1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/cleancache.h> 27 #include <linux/ratelimit.h> 28 #include <linux/crc32c.h> 29 #include <linux/btrfs.h> 30 #include "delayed-inode.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "print-tree.h" 36 #include "props.h" 37 #include "xattr.h" 38 #include "volumes.h" 39 #include "export.h" 40 #include "compression.h" 41 #include "rcu-string.h" 42 #include "dev-replace.h" 43 #include "free-space-cache.h" 44 #include "backref.h" 45 #include "space-info.h" 46 #include "sysfs.h" 47 #include "tests/btrfs-tests.h" 48 #include "block-group.h" 49 #include "discard.h" 50 51 #include "qgroup.h" 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/btrfs.h> 54 55 static const struct super_operations btrfs_super_ops; 56 57 /* 58 * Types for mounting the default subvolume and a subvolume explicitly 59 * requested by subvol=/path. That way the callchain is straightforward and we 60 * don't have to play tricks with the mount options and recursive calls to 61 * btrfs_mount. 62 * 63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 64 */ 65 static struct file_system_type btrfs_fs_type; 66 static struct file_system_type btrfs_root_fs_type; 67 68 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 69 70 const char * __attribute_const__ btrfs_decode_error(int errno) 71 { 72 char *errstr = "unknown"; 73 74 switch (errno) { 75 case -ENOENT: /* -2 */ 76 errstr = "No such entry"; 77 break; 78 case -EIO: /* -5 */ 79 errstr = "IO failure"; 80 break; 81 case -ENOMEM: /* -12*/ 82 errstr = "Out of memory"; 83 break; 84 case -EEXIST: /* -17 */ 85 errstr = "Object already exists"; 86 break; 87 case -ENOSPC: /* -28 */ 88 errstr = "No space left"; 89 break; 90 case -EROFS: /* -30 */ 91 errstr = "Readonly filesystem"; 92 break; 93 case -EOPNOTSUPP: /* -95 */ 94 errstr = "Operation not supported"; 95 break; 96 case -EUCLEAN: /* -117 */ 97 errstr = "Filesystem corrupted"; 98 break; 99 case -EDQUOT: /* -122 */ 100 errstr = "Quota exceeded"; 101 break; 102 } 103 104 return errstr; 105 } 106 107 /* 108 * __btrfs_handle_fs_error decodes expected errors from the caller and 109 * invokes the appropriate error response. 110 */ 111 __cold 112 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 113 unsigned int line, int errno, const char *fmt, ...) 114 { 115 struct super_block *sb = fs_info->sb; 116 #ifdef CONFIG_PRINTK 117 const char *errstr; 118 #endif 119 120 /* 121 * Special case: if the error is EROFS, and we're already 122 * under SB_RDONLY, then it is safe here. 123 */ 124 if (errno == -EROFS && sb_rdonly(sb)) 125 return; 126 127 #ifdef CONFIG_PRINTK 128 errstr = btrfs_decode_error(errno); 129 if (fmt) { 130 struct va_format vaf; 131 va_list args; 132 133 va_start(args, fmt); 134 vaf.fmt = fmt; 135 vaf.va = &args; 136 137 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 138 sb->s_id, function, line, errno, errstr, &vaf); 139 va_end(args); 140 } else { 141 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 142 sb->s_id, function, line, errno, errstr); 143 } 144 #endif 145 146 /* 147 * Today we only save the error info to memory. Long term we'll 148 * also send it down to the disk 149 */ 150 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 151 152 /* Don't go through full error handling during mount */ 153 if (!(sb->s_flags & SB_BORN)) 154 return; 155 156 if (sb_rdonly(sb)) 157 return; 158 159 btrfs_discard_stop(fs_info); 160 161 /* btrfs handle error by forcing the filesystem readonly */ 162 sb->s_flags |= SB_RDONLY; 163 btrfs_info(fs_info, "forced readonly"); 164 /* 165 * Note that a running device replace operation is not canceled here 166 * although there is no way to update the progress. It would add the 167 * risk of a deadlock, therefore the canceling is omitted. The only 168 * penalty is that some I/O remains active until the procedure 169 * completes. The next time when the filesystem is mounted writable 170 * again, the device replace operation continues. 