xref: /openbmc/linux/fs/btrfs/super.c (revision fca3aa16)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/buffer_head.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/seq_file.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/mount.h>
18 #include <linux/mpage.h>
19 #include <linux/swap.h>
20 #include <linux/writeback.h>
21 #include <linux/statfs.h>
22 #include <linux/compat.h>
23 #include <linux/parser.h>
24 #include <linux/ctype.h>
25 #include <linux/namei.h>
26 #include <linux/miscdevice.h>
27 #include <linux/magic.h>
28 #include <linux/slab.h>
29 #include <linux/cleancache.h>
30 #include <linux/ratelimit.h>
31 #include <linux/crc32c.h>
32 #include <linux/btrfs.h>
33 #include "delayed-inode.h"
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "props.h"
40 #include "xattr.h"
41 #include "volumes.h"
42 #include "export.h"
43 #include "compression.h"
44 #include "rcu-string.h"
45 #include "dev-replace.h"
46 #include "free-space-cache.h"
47 #include "backref.h"
48 #include "tests/btrfs-tests.h"
49 
50 #include "qgroup.h"
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/btrfs.h>
53 
54 static const struct super_operations btrfs_super_ops;
55 
56 /*
57  * Types for mounting the default subvolume and a subvolume explicitly
58  * requested by subvol=/path. That way the callchain is straightforward and we
59  * don't have to play tricks with the mount options and recursive calls to
60  * btrfs_mount.
61  *
62  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
63  */
64 static struct file_system_type btrfs_fs_type;
65 static struct file_system_type btrfs_root_fs_type;
66 
67 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
68 
69 const char *btrfs_decode_error(int errno)
70 {
71 	char *errstr = "unknown";
72 
73 	switch (errno) {
74 	case -EIO:
75 		errstr = "IO failure";
76 		break;
77 	case -ENOMEM:
78 		errstr = "Out of memory";
79 		break;
80 	case -EROFS:
81 		errstr = "Readonly filesystem";
82 		break;
83 	case -EEXIST:
84 		errstr = "Object already exists";
85 		break;
86 	case -ENOSPC:
87 		errstr = "No space left";
88 		break;
89 	case -ENOENT:
90 		errstr = "No such entry";
91 		break;
92 	}
93 
94 	return errstr;
95 }
96 
97 /*
98  * __btrfs_handle_fs_error decodes expected errors from the caller and
99  * invokes the approciate error response.
100  */
101 __cold
102 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
103 		       unsigned int line, int errno, const char *fmt, ...)
104 {
105 	struct super_block *sb = fs_info->sb;
106 #ifdef CONFIG_PRINTK
107 	const char *errstr;
108 #endif
109 
110 	/*
111 	 * Special case: if the error is EROFS, and we're already
112 	 * under SB_RDONLY, then it is safe here.
113 	 */
114 	if (errno == -EROFS && sb_rdonly(sb))
115   		return;
116 
117 #ifdef CONFIG_PRINTK
118 	errstr = btrfs_decode_error(errno);
119 	if (fmt) {
120 		struct va_format vaf;
121 		va_list args;
122 
123 		va_start(args, fmt);
124 		vaf.fmt = fmt;
125 		vaf.va = &args;
126 
127 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
128 			sb->s_id, function, line, errno, errstr, &vaf);
129 		va_end(args);
130 	} else {
131 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
132 			sb->s_id, function, line, errno, errstr);
133 	}
134 #endif
135 
136 	/*
137 	 * Today we only save the error info to memory.  Long term we'll
138 	 * also send it down to the disk
139 	 */
140 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
141 
142 	/* Don't go through full error handling during mount */
143 	if (!(sb->s_flags & SB_BORN))
144 		return;
145 
146 	if (sb_rdonly(sb))
147 		return;
148 
149 	/* btrfs handle error by forcing the filesystem readonly */
150 	sb->s_flags |= SB_RDONLY;
151 	btrfs_info(fs_info, "forced readonly");
152 	/*
153 	 * Note that a running device replace operation is not canceled here
154 	 * although there is no way to update the progress. It would add the
155 	 * risk of a deadlock, therefore the canceling is omitted. The only
156 	 * penalty is that some I/O remains active until the procedure
157 	 * completes. The next time when the filesystem is mounted writeable
158 	 * again, the device replace operation continues.
159 	 */
160 }
161 
162 #ifdef CONFIG_PRINTK
163 static const char * const logtypes[] = {
164 	"emergency",
165 	"alert",
166 	"critical",
167 	"error",
168 	"warning",
169 	"notice",
170 	"info",
171 	"debug",
172 };
173 
174 
175 /*
176  * Use one ratelimit state per log level so that a flood of less important
177  * messages doesn't cause more important ones to be dropped.
178  */
179 static struct ratelimit_state printk_limits[] = {
180 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
181 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
182 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
183 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
184 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
185 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
186 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
187 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
188 };
189 
190 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
191 {
192 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
193 	struct va_format vaf;
194 	va_list args;
195 	int kern_level;
196 	const char *type = logtypes[4];
197 	struct ratelimit_state *ratelimit = &printk_limits[4];
198 
199 	va_start(args, fmt);
200 
201 	while ((kern_level = printk_get_level(fmt)) != 0) {
202 		size_t size = printk_skip_level(fmt) - fmt;
203 
204 		if (kern_level >= '0' && kern_level <= '7') {
205 			memcpy(lvl, fmt,  size);
206 			lvl[size] = '\0';
207 			type = logtypes[kern_level - '0'];
208 			ratelimit = &printk_limits[kern_level - '0'];
209 		}
210 		fmt += size;
211 	}
212 
213 	vaf.fmt = fmt;
214 	vaf.va = &args;
215 
216 	if (__ratelimit(ratelimit))
217 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
218 			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
219 
220 	va_end(args);
221 }
222 #endif
223 
224 /*
225  * We only mark the transaction aborted and then set the file system read-only.
226  * This will prevent new transactions from starting or trying to join this
227  * one.
228  *
229  * This means that error recovery at the call site is limited to freeing
230  * any local memory allocations and passing the error code up without
231  * further cleanup. The transaction should complete as it normally would
232  * in the call path but will return -EIO.
233  *
234  * We'll complete the cleanup in btrfs_end_transaction and
235  * btrfs_commit_transaction.
236  */
237 __cold
238 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
239 			       const char *function,
240 			       unsigned int line, int errno)
241 {
242 	struct btrfs_fs_info *fs_info = trans->fs_info;
243 
244 	trans->aborted = errno;
245 	/* Nothing used. The other threads that have joined this
246 	 * transaction may be able to continue. */
247 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
248 		const char *errstr;
249 
250 		errstr = btrfs_decode_error(errno);
251 		btrfs_warn(fs_info,
252 		           "%s:%d: Aborting unused transaction(%s).",
253 		           function, line, errstr);
254 		return;
255 	}
256 	WRITE_ONCE(trans->transaction->aborted, errno);
257 	/* Wake up anybody who may be waiting on this transaction */
258 	wake_up(&fs_info->transaction_wait);
259 	wake_up(&fs_info->transaction_blocked_wait);
260 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
261 }
262 /*
263  * __btrfs_panic decodes unexpected, fatal errors from the caller,
264  * issues an alert, and either panics or BUGs, depending on mount options.
265  */
266 __cold
267 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
268 		   unsigned int line, int errno, const char *fmt, ...)
