BORN)
171 		btrfs_handle_error(fs_info);
172 }
173 
174 static const char * const logtypes[] = {
175 	"emergency",
176 	"alert",
177 	"critical",
178 	"error",
179 	"warning",
180 	"notice",
181 	"info",
182 	"debug",
183 };
184 
185 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
186 {
187 	struct super_block *sb = fs_info->sb;
188 	char lvl[4];
189 	struct va_format vaf;
190 	va_list args;
191 	const char *type = logtypes[4];
192 	int kern_level;
193 
194 	va_start(args, fmt);
195 
196 	kern_level = printk_get_level(fmt);
197 	if (kern_level) {
198 		size_t size = printk_skip_level(fmt) - fmt;
199 		memcpy(lvl, fmt,  size);
200 		lvl[size] = '\0';
201 		fmt += size;
202 		type = logtypes[kern_level - '0'];
203 	} else
204 		*lvl = '\0';
205 
206 	vaf.fmt = fmt;
207 	vaf.va = &args;
208 
209 	printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
210 
211 	va_end(args);
212 }
213 
214 #else
215 
216 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
217 		       unsigned int line, int errno, const char *fmt, ...)
218 {
219 	struct super_block *sb = fs_info->sb;
220 
221 	/*
222 	 * Special case: if the error is EROFS, and we're already
223 	 * under MS_RDONLY, then it is safe here.
224 	 */
225 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
226 		return;
227 
228 	/* Don't go through full error handling during mount */
229 	if (sb->s_flags & MS_BORN) {
230 		save_error_info(fs_info);
231 		btrfs_handle_error(fs_info);
232 	}
233 }
234 #endif
235 
236 /*
237  * We only mark the transaction aborted and then set the file system read-only.
238  * This will prevent new transactions from starting or trying to join this
239  * one.
240  *
241  * This means that error recovery at the call site is limited to freeing
242  * any local memory allocations and passing the error code up without
243  * further cleanup. The transaction should complete as it normally would
244  * in the call path but will return -EIO.
245  *
246  * We'll complete the cleanup in btrfs_end_transaction and
247  * btrfs_commit_transaction.
248  */
249 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
250 			       struct btrfs_root *root, const char *function,
251 			       unsigned int line, int errno)
252 {
253 	/*
254 	 * Report first abort since mount
255 	 */
256 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
257 				&root->fs_info->fs_state)) {
258 		WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
259 				errno);
260 	}
261 	trans->aborted = errno;
262 	/* Nothing used. The other threads that have joined this
263 	 * transaction may be able to continue. */
264 	if (!trans->blocks_used) {
265 		const char *errstr;
266 
267 		errstr = btrfs_decode_error(errno);
268 		btrfs_warn(root->fs_info,
269 		           "%s:%d: Aborting unused transaction(%s).",
270 		           function, line, errstr);
271 		return;
272 	}
273 	ACCESS_ONCE(trans->transaction->aborted) = errno;
274 	/* Wake up anybody who may be waiting on this transaction */
275 	wake_up(&root->fs_info->transaction_wait);
276 	wake_up(&root->fs_info->transaction_blocked_wait);
277 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
278 }
279 /*
280  * __btrfs_panic decodes unexpected, fatal errors from the caller,
281  * issues an alert, and either panics or BUGs, depending on mount options.
282  */
283 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
284 		   unsigned int line, int errno, const char *fmt, ...)
285 {
286 	char *s_id = "<unknown>";
287 	const char *errstr;
288 	struct va_format vaf = { .fmt = fmt };
289 	va_list args;
290 
291 	if (fs_info)
292 		s_id = fs_info->sb->s_id;
293 
294 	va_start(args, fmt);
295 	vaf.va = &args;
296 
297 	errstr = btrfs_decode_error(errno);
298 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
299 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
300 			s_id, function, line, &vaf, errno, errstr);
301 
302 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
303 		   function, line, &vaf, errno, errstr);
304 	va_end(args);
305 	/* Caller calls BUG() */
306 }
307 
308 static void btrfs_put_super(struct super_block *sb)
309 {
310 	(void)close_ctree(btrfs_sb(sb)->tree_root);
311 	/* FIXME: need to fix VFS to return error? */
312 	/* AV: return it _where_?  ->put_super() can be triggered by any number
313 	 * of async events, up to and including delivery of SIGKILL to the
314 	 * last process that kept it busy.  Or segfault in the aforementioned
315 	 * process...  Whom would you report that to?
316 	 */
317 }
318 
319 enum {
320 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
321 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
322 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
323 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
324 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
325 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
326 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
327 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
328 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
329 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
330 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
331 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
332 	Opt_datasum, Opt_treelog, Opt_noinode_cache,
333 	Opt_err,
334 };
335 
336 static match_table_t tokens = {
337 	{Opt_degraded, "degraded"},
338 	{Opt_subvol, "subvol=%s"},
339 	{Opt_subvolid, "subvolid=%s"},
340 	{Opt_device, "device=%s"},
341 	{Opt_nodatasum, "nodatasum"},
342 	{Opt_datasum, "datasum"},
343 	{Opt_nodatacow, "nodatacow"},
344 	{Opt_datacow, "datacow"},
345 	{Opt_nobarrier, "nobarrier"},
346 	{Opt_barrier, "barrier"},
347 	{Opt_max_inline, "max_inline=%s"},
348 	{Opt_alloc_start, "alloc_start=%s"},
349 	{Opt_thread_pool, "thread_pool=%d"},
350 	{Opt_compress, "compress"},
351 	{Opt_compress_type, "compress=%s"},
352 	{Opt_compress_force, "compress-force"},
353 	{Opt_compress_force_type, "compress-force=%s"},
354 	{Opt_ssd, "ssd"},
355 	{Opt_ssd_spread, "ssd_spread"},
356 	{Opt_nossd, "nossd"},
357 	{Opt_acl, "acl"},
358 	{Opt_noacl, "noacl"},
359 	{Opt_notreelog, "notreelog"},
360 	{Opt_treelog, "treelog"},
361 	{Opt_flushoncommit, "flushoncommit"},
362 	{Opt_noflushoncommit, "noflushoncommit"},
363 	{Opt_ratio, "metadata_ratio=%d"},
364 	{Opt_discard, "discard"},
365 	{Opt_nodiscard, "nodiscard"},
366 	{Opt_space_cache, "space_cache"},
367 	{Opt_clear_cache, "clear_cache"},
368 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
369 	{Opt_enospc_debug, "enospc_debug"},
370 	{Opt_noenospc_debug, "noenospc_debug"},
371 	{Opt_subvolrootid, "subvolrootid=%d"},
372 	{Opt_defrag, "autodefrag"},
373 	{Opt_nodefrag, "noautodefrag"},
374 	{Opt_inode_cache, "inode_cache"},
375 	{Opt_noinode_cache, "noinode_cache"},
376 	{Opt_no_space_cache, "nospace_cache"},
377 	{Opt_recovery, "recovery"},
378 	{Opt_skip_balance, "skip_balance"},
379 	{Opt_check_integrity, "check_int"},
380 	{Opt_check_integrity_including_extent_data, "check_int_data"},
381 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
382 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
383 	{Opt_fatal_errors, "fatal_errors=%s"},
384 	{Opt_commit_interval, "commit=%d"},
385 	{Opt_err, NULL},
386 };
387 
388 /*
389  * Regular mount options parser.  Everything that is needed only when
390  * reading in a new superblock is parsed here.
391  * XXX JDM: This needs to be cleaned up for remount.