171 */ 172 } 173 174 #ifdef CONFIG_PRINTK 175 static const char * const logtypes[] = { 176 "emergency", 177 "alert", 178 "critical", 179 "error", 180 "warning", 181 "notice", 182 "info", 183 "debug", 184 }; 185 186 187 /* 188 * Use one ratelimit state per log level so that a flood of less important 189 * messages doesn't cause more important ones to be dropped. 190 */ 191 static struct ratelimit_state printk_limits[] = { 192 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 193 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 194 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 195 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 196 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 197 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 198 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 199 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 200 }; 201 202 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 203 { 204 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 205 struct va_format vaf; 206 va_list args; 207 int kern_level; 208 const char *type = logtypes[4]; 209 struct ratelimit_state *ratelimit = &printk_limits[4]; 210 211 va_start(args, fmt); 212 213 while ((kern_level = printk_get_level(fmt)) != 0) { 214 size_t size = printk_skip_level(fmt) - fmt; 215 216 if (kern_level >= '0' && kern_level <= '7') { 217 memcpy(lvl, fmt, size); 218 lvl[size] = '\0'; 219 type = logtypes[kern_level - '0']; 220 ratelimit = &printk_limits[kern_level - '0']; 221 } 222 fmt += size; 223 } 224 225 vaf.fmt = fmt; 226 vaf.va = &args; 227 228 if (__ratelimit(ratelimit)) 229 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 230 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf); 231 232 va_end(args); 233 } 234 #endif 235 236 /* 237 * We only mark the transaction aborted and then set the file system read-only. 238 * This will prevent new transactions from starting or trying to join this 239 * one. 240 * 241 * This means that error recovery at the call site is limited to freeing 242 * any local memory allocations and passing the error code up without 243 * further cleanup. The transaction should complete as it normally would 244 * in the call path but will return -EIO. 245 * 246 * We'll complete the cleanup in btrfs_end_transaction and 247 * btrfs_commit_transaction. 248 */ 249 __cold 250 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 251 const char *function, 252 unsigned int line, int errno) 253 { 254 struct btrfs_fs_info *fs_info = trans->fs_info; 255 256 WRITE_ONCE(trans->aborted, errno); 257 /* Nothing used. The other threads that have joined this 258 * transaction may be able to continue. */ 259 if (!trans->dirty && list_empty(&trans->new_bgs)) { 260 const char *errstr; 261 262 errstr = btrfs_decode_error(errno); 263 btrfs_warn(fs_info, 264 "%s:%d: Aborting unused transaction(%s).", 265 function, line, errstr); 266 return; 267 } 268 WRITE_ONCE(trans->transaction->aborted, errno); 269 /* Wake up anybody who may be waiting on this transaction */ 270 wake_up(&fs_info->transaction_wait); 271 wake_up(&fs_info->transaction_blocked_wait); 272 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 273 } 274 /* 275 * __btrfs_panic decodes unexpected, fatal errors from the caller, 276 * issues an alert, and either panics or BUGs, depending on mount options. 277 */ 278 __cold 279 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 280 unsigned int line, int errno, const char *fmt, ...) 