269 {
270 	char *s_id = "<unknown>";
271 	const char *errstr;
272 	struct va_format vaf = { .fmt = fmt };
273 	va_list args;
274 
275 	if (fs_info)
276 		s_id = fs_info->sb->s_id;
277 
278 	va_start(args, fmt);
279 	vaf.va = &args;
280 
281 	errstr = btrfs_decode_error(errno);
282 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
283 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
284 			s_id, function, line, &vaf, errno, errstr);
285 
286 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
287 		   function, line, &vaf, errno, errstr);
288 	va_end(args);
289 	/* Caller calls BUG() */
290 }
291 
292 static void btrfs_put_super(struct super_block *sb)
293 {
294 	close_ctree(btrfs_sb(sb));
295 }
296 
297 enum {
298 	Opt_acl, Opt_noacl,
299 	Opt_clear_cache,
300 	Opt_commit_interval,
301 	Opt_compress,
302 	Opt_compress_force,
303 	Opt_compress_force_type,
304 	Opt_compress_type,
305 	Opt_degraded,
306 	Opt_device,
307 	Opt_fatal_errors,
308 	Opt_flushoncommit, Opt_noflushoncommit,
309 	Opt_inode_cache, Opt_noinode_cache,
310 	Opt_max_inline,
311 	Opt_barrier, Opt_nobarrier,
312 	Opt_datacow, Opt_nodatacow,
313 	Opt_datasum, Opt_nodatasum,
314 	Opt_defrag, Opt_nodefrag,
315 	Opt_discard, Opt_nodiscard,
316 	Opt_nologreplay,
317 	Opt_norecovery,
318 	Opt_ratio,
319 	Opt_rescan_uuid_tree,
320 	Opt_skip_balance,
321 	Opt_space_cache, Opt_no_space_cache,
322 	Opt_space_cache_version,
323 	Opt_ssd, Opt_nossd,
324 	Opt_ssd_spread, Opt_nossd_spread,
325 	Opt_subvol,
326 	Opt_subvolid,
327 	Opt_thread_pool,
328 	Opt_treelog, Opt_notreelog,
329 	Opt_usebackuproot,
330 	Opt_user_subvol_rm_allowed,
331 
332 	/* Deprecated options */
333 	Opt_alloc_start,
334 	Opt_recovery,
335 	Opt_subvolrootid,
336 
337 	/* Debugging options */
338 	Opt_check_integrity,
339 	Opt_check_integrity_including_extent_data,
340 	Opt_check_integrity_print_mask,
341 	Opt_enospc_debug, Opt_noenospc_debug,
342 #ifdef CONFIG_BTRFS_DEBUG
343 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
344 #endif
345 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
346 	Opt_ref_verify,
347 #endif
348 	Opt_err,
349 };
350 
351 static const match_table_t tokens = {
352 	{Opt_acl, "acl"},
353 	{Opt_noacl, "noacl"},
354 	{Opt_clear_cache, "clear_cache"},
355 	{Opt_commit_interval, "commit=%u"},
356 	{Opt_compress, "compress"},
357 	{Opt_compress_type, "compress=%s"},
358 	{Opt_compress_force, "compress-force"},
359 	{Opt_compress_force_type, "compress-force=%s"},
360 	{Opt_degraded, "degraded"},
361 	{Opt_device, "device=%s"},
362 	{Opt_fatal_errors, "fatal_errors=%s"},
363 	{Opt_flushoncommit, "flushoncommit"},
364 	{Opt_noflushoncommit, "noflushoncommit"},
365 	{Opt_inode_cache, "inode_cache"},
366 	{Opt_noinode_cache, "noinode_cache"},
367 	{Opt_max_inline, "max_inline=%s"},
368 	{Opt_barrier, "barrier"},
369 	{Opt_nobarrier, "nobarrier"},
370 	{Opt_datacow, "datacow"},
371 	{Opt_nodatacow, "nodatacow"},
372 	{Opt_datasum, "datasum"},
373 	{Opt_nodatasum, "nodatasum"},
374 	{Opt_defrag, "autodefrag"},
375 	{Opt_nodefrag, "noautodefrag"},
376 	{Opt_discard, "discard"},
377 	{Opt_nodiscard, "nodiscard"},
378 	{Opt_nologreplay, "nologreplay"},
379 	{Opt_norecovery, "norecovery"},
380 	{Opt_ratio, "metadata_ratio=%u"},
381 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
382 	{Opt_skip_balance, "skip_balance"},
383 	{Opt_space_cache, "space_cache"},
384 	{Opt_no_space_cache, "nospace_cache"},
385 	{Opt_space_cache_version, "space_cache=%s"},
386 	{Opt_ssd, "ssd"},
387 	{Opt_nossd, "nossd"},
388 	{Opt_ssd_spread, "ssd_spread"},
389 	{Opt_nossd_spread, "nossd_spread"},
390 	{Opt_subvol, "subvol=%s"},
391 	{Opt_subvolid, "subvolid=%s"},
392 	{Opt_thread_pool, "thread_pool=%u"},
393 	{Opt_treelog, "treelog"},
394 	{Opt_notreelog, "notreelog"},
395 	{Opt_usebackuproot, "usebackuproot"},
396 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
397 
398 	/* Deprecated options */
399 	{Opt_alloc_start, "alloc_start=%s"},
400 	{Opt_recovery, "recovery"},
401 	{Opt_subvolrootid, "subvolrootid=%d"},
402 
403 	/* Debugging options */
404 	{Opt_check_integrity, "check_int"},
405 	{Opt_check_integrity_including_extent_data, "check_int_data"},
406 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
407 	{Opt_enospc_debug, "enospc_debug"},
408 	{Opt_noenospc_debug, "noenospc_debug"},
409 #ifdef CONFIG_BTRFS_DEBUG
410 	{Opt_fragment_data, "fragment=data"},
411 	{Opt_fragment_metadata, "fragment=metadata"},
412 	{Opt_fragment_all, "fragment=all"},
413 #endif
414 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
415 	{Opt_ref_verify, "ref_verify"},
416 #endif
417 	{Opt_err, NULL},
418 };
419 
420 /*
421  * Regular mount options parser.  Everything that is needed only when
422  * reading in a new superblock is parsed here.
423  * XXX JDM: This needs to be cleaned up for remount.
424  */
425 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
426 			unsigned long new_flags)
427 {
428 	substring_t args[MAX_OPT_ARGS];
429 	char *p, *num;
430 	u64 cache_gen;
431 	int intarg;
432 	int ret = 0;
433 	char *compress_type;
434 	bool compress_force = false;
435 	enum btrfs_compression_type saved_compress_type;
436 	bool saved_compress_force;
437 	int no_compress = 0;
438 
439 	cache_gen = btrfs_super_cache_generation(info->super_copy);
440 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
441 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
442 	else if (cache_gen)
443 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
444 
445 	/*
446 	 * Even the options are empty, we still need to do extra check
447 	 * against new flags
448 	 */
449 	if (!options)
450 		goto check;
451 
452 	while ((p = strsep(&options, ",")) != NULL) {
453 		int token;
454 		if (!*p)
455 			continue;
456 
457 		token = match_token(p, tokens, args);
458 		switch (token) {
459 		case Opt_degraded:
460 			btrfs_info(info, "allowing degraded mounts");
461 			btrfs_set_opt(info->mount_opt, DEGRADED);
462 			break;
463 		case Opt_subvol:
464 		case Opt_subvolid:
465 		case Opt_subvolrootid:
466 		case Opt_device:
467 			/*
468 			 * These are parsed by btrfs_parse_subvol_options
469 			 * and btrfs_parse_early_options
470 			 * and can be happily ignored here.
471 			 */
472 			break;
473 		case Opt_nodatasum:
474 			btrfs_set_and_info(info, NODATASUM,
475 					   "setting nodatasum");
476 			break;
477 		case Opt_datasum:
478 			if (btrfs_test_opt(info, NODATASUM)) {
479 				if (btrfs_test_opt(info, NODATACOW))
480 					btrfs_info(info,
481 						   "setting datasum, datacow enabled");
482 				else
483 					btrfs_info(info, "setting datasum");
484 			}
485 			btrfs_clear_opt(info->mount_opt, NODATACOW);
486 			btrfs_clear_opt(info->mount_opt, NODATASUM);
487 			break;
488 		case Opt_nodatacow:
489 			if (!btrfs_test_opt(info, NODATACOW)) {
490 				if (!btrfs_test_opt(info, COMPRESS) ||
491 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
492 					btrfs_info(info,
493 						   "setting nodatacow, compression disabled");
494 				} else {
495 					btrfs_info(info, "setting nodatacow");
496 				}
497 			}
498 			btrfs_clear_opt(info->mount_opt, COMPRESS);
499 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
500 			btrfs_set_opt(info->mount_opt, NODATACOW);
501 			btrfs_set_opt(info->mount_opt, NODATASUM);
502 			break;
503 		case Opt_datacow:
504 			btrfs_clear_and_info(info, NODATACOW,
505 					     "setting datacow");
506 			break;
507 		case Opt_compress_force:
508 		case Opt_compress_force_type:
509 			compress_force = true;
510 			/* Fallthrough */
511 		case Opt_compress:
512 		case Opt_compress_type:
513 			saved_compress_type = btrfs_test_opt(info,
514 							     COMPRESS) ?
515 				info->compress_type : BTRFS_COMPRESS_NONE;
516 			saved_compress_force =
517 				btrfs_test_opt(info, FORCE_COMPRESS);
518 			if (token == Opt_compress ||
519 			    token == Opt_compress_force ||
520 			    strncmp(args[0].from, "zlib", 4) == 0) {
521 				compress_type = "zlib";
522 
523 				info->compress_type = BTRFS_COMPRESS_ZLIB;
524 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
525 				/*
526 				 * args[0] contains uninitialized data since
527 				 * for these tokens we don't expect any
528 				 * parameter.
529 				 */
530 				if (token != Opt_compress &&
531 				    token != Opt_compress_force)
532 					info->compress_level =
533 					  btrfs_compress_str2level(args[0].from);
534 				btrfs_set_opt(info->mount_opt, COMPRESS);
535 				btrfs_clear_opt(info->mount_opt, NODATACOW);
536 				btrfs_clear_opt(info->mount_opt, NODATASUM);
537 				no_compress = 0;
538 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
539 				compress_type = "lzo";
540 				info->compress_type = BTRFS_COMPRESS_LZO;
541 				btrfs_set_opt(info->mount_opt, COMPRESS);
542 				btrfs_clear_opt(info->mount_opt, NODATACOW);
543 				btrfs_clear_opt(info->mount_opt, NODATASUM);
544 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
545 				no_compress = 0;
546 			} else if (strcmp(args[0].from, "zstd") == 0) {
547 				compress_type = "zstd";
548 				info->compress_type = BTRFS_COMPRESS_ZSTD;
549 				btrfs_set_opt(info->mount_opt, COMPRESS);
550 				btrfs_clear_opt(info->mount_opt, NODATACOW);
551 				btrfs_clear_opt(info->mount_opt, NODATASUM);
552 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
553 				no_compress = 0;
554 			} else if (strncmp(args[0].from, "no", 2) == 0) {
555 				compress_type = "no";
556 				btrfs_clear_opt(info->mount_opt, COMPRESS);
557 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
558 				compress_force = false;
559 				no_compress++;
560 			} else {
561 				ret = -EINVAL;
562 				goto out;
563 			}
564 
565 			if (compress_force) {
566 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
567 			} else {
568 				/*
569 				 * If we remount from compress-force=xxx to
570 				 * compress=xxx, we need clear FORCE_COMPRESS
571 				 * flag, otherwise, there is no way for users
572 				 * to disable forcible compression separately.