392  */
393 int btrfs_parse_options(struct btrfs_root *root, char *options)
394 {
395 	struct btrfs_fs_info *info = root->fs_info;
396 	substring_t args[MAX_OPT_ARGS];
397 	char *p, *num, *orig = NULL;
398 	u64 cache_gen;
399 	int intarg;
400 	int ret = 0;
401 	char *compress_type;
402 	bool compress_force = false;
403 	bool compress = false;
404 
405 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
406 	if (cache_gen)
407 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
408 
409 	if (!options)
410 		goto out;
411 
412 	/*
413 	 * strsep changes the string, duplicate it because parse_options
414 	 * gets called twice
415 	 */
416 	options = kstrdup(options, GFP_NOFS);
417 	if (!options)
418 		return -ENOMEM;
419 
420 	orig = options;
421 
422 	while ((p = strsep(&options, ",")) != NULL) {
423 		int token;
424 		if (!*p)
425 			continue;
426 
427 		token = match_token(p, tokens, args);
428 		switch (token) {
429 		case Opt_degraded:
430 			btrfs_info(root->fs_info, "allowing degraded mounts");
431 			btrfs_set_opt(info->mount_opt, DEGRADED);
432 			break;
433 		case Opt_subvol:
434 		case Opt_subvolid:
435 		case Opt_subvolrootid:
436 		case Opt_device:
437 			/*
438 			 * These are parsed by btrfs_parse_early_options
439 			 * and can be happily ignored here.
440 			 */
441 			break;
442 		case Opt_nodatasum:
443 			btrfs_set_and_info(root, NODATASUM,
444 					   "setting nodatasum");
445 			break;
446 		case Opt_datasum:
447 			if (btrfs_test_opt(root, NODATASUM)) {
448 				if (btrfs_test_opt(root, NODATACOW))
449 					btrfs_info(root->fs_info, "setting datasum, datacow enabled");
450 				else
451 					btrfs_info(root->fs_info, "setting datasum");
452 			}
453 			btrfs_clear_opt(info->mount_opt, NODATACOW);
454 			btrfs_clear_opt(info->mount_opt, NODATASUM);
455 			break;
456 		case Opt_nodatacow:
457 			if (!btrfs_test_opt(root, NODATACOW)) {
458 				if (!btrfs_test_opt(root, COMPRESS) ||
459 				    !btrfs_test_opt(root, FORCE_COMPRESS)) {
460 					btrfs_info(root->fs_info,
461 						   "setting nodatacow, compression disabled");
462 				} else {
463 					btrfs_info(root->fs_info, "setting nodatacow");
464 				}
465 			}
466 			btrfs_clear_opt(info->mount_opt, COMPRESS);
467 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
468 			btrfs_set_opt(info->mount_opt, NODATACOW);
469 			btrfs_set_opt(info->mount_opt, NODATASUM);
470 			break;
471 		case Opt_datacow:
472 			btrfs_clear_and_info(root, NODATACOW,
473 					     "setting datacow");
474 			break;
475 		case Opt_compress_force:
476 		case Opt_compress_force_type:
477 			compress_force = true;
478 			/* Fallthrough */
479 		case Opt_compress:
480 		case Opt_compress_type:
481 			compress = true;
482 			if (token == Opt_compress ||
483 			    token == Opt_compress_force ||
484 			    strcmp(args[0].from, "zlib") == 0) {
485 				compress_type = "zlib";
486 				info->compress_type = BTRFS_COMPRESS_ZLIB;
487 				btrfs_set_opt(info->mount_opt, COMPRESS);
488 				btrfs_clear_opt(info->mount_opt, NODATACOW);
489 				btrfs_clear_opt(info->mount_opt, NODATASUM);
490 			} else if (strcmp(args[0].from, "lzo") == 0) {
491 				compress_type = "lzo";
492 				info->compress_type = BTRFS_COMPRESS_LZO;
493 				btrfs_set_opt(info->mount_opt, COMPRESS);
494 				btrfs_clear_opt(info->mount_opt, NODATACOW);
495 				btrfs_clear_opt(info->mount_opt, NODATASUM);
496 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
497 			} else if (strncmp(args[0].from, "no", 2) == 0) {
498 				compress_type = "no";
499 				btrfs_clear_opt(info->mount_opt, COMPRESS);
500 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
501 				compress_force = false;
502 			} else {
503 				ret = -EINVAL;
504 				goto out;
505 			}
506 
507 			if (compress_force) {
508 				btrfs_set_and_info(root, FORCE_COMPRESS,
509 						   "force %s compression",
510 						   compress_type);
511 			} else if (compress) {
512 				if (!btrfs_test_opt(root, COMPRESS))
513 					btrfs_info(root->fs_info,
514 						   "btrfs: use %s compression",
515 						   compress_type);
516 			}
517 			break;
518 		case Opt_ssd:
519 			btrfs_set_and_info(root, SSD,
520 					   "use ssd allocation scheme");
521 			break;
522 		case Opt_ssd_spread:
523 			btrfs_set_and_info(root, SSD_SPREAD,
524 					   "use spread ssd allocation scheme");
525 			btrfs_set_opt(info->mount_opt, SSD);
526 			break;
527 		case Opt_nossd:
528 			btrfs_set_and_info(root, NOSSD,
529 					     "not using ssd allocation scheme");
530 			btrfs_clear_opt(info->mount_opt, SSD);
531 			break;
532 		case Opt_barrier:
533 			btrfs_clear_and_info(root, NOBARRIER,
534 					     "turning on barriers");
535 			break;
536 		case Opt_nobarrier:
537 			btrfs_set_and_info(root, NOBARRIER,
538 					   "turning off barriers");
539 			break;
540 		case Opt_thread_pool:
541 			ret = match_int(&args[0], &intarg);
542 			if (ret) {
543 				goto out;
544 			} else if (intarg > 0) {
545 				info->thread_pool_size = intarg;
546 			} else {
547 				ret = -EINVAL;
548 				goto out;
549 			}
550 			break;
551 		case Opt_max_inline:
552 			num = match_strdup(&args[0]);
553 			if (num) {
554 				info->max_inline = memparse(num, NULL);
555 				kfree(num);
556 
557 				if (info->max_inline) {
558 					info->max_inline = min_t(u64,
559 						info->max_inline,
560 						root->sectorsize);
561 				}
562 				btrfs_info(root->fs_info, "max_inline at %llu",
563 					info->max_inline);
564 			} else {
565 				ret = -ENOMEM;
566 				goto out;
567 			}
568 			break;
569 		case Opt_alloc_start:
570 			num = match_strdup(&args[0]);
571 			if (num) {
572 				mutex_lock(&info->chunk_mutex);
573 				info->alloc_start = memparse(num, NULL);
574 				mutex_unlock(&info->chunk_mutex);
575 				kfree(num);
576 				btrfs_info(root->fs_info, "allocations start at %llu",
577 					info->alloc_start);
578 			} else {
579 				ret = -ENOMEM;
580 				goto out;
581 			}
582 			break;
583 		case Opt_acl:
584 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
585 			root->fs_info->sb->s_flags |= MS_POSIXACL;
586 			break;
587 #else
588 			btrfs_err(root->fs_info,
589 				"support for ACL not compiled in!");
590 			ret = -EINVAL;
591 			goto out;
592 #endif
593 		case Opt_noacl:
594 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
595 			break;
596 		case Opt_notreelog:
597 			btrfs_set_and_info(root, NOTREELOG,
598 					   "disabling tree log");
599 			break;
600 		case Opt_treelog:
601 			btrfs_clear_and_info(root, NOTREELOG,
602 					     "enabling tree log");
603 			break;
604 		case Opt_flushoncommit:
605 			btrfs_set_and_info(root, FLUSHONCOMMIT,
606 					   "turning on flush-on-commit");
607 			break;
608 		case Opt_noflushoncommit:
609 			btrfs_clear_and_info(root, FLUSHONCOMMIT,
610 					     "turning off flush-on-commit");
611 			break;
612 		case Opt_ratio:
613 			ret = match_int(&args[0], &intarg);
614 			if (ret) {
615 				goto out;
616 			} else if (intarg >= 0) {
617 				info->metadata_ratio = intarg;
618 				btrfs_info(root->fs_info, "metadata ratio %d",
619 				       info->metadata_ratio);
620 			} else {