281 { 282 char *s_id = "<unknown>"; 283 const char *errstr; 284 struct va_format vaf = { .fmt = fmt }; 285 va_list args; 286 287 if (fs_info) 288 s_id = fs_info->sb->s_id; 289 290 va_start(args, fmt); 291 vaf.va = &args; 292 293 errstr = btrfs_decode_error(errno); 294 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 295 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 296 s_id, function, line, &vaf, errno, errstr); 297 298 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 299 function, line, &vaf, errno, errstr); 300 va_end(args); 301 /* Caller calls BUG() */ 302 } 303 304 static void btrfs_put_super(struct super_block *sb) 305 { 306 close_ctree(btrfs_sb(sb)); 307 } 308 309 enum { 310 Opt_acl, Opt_noacl, 311 Opt_clear_cache, 312 Opt_commit_interval, 313 Opt_compress, 314 Opt_compress_force, 315 Opt_compress_force_type, 316 Opt_compress_type, 317 Opt_degraded, 318 Opt_device, 319 Opt_fatal_errors, 320 Opt_flushoncommit, Opt_noflushoncommit, 321 Opt_inode_cache, Opt_noinode_cache, 322 Opt_max_inline, 323 Opt_barrier, Opt_nobarrier, 324 Opt_datacow, Opt_nodatacow, 325 Opt_datasum, Opt_nodatasum, 326 Opt_defrag, Opt_nodefrag, 327 Opt_discard, Opt_nodiscard, 328 Opt_discard_mode, 329 Opt_nologreplay, 330 Opt_norecovery, 331 Opt_ratio, 332 Opt_rescan_uuid_tree, 333 Opt_skip_balance, 334 Opt_space_cache, Opt_no_space_cache, 335 Opt_space_cache_version, 336 Opt_ssd, Opt_nossd, 337 Opt_ssd_spread, Opt_nossd_spread, 338 Opt_subvol, 339 Opt_subvol_empty, 340 Opt_subvolid, 341 Opt_thread_pool, 342 Opt_treelog, Opt_notreelog, 343 Opt_usebackuproot, 344 Opt_user_subvol_rm_allowed, 345 346 /* Deprecated options */ 347 Opt_alloc_start, 348 Opt_recovery, 349 Opt_subvolrootid, 350 351 /* Debugging options */ 352 Opt_check_integrity, 353 Opt_check_integrity_including_extent_data, 354 Opt_check_integrity_print_mask, 355 Opt_enospc_debug, Opt_noenospc_debug, 356 #ifdef CONFIG_BTRFS_DEBUG 357 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 358 #endif 359 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 360 Opt_ref_verify, 361 #endif 362 Opt_err, 363 }; 364 365 static const match_table_t tokens = { 366 {Opt_acl, "acl"}, 367 {Opt_noacl, "noacl"}, 368 {Opt_clear_cache, "clear_cache"}, 369 {Opt_commit_interval, "commit=%u"}, 370 {Opt_compress, "compress"}, 371 {Opt_compress_type, "compress=%s"}, 372 {Opt_compress_force, "compress-force"}, 373 {Opt_compress_force_type, "compress-force=%s"}, 374 {Opt_degraded, "degraded"}, 375 {Opt_device, "device=%s"}, 376 {Opt_fatal_errors, "fatal_errors=%s"}, 377 {Opt_flushoncommit, "flushoncommit"}, 378 {Opt_noflushoncommit, "noflushoncommit"}, 379 {Opt_inode_cache, "inode_cache"}, 380 {Opt_noinode_cache, "noinode_cache"}, 381 {Opt_max_inline, "max_inline=%s"}, 382 {Opt_barrier, "barrier"}, 383 {Opt_nobarrier, "nobarrier"}, 384 {Opt_datacow, "datacow"}, 385 {Opt_nodatacow, "nodatacow"}, 386 {Opt_datasum, "datasum"}, 387 {Opt_nodatasum, "nodatasum"}, 388 {Opt_defrag, "autodefrag"}, 389 {Opt_nodefrag, "noautodefrag"}, 390 {Opt_discard, "discard"}, 391 {Opt_discard_mode, "discard=%s"}, 392 {Opt_nodiscard, "nodiscard"}, 393 {Opt_nologreplay, "nologreplay"}, 394 {Opt_norecovery, "norecovery"}, 395 {Opt_ratio, "metadata_ratio=%u"}, 396 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 397 {Opt_skip_balance, "skip_balance"}, 398 {Opt_space_cache, "space_cache"}, 399 {Opt_no_space_cache, "nospace_cache"}, 400 {Opt_space_cache_version, "space_cache=%s"}, 401 {Opt_ssd, "ssd"}, 402 {Opt_nossd, "nossd"}, 403 {Opt_ssd_spread, "ssd_spread"}, 404 {Opt_nossd_spread, "nossd_spread"}, 405 {Opt_subvol, "subvol=%s"}, 406 {Opt_subvol_empty, "subvol="}, 407 {Opt_subvolid, "subvolid=%s"}, 408 {Opt_thread_pool, "thread_pool=%u"}, 409 {Opt_treelog, "treelog"}, 410 {Opt_notreelog, "notreelog"}, 411 {Opt_usebackuproot, "usebackuproot"}, 412 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 413 414 /* Deprecated options */ 415 {Opt_alloc_start, "alloc_start=%s"}, 416 {Opt_recovery, "recovery"}, 417 {Opt_subvolrootid, "subvolrootid=%d"}, 418 419 /* Debugging options */ 420 {Opt_check_integrity, "check_int"}, 421 {Opt_check_integrity_including_extent_data, "check_int_data"}, 422 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 423 {Opt_enospc_debug, "enospc_debug"}, 424 {Opt_noenospc_debug, "noenospc_debug"}, 425 #ifdef CONFIG_BTRFS_DEBUG 426 {Opt_fragment_data, "fragment=data"}, 427 {Opt_fragment_metadata, "fragment=metadata"}, 428 {Opt_fragment_all, "fragment=all"}, 429 #endif 430 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 431 {Opt_ref_verify, "ref_verify"}, 432 #endif 433 {Opt_err, NULL}, 434 }; 435 436 /* 437 * Regular mount options parser. Everything that is needed only when 438 * reading in a new superblock is parsed here. 439 * XXX JDM: This needs to be cleaned up for remount. 