573 				 */
574 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
575 			}
576 			if ((btrfs_test_opt(info, COMPRESS) &&
577 			     (info->compress_type != saved_compress_type ||
578 			      compress_force != saved_compress_force)) ||
579 			    (!btrfs_test_opt(info, COMPRESS) &&
580 			     no_compress == 1)) {
581 				btrfs_info(info, "%s %s compression, level %d",
582 					   (compress_force) ? "force" : "use",
583 					   compress_type, info->compress_level);
584 			}
585 			compress_force = false;
586 			break;
587 		case Opt_ssd:
588 			btrfs_set_and_info(info, SSD,
589 					   "enabling ssd optimizations");
590 			btrfs_clear_opt(info->mount_opt, NOSSD);
591 			break;
592 		case Opt_ssd_spread:
593 			btrfs_set_and_info(info, SSD,
594 					   "enabling ssd optimizations");
595 			btrfs_set_and_info(info, SSD_SPREAD,
596 					   "using spread ssd allocation scheme");
597 			btrfs_clear_opt(info->mount_opt, NOSSD);
598 			break;
599 		case Opt_nossd:
600 			btrfs_set_opt(info->mount_opt, NOSSD);
601 			btrfs_clear_and_info(info, SSD,
602 					     "not using ssd optimizations");
603 			/* Fallthrough */
604 		case Opt_nossd_spread:
605 			btrfs_clear_and_info(info, SSD_SPREAD,
606 					     "not using spread ssd allocation scheme");
607 			break;
608 		case Opt_barrier:
609 			btrfs_clear_and_info(info, NOBARRIER,
610 					     "turning on barriers");
611 			break;
612 		case Opt_nobarrier:
613 			btrfs_set_and_info(info, NOBARRIER,
614 					   "turning off barriers");
615 			break;
616 		case Opt_thread_pool:
617 			ret = match_int(&args[0], &intarg);
618 			if (ret) {
619 				goto out;
620 			} else if (intarg == 0) {
621 				ret = -EINVAL;
622 				goto out;
623 			}
624 			info->thread_pool_size = intarg;
625 			break;
626 		case Opt_max_inline:
627 			num = match_strdup(&args[0]);
628 			if (num) {
629 				info->max_inline = memparse(num, NULL);
630 				kfree(num);
631 
632 				if (info->max_inline) {
633 					info->max_inline = min_t(u64,
634 						info->max_inline,
635 						info->sectorsize);
636 				}
637 				btrfs_info(info, "max_inline at %llu",
638 					   info->max_inline);
639 			} else {
640 				ret = -ENOMEM;
641 				goto out;
642 			}
643 			break;
644 		case Opt_alloc_start:
645 			btrfs_info(info,
646 				"option alloc_start is obsolete, ignored");
647 			break;
648 		case Opt_acl:
649 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
650 			info->sb->s_flags |= SB_POSIXACL;
651 			break;
652 #else
653 			btrfs_err(info, "support for ACL not compiled in!");
654 			ret = -EINVAL;
655 			goto out;
656 #endif
657 		case Opt_noacl:
658 			info->sb->s_flags &= ~SB_POSIXACL;
659 			break;
660 		case Opt_notreelog:
661 			btrfs_set_and_info(info, NOTREELOG,
662 					   "disabling tree log");
663 			break;
664 		case Opt_treelog:
665 			btrfs_clear_and_info(info, NOTREELOG,
666 					     "enabling tree log");
667 			break;
668 		case Opt_norecovery:
669 		case Opt_nologreplay:
670 			btrfs_set_and_info(info, NOLOGREPLAY,
671 					   "disabling log replay at mount time");
672 			break;
673 		case Opt_flushoncommit:
674 			btrfs_set_and_info(info, FLUSHONCOMMIT,
675 					   "turning on flush-on-commit");
676 			break;
677 		case Opt_noflushoncommit:
678 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
679 					     "turning off flush-on-commit");
680 			break;
681 		case Opt_ratio:
682 			ret = match_int(&args[0], &intarg);
683 			if (ret)
684 				goto out;
685 			info->metadata_ratio = intarg;
686 			btrfs_info(info, "metadata ratio %u",
687 				   info->metadata_ratio);
688 			break;
689 		case Opt_discard:
690 			btrfs_set_and_info(info, DISCARD,
691 					   "turning on discard");
692 			break;
693 		case Opt_nodiscard:
694 			btrfs_clear_and_info(info, DISCARD,
695 					     "turning off discard");
696 			break;
697 		case Opt_space_cache:
698 		case Opt_space_cache_version:
699 			if (token == Opt_space_cache ||
700 			    strcmp(args[0].from, "v1") == 0) {
701 				btrfs_clear_opt(info->mount_opt,
702 						FREE_SPACE_TREE);
703 				btrfs_set_and_info(info, SPACE_CACHE,
704 					   "enabling disk space caching");
705 			} else if (strcmp(args[0].from, "v2") == 0) {
706 				btrfs_clear_opt(info->mount_opt,
707 						SPACE_CACHE);
708 				btrfs_set_and_info(info, FREE_SPACE_TREE,
709 						   "enabling free space tree");
710 			} else {
711 				ret = -EINVAL;
712 				goto out;
713 			}
714 			break;
715 		case Opt_rescan_uuid_tree:
716 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
717 			break;
718 		case Opt_no_space_cache:
719 			if (btrfs_test_opt(info, SPACE_CACHE)) {
720 				btrfs_clear_and_info(info, SPACE_CACHE,
721 					     "disabling disk space caching");
722 			}
723 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
724 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
725 					     "disabling free space tree");
726 			}
727 			break;
728 		case Opt_inode_cache:
729 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
730 					   "enabling inode map caching");
731 			break;
732 		case Opt_noinode_cache:
733 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
734 					     "disabling inode map caching");
735 			break;
736 		case Opt_clear_cache:
737 			btrfs_set_and_info(info, CLEAR_CACHE,
738 					   "force clearing of disk cache");
739 			break;
740 		case Opt_user_subvol_rm_allowed:
741 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
742 			break;
743 		case Opt_enospc_debug:
744 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
745 			break;
746 		case Opt_noenospc_debug:
747 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
748 			break;
749 		case Opt_defrag:
750 			btrfs_set_and_info(info, AUTO_DEFRAG,
751 					   "enabling auto defrag");
752 			break;
753 		case Opt_nodefrag:
754 			btrfs_clear_and_info(info, AUTO_DEFRAG,
755 					     "disabling auto defrag");
756 			break;
757 		case Opt_recovery:
758 			btrfs_warn(info,
759 				   "'recovery' is deprecated, use 'usebackuproot' instead");
760 		case Opt_usebackuproot:
761 			btrfs_info(info,
762 				   "trying to use backup root at mount time");
763 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
764 			break;
765 		case Opt_skip_balance:
766 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
767 			break;
768 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
769 		case Opt_check_integrity_including_extent_data:
770 			btrfs_info(info,
771 				   "enabling check integrity including extent data");
772 			btrfs_set_opt(info->mount_opt,
773 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
774 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
775 			break;
776 		case Opt_check_integrity:
777 			btrfs_info(info, "enabling check integrity");
778 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
779 			break;
780 		case Opt_check_integrity_print_mask:
781 			ret = match_int(&args[0], &intarg);
782 			if (ret)
783 				goto out;
784 			info->check_integrity_print_mask = intarg;
785 			btrfs_info(info, "check_integrity_print_mask 0x%x",
786 				   info->check_integrity_print_mask);
787 			break;
788 #else
789 		case Opt_check_integrity_including_extent_data:
790 		case Opt_check_integrity:
791 		case Opt_check_integrity_print_mask:
792 			btrfs_err(info,
793 				  "support for check_integrity* not compiled in!");
794 			ret = -EINVAL;
795 			goto out;
796 #endif
797 		case Opt_fatal_errors:
798 			if (strcmp(args[0].from, "panic") == 0)
799 				btrfs_set_opt(info->mount_opt,
800 					      PANIC_ON_FATAL_ERROR);
801 			else if (strcmp(args[0].from, "bug") == 0)
802 				btrfs_clear_opt(info->mount_opt,
803 					      PANIC_ON_FATAL_ERROR);
804 			else {
805 				ret = -EINVAL;
806 				goto out;
807 			}
808 			break;
809 		case Opt_commit_interval:
810 			intarg = 0;
811 			ret = match_int(&args[0], &intarg);
812 			if (ret)
813 				goto out;
814 			if (intarg == 0) {
815 				btrfs_info(info,
816 					   "using default commit interval %us",
817 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
818 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
819 			} else if (intarg > 300) {
820 				btrfs_warn(info, "excessive commit interval %d",
821 					   intarg);
822 			}
823 			info->commit_interval = intarg;
824 			break;
825 #ifdef CONFIG_BTRFS_DEBUG
826 		case Opt_fragment_all:
827 			btrfs_info(info, "fragmenting all space");
828 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
829 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
830 			break;
831 		case Opt_fragment_metadata:
832 			btrfs_info(info, "fragmenting metadata");
833 			btrfs_set_opt(info->mount_opt,
834 				      FRAGMENT_METADATA);
835 			break;
836 		case Opt_fragment_data:
837 			btrfs_info(info, "fragmenting data");
838 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
839 			break;
840 #endif
841 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
842 		case Opt_ref_verify:
843 			btrfs_info(info, "doing ref verification");
844 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
845 			break;
846 #endif
847 		case Opt_err:
848 			btrfs_info(info, "unrecognized mount option '%s'", p);
849 			ret = -EINVAL;
850 			goto out;
851 		default:
852 			break;
853 		}
854 	}
855 check:
856 	/*
857 	 * Extra check for current option against current flag
858 	 */
859 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
860 		btrfs_err(info,
861 			  "nologreplay must be used with ro mount option");
862 		ret = -EINVAL;
863 	}
864 out:
865 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
866 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
867 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
868 		btrfs_err(info, "cannot disable free space tree");
869 		ret = -EINVAL;
870 
871 	}
872 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
873 		btrfs_info(info, "disk space caching is enabled");
874 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
875 		btrfs_info(info, "using free space tree");
876 	return ret;
877 }
878 
879 /*
880  * Parse mount options that are required early in the mount process.
881  *
882  * All other options will be parsed on much later in the mount process and
883  * only when we need to allocate a new super block.