621 				ret = -EINVAL;
622 				goto out;
623 			}
624 			break;
625 		case Opt_discard:
626 			btrfs_set_and_info(root, DISCARD,
627 					   "turning on discard");
628 			break;
629 		case Opt_nodiscard:
630 			btrfs_clear_and_info(root, DISCARD,
631 					     "turning off discard");
632 			break;
633 		case Opt_space_cache:
634 			btrfs_set_and_info(root, SPACE_CACHE,
635 					   "enabling disk space caching");
636 			break;
637 		case Opt_rescan_uuid_tree:
638 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
639 			break;
640 		case Opt_no_space_cache:
641 			btrfs_clear_and_info(root, SPACE_CACHE,
642 					     "disabling disk space caching");
643 			break;
644 		case Opt_inode_cache:
645 			btrfs_set_and_info(root, CHANGE_INODE_CACHE,
646 					   "enabling inode map caching");
647 			break;
648 		case Opt_noinode_cache:
649 			btrfs_clear_and_info(root, CHANGE_INODE_CACHE,
650 					     "disabling inode map caching");
651 			break;
652 		case Opt_clear_cache:
653 			btrfs_set_and_info(root, CLEAR_CACHE,
654 					   "force clearing of disk cache");
655 			break;
656 		case Opt_user_subvol_rm_allowed:
657 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
658 			break;
659 		case Opt_enospc_debug:
660 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
661 			break;
662 		case Opt_noenospc_debug:
663 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
664 			break;
665 		case Opt_defrag:
666 			btrfs_set_and_info(root, AUTO_DEFRAG,
667 					   "enabling auto defrag");
668 			break;
669 		case Opt_nodefrag:
670 			btrfs_clear_and_info(root, AUTO_DEFRAG,
671 					     "disabling auto defrag");
672 			break;
673 		case Opt_recovery:
674 			btrfs_info(root->fs_info, "enabling auto recovery");
675 			btrfs_set_opt(info->mount_opt, RECOVERY);
676 			break;
677 		case Opt_skip_balance:
678 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
679 			break;
680 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
681 		case Opt_check_integrity_including_extent_data:
682 			btrfs_info(root->fs_info,
683 				   "enabling check integrity including extent data");
684 			btrfs_set_opt(info->mount_opt,
685 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
686 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
687 			break;
688 		case Opt_check_integrity:
689 			btrfs_info(root->fs_info, "enabling check integrity");
690 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
691 			break;
692 		case Opt_check_integrity_print_mask:
693 			ret = match_int(&args[0], &intarg);
694 			if (ret) {
695 				goto out;
696 			} else if (intarg >= 0) {
697 				info->check_integrity_print_mask = intarg;
698 				btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
699 				       info->check_integrity_print_mask);
700 			} else {
701 				ret = -EINVAL;
702 				goto out;
703 			}
704 			break;
705 #else
706 		case Opt_check_integrity_including_extent_data:
707 		case Opt_check_integrity:
708 		case Opt_check_integrity_print_mask:
709 			btrfs_err(root->fs_info,
710 				"support for check_integrity* not compiled in!");
711 			ret = -EINVAL;
712 			goto out;
713 #endif
714 		case Opt_fatal_errors:
715 			if (strcmp(args[0].from, "panic") == 0)
716 				btrfs_set_opt(info->mount_opt,
717 					      PANIC_ON_FATAL_ERROR);
718 			else if (strcmp(args[0].from, "bug") == 0)
719 				btrfs_clear_opt(info->mount_opt,
720 					      PANIC_ON_FATAL_ERROR);
721 			else {
722 				ret = -EINVAL;
723 				goto out;
724 			}
725 			break;
726 		case Opt_commit_interval:
727 			intarg = 0;
728 			ret = match_int(&args[0], &intarg);
729 			if (ret < 0) {
730 				btrfs_err(root->fs_info, "invalid commit interval");
731 				ret = -EINVAL;
732 				goto out;
733 			}
734 			if (intarg > 0) {
735 				if (intarg > 300) {
736 					btrfs_warn(root->fs_info, "excessive commit interval %d",
737 							intarg);
738 				}
739 				info->commit_interval = intarg;
740 			} else {
741 				btrfs_info(root->fs_info, "using default commit interval %ds",
742 				    BTRFS_DEFAULT_COMMIT_INTERVAL);
743 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
744 			}
745 			break;
746 		case Opt_err:
747 			btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
748 			ret = -EINVAL;
749 			goto out;
750 		default:
751 			break;
752 		}
753 	}
754 out:
755 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
756 		btrfs_info(root->fs_info, "disk space caching is enabled");
757 	kfree(orig);
758 	return ret;
759 }
760 
761 /*
762  * Parse mount options that are required early in the mount process.
763  *
764  * All other options will be parsed on much later in the mount process and
765  * only when we need to allocate a new super block.
766  */
767 static int btrfs_parse_early_options(const char *options, fmode_t flags,
768 		void *holder, char **subvol_name, u64 *subvol_objectid,
769 		struct btrfs_fs_devices **fs_devices)
770 {
771 	substring_t args[MAX_OPT_ARGS];
772 	char *device_name, *opts, *orig, *p;
773 	char *num = NULL;
774 	int error = 0;
775 
776 	if (!options)
777 		return 0;
778 
779 	/*
780 	 * strsep changes the string, duplicate it because parse_options
781 	 * gets called twice
782 	 */
783 	opts = kstrdup(options, GFP_KERNEL);
784 	if (!opts)
785 		return -ENOMEM;
786 	orig = opts;
787 
788 	while ((p = strsep(&opts, ",")) != NULL) {
789 		int token;
790 		if (!*p)
791 			continue;
792 
793 		token = match_token(p, tokens, args);
794 		switch (token) {
795 		case Opt_subvol:
796 			kfree(*subvol_name);
797 			*subvol_name = match_strdup(&args[0]);
798 			if (!*subvol_name) {
799 				error = -ENOMEM;
800 				goto out;
801 			}
802 			break;
803 		case Opt_subvolid:
804 			num = match_strdup(&args[0]);
805 			if (num) {
806 				*subvol_objectid = memparse(num, NULL);
807 				kfree(num);
808 				/* we want the original fs_tree */
809 				if (!*subvol_objectid)
810 					*subvol_objectid =
811 						BTRFS_FS_TREE_OBJECTID;
812 			} else {
813 				error = -EINVAL;
814 				goto out;
815 			}
816 			break;
817 		case Opt_subvolrootid:
818 			printk(KERN_WARNING
819 				"BTRFS: 'subvolrootid' mount option is deprecated and has "
820 				"no effect\n");
821 			break;
822 		case Opt_device:
823 			device_name = match_strdup(&args[0]);
824 			if (!device_name) {
825 				error = -ENOMEM;
826 				goto out;
827 			}
828 			error = btrfs_scan_one_device(device_name,
829 					flags, holder, fs_devices);
830 			kfree(device_name);
831 			if (error)
832 				goto out;
833 			break;
834 		default:
835 			break;
836 		}
837 	}
838 
839 out:
840 	kfree(orig);
841 	return error;
842 }
843 
844 static struct dentry *get_default_root(struct super_block *sb,
845 				       u64 subvol_objectid)
846 {
847 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
848 	struct btrfs_root *root = fs_info->tree_root;
849 	struct btrfs_root *new_root;
850 	struct btrfs_dir_item *di;
851 	struct btrfs_path *path;
852 	struct btrfs_key location;
853 	struct inode *inode;
854 	u64 dir_id;
855 	int new = 0;
856 
857 	/*
858 	 * We have a specific subvol we want to mount, just setup location and
859 	 * go look up the root.
860 	 */
861 	if (subvol_objectid) {
862 		location.objectid = subvol_objectid;
863 		location.type = BTRFS_ROOT_ITEM_KEY;
864 		location.offset = (u64)-1;
865 		goto find_root;
866 	}
867 
868 	path = btrfs_alloc_path();
869 	if (!path)
870 		return ERR_PTR(-ENOMEM);
871 	path->leave_spinning = 1;
872 
873 	/*
874 	 * Find the "default" dir item which points to the root item that we
875 	 * will mount by default if we haven't been given a specific subvolume
876 	 * to mount.
877 	 */
878 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
879 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
880 	if (IS_ERR(di)) {
881 		btrfs_free_path(path);
882 		return ERR_CAST(di);
883 	}
884 	if (!di) {
885 		/*
886 		 * Ok the default dir item isn't there.  This is weird since
887 		 * it's always been there, but don't freak out, just try and
888 		 * mount to root most subvolume.
889 		 */
890 		btrfs_free_path(path);
891 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
892 		new_root = fs_info->fs_root;
893 		goto setup_root;
894 	}
895 
896 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
897 	btrfs_free_path(path);
898 
899 find_root:
900 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
901 	if (IS_ERR(new_root))
902 		return ERR_CAST(new_root);
903 
904 	dir_id = btrfs_root_dirid(&new_root->root_item);
905 setup_root:
906 	location.objectid = dir_id;
907 	location.type = BTRFS_INODE_ITEM_KEY;
908 	location.offset = 0;
909 
910 	inode = btrfs_iget(sb, &location, new_root, &new);
911 	if (IS_ERR(inode))
912 		return ERR_CAST(inode);
913 
914 	/*
915 	 * If we're just mounting the root most subvol put the inode and return
916 	 * a reference to the dentry.  We will have already gotten a reference
917 	 * to the inode in btrfs_fill_super so we're good to go.
918 	 */
919 	if (!new && sb->s_root->d_inode == inode) {
920 		iput(inode);
921 		return dget(sb->s_root);
922 	}
923 
924 	return d_obtain_root(inode);
925 }
926 
927 static int btrfs_fill_super(struct super_block *sb,
928 			    struct btrfs_fs_devices *fs_devices,
929 			    void *data, int silent)
930 {
931 	struct inode *inode;
932 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
933 	struct btrfs_key key;
934 	int err;
935 
936 	sb->s_maxbytes = MAX_LFS_FILESIZE;
937 	sb->s_magic = BTRFS_SUPER_MAGIC;
938 	sb->s_op = &btrfs_super_ops;
939 	sb->s_d_op = &btrfs_dentry_operations;
940 	sb->s_export_op = &btrfs_export_ops;
941 	sb->s_xattr = btrfs_xattr_handlers;
942 	sb->s_time_gran = 1;
943 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
944 	sb->s_flags |= MS_POSIXACL;
945 #endif
946 	sb->s_flags |= MS_I_VERSION;
947 	err = open_ctree(sb, fs_devices, (char *)data);
948 	if (err) {
949 		printk(KERN_ERR "BTRFS: open_ctree failed\n");
950 		return err;
951 	}
952 
953 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
954 	key.type = BTRFS_INODE_ITEM_KEY;
955 	key.offset = 0;
956 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
957 	if (IS_ERR(inode)) {
958 		err = PTR_ERR(inode);
959 		goto fail_close;
960 	}
961 
962 	sb->s_root = d_make_root(inode);
963 	if (!sb->s_root) {
964 		err = -ENOMEM;
965 		goto fail_close;
966 	}
967 
968 	save_mount_options(sb, data);
969 	cleancache_init_fs(sb);
970 	sb->s_flags |= MS_ACTIVE;
971 	return 0;
972 
973 fail_close:
974 	close_ctree(fs_info->tree_root);
975 	return err;
976 }
977 
978 int btrfs_sync_fs(struct super_block *sb, int wait)
979 {
980 	struct btrfs_trans_handle *trans;
981 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
982 	struct btrfs_root *root = fs_info->tree_root;
983 
984 	trace_btrfs_sync_fs(wait);
985 
986 	if (!wait) {
987 		filemap_flush(fs_info->btree_inode->i_mapping);
988 		return 0;
989 	}
990 
991 	btrfs_wait_ordered_roots(fs_info, -1);
992 
993 	trans = btrfs_attach_transaction_barrier(root);
994 	if (IS_ERR(trans)) {
995 		/* no transaction, don't bother */
996 		if (PTR_ERR(trans) == -ENOENT)
997 			return 0;
998 		return PTR_ERR(trans);
999 	}
1000 	return btrfs_commit_transaction(trans, root);
1001 }
1002 
1003 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1004 {
1005 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1006 	struct btrfs_root *root = info->tree_root;
1007 	char *compress_type;
1008 
1009 	if (btrfs_test_opt(root, DEGRADED))
1010 		seq_puts(seq, ",degraded");
1011 	if (btrfs_test_opt(root, NODATASUM))
1012 		seq_puts(seq, ",nodatasum");
1013 	if (btrfs_test_opt(root, NODATACOW))
1014 		seq_puts(seq, ",nodatacow");
1015 	if (btrfs_test_opt(root, NOBARRIER))
1016 		seq_puts(seq, ",nobarrier");
1017 	if (info->max_inline != 8192 * 1024)
1018 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1019 	if (info->alloc_start != 0)
1020 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1021 	if (info->thread_pool_size !=  min_t(unsigned long,
1022 					     num_online_cpus() + 2, 8))
1023 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1024 	if (btrfs_test_opt(root, COMPRESS)) {
1025 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1026 			compress_type = "zlib";
1027 		else
1028 			compress_type = "lzo";
1029 		if (btrfs_test_opt(root, FORCE_COMPRESS))
1030 			seq_printf(seq, ",compress-force=%s", compress_type);
1031 		else
1032 			seq_printf(seq, ",compress=%s", compress_type);
1033 	}
1034 	if (btrfs_test_opt(root, NOSSD))
1035 		seq_puts(seq, ",nossd");
1036 	if (btrfs_test_opt(root, SSD_SPREAD))
1037 		seq_puts(seq, ",ssd_spread");
1038 	else if (btrfs_test_opt(root, SSD))
1039 		seq_puts(seq, ",ssd");
1040 	if (btrfs_test_opt(root, NOTREELOG))
1041 		seq_puts(seq, ",notreelog");
1042 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
1043 		seq_puts(seq, ",flushoncommit");
1044 	if (btrfs_test_opt(root, DISCARD))
1045 		seq_puts(seq, ",discard");
1046 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1047 		seq_puts(seq, ",noacl");
1048 	if (btrfs_test_opt(root, SPACE_CACHE))
1049 		seq_puts(seq, ",space_cache");
1050 	else
1051 		seq_puts(seq, ",nospace_cache");
1052 	if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1053 		seq_puts(seq, ",rescan_uuid_tree");
1054 	if (btrfs_test_opt(root, CLEAR_CACHE))
1055 		seq_puts(seq, ",clear_cache");
1056 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1057 		seq_puts(seq, ",user_subvol_rm_allowed");
1058 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
1059 		seq_puts(seq, ",enospc_debug");
1060 	if (btrfs_test_opt(root, AUTO_DEFRAG))
1061 		seq_puts(seq, ",autodefrag");
1062 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
1063 		seq_puts(seq, ",inode_cache");
1064 	if (btrfs_test_opt(root, SKIP_BALANCE))
1065 		seq_puts(seq, ",skip_balance");
1066 	if (btrfs_test_opt(root, RECOVERY))
1067 		seq_puts(seq, ",recovery");
1068 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1069 	if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1070 		seq_puts(seq, ",check_int_data");
1071 	else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1072 		seq_puts(seq, ",check_int");
1073 	if (info->check_integrity_print_mask)
1074 		seq_printf(seq, ",check_int_print_mask=%d",
1075 				info->check_integrity_print_mask);
1076 #endif
1077 	if (info->metadata_ratio)
1078 		seq_printf(seq, ",metadata_ratio=%d",
1079 				info->metadata_ratio);
1080 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1081 		seq_puts(seq, ",fatal_errors=panic");
1082 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1083 		seq_printf(seq, ",commit=%d", info->commit_interval);
1084 	return 0;
1085 }
1086 
1087 static int btrfs_test_super(struct super_block *s, void *data)
1088 {
1089 	struct btrfs_fs_info *p = data;
1090 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1091 
1092 	return fs_info->fs_devices == p->fs_devices;
1093 }
1094 
1095 static int btrfs_set_super(struct super_block *s, void *data)
1096 {
1097 	int err = set_anon_super(s, data);
1098 	if (!err)
1099 		s->s_fs_info = data;
1100 	return err;
1101 }
1102 
1103 /*
1104  * subvolumes are identified by ino 256
1105  */
1106 static inline int is_subvolume_inode(struct inode *inode)
1107 {
1108 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1109 		return 1;
1110 	return 0;
1111 }
1112 
1113 /*
1114  * This will strip out the subvol=%s argument for an argument string and add
1115  * subvolid=0 to make sure we get the actual tree root for path walking to the
1116  * subvol we want.