884  */
885 static int btrfs_parse_early_options(const char *options, fmode_t flags,
886 		void *holder, struct btrfs_fs_devices **fs_devices)
887 {
888 	substring_t args[MAX_OPT_ARGS];
889 	char *device_name, *opts, *orig, *p;
890 	int error = 0;
891 
892 	if (!options)
893 		return 0;
894 
895 	/*
896 	 * strsep changes the string, duplicate it because btrfs_parse_options
897 	 * gets called later
898 	 */
899 	opts = kstrdup(options, GFP_KERNEL);
900 	if (!opts)
901 		return -ENOMEM;
902 	orig = opts;
903 
904 	while ((p = strsep(&opts, ",")) != NULL) {
905 		int token;
906 
907 		if (!*p)
908 			continue;
909 
910 		token = match_token(p, tokens, args);
911 		if (token == Opt_device) {
912 			device_name = match_strdup(&args[0]);
913 			if (!device_name) {
914 				error = -ENOMEM;
915 				goto out;
916 			}
917 			error = btrfs_scan_one_device(device_name,
918 					flags, holder, fs_devices);
919 			kfree(device_name);
920 			if (error)
921 				goto out;
922 		}
923 	}
924 
925 out:
926 	kfree(orig);
927 	return error;
928 }
929 
930 /*
931  * Parse mount options that are related to subvolume id
932  *
933  * The value is later passed to mount_subvol()
934  */
935 static int btrfs_parse_subvol_options(const char *options, fmode_t flags,
936 		char **subvol_name, u64 *subvol_objectid)
937 {
938 	substring_t args[MAX_OPT_ARGS];
939 	char *opts, *orig, *p;
940 	int error = 0;
941 	u64 subvolid;
942 
943 	if (!options)
944 		return 0;
945 
946 	/*
947 	 * strsep changes the string, duplicate it because
948 	 * btrfs_parse_early_options gets called later
949 	 */
950 	opts = kstrdup(options, GFP_KERNEL);
951 	if (!opts)
952 		return -ENOMEM;
953 	orig = opts;
954 
955 	while ((p = strsep(&opts, ",")) != NULL) {
956 		int token;
957 		if (!*p)
958 			continue;
959 
960 		token = match_token(p, tokens, args);
961 		switch (token) {
962 		case Opt_subvol:
963 			kfree(*subvol_name);
964 			*subvol_name = match_strdup(&args[0]);
965 			if (!*subvol_name) {
966 				error = -ENOMEM;
967 				goto out;
968 			}
969 			break;
970 		case Opt_subvolid:
971 			error = match_u64(&args[0], &subvolid);
972 			if (error)
973 				goto out;
974 
975 			/* we want the original fs_tree */
976 			if (subvolid == 0)
977 				subvolid = BTRFS_FS_TREE_OBJECTID;
978 
979 			*subvol_objectid = subvolid;
980 			break;
981 		case Opt_subvolrootid:
982 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
983 			break;
984 		default:
985 			break;
986 		}
987 	}
988 
989 out:
990 	kfree(orig);
991 	return error;
992 }
993 
994 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
995 					   u64 subvol_objectid)
996 {
997 	struct btrfs_root *root = fs_info->tree_root;
998 	struct btrfs_root *fs_root;
999 	struct btrfs_root_ref *root_ref;
1000 	struct btrfs_inode_ref *inode_ref;
1001 	struct btrfs_key key;
1002 	struct btrfs_path *path = NULL;
1003 	char *name = NULL, *ptr;
1004 	u64 dirid;
1005 	int len;
1006 	int ret;
1007 
1008 	path = btrfs_alloc_path();
1009 	if (!path) {
1010 		ret = -ENOMEM;
1011 		goto err;
1012 	}
1013 	path->leave_spinning = 1;
1014 
1015 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1016 	if (!name) {
1017 		ret = -ENOMEM;
1018 		goto err;
1019 	}
1020 	ptr = name + PATH_MAX - 1;
1021 	ptr[0] = '\0';
1022 
1023 	/*
1024 	 * Walk up the subvolume trees in the tree of tree roots by root
1025 	 * backrefs until we hit the top-level subvolume.
1026 	 */
1027 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1028 		key.objectid = subvol_objectid;
1029 		key.type = BTRFS_ROOT_BACKREF_KEY;
1030 		key.offset = (u64)-1;
1031 
1032 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1033 		if (ret < 0) {
1034 			goto err;
1035 		} else if (ret > 0) {
1036 			ret = btrfs_previous_item(root, path, subvol_objectid,
1037 						  BTRFS_ROOT_BACKREF_KEY);
1038 			if (ret < 0) {
1039 				goto err;
1040 			} else if (ret > 0) {
1041 				ret = -ENOENT;
1042 				goto err;
1043 			}
1044 		}
1045 
1046 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1047 		subvol_objectid = key.offset;
1048 
1049 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1050 					  struct btrfs_root_ref);
1051 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1052 		ptr -= len + 1;
1053 		if (ptr < name) {
1054 			ret = -ENAMETOOLONG;
1055 			goto err;
1056 		}
1057 		read_extent_buffer(path->nodes[0], ptr + 1,
1058 				   (unsigned long)(root_ref + 1), len);
1059 		ptr[0] = '/';
1060 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1061 		btrfs_release_path(path);
1062 
1063 		key.objectid = subvol_objectid;
1064 		key.type = BTRFS_ROOT_ITEM_KEY;
1065 		key.offset = (u64)-1;
1066 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1067 		if (IS_ERR(fs_root)) {
1068 			ret = PTR_ERR(fs_root);
1069 			goto err;
1070 		}
1071 
1072 		/*
1073 		 * Walk up the filesystem tree by inode refs until we hit the
1074 		 * root directory.
1075 		 */
1076 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1077 			key.objectid = dirid;
1078 			key.type = BTRFS_INODE_REF_KEY;
1079 			key.offset = (u64)-1;
1080 
1081 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1082 			if (ret < 0) {
1083 				goto err;
1084 			} else if (ret > 0) {
1085 				ret = btrfs_previous_item(fs_root, path, dirid,
1086 							  BTRFS_INODE_REF_KEY);
1087 				if (ret < 0) {
1088 					goto err;
1089 				} else if (ret > 0) {
1090 					ret = -ENOENT;
1091 					goto err;
1092 				}
1093 			}
1094 
1095 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1096 			dirid = key.offset;
1097 
1098 			inode_ref = btrfs_item_ptr(path->nodes[0],
1099 						   path->slots[0],
1100 						   struct btrfs_inode_ref);
1101 			len = btrfs_inode_ref_name_len(path->nodes[0],
1102 						       inode_ref);
1103 			ptr -= len + 1;
1104 			if (ptr < name) {
1105 				ret = -ENAMETOOLONG;
1106 				goto err;
1107 			}
1108 			read_extent_buffer(path->nodes[0], ptr + 1,
1109 					   (unsigned long)(inode_ref + 1), len);
1110 			ptr[0] = '/';
1111 			btrfs_release_path(path);
1112 		}
1113 	}
1114 
1115 	btrfs_free_path(path);
1116 	if (ptr == name + PATH_MAX - 1) {
1117 		name[0] = '/';
1118 		name[1] = '\0';
1119 	} else {
1120 		memmove(name, ptr, name + PATH_MAX - ptr);
1121 	}
1122 	return name;
1123 
1124 err:
1125 	btrfs_free_path(path);
1126 	kfree(name);
1127 	return ERR_PTR(ret);
1128 }
1129 
1130 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1131 {
1132 	struct btrfs_root *root = fs_info->tree_root;
1133 	struct btrfs_dir_item *di;
1134 	struct btrfs_path *path;
1135 	struct btrfs_key location;
1136 	u64 dir_id;
1137 
1138 	path = btrfs_alloc_path();
1139 	if (!path)
1140 		return -ENOMEM;
1141 	path->leave_spinning = 1;
1142 
1143 	/*
1144 	 * Find the "default" dir item which points to the root item that we
1145 	 * will mount by default if we haven't been given a specific subvolume
1146 	 * to mount.
1147 	 */
1148 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1149 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1150 	if (IS_ERR(di)) {
1151 		btrfs_free_path(path);
1152 		return PTR_ERR(di);
1153 	}
1154 	if (!di) {
1155 		/*
1156 		 * Ok the default dir item isn't there.  This is weird since
1157 		 * it's always been there, but don't freak out, just try and
1158 		 * mount the top-level subvolume.
1159 		 */
1160 		btrfs_free_path(path);
1161 		*objectid = BTRFS_FS_TREE_OBJECTID;
1162 		return 0;
1163 	}
1164 
1165 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1166 	btrfs_free_path(path);
1167 	*objectid = location.objectid;
1168 	return 0;
1169 }
1170 
1171 static int btrfs_fill_super(struct super_block *sb,
1172 			    struct btrfs_fs_devices *fs_devices,
1173 			    void *data)
1174 {
1175 	struct inode *inode;
1176 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1177 	struct btrfs_key key;
1178 	int err;
1179 
1180 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1181 	sb->s_magic = BTRFS_SUPER_MAGIC;
1182 	sb->s_op = &btrfs_super_ops;
1183 	sb->s_d_op = &btrfs_dentry_operations;
1184 	sb->s_export_op = &btrfs_export_ops;
1185 	sb->s_xattr = btrfs_xattr_handlers;
1186 	sb->s_time_gran = 1;
1187 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1188 	sb->s_flags |= SB_POSIXACL;
1189 #endif
1190 	sb->s_flags |= SB_I_VERSION;
1191 	sb->s_iflags |= SB_I_CGROUPWB;
1192 
1193 	err = super_setup_bdi(sb);
1194 	if (err) {
1195 		btrfs_err(fs_info, "super_setup_bdi failed");
1196 		return err;
1197 	}
1198 
1199 	err = open_ctree(sb, fs_devices, (char *)data);
1200 	if (err) {
1201 		btrfs_err(fs_info, "open_ctree failed");
1202 		return err;
1203 	}
1204 
1205 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1206 	key.type = BTRFS_INODE_ITEM_KEY;
1207 	key.offset = 0;
1208 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1209 	if (IS_ERR(inode)) {
1210 		err = PTR_ERR(inode);
1211 		goto fail_close;
1212 	}
1213 
1214 	sb->s_root = d_make_root(inode);
1215 	if (!sb->s_root) {
1216 		err = -ENOMEM;
1217 		goto fail_close;
1218 	}
1219 
1220 	cleancache_init_fs(sb);
1221 	sb->s_flags |= SB_ACTIVE;
1222 	return 0;
1223 
1224 fail_close:
1225 	close_ctree(fs_info);
1226 	return err;
1227 }
1228 
1229 int btrfs_sync_fs(struct super_block *sb, int wait)
1230 {
1231 	struct btrfs_trans_handle *trans;
1232 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1233 	struct btrfs_root *root = fs_info->tree_root;
1234 
1235 	trace_btrfs_sync_fs(fs_info, wait);
1236 
1237 	if (!wait) {
1238 		filemap_flush(fs_info->btree_inode->i_mapping);
1239 		return 0;
1240 	}
1241 
1242 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1243 
1244 	trans = btrfs_attach_transaction_barrier(root);
1245 	if (IS_ERR(trans)) {
1246 		/* no transaction, don't bother */
1247 		if (PTR_ERR(trans) == -ENOENT) {
1248 			/*
1249 			 * Exit unless we have some pending changes
1250 			 * that need to go through commit
1251 			 */
1252 			if (fs_info->pending_changes == 0)
1253 				return 0;
1254 			/*
1255 			 * A non-blocking test if the fs is frozen. We must not
1256 			 * start a new transaction here otherwise a deadlock
1257 			 * happens. The pending operations are delayed to the
1258 			 * next commit after thawing.