1117  */
1118 static char *setup_root_args(char *args)
1119 {
1120 	unsigned len = strlen(args) + 2 + 1;
1121 	char *src, *dst, *buf;
1122 
1123 	/*
1124 	 * We need the same args as before, but with this substitution:
1125 	 * s!subvol=[^,]+!subvolid=0!
1126 	 *
1127 	 * Since the replacement string is up to 2 bytes longer than the
1128 	 * original, allocate strlen(args) + 2 + 1 bytes.
1129 	 */
1130 
1131 	src = strstr(args, "subvol=");
1132 	/* This shouldn't happen, but just in case.. */
1133 	if (!src)
1134 		return NULL;
1135 
1136 	buf = dst = kmalloc(len, GFP_NOFS);
1137 	if (!buf)
1138 		return NULL;
1139 
1140 	/*
1141 	 * If the subvol= arg is not at the start of the string,
1142 	 * copy whatever precedes it into buf.
1143 	 */
1144 	if (src != args) {
1145 		*src++ = '\0';
1146 		strcpy(buf, args);
1147 		dst += strlen(args);
1148 	}
1149 
1150 	strcpy(dst, "subvolid=0");
1151 	dst += strlen("subvolid=0");
1152 
1153 	/*
1154 	 * If there is a "," after the original subvol=... string,
1155 	 * copy that suffix into our buffer.  Otherwise, we're done.
1156 	 */
1157 	src = strchr(src, ',');
1158 	if (src)
1159 		strcpy(dst, src);
1160 
1161 	return buf;
1162 }
1163 
1164 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1165 				   const char *device_name, char *data)
1166 {
1167 	struct dentry *root;
1168 	struct vfsmount *mnt;
1169 	char *newargs;
1170 
1171 	newargs = setup_root_args(data);
1172 	if (!newargs)
1173 		return ERR_PTR(-ENOMEM);
1174 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1175 			     newargs);
1176 
1177 	if (PTR_RET(mnt) == -EBUSY) {
1178 		if (flags & MS_RDONLY) {
1179 			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name,
1180 					     newargs);
1181 		} else {
1182 			int r;
1183 			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name,
1184 					     newargs);
1185 			if (IS_ERR(mnt)) {
1186 				kfree(newargs);
1187 				return ERR_CAST(mnt);
1188 			}
1189 
1190 			r = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1191 			if (r < 0) {
1192 				/* FIXME: release vfsmount mnt ??*/
1193 				kfree(newargs);
1194 				return ERR_PTR(r);
1195 			}
1196 		}
1197 	}
1198 
1199 	kfree(newargs);
1200 
1201 	if (IS_ERR(mnt))
1202 		return ERR_CAST(mnt);
1203 
1204 	root = mount_subtree(mnt, subvol_name);
1205 
1206 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1207 		struct super_block *s = root->d_sb;
1208 		dput(root);
1209 		root = ERR_PTR(-EINVAL);
1210 		deactivate_locked_super(s);
1211 		printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1212 				subvol_name);
1213 	}
1214 
1215 	return root;
1216 }
1217 
1218 /*
1219  * Find a superblock for the given device / mount point.
1220  *
1221  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1222  *	  for multiple device setup.  Make sure to keep it in sync.
1223  */
1224 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1225 		const char *device_name, void *data)
1226 {
1227 	struct block_device *bdev = NULL;
1228 	struct super_block *s;
1229 	struct dentry *root;
1230 	struct btrfs_fs_devices *fs_devices = NULL;
1231 	struct btrfs_fs_info *fs_info = NULL;
1232 	fmode_t mode = FMODE_READ;
1233 	char *subvol_name = NULL;
1234 	u64 subvol_objectid = 0;
1235 	int error = 0;
1236 
1237 	if (!(flags & MS_RDONLY))
1238 		mode |= FMODE_WRITE;
1239 
1240 	error = btrfs_parse_early_options(data, mode, fs_type,
1241 					  &subvol_name, &subvol_objectid,
1242 					  &fs_devices);
1243 	if (error) {
1244 		kfree(subvol_name);
1245 		return ERR_PTR(error);
1246 	}
1247 
1248 	if (subvol_name) {
1249 		root = mount_subvol(subvol_name, flags, device_name, data);
1250 		kfree(subvol_name);
1251 		return root;
1252 	}
1253 
1254 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1255 	if (error)
1256 		return ERR_PTR(error);
1257 
1258 	/*
1259 	 * Setup a dummy root and fs_info for test/set super.  This is because
1260 	 * we don't actually fill this stuff out until open_ctree, but we need
1261 	 * it for searching for existing supers, so this lets us do that and
1262 	 * then open_ctree will properly initialize everything later.
1263 	 */
1264 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1265 	if (!fs_info)
1266 		return ERR_PTR(-ENOMEM);
1267 
1268 	fs_info->fs_devices = fs_devices;
1269 
1270 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1271 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1272 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1273 		error = -ENOMEM;
1274 		goto error_fs_info;
1275 	}
1276 
1277 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1278 	if (error)
1279 		goto error_fs_info;
1280 
1281 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1282 		error = -EACCES;
1283 		goto error_close_devices;
1284 	}
1285 
1286 	bdev = fs_devices->latest_bdev;
1287 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1288 		 fs_info);
1289 	if (IS_ERR(s)) {
1290 		error = PTR_ERR(s);
1291 		goto error_close_devices;
1292 	}
1293 
1294 	if (s->s_root) {
1295 		btrfs_close_devices(fs_devices);
1296 		free_fs_info(fs_info);
1297 		if ((flags ^ s->s_flags) & MS_RDONLY)
1298 			error = -EBUSY;
1299 	} else {
1300 		char b[BDEVNAME_SIZE];
1301 
1302 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1303 		btrfs_sb(s)->bdev_holder = fs_type;
1304 		error = btrfs_fill_super(s, fs_devices, data,
1305 					 flags & MS_SILENT ? 1 : 0);
1306 	}
1307 
1308 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1309 	if (IS_ERR(root))
1310 		deactivate_locked_super(s);
1311 
1312 	return root;
1313 
1314 error_close_devices:
1315 	btrfs_close_devices(fs_devices);
1316 error_fs_info:
1317 	free_fs_info(fs_info);
1318 	return ERR_PTR(error);
1319 }
1320 
1321 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1322 				     int new_pool_size, int old_pool_size)
1323 {
1324 	if (new_pool_size == old_pool_size)
1325 		return;
1326 
1327 	fs_info->thread_pool_size = new_pool_size;
1328 
1329 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1330 	       old_pool_size, new_pool_size);
1331 
1332 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1333 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1334 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1335 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1336 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1337 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1338 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1339 				new_pool_size);
1340 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1341 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1342 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1343 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1344 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1345 				new_pool_size);
1346 }
1347 
1348 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1349 {
1350 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1351 }
1352 
1353 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1354 				       unsigned long old_opts, int flags)
1355 {
1356 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1357 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1358 	     (flags & MS_RDONLY))) {
1359 		/* wait for any defraggers to finish */
1360 		wait_event(fs_info->transaction_wait,
1361 			   (atomic_read(&fs_info->defrag_running) == 0));
1362 		if (flags & MS_RDONLY)
1363 			sync_filesystem(fs_info->sb);
1364 	}
1365 }
1366 
1367 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1368 					 unsigned long old_opts)
1369 {
1370 	/*
1371 	 * We need cleanup all defragable inodes if the autodefragment is
1372 	 * close or the fs is R/O.