1259 			 */
1260 			if (sb_start_write_trylock(sb))
1261 				sb_end_write(sb);
1262 			else
1263 				return 0;
1264 			trans = btrfs_start_transaction(root, 0);
1265 		}
1266 		if (IS_ERR(trans))
1267 			return PTR_ERR(trans);
1268 	}
1269 	return btrfs_commit_transaction(trans);
1270 }
1271 
1272 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1273 {
1274 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1275 	const char *compress_type;
1276 
1277 	if (btrfs_test_opt(info, DEGRADED))
1278 		seq_puts(seq, ",degraded");
1279 	if (btrfs_test_opt(info, NODATASUM))
1280 		seq_puts(seq, ",nodatasum");
1281 	if (btrfs_test_opt(info, NODATACOW))
1282 		seq_puts(seq, ",nodatacow");
1283 	if (btrfs_test_opt(info, NOBARRIER))
1284 		seq_puts(seq, ",nobarrier");
1285 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1286 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1287 	if (info->thread_pool_size !=  min_t(unsigned long,
1288 					     num_online_cpus() + 2, 8))
1289 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1290 	if (btrfs_test_opt(info, COMPRESS)) {
1291 		compress_type = btrfs_compress_type2str(info->compress_type);
1292 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1293 			seq_printf(seq, ",compress-force=%s", compress_type);
1294 		else
1295 			seq_printf(seq, ",compress=%s", compress_type);
1296 		if (info->compress_level)
1297 			seq_printf(seq, ":%d", info->compress_level);
1298 	}
1299 	if (btrfs_test_opt(info, NOSSD))
1300 		seq_puts(seq, ",nossd");
1301 	if (btrfs_test_opt(info, SSD_SPREAD))
1302 		seq_puts(seq, ",ssd_spread");
1303 	else if (btrfs_test_opt(info, SSD))
1304 		seq_puts(seq, ",ssd");
1305 	if (btrfs_test_opt(info, NOTREELOG))
1306 		seq_puts(seq, ",notreelog");
1307 	if (btrfs_test_opt(info, NOLOGREPLAY))
1308 		seq_puts(seq, ",nologreplay");
1309 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1310 		seq_puts(seq, ",flushoncommit");
1311 	if (btrfs_test_opt(info, DISCARD))
1312 		seq_puts(seq, ",discard");
1313 	if (!(info->sb->s_flags & SB_POSIXACL))
1314 		seq_puts(seq, ",noacl");
1315 	if (btrfs_test_opt(info, SPACE_CACHE))
1316 		seq_puts(seq, ",space_cache");
1317 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1318 		seq_puts(seq, ",space_cache=v2");
1319 	else
1320 		seq_puts(seq, ",nospace_cache");
1321 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1322 		seq_puts(seq, ",rescan_uuid_tree");
1323 	if (btrfs_test_opt(info, CLEAR_CACHE))
1324 		seq_puts(seq, ",clear_cache");
1325 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1326 		seq_puts(seq, ",user_subvol_rm_allowed");
1327 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1328 		seq_puts(seq, ",enospc_debug");
1329 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1330 		seq_puts(seq, ",autodefrag");
1331 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1332 		seq_puts(seq, ",inode_cache");
1333 	if (btrfs_test_opt(info, SKIP_BALANCE))
1334 		seq_puts(seq, ",skip_balance");
1335 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1336 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1337 		seq_puts(seq, ",check_int_data");
1338 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1339 		seq_puts(seq, ",check_int");
1340 	if (info->check_integrity_print_mask)
1341 		seq_printf(seq, ",check_int_print_mask=%d",
1342 				info->check_integrity_print_mask);
1343 #endif
1344 	if (info->metadata_ratio)
1345 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1346 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1347 		seq_puts(seq, ",fatal_errors=panic");
1348 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1349 		seq_printf(seq, ",commit=%u", info->commit_interval);
1350 #ifdef CONFIG_BTRFS_DEBUG
1351 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1352 		seq_puts(seq, ",fragment=data");
1353 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1354 		seq_puts(seq, ",fragment=metadata");
1355 #endif
1356 	if (btrfs_test_opt(info, REF_VERIFY))
1357 		seq_puts(seq, ",ref_verify");
1358 	seq_printf(seq, ",subvolid=%llu",
1359 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1360 	seq_puts(seq, ",subvol=");
1361 	seq_dentry(seq, dentry, " \t\n\\");
1362 	return 0;
1363 }
1364 
1365 static int btrfs_test_super(struct super_block *s, void *data)
1366 {
1367 	struct btrfs_fs_info *p = data;
1368 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1369 
1370 	return fs_info->fs_devices == p->fs_devices;
1371 }
1372 
1373 static int btrfs_set_super(struct super_block *s, void *data)
1374 {
1375 	int err = set_anon_super(s, data);
1376 	if (!err)
1377 		s->s_fs_info = data;
1378 	return err;
1379 }
1380 
1381 /*
1382  * subvolumes are identified by ino 256
1383  */
1384 static inline int is_subvolume_inode(struct inode *inode)
1385 {
1386 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1387 		return 1;
1388 	return 0;
1389 }
1390 
1391 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1392 				   const char *device_name, struct vfsmount *mnt)
1393 {
1394 	struct dentry *root;
1395 	int ret;
1396 
1397 	if (!subvol_name) {
1398 		if (!subvol_objectid) {
1399 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1400 							  &subvol_objectid);
1401 			if (ret) {
1402 				root = ERR_PTR(ret);
1403 				goto out;
1404 			}
1405 		}
1406 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1407 							    subvol_objectid);
1408 		if (IS_ERR(subvol_name)) {
1409 			root = ERR_CAST(subvol_name);
1410 			subvol_name = NULL;
1411 			goto out;
1412 		}
1413 
1414 	}
1415 
1416 	root = mount_subtree(mnt, subvol_name);
1417 	/* mount_subtree() drops our reference on the vfsmount. */
1418 	mnt = NULL;
1419 
1420 	if (!IS_ERR(root)) {
1421 		struct super_block *s = root->d_sb;
1422 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1423 		struct inode *root_inode = d_inode(root);
1424 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1425 
1426 		ret = 0;
1427 		if (!is_subvolume_inode(root_inode)) {
1428 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1429 			       subvol_name);
1430 			ret = -EINVAL;
1431 		}
1432 		if (subvol_objectid && root_objectid != subvol_objectid) {
1433 			/*
1434 			 * This will also catch a race condition where a
1435 			 * subvolume which was passed by ID is renamed and
1436 			 * another subvolume is renamed over the old location.
1437 			 */
1438 			btrfs_err(fs_info,
1439 				  "subvol '%s' does not match subvolid %llu",
1440 				  subvol_name, subvol_objectid);
1441 			ret = -EINVAL;
1442 		}
1443 		if (ret) {
1444 			dput(root);
1445 			root = ERR_PTR(ret);
1446 			deactivate_locked_super(s);
1447 		}
1448 	}
1449 
1450 out:
1451 	mntput(mnt);
1452 	kfree(subvol_name);
1453 	return root;
1454 }
1455 
1456 static int parse_security_options(char *orig_opts,
1457 				  struct security_mnt_opts *sec_opts)
1458 {
1459 	char *secdata = NULL;
1460 	int ret = 0;
1461 
1462 	secdata = alloc_secdata();
1463 	if (!secdata)
1464 		return -ENOMEM;
1465 	ret = security_sb_copy_data(orig_opts, secdata);
1466 	if (ret) {
1467 		free_secdata(secdata);
1468 		return ret;
1469 	}
1470 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1471 	free_secdata(secdata);
1472 	return ret;
1473 }
1474 
1475 static int setup_security_options(struct btrfs_fs_info *fs_info,
1476 				  struct super_block *sb,
1477 				  struct security_mnt_opts *sec_opts)
1478 {
1479 	int ret = 0;
1480 
1481 	/*
1482 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1483 	 * is valid.
1484 	 */
1485 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1486 	if (ret)
1487 		return ret;
1488 
1489 #ifdef CONFIG_SECURITY
1490 	if (!fs_info->security_opts.num_mnt_opts) {
1491 		/* first time security setup, copy sec_opts to fs_info */
1492 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1493 	} else {
1494 		/*
1495 		 * Since SELinux (the only one supporting security_mnt_opts)
1496 		 * does NOT support changing context during remount/mount of
1497 		 * the same sb, this must be the same or part of the same
1498 		 * security options, just free it.
1499 		 */
1500 		security_free_mnt_opts(sec_opts);
1501 	}
1502 #endif
1503 	return ret;
1504 }
1505 
1506 /*
1507  * Find a superblock for the given device / mount point.
1508  *
1509  * Note: This is based on mount_bdev from fs/super.c with a few additions
1510  *       for multiple device setup.  Make sure to keep it in sync.
1511  */
1512 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1513 		int flags, const char *device_name, void *data)
1514 {
1515 	struct block_device *bdev = NULL;
1516 	struct super_block *s;
1517 	struct btrfs_fs_devices *fs_devices = NULL;
1518 	struct btrfs_fs_info *fs_info = NULL;
1519 	struct security_mnt_opts new_sec_opts;
1520 	fmode_t mode = FMODE_READ;
1521 	int error = 0;
1522 
1523 	if (!(flags & SB_RDONLY))
1524 		mode |= FMODE_WRITE;
1525 
1526 	error = btrfs_parse_early_options(data, mode, fs_type,
1527 					  &fs_devices);
1528 	if (error) {
1529 		return ERR_PTR(error);
1530 	}
1531 
1532 	security_init_mnt_opts(&new_sec_opts);
1533 	if (data) {
1534 		error = parse_security_options(data, &new_sec_opts);
1535 		if (error)
1536 			return ERR_PTR(error);
1537 	}
1538 
1539 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1540 	if (error)
1541 		goto error_sec_opts;
1542 
1543 	/*
1544 	 * Setup a dummy root and fs_info for test/set super.  This is because
1545 	 * we don't actually fill this stuff out until open_ctree, but we need
1546 	 * it for searching for existing supers, so this lets us do that and
1547 	 * then open_ctree will properly initialize everything later.