1373 	 */
1374 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1375 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1376 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1377 		btrfs_cleanup_defrag_inodes(fs_info);
1378 	}
1379 
1380 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1381 }
1382 
1383 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1384 {
1385 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1386 	struct btrfs_root *root = fs_info->tree_root;
1387 	unsigned old_flags = sb->s_flags;
1388 	unsigned long old_opts = fs_info->mount_opt;
1389 	unsigned long old_compress_type = fs_info->compress_type;
1390 	u64 old_max_inline = fs_info->max_inline;
1391 	u64 old_alloc_start = fs_info->alloc_start;
1392 	int old_thread_pool_size = fs_info->thread_pool_size;
1393 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1394 	int ret;
1395 
1396 	sync_filesystem(sb);
1397 	btrfs_remount_prepare(fs_info);
1398 
1399 	ret = btrfs_parse_options(root, data);
1400 	if (ret) {
1401 		ret = -EINVAL;
1402 		goto restore;
1403 	}
1404 
1405 	btrfs_remount_begin(fs_info, old_opts, *flags);
1406 	btrfs_resize_thread_pool(fs_info,
1407 		fs_info->thread_pool_size, old_thread_pool_size);
1408 
1409 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1410 		goto out;
1411 
1412 	if (*flags & MS_RDONLY) {
1413 		/*
1414 		 * this also happens on 'umount -rf' or on shutdown, when
1415 		 * the filesystem is busy.
1416 		 */
1417 		cancel_work_sync(&fs_info->async_reclaim_work);
1418 
1419 		/* wait for the uuid_scan task to finish */
1420 		down(&fs_info->uuid_tree_rescan_sem);
1421 		/* avoid complains from lockdep et al. */
1422 		up(&fs_info->uuid_tree_rescan_sem);
1423 
1424 		sb->s_flags |= MS_RDONLY;
1425 
1426 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1427 		btrfs_scrub_cancel(fs_info);
1428 		btrfs_pause_balance(fs_info);
1429 
1430 		ret = btrfs_commit_super(root);
1431 		if (ret)
1432 			goto restore;
1433 	} else {
1434 		if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1435 			btrfs_err(fs_info,
1436 				"Remounting read-write after error is not allowed");
1437 			ret = -EINVAL;
1438 			goto restore;
1439 		}
1440 		if (fs_info->fs_devices->rw_devices == 0) {
1441 			ret = -EACCES;
1442 			goto restore;
1443 		}
1444 
1445 		if (fs_info->fs_devices->missing_devices >
1446 		     fs_info->num_tolerated_disk_barrier_failures &&
1447 		    !(*flags & MS_RDONLY)) {
1448 			btrfs_warn(fs_info,
1449 				"too many missing devices, writeable remount is not allowed");
1450 			ret = -EACCES;
1451 			goto restore;
1452 		}
1453 
1454 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1455 			ret = -EINVAL;
1456 			goto restore;
1457 		}
1458 
1459 		ret = btrfs_cleanup_fs_roots(fs_info);
1460 		if (ret)
1461 			goto restore;
1462 
1463 		/* recover relocation */
1464 		mutex_lock(&fs_info->cleaner_mutex);
1465 		ret = btrfs_recover_relocation(root);
1466 		mutex_unlock(&fs_info->cleaner_mutex);
1467 		if (ret)
1468 			goto restore;
1469 
1470 		ret = btrfs_resume_balance_async(fs_info);
1471 		if (ret)
1472 			goto restore;
1473 
1474 		ret = btrfs_resume_dev_replace_async(fs_info);
1475 		if (ret) {
1476 			btrfs_warn(fs_info, "failed to resume dev_replace");
1477 			goto restore;
1478 		}
1479 
1480 		if (!fs_info->uuid_root) {
1481 			btrfs_info(fs_info, "creating UUID tree");
1482 			ret = btrfs_create_uuid_tree(fs_info);
1483 			if (ret) {
1484 				btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1485 				goto restore;
1486 			}
1487 		}
1488 		sb->s_flags &= ~MS_RDONLY;
1489 	}
1490 out:
1491 	wake_up_process(fs_info->transaction_kthread);
1492 	btrfs_remount_cleanup(fs_info, old_opts);
1493 	return 0;
1494 
1495 restore:
1496 	/* We've hit an error - don't reset MS_RDONLY */
1497 	if (sb->s_flags & MS_RDONLY)
1498 		old_flags |= MS_RDONLY;
1499 	sb->s_flags = old_flags;
1500 	fs_info->mount_opt = old_opts;
1501 	fs_info->compress_type = old_compress_type;
1502 	fs_info->max_inline = old_max_inline;
1503 	mutex_lock(&fs_info->chunk_mutex);
1504 	fs_info->alloc_start = old_alloc_start;
1505 	mutex_unlock(&fs_info->chunk_mutex);
1506 	btrfs_resize_thread_pool(fs_info,
1507 		old_thread_pool_size, fs_info->thread_pool_size);
1508 	fs_info->metadata_ratio = old_metadata_ratio;
1509 	btrfs_remount_cleanup(fs_info, old_opts);
1510 	return ret;
1511 }
1512 
1513 /* Used to sort the devices by max_avail(descending sort) */
1514 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1515 				       const void *dev_info2)
1516 {
1517 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1518 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1519 		return -1;
1520 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1521 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1522 		return 1;
1523 	else
1524 	return 0;
1525 }
1526 
1527 /*
1528  * sort the devices by max_avail, in which max free extent size of each device
1529  * is stored.(Descending Sort)
1530  */
1531 static inline void btrfs_descending_sort_devices(
1532 					struct btrfs_device_info *devices,
1533 					size_t nr_devices)
1534 {
1535 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1536 	     btrfs_cmp_device_free_bytes, NULL);
1537 }
1538 
1539 /*
1540  * The helper to calc the free space on the devices that can be used to store
1541  * file data.
1542  */
1543 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1544 {
1545 	struct btrfs_fs_info *fs_info = root->fs_info;
1546 	struct btrfs_device_info *devices_info;
1547 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1548 	struct btrfs_device *device;
1549 	u64 skip_space;
1550 	u64 type;
1551 	u64 avail_space;
1552 	u64 used_space;
1553 	u64 min_stripe_size;
1554 	int min_stripes = 1, num_stripes = 1;
1555 	int i = 0, nr_devices;
1556 	int ret;
1557 
1558 	nr_devices = fs_info->fs_devices->open_devices;
1559 	BUG_ON(!nr_devices);
1560 
1561 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1562 			       GFP_NOFS);
1563 	if (!devices_info)
1564 		return -ENOMEM;
1565 
1566 	/* calc min stripe number for data space alloction */
1567 	type = btrfs_get_alloc_profile(root, 1);
1568 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1569 		min_stripes = 2;
1570 		num_stripes = nr_devices;
1571 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1572 		min_stripes = 2;
1573 		num_stripes = 2;
1574 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1575 		min_stripes = 4;
1576 		num_stripes = 4;
1577 	}
1578 
1579 	if (type & BTRFS_BLOCK_GROUP_DUP)
1580 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1581 	else
1582 		min_stripe_size = BTRFS_STRIPE_LEN;
1583 
1584 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1585 		if (!device->in_fs_metadata || !device->bdev ||
1586 		    device->is_tgtdev_for_dev_replace)
1587 			continue;
1588 
1589 		avail_space = device->total_bytes - device->bytes_used;
1590 
1591 		/* align with stripe_len */
1592 		do_div(avail_space, BTRFS_STRIPE_LEN);
1593 		avail_space *= BTRFS_STRIPE_LEN;
1594 
1595 		/*
1596 		 * In order to avoid overwritting the superblock on the drive,
1597 		 * btrfs starts at an offset of at least 1MB when doing chunk
1598 		 * allocation.