1548 	 */
1549 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1550 	if (!fs_info) {
1551 		error = -ENOMEM;
1552 		goto error_sec_opts;
1553 	}
1554 
1555 	fs_info->fs_devices = fs_devices;
1556 
1557 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1558 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1559 	security_init_mnt_opts(&fs_info->security_opts);
1560 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1561 		error = -ENOMEM;
1562 		goto error_fs_info;
1563 	}
1564 
1565 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1566 	if (error)
1567 		goto error_fs_info;
1568 
1569 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1570 		error = -EACCES;
1571 		goto error_close_devices;
1572 	}
1573 
1574 	bdev = fs_devices->latest_bdev;
1575 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1576 		 fs_info);
1577 	if (IS_ERR(s)) {
1578 		error = PTR_ERR(s);
1579 		goto error_close_devices;
1580 	}
1581 
1582 	if (s->s_root) {
1583 		btrfs_close_devices(fs_devices);
1584 		free_fs_info(fs_info);
1585 		if ((flags ^ s->s_flags) & SB_RDONLY)
1586 			error = -EBUSY;
1587 	} else {
1588 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1589 		btrfs_sb(s)->bdev_holder = fs_type;
1590 		error = btrfs_fill_super(s, fs_devices, data);
1591 	}
1592 	if (error) {
1593 		deactivate_locked_super(s);
1594 		goto error_sec_opts;
1595 	}
1596 
1597 	fs_info = btrfs_sb(s);
1598 	error = setup_security_options(fs_info, s, &new_sec_opts);
1599 	if (error) {
1600 		deactivate_locked_super(s);
1601 		goto error_sec_opts;
1602 	}
1603 
1604 	return dget(s->s_root);
1605 
1606 error_close_devices:
1607 	btrfs_close_devices(fs_devices);
1608 error_fs_info:
1609 	free_fs_info(fs_info);
1610 error_sec_opts:
1611 	security_free_mnt_opts(&new_sec_opts);
1612 	return ERR_PTR(error);
1613 }
1614 
1615 /*
1616  * Mount function which is called by VFS layer.
1617  *
1618  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1619  * which needs vfsmount* of device's root (/).  This means device's root has to
1620  * be mounted internally in any case.
1621  *
1622  * Operation flow:
1623  *   1. Parse subvol id related options for later use in mount_subvol().
1624  *
1625  *   2. Mount device's root (/) by calling vfs_kern_mount().
1626  *
1627  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1628  *      first place. In order to avoid calling btrfs_mount() again, we use
1629  *      different file_system_type which is not registered to VFS by
1630  *      register_filesystem() (btrfs_root_fs_type). As a result,
1631  *      btrfs_mount_root() is called. The return value will be used by
1632  *      mount_subtree() in mount_subvol().
1633  *
1634  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1635  *      "btrfs subvolume set-default", mount_subvol() is called always.
1636  */
1637 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1638 		const char *device_name, void *data)
1639 {
1640 	struct vfsmount *mnt_root;
1641 	struct dentry *root;
1642 	fmode_t mode = FMODE_READ;
1643 	char *subvol_name = NULL;
1644 	u64 subvol_objectid = 0;
1645 	int error = 0;
1646 
1647 	if (!(flags & SB_RDONLY))
1648 		mode |= FMODE_WRITE;
1649 
1650 	error = btrfs_parse_subvol_options(data, mode,
1651 					  &subvol_name, &subvol_objectid);
1652 	if (error) {
1653 		kfree(subvol_name);
1654 		return ERR_PTR(error);
1655 	}
1656 
1657 	/* mount device's root (/) */
1658 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1659 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1660 		if (flags & SB_RDONLY) {
1661 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1662 				flags & ~SB_RDONLY, device_name, data);
1663 		} else {
1664 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1665 				flags | SB_RDONLY, device_name, data);
1666 			if (IS_ERR(mnt_root)) {
1667 				root = ERR_CAST(mnt_root);
1668 				goto out;
1669 			}
1670 
1671 			down_write(&mnt_root->mnt_sb->s_umount);
1672 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1673 			up_write(&mnt_root->mnt_sb->s_umount);
1674 			if (error < 0) {
1675 				root = ERR_PTR(error);
1676 				mntput(mnt_root);
1677 				goto out;
1678 			}
1679 		}
1680 	}
1681 	if (IS_ERR(mnt_root)) {
1682 		root = ERR_CAST(mnt_root);
1683 		goto out;
1684 	}
1685 
1686 	/* mount_subvol() will free subvol_name and mnt_root */
1687 	root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root);
1688 
1689 out:
1690 	return root;
1691 }
1692 
1693 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1694 				     u32 new_pool_size, u32 old_pool_size)
1695 {
1696 	if (new_pool_size == old_pool_size)
1697 		return;
1698 
1699 	fs_info->thread_pool_size = new_pool_size;
1700 
1701 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1702 	       old_pool_size, new_pool_size);
1703 
1704 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1705 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1706 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1707 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1708 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1709 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1710 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1711 				new_pool_size);
1712 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1713 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1714 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1715 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1716 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1717 				new_pool_size);
1718 }
1719 
1720 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1721 {
1722 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1723 }
1724 
1725 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1726 				       unsigned long old_opts, int flags)
1727 {
1728 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1729 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1730 	     (flags & SB_RDONLY))) {
1731 		/* wait for any defraggers to finish */
1732 		wait_event(fs_info->transaction_wait,
1733 			   (atomic_read(&fs_info->defrag_running) == 0));
1734 		if (flags & SB_RDONLY)
1735 			sync_filesystem(fs_info->sb);
1736 	}
1737 }
1738 
1739 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1740 					 unsigned long old_opts)
1741 {
1742 	/*
1743 	 * We need to cleanup all defragable inodes if the autodefragment is
1744 	 * close or the filesystem is read only.
1745 	 */
1746 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1747 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1748 		btrfs_cleanup_defrag_inodes(fs_info);
1749 	}
1750 
1751 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1752 }
1753 
1754 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1755 {
1756 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1757 	struct btrfs_root *root = fs_info->tree_root;
1758 	unsigned old_flags = sb->s_flags;
1759 	unsigned long old_opts = fs_info->mount_opt;
1760 	unsigned long old_compress_type = fs_info->compress_type;
1761 	u64 old_max_inline = fs_info->max_inline;
1762 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1763 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1764 	int ret;
1765 
1766 	sync_filesystem(sb);
1767 	btrfs_remount_prepare(fs_info);
1768 
1769 	if (data) {
1770 		struct security_mnt_opts new_sec_opts;
1771 
1772 		security_init_mnt_opts(&new_sec_opts);
1773 		ret = parse_security_options(data, &new_sec_opts);
1774 		if (ret)
1775 			goto restore;
1776 		ret = setup_security_options(fs_info, sb,
1777 					     &new_sec_opts);
1778 		if (ret) {
1779 			security_free_mnt_opts(&new_sec_opts);
1780 			goto restore;
1781 		}
1782 	}
1783 
1784 	ret = btrfs_parse_options(fs_info, data, *flags);
1785 	if (ret) {
1786 		ret = -EINVAL;
1787 		goto restore;
1788 	}
1789 
1790 	btrfs_remount_begin(fs_info, old_opts, *flags);
1791 	btrfs_resize_thread_pool(fs_info,
1792 		fs_info->thread_pool_size, old_thread_pool_size);
1793 
1794 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1795 		goto out;
1796 
1797 	if (*flags & SB_RDONLY) {
1798 		/*
1799 		 * this also happens on 'umount -rf' or on shutdown, when
1800 		 * the filesystem is busy.
1801 		 */
1802 		cancel_work_sync(&fs_info->async_reclaim_work);
1803 
1804 		/* wait for the uuid_scan task to finish */
1805 		down(&fs_info->uuid_tree_rescan_sem);
1806 		/* avoid complains from lockdep et al. */
1807 		up(&fs_info->uuid_tree_rescan_sem);
1808 
1809 		sb->s_flags |= SB_RDONLY;
1810 
1811 		/*
1812 		 * Setting SB_RDONLY will put the cleaner thread to
1813 		 * sleep at the next loop if it's already active.
1814 		 * If it's already asleep, we'll leave unused block
1815 		 * groups on disk until we're mounted read-write again
1816 		 * unless we clean them up here.
1817 		 */
1818 		btrfs_delete_unused_bgs(fs_info);
1819 
1820 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1821 		btrfs_scrub_cancel(fs_info);
1822 		btrfs_pause_balance(fs_info);
1823 
1824 		ret = btrfs_commit_super(fs_info);
1825 		if (ret)
1826 			goto restore;
1827 	} else {
1828 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1829 			btrfs_err(fs_info,
1830 				"Remounting read-write after error is not allowed");
1831 			ret = -EINVAL;
1832 			goto restore;
1833 		}
1834 		if (fs_info->fs_devices->rw_devices == 0) {
1835 			ret = -EACCES;
1836 			goto restore;
1837 		}
1838 
1839 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1840 			btrfs_warn(fs_info,
1841 				"too many missing devices, writeable remount is not allowed");
1842 			ret = -EACCES;
1843 			goto restore;
1844 		}
1845 
1846 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1847 			ret = -EINVAL;
1848 			goto restore;
1849 		}
1850 
1851 		ret = btrfs_cleanup_fs_roots(fs_info);
1852 		if (ret)
1853 			goto restore;
1854 
1855 		/* recover relocation */
1856 		mutex_lock(&fs_info->cleaner_mutex);
1857 		ret = btrfs_recover_relocation(root);
1858 		mutex_unlock(&fs_info->cleaner_mutex);
1859 		if (ret)
1860 			goto restore;
1861 
1862 		ret = btrfs_resume_balance_async(fs_info);
1863 		if (ret)
1864 			goto restore;
1865 
1866 		ret = btrfs_resume_dev_replace_async(fs_info);
1867 		if (ret) {
1868 			btrfs_warn(fs_info, "failed to resume dev_replace");
1869 			goto restore;
1870 		}
1871 
1872 		btrfs_qgroup_rescan_resume(fs_info);
1873 
1874 		if (!fs_info->uuid_root) {
1875 			btrfs_info(fs_info, "creating UUID tree");
1876 			ret = btrfs_create_uuid_tree(fs_info);
1877 			if (ret) {
1878 				btrfs_warn(fs_info,
1879 					   "failed to create the UUID tree %d",
1880 					   ret);
1881 				goto restore;
1882 			}
1883 		}
1884 		sb->s_flags &= ~SB_RDONLY;
1885 
1886 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1887 	}
1888 out:
1889 	wake_up_process(fs_info->transaction_kthread);
1890 	btrfs_remount_cleanup(fs_info, old_opts);
1891 	return 0;
1892 
1893 restore:
1894 	/* We've hit an error - don't reset SB_RDONLY */
1895 	if (sb_rdonly(sb))
1896 		old_flags |= SB_RDONLY;
1897 	sb->s_flags = old_flags;
1898 	fs_info->mount_opt = old_opts;
1899 	fs_info->compress_type = old_compress_type;
1900 	fs_info->max_inline = old_max_inline;
1901 	btrfs_resize_thread_pool(fs_info,
1902 		old_thread_pool_size, fs_info->thread_pool_size);
1903 	fs_info->metadata_ratio = old_metadata_ratio;
1904 	btrfs_remount_cleanup(fs_info, old_opts);
1905 	return ret;
1906 }
1907 
1908 /* Used to sort the devices by max_avail(descending sort) */
1909 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1910 				       const void *dev_info2)
1911 {
1912 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1913 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1914 		return -1;
1915 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1916 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1917 		return 1;
1918 	else
1919 	return 0;
1920 }
1921 
1922 /*
1923  * sort the devices by max_avail, in which max free extent size of each device
1924  * is stored.(Descending Sort)
1925  */
1926 static inline void btrfs_descending_sort_devices(
1927 					struct btrfs_device_info *devices,
1928 					size_t nr_devices)
1929 {
1930 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1931 	     btrfs_cmp_device_free_bytes, NULL);
1932 }
1933 
1934 /*
1935  * The helper to calc the free space on the devices that can be used to store
1936  * file data.
1937  */
1938 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1939 				       u64 *free_bytes)
1940 {
1941 	struct btrfs_device_info *devices_info;
1942 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1943 	struct btrfs_device *device;
1944 	u64 skip_space;
1945 	u64 type;
1946 	u64 avail_space;
1947 	u64 min_stripe_size;
1948 	int min_stripes = 1, num_stripes = 1;
1949 	int i = 0, nr_devices;
1950 
1951 	/*
1952 	 * We aren't under the device list lock, so this is racy-ish, but good
1953 	 * enough for our purposes.
1954 	 */
1955 	nr_devices = fs_info->fs_devices->open_devices;
1956 	if (!nr_devices) {
1957 		smp_mb();
1958 		nr_devices = fs_info->fs_devices->open_devices;
1959 		ASSERT(nr_devices);
1960 		if (!nr_devices) {
1961 			*free_bytes = 0;
1962 			return 0;
1963 		}
1964 	}
1965 
1966 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1967 			       GFP_KERNEL);
1968 	if (!devices_info)
1969 		return -ENOMEM;
1970 
1971 	/* calc min stripe number for data space allocation */
1972 	type = btrfs_data_alloc_profile(fs_info);
1973 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1974 		min_stripes = 2;
1975 		num_stripes = nr_devices;
1976 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1977 		min_stripes = 2;
1978 		num_stripes = 2;
1979 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1980 		min_stripes = 4;
1981 		num_stripes = 4;
1982 	}
1983 
1984 	if (type & BTRFS_BLOCK_GROUP_DUP)
1985 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1986 	else
1987 		min_stripe_size = BTRFS_STRIPE_LEN;
1988 
1989 	rcu_read_lock();
1990 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1991 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1992 						&device->dev_state) ||
1993 		    !device->bdev ||
1994 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1995 			continue;
1996 
1997 		if (i >= nr_devices)
1998 			break;
1999 
2000 		avail_space = device->total_bytes - device->bytes_used;
2001 
2002 		/* align with stripe_len */
2003 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
2004 		avail_space *= BTRFS_STRIPE_LEN;
2005 
2006 		/*
2007 		 * In order to avoid overwriting the superblock on the drive,
2008 		 * btrfs starts at an offset of at least 1MB when doing chunk
2009 		 * allocation.
2010 		 */
2011 		skip_space = SZ_1M;
2012 
2013 		/*
2014 		 * we can use the free space in [0, skip_space - 1], subtract
2015 		 * it from the total.
2016 		 */
2017 		if (avail_space && avail_space >= skip_space)
2018 			avail_space -= skip_space;
2019 		else
2020 			avail_space = 0;
2021 
2022 		if (avail_space < min_stripe_size)
2023 			continue;
2024 
2025 		devices_info[i].dev = device;
2026 		devices_info[i].max_avail = avail_space;
2027 
2028 		i++;
2029 	}
2030 	rcu_read_unlock();
2031 
2032 	nr_devices = i;
2033 
2034 	btrfs_descending_sort_devices(devices_info, nr_devices);
2035 
2036 	i = nr_devices - 1;
2037 	avail_space = 0;
2038 	while (nr_devices >= min_stripes) {
2039 		if (num_stripes > nr_devices)
2040 			num_stripes = nr_devices;
2041 
2042 		if (devices_info[i].max_avail >= min_stripe_size) {
2043 			int j;
2044 			u64 alloc_size;
2045 
2046 			avail_space += devices_info[i].max_avail * num_stripes;
2047 			alloc_size = devices_info[i].max_avail;
2048 			for (j = i + 1 - num_stripes; j <= i; j++)
2049 				devices_info[j].max_avail -= alloc_size;
2050 		}
2051 		i--;
2052 		nr_devices--;
2053 	}
2054 
2055 	kfree(devices_info);
2056 	*free_bytes = avail_space;
2057 	return 0;
2058 }
2059 
2060 /*
2061  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2062  *
2063  * If there's a redundant raid level at DATA block groups, use the respective
2064  * multiplier to scale the sizes.
2065  *
2066  * Unused device space usage is based on simulating the chunk allocator
2067  * algorithm that respects the device sizes and order of allocations.  This is
2068  * a close approximation of the actual use but there are other factors that may
2069  * change the result (like a new metadata chunk).
2070  *
2071  * If metadata is exhausted, f_bavail will be 0.
2072  */
2073 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2074 {
2075 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2076 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2077 	struct list_head *head = &fs_info->space_info;
2078 	struct btrfs_space_info *found;
2079 	u64 total_used = 0;
2080 	u64 total_free_data = 0;
2081 	u64 total_free_meta = 0;
2082 	int bits = dentry->d_sb->s_blocksize_bits;
2083 	__be32 *fsid = (__be32 *)fs_info->fsid;
2084 	unsigned factor = 1;
2085 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2086 	int ret;
2087 	u64 thresh = 0;
2088 	int mixed = 0;
2089 
2090 	rcu_read_lock();
2091 	list_for_each_entry_rcu(found, head, list) {
2092 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2093 			int i;
2094 
2095 			total_free_data += found->disk_total - found->disk_used;
2096 			total_free_data -=
2097 				btrfs_account_ro_block_groups_free_space(found);
2098 
2099 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2100 				if (!list_empty(&found->block_groups[i])) {
2101 					switch (i) {
2102 					case BTRFS_RAID_DUP:
2103 					case BTRFS_RAID_RAID1:
2104 					case BTRFS_RAID_RAID10:
2105 						factor = 2;
2106 					}
2107 				}
2108 			}
2109 		}
2110 
2111 		/*
2112 		 * Metadata in mixed block goup profiles are accounted in data
2113 		 */
2114 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2115 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2116 				mixed = 1;
2117 			else
2118 				total_free_meta += found->disk_total -
2119 					found->disk_used;
2120 		}
2121 
2122 		total_used += found->disk_used;
2123 	}
2124 
2125 	rcu_read_unlock();
2126 
2127 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2128 	buf->f_blocks >>= bits;
2129 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2130 
2131 	/* Account global block reserve as used, it's in logical size already */
2132 	spin_lock(&block_rsv->lock);
2133 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2134 	if (buf->f_bfree >= block_rsv->size >> bits)
2135 		buf->f_bfree -= block_rsv->size >> bits;
2136 	else
2137 		buf->f_bfree = 0;
2138 	spin_unlock(&block_rsv->lock);
2139 
2140 	buf->f_bavail = div_u64(total_free_data, factor);
2141 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2142 	if (ret)
2143 		return ret;
2144 	buf->f_bavail += div_u64(total_free_data, factor);
2145 	buf->f_bavail = buf->f_bavail >> bits;
2146 
2147 	/*
2148 	 * We calculate the remaining metadata space minus global reserve. If
2149 	 * this is (supposedly) smaller than zero, there's no space. But this
2150 	 * does not hold in practice, the exhausted state happens where's still
2151 	 * some positive delta. So we apply some guesswork and compare the
2152 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2153 	 *
2154 	 * We probably cannot calculate the exact threshold value because this
2155 	 * depends on the internal reservations requested by various
2156 	 * operations, so some operations that consume a few metadata will
2157 	 * succeed even if the Avail is zero. But this is better than the other
2158 	 * way around.
2159 	 */
2160 	thresh = SZ_4M;
2161 
2162 	if (!mixed && total_free_meta - thresh < block_rsv->size)
2163 		buf->f_bavail = 0;
2164 
2165 	buf->f_type = BTRFS_SUPER_MAGIC;
2166 	buf->f_bsize = dentry->d_sb->s_blocksize;
2167 	buf->f_namelen = BTRFS_NAME_LEN;
2168 
2169 	/* We treat it as constant endianness (it doesn't matter _which_)
2170 	   because we want the fsid to come out the same whether mounted
2171 	   on a big-endian or little-endian host */
2172 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2173 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2174 	/* Mask in the root object ID too, to disambiguate subvols */
2175 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2176 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2177 
2178 	return 0;
2179 }
2180 
2181 static void btrfs_kill_super(struct super_block *sb)
2182 {
2183 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2184 	kill_anon_super(sb);
2185 	free_fs_info(fs_info);
2186 }
2187 
2188 static struct file_system_type btrfs_fs_type = {
2189 	.owner		= THIS_MODULE,
2190 	.name		= "btrfs",
2191 	.mount		= btrfs_mount,
2192 	.kill_sb	= btrfs_kill_super,
2193 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2194 };
2195 
2196 static struct file_system_type btrfs_root_fs_type = {
2197 	.owner		= THIS_MODULE,
2198 	.name		= "btrfs",
2199 	.mount		= btrfs_mount_root,
2200 	.kill_sb	= btrfs_kill_super,
2201 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2202 };
2203 
2204 MODULE_ALIAS_FS("btrfs");
2205 
2206 static int btrfs_control_open(struct inode *inode, struct file *file)
2207 {
2208 	/*
2209 	 * The control file's private_data is used to hold the
2210 	 * transaction when it is started and is used to keep
2211 	 * track of whether a transaction is already in progress.