1599 		 */
1600 		skip_space = 1024 * 1024;
1601 
1602 		/* user can set the offset in fs_info->alloc_start. */
1603 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1604 		    device->total_bytes)
1605 			skip_space = max(fs_info->alloc_start, skip_space);
1606 
1607 		/*
1608 		 * btrfs can not use the free space in [0, skip_space - 1],
1609 		 * we must subtract it from the total. In order to implement
1610 		 * it, we account the used space in this range first.
1611 		 */
1612 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1613 						     &used_space);
1614 		if (ret) {
1615 			kfree(devices_info);
1616 			return ret;
1617 		}
1618 
1619 		/* calc the free space in [0, skip_space - 1] */
1620 		skip_space -= used_space;
1621 
1622 		/*
1623 		 * we can use the free space in [0, skip_space - 1], subtract
1624 		 * it from the total.
1625 		 */
1626 		if (avail_space && avail_space >= skip_space)
1627 			avail_space -= skip_space;
1628 		else
1629 			avail_space = 0;
1630 
1631 		if (avail_space < min_stripe_size)
1632 			continue;
1633 
1634 		devices_info[i].dev = device;
1635 		devices_info[i].max_avail = avail_space;
1636 
1637 		i++;
1638 	}
1639 
1640 	nr_devices = i;
1641 
1642 	btrfs_descending_sort_devices(devices_info, nr_devices);
1643 
1644 	i = nr_devices - 1;
1645 	avail_space = 0;
1646 	while (nr_devices >= min_stripes) {
1647 		if (num_stripes > nr_devices)
1648 			num_stripes = nr_devices;
1649 
1650 		if (devices_info[i].max_avail >= min_stripe_size) {
1651 			int j;
1652 			u64 alloc_size;
1653 
1654 			avail_space += devices_info[i].max_avail * num_stripes;
1655 			alloc_size = devices_info[i].max_avail;
1656 			for (j = i + 1 - num_stripes; j <= i; j++)
1657 				devices_info[j].max_avail -= alloc_size;
1658 		}
1659 		i--;
1660 		nr_devices--;
1661 	}
1662 
1663 	kfree(devices_info);
1664 	*free_bytes = avail_space;
1665 	return 0;
1666 }
1667 
1668 /*
1669  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1670  *
1671  * If there's a redundant raid level at DATA block groups, use the respective
1672  * multiplier to scale the sizes.
1673  *
1674  * Unused device space usage is based on simulating the chunk allocator
1675  * algorithm that respects the device sizes, order of allocations and the
1676  * 'alloc_start' value, this is a close approximation of the actual use but
1677  * there are other factors that may change the result (like a new metadata
1678  * chunk).
1679  *
1680  * FIXME: not accurate for mixed block groups, total and free/used are ok,
1681  * available appears slightly larger.
1682  */
1683 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1684 {
1685 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1686 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1687 	struct list_head *head = &fs_info->space_info;
1688 	struct btrfs_space_info *found;
1689 	u64 total_used = 0;
1690 	u64 total_free_data = 0;
1691 	int bits = dentry->d_sb->s_blocksize_bits;
1692 	__be32 *fsid = (__be32 *)fs_info->fsid;
1693 	unsigned factor = 1;
1694 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1695 	int ret;
1696 
1697 	/* holding chunk_muext to avoid allocating new chunks */
1698 	mutex_lock(&fs_info->chunk_mutex);
1699 	rcu_read_lock();
1700 	list_for_each_entry_rcu(found, head, list) {
1701 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1702 			int i;
1703 
1704 			total_free_data += found->disk_total - found->disk_used;
1705 			total_free_data -=
1706 				btrfs_account_ro_block_groups_free_space(found);
1707 
1708 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1709 				if (!list_empty(&found->block_groups[i])) {
1710 					switch (i) {
1711 					case BTRFS_RAID_DUP:
1712 					case BTRFS_RAID_RAID1:
1713 					case BTRFS_RAID_RAID10:
1714 						factor = 2;
1715 					}
1716 				}
1717 			}
1718 		}
1719 
1720 		total_used += found->disk_used;
1721 	}
1722 
1723 	rcu_read_unlock();
1724 
1725 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1726 	buf->f_blocks >>= bits;
1727 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1728 
1729 	/* Account global block reserve as used, it's in logical size already */
1730 	spin_lock(&block_rsv->lock);
1731 	buf->f_bfree -= block_rsv->size >> bits;
1732 	spin_unlock(&block_rsv->lock);
1733 
1734 	buf->f_bavail = total_free_data;
1735 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1736 	if (ret) {
1737 		mutex_unlock(&fs_info->chunk_mutex);
1738 		return ret;
1739 	}
1740 	buf->f_bavail += div_u64(total_free_data, factor);
1741 	buf->f_bavail = buf->f_bavail >> bits;
1742 	mutex_unlock(&fs_info->chunk_mutex);
1743 
1744 	buf->f_type = BTRFS_SUPER_MAGIC;
1745 	buf->f_bsize = dentry->d_sb->s_blocksize;
1746 	buf->f_namelen = BTRFS_NAME_LEN;
1747 
1748 	/* We treat it as constant endianness (it doesn't matter _which_)
1749 	   because we want the fsid to come out the same whether mounted
1750 	   on a big-endian or little-endian host */
1751 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1752 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1753 	/* Mask in the root object ID too, to disambiguate subvols */
1754 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1755 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1756 
1757 	return 0;
1758 }
1759 
1760 static void btrfs_kill_super(struct super_block *sb)
1761 {
1762 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1763 	kill_anon_super(sb);
1764 	free_fs_info(fs_info);
1765 }
1766 
1767 static struct file_system_type btrfs_fs_type = {
1768 	.owner		= THIS_MODULE,
1769 	.name		= "btrfs",
1770 	.mount		= btrfs_mount,
1771 	.kill_sb	= btrfs_kill_super,
1772 	.fs_flags	= FS_REQUIRES_DEV,
1773 };
1774 MODULE_ALIAS_FS("btrfs");
1775 
1776 /*
1777  * used by btrfsctl to scan devices when no FS is mounted
1778  */
1779 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1780 				unsigned long arg)
1781 {
1782 	struct btrfs_ioctl_vol_args *vol;
1783 	struct btrfs_fs_devices *fs_devices;
1784 	int ret = -ENOTTY;
1785 
1786 	if (!capable(CAP_SYS_ADMIN))
1787 		return -EPERM;
1788 
1789 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1790 	if (IS_ERR(vol))
1791 		return PTR_ERR(vol);
1792 
1793 	switch (cmd) {
1794 	case BTRFS_IOC_SCAN_DEV:
1795 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1796 					    &btrfs_fs_type, &fs_devices);
1797 		break;
1798 	case BTRFS_IOC_DEVICES_READY:
1799 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1800 					    &btrfs_fs_type, &fs_devices);