2212 	 */
2213 	file->private_data = NULL;
2214 	return 0;
2215 }
2216 
2217 /*
2218  * used by btrfsctl to scan devices when no FS is mounted
2219  */
2220 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2221 				unsigned long arg)
2222 {
2223 	struct btrfs_ioctl_vol_args *vol;
2224 	struct btrfs_fs_devices *fs_devices;
2225 	int ret = -ENOTTY;
2226 
2227 	if (!capable(CAP_SYS_ADMIN))
2228 		return -EPERM;
2229 
2230 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2231 	if (IS_ERR(vol))
2232 		return PTR_ERR(vol);
2233 
2234 	switch (cmd) {
2235 	case BTRFS_IOC_SCAN_DEV:
2236 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2237 					    &btrfs_root_fs_type, &fs_devices);
2238 		break;
2239 	case BTRFS_IOC_DEVICES_READY:
2240 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2241 					    &btrfs_root_fs_type, &fs_devices);
2242 		if (ret)
2243 			break;
2244 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
2245 		break;
2246 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2247 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2248 		break;
2249 	}
2250 
2251 	kfree(vol);
2252 	return ret;
2253 }
2254 
2255 static int btrfs_freeze(struct super_block *sb)
2256 {
2257 	struct btrfs_trans_handle *trans;
2258 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2259 	struct btrfs_root *root = fs_info->tree_root;
2260 
2261 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2262 	/*
2263 	 * We don't need a barrier here, we'll wait for any transaction that
2264 	 * could be in progress on other threads (and do delayed iputs that
2265 	 * we want to avoid on a frozen filesystem), or do the commit
2266 	 * ourselves.
2267 	 */
2268 	trans = btrfs_attach_transaction_barrier(root);
2269 	if (IS_ERR(trans)) {
2270 		/* no transaction, don't bother */
2271 		if (PTR_ERR(trans) == -ENOENT)
2272 			return 0;
2273 		return PTR_ERR(trans);
2274 	}
2275 	return btrfs_commit_transaction(trans);
2276 }
2277 
2278 static int btrfs_unfreeze(struct super_block *sb)
2279 {
2280 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2281 
2282 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2283 	return 0;
2284 }
2285 
2286 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2287 {
2288 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2289 	struct btrfs_fs_devices *cur_devices;
2290 	struct btrfs_device *dev, *first_dev = NULL;
2291 	struct list_head *head;
2292 	struct rcu_string *name;
2293 
2294 	/*
2295 	 * Lightweight locking of the devices. We should not need
2296 	 * device_list_mutex here as we only read the device data and the list
2297 	 * is protected by RCU.  Even if a device is deleted during the list
2298 	 * traversals, we'll get valid data, the freeing callback will wait at
2299 	 * least until until the rcu_read_unlock.
2300 	 */
2301 	rcu_read_lock();
2302 	cur_devices = fs_info->fs_devices;
2303 	while (cur_devices) {
2304 		head = &cur_devices->devices;
2305 		list_for_each_entry_rcu(dev, head, dev_list) {
2306 			if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2307 				continue;
2308 			if (!dev->name)
2309 				continue;
2310 			if (!first_dev || dev->devid < first_dev->devid)
2311 				first_dev = dev;
2312 		}
2313 		cur_devices = cur_devices->seed;
2314 	}
2315 
2316 	if (first_dev) {
2317 		name = rcu_dereference(first_dev->name);
2318 		seq_escape(m, name->str, " \t\n\\");
2319 	} else {
2320 		WARN_ON(1);
2321 	}
2322 	rcu_read_unlock();
2323 	return 0;
2324 }
2325 
2326 static const struct super_operations btrfs_super_ops = {
2327 	.drop_inode	= btrfs_drop_inode,
2328 	.evict_inode	= btrfs_evict_inode,
2329 	.put_super	= btrfs_put_super,
2330 	.sync_fs	= btrfs_sync_fs,
2331 	.show_options	= btrfs_show_options,
2332 	.show_devname	= btrfs_show_devname,
2333 	.write_inode	= btrfs_write_inode,
2334 	.alloc_inode	= btrfs_alloc_inode,
2335 	.destroy_inode	= btrfs_destroy_inode,
2336 	.statfs		= btrfs_statfs,
2337 	.remount_fs	= btrfs_remount,
2338 	.freeze_fs	= btrfs_freeze,
2339 	.unfreeze_fs	= btrfs_unfreeze,
2340 };
2341 
2342 static const struct file_operations btrfs_ctl_fops = {
2343 	.open = btrfs_control_open,
2344 	.unlocked_ioctl	 = btrfs_control_ioctl,
2345 	.compat_ioctl = btrfs_control_ioctl,
2346 	.owner	 = THIS_MODULE,
2347 	.llseek = noop_llseek,
2348 };
2349 
2350 static struct miscdevice btrfs_misc = {
2351 	.minor		= BTRFS_MINOR,
2352 	.name		= "btrfs-control",
2353 	.fops		= &btrfs_ctl_fops
2354 };
2355 
2356 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2357 MODULE_ALIAS("devname:btrfs-control");
2358 
2359 static int __init btrfs_interface_init(void)
2360 {
2361 	return misc_register(&btrfs_misc);
2362 }
2363 
2364 static __cold void btrfs_interface_exit(void)
2365 {
2366 	misc_deregister(&btrfs_misc);
2367 }
2368 
2369 static void __init btrfs_print_mod_info(void)
2370 {
2371 	pr_info("Btrfs loaded, crc32c=%s"
2372 #ifdef CONFIG_BTRFS_DEBUG
2373 			", debug=on"
2374 #endif
2375 #ifdef CONFIG_BTRFS_ASSERT
2376 			", assert=on"
2377 #endif
2378 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2379 			", integrity-checker=on"
2380 #endif
2381 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2382 			", ref-verify=on"
2383 #endif
2384 			"\n",
2385 			crc32c_impl());
2386 }
2387 
2388 static int __init init_btrfs_fs(void)
2389 {
2390 	int err;
2391 
2392 	btrfs_props_init();
2393 
2394 	err = btrfs_init_sysfs();
2395 	if (err)
2396 		return err;
2397 
2398 	btrfs_init_compress();
2399 
2400 	err = btrfs_init_cachep();
2401 	if (err)
2402 		goto free_compress;
2403 
2404 	err = extent_io_init();
2405 	if (err)
2406 		goto free_cachep;
2407 
2408 	err = extent_map_init();
2409 	if (err)
2410 		goto free_extent_io;
2411 
2412 	err = ordered_data_init();
2413 	if (err)
2414 		goto free_extent_map;
2415 
2416 	err = btrfs_delayed_inode_init();
2417 	if (err)
2418 		goto free_ordered_data;
2419 
2420 	err = btrfs_auto_defrag_init();
2421 	if (err)
2422 		goto free_delayed_inode;
2423 
2424 	err = btrfs_delayed_ref_init();
2425 	if (err)
2426 		goto free_auto_defrag;
2427 
2428 	err = btrfs_prelim_ref_init();
2429 	if (err)
2430 		goto free_delayed_ref;
2431 
2432 	err = btrfs_end_io_wq_init();
2433 	if (err)
2434 		goto free_prelim_ref;
2435 
2436 	err = btrfs_interface_init();
2437 	if (err)
2438 		goto free_end_io_wq;
2439 
2440 	btrfs_init_lockdep();
2441 
2442 	btrfs_print_mod_info();
2443 
2444 	err = btrfs_run_sanity_tests();
2445 	if (err)
2446 		goto unregister_ioctl;
2447 
2448 	err = register_filesystem(&btrfs_fs_type);
2449 	if (err)
2450 		goto unregister_ioctl;
2451 
2452 	return 0;
2453 
2454 unregister_ioctl:
2455 	btrfs_interface_exit();
2456 free_end_io_wq:
2457 	btrfs_end_io_wq_exit();
2458 free_prelim_ref:
2459 	btrfs_prelim_ref_exit();
2460 free_delayed_ref:
2461 	btrfs_delayed_ref_exit();
2462 free_auto_defrag:
2463 	btrfs_auto_defrag_exit();
2464 free_delayed_inode:
2465 	btrfs_delayed_inode_exit();
2466 free_ordered_data:
2467 	ordered_data_exit();
2468 free_extent_map:
2469 	extent_map_exit();
2470 free_extent_io:
2471 	extent_io_exit();
2472 free_cachep:
2473 	btrfs_destroy_cachep();
2474 free_compress:
2475 	btrfs_exit_compress();
2476 	btrfs_exit_sysfs();
2477 
2478 	return err;
2479 }
2480 
2481 static void __exit exit_btrfs_fs(void)
2482 {
2483 	btrfs_destroy_cachep();
2484 	btrfs_delayed_ref_exit();
2485 	btrfs_auto_defrag_exit();
2486 	btrfs_delayed_inode_exit();
2487 	btrfs_prelim_ref_exit();
2488 	ordered_data_exit();
2489 	extent_map_exit();
2490 	extent_io_exit();
2491 	btrfs_interface_exit();
2492 	btrfs_end_io_wq_exit();
2493 	unregister_filesystem(&btrfs_fs_type);
2494 	btrfs_exit_sysfs();
2495 	btrfs_cleanup_fs_uuids();
2496 	btrfs_exit_compress();
2497 }
2498 
2499 late_initcall(init_btrfs_fs);
2500 module_exit(exit_btrfs_fs)
2501 
2502 MODULE_LICENSE("GPL");
2503