1801 		if (ret)
1802 			break;
1803 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
1804 		break;
1805 	}
1806 
1807 	kfree(vol);
1808 	return ret;
1809 }
1810 
1811 static int btrfs_freeze(struct super_block *sb)
1812 {
1813 	struct btrfs_trans_handle *trans;
1814 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1815 
1816 	trans = btrfs_attach_transaction_barrier(root);
1817 	if (IS_ERR(trans)) {
1818 		/* no transaction, don't bother */
1819 		if (PTR_ERR(trans) == -ENOENT)
1820 			return 0;
1821 		return PTR_ERR(trans);
1822 	}
1823 	return btrfs_commit_transaction(trans, root);
1824 }
1825 
1826 static int btrfs_unfreeze(struct super_block *sb)
1827 {
1828 	return 0;
1829 }
1830 
1831 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1832 {
1833 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1834 	struct btrfs_fs_devices *cur_devices;
1835 	struct btrfs_device *dev, *first_dev = NULL;
1836 	struct list_head *head;
1837 	struct rcu_string *name;
1838 
1839 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1840 	cur_devices = fs_info->fs_devices;
1841 	while (cur_devices) {
1842 		head = &cur_devices->devices;
1843 		list_for_each_entry(dev, head, dev_list) {
1844 			if (dev->missing)
1845 				continue;
1846 			if (!dev->name)
1847 				continue;
1848 			if (!first_dev || dev->devid < first_dev->devid)
1849 				first_dev = dev;
1850 		}
1851 		cur_devices = cur_devices->seed;
1852 	}
1853 
1854 	if (first_dev) {
1855 		rcu_read_lock();
1856 		name = rcu_dereference(first_dev->name);
1857 		seq_escape(m, name->str, " \t\n\\");
1858 		rcu_read_unlock();
1859 	} else {
1860 		WARN_ON(1);
1861 	}
1862 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1863 	return 0;
1864 }
1865 
1866 static const struct super_operations btrfs_super_ops = {
1867 	.drop_inode	= btrfs_drop_inode,
1868 	.evict_inode	= btrfs_evict_inode,
1869 	.put_super	= btrfs_put_super,
1870 	.sync_fs	= btrfs_sync_fs,
1871 	.show_options	= btrfs_show_options,
1872 	.show_devname	= btrfs_show_devname,
1873 	.write_inode	= btrfs_write_inode,
1874 	.alloc_inode	= btrfs_alloc_inode,
1875 	.destroy_inode	= btrfs_destroy_inode,
1876 	.statfs		= btrfs_statfs,
1877 	.remount_fs	= btrfs_remount,
1878 	.freeze_fs	= btrfs_freeze,
1879 	.unfreeze_fs	= btrfs_unfreeze,
1880 };
1881 
1882 static const struct file_operations btrfs_ctl_fops = {
1883 	.unlocked_ioctl	 = btrfs_control_ioctl,
1884 	.compat_ioctl = btrfs_control_ioctl,
1885 	.owner	 = THIS_MODULE,
1886 	.llseek = noop_llseek,
1887 };
1888 
1889 static struct miscdevice btrfs_misc = {
1890 	.minor		= BTRFS_MINOR,
1891 	.name		= "btrfs-control",
1892 	.fops		= &btrfs_ctl_fops
1893 };
1894 
1895 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1896 MODULE_ALIAS("devname:btrfs-control");
1897 
1898 static int btrfs_interface_init(void)
1899 {
1900 	return misc_register(&btrfs_misc);
1901 }
1902 
1903 static void btrfs_interface_exit(void)
1904 {
1905 	if (misc_deregister(&btrfs_misc) < 0)
1906 		printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
1907 }
1908 
1909 static void btrfs_print_info(void)
1910 {
1911 	printk(KERN_INFO "Btrfs loaded"
1912 #ifdef CONFIG_BTRFS_DEBUG
1913 			", debug=on"
1914 #endif
1915 #ifdef CONFIG_BTRFS_ASSERT
1916 			", assert=on"
1917 #endif
1918 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1919 			", integrity-checker=on"
1920 #endif
1921 			"\n");
1922 }
1923 
1924 static int btrfs_run_sanity_tests(void)
1925 {
1926 	int ret;
1927 
1928 	ret = btrfs_init_test_fs();
1929 	if (ret)
1930 		return ret;
1931 
1932 	ret = btrfs_test_free_space_cache();
1933 	if (ret)
1934 		goto out;
1935 	ret = btrfs_test_extent_buffer_operations();
1936 	if (ret)
1937 		goto out;
1938 	ret = btrfs_test_extent_io();
1939 	if (ret)
1940 		goto out;
1941 	ret = btrfs_test_inodes();
1942 	if (ret)
1943 		goto out;
1944 	ret = btrfs_test_qgroups();
1945 out:
1946 	btrfs_destroy_test_fs();
1947 	return ret;
1948 }
1949 
1950 static int __init init_btrfs_fs(void)
1951 {
1952 	int err;
1953 
1954 	err = btrfs_hash_init();
1955 	if (err)
1956 		return err;
1957 
1958 	btrfs_props_init();
1959 
1960 	err = btrfs_init_sysfs();
1961 	if (err)
1962 		goto free_hash;
1963 
1964 	btrfs_init_compress();
1965 
1966 	err = btrfs_init_cachep();
1967 	if (err)
1968 		goto free_compress;
1969 
1970 	err = extent_io_init();
1971 	if (err)
1972 		goto free_cachep;
1973 
1974 	err = extent_map_init();
1975 	if (err)
1976 		goto free_extent_io;
1977 
1978 	err = ordered_data_init();
1979 	if (err)
1980 		goto free_extent_map;
1981 
1982 	err = btrfs_delayed_inode_init();
1983 	if (err)
1984 		goto free_ordered_data;
1985 
1986 	err = btrfs_auto_defrag_init();
1987 	if (err)
1988 		goto free_delayed_inode;
1989 
1990 	err = btrfs_delayed_ref_init();
1991 	if (err)
1992 		goto free_auto_defrag;
1993 
1994 	err = btrfs_prelim_ref_init();
1995 	if (err)
1996 		goto free_prelim_ref;
1997 
1998 	err = btrfs_interface_init();
1999 	if (err)
2000 		goto free_delayed_ref;
2001 
2002 	btrfs_init_lockdep();
2003 
2004 	btrfs_print_info();
2005 
2006 	err = btrfs_run_sanity_tests();
2007 	if (err)
2008 		goto unregister_ioctl;
2009 
2010 	err = register_filesystem(&btrfs_fs_type);
2011 	if (err)
2012 		goto unregister_ioctl;
2013 
2014 	return 0;
2015 
2016 unregister_ioctl:
2017 	btrfs_interface_exit();
2018 free_prelim_ref:
2019 	btrfs_prelim_ref_exit();
2020 free_delayed_ref:
2021 	btrfs_delayed_ref_exit();
2022 free_auto_defrag:
2023 	btrfs_auto_defrag_exit();
2024 free_delayed_inode:
2025 	btrfs_delayed_inode_exit();
2026 free_ordered_data:
2027 	ordered_data_exit();
2028 free_extent_map:
2029 	extent_map_exit();
2030 free_extent_io:
2031 	extent_io_exit();
2032 free_cachep:
2033 	btrfs_destroy_cachep();
2034 free_compress:
2035 	btrfs_exit_compress();
2036 	btrfs_exit_sysfs();
2037 free_hash:
2038 	btrfs_hash_exit();
2039 	return err;
2040 }
2041 
2042 static void __exit exit_btrfs_fs(void)
2043 {
2044 	btrfs_destroy_cachep();
2045 	btrfs_delayed_ref_exit();
2046 	btrfs_auto_defrag_exit();
2047 	btrfs_delayed_inode_exit();
2048 	btrfs_prelim_ref_exit();
2049 	ordered_data_exit();
2050 	extent_map_exit();
2051 	extent_io_exit();
2052 	btrfs_interface_exit();
2053 	unregister_filesystem(&btrfs_fs_type);
2054 	btrfs_exit_sysfs();
2055 	btrfs_cleanup_fs_uuids();
2056 	btrfs_exit_compress();
2057 	btrfs_hash_exit();
2058 }
2059 
2060 late_initcall(init_btrfs_fs);
2061 module_exit(exit_btrfs_fs)
2062 
2063 MODULE_LICENSE("GPL");
2064