440 */ 441 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 442 unsigned long new_flags) 443 { 444 substring_t args[MAX_OPT_ARGS]; 445 char *p, *num; 446 u64 cache_gen; 447 int intarg; 448 int ret = 0; 449 char *compress_type; 450 bool compress_force = false; 451 enum btrfs_compression_type saved_compress_type; 452 bool saved_compress_force; 453 int no_compress = 0; 454 455 cache_gen = btrfs_super_cache_generation(info->super_copy); 456 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 457 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 458 else if (cache_gen) 459 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 460 461 /* 462 * Even the options are empty, we still need to do extra check 463 * against new flags 464 */ 465 if (!options) 466 goto check; 467 468 while ((p = strsep(&options, ",")) != NULL) { 469 int token; 470 if (!*p) 471 continue; 472 473 token = match_token(p, tokens, args); 474 switch (token) { 475 case Opt_degraded: 476 btrfs_info(info, "allowing degraded mounts"); 477 btrfs_set_opt(info->mount_opt, DEGRADED); 478 break; 479 case Opt_subvol: 480 case Opt_subvol_empty: 481 case Opt_subvolid: 482 case Opt_subvolrootid: 483 case Opt_device: 484 /* 485 * These are parsed by btrfs_parse_subvol_options or 486 * btrfs_parse_device_options and can be ignored here. 487 */ 488 break; 489 case Opt_nodatasum: 490 btrfs_set_and_info(info, NODATASUM, 491 "setting nodatasum"); 492 break; 493 case Opt_datasum: 494 if (btrfs_test_opt(info, NODATASUM)) { 495 if (btrfs_test_opt(info, NODATACOW)) 496 btrfs_info(info, 497 "setting datasum, datacow enabled"); 498 else 499 btrfs_info(info, "setting datasum"); 500 } 501 btrfs_clear_opt(info->mount_opt, NODATACOW); 502 btrfs_clear_opt(info->mount_opt, NODATASUM); 503 break; 504 case Opt_nodatacow: 505 if (!btrfs_test_opt(info, NODATACOW)) { 506 if (!btrfs_test_opt(info, COMPRESS) || 507 !btrfs_test_opt(info, FORCE_COMPRESS)) { 508 btrfs_info(info, 509 "setting nodatacow, compression disabled"); 510 } else { 511 btrfs_info(info, "setting nodatacow"); 512 } 513 } 514 btrfs_clear_opt(info->mount_opt, COMPRESS); 515 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 516 btrfs_set_opt(info->mount_opt, NODATACOW); 517 btrfs_set_opt(info->mount_opt, NODATASUM); 518 break; 519 case Opt_datacow: 520 btrfs_clear_and_info(info, NODATACOW, 521 "setting datacow"); 522 break; 523 case Opt_compress_force: 524 case Opt_compress_force_type: 525 compress_force = true; 526 /* Fallthrough */ 527 case Opt_compress: 528 case Opt_compress_type: 529 saved_compress_type = btrfs_test_opt(info, 530 COMPRESS) ? 531 info->compress_type : BTRFS_COMPRESS_NONE; 532 saved_compress_force = 533 btrfs_test_opt(info, FORCE_COMPRESS); 534 if (token == Opt_compress || 535 token == Opt_compress_force || 536 strncmp(args[0].from, "zlib", 4) == 0) { 537 compress_type = "zlib"; 538 539 info->compress_type = BTRFS_COMPRESS_ZLIB; 540 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 541 /* 542 * args[0] contains uninitialized data since 543 * for these tokens we don't expect any 544 * parameter. 545 */ 546 if (token != Opt_compress && 547 token != Opt_compress_force) 548 info->compress_level = 549 btrfs_compress_str2level( 550 BTRFS_COMPRESS_ZLIB, 551 args[0].from + 4); 552 btrfs_set_opt(info->mount_opt, COMPRESS); 553 btrfs_clear_opt(info->mount_opt, NODATACOW); 554 btrfs_clear_opt(info->mount_opt, NODATASUM); 555 no_compress = 0; 556 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 557 compress_type = "lzo"; 558 info->compress_type = BTRFS_COMPRESS_LZO; 559 btrfs_set_opt(info->mount_opt, COMPRESS); 560 btrfs_clear_opt(info->mount_opt, NODATACOW); 561 btrfs_clear_opt(info->mount_opt, NODATASUM); 562 btrfs_set_fs_incompat(info, COMPRESS_LZO); 563 no_compress = 0; 564 } else if (strncmp(args[0].from, "zstd", 4) == 0) { 565 compress_type = "zstd"; 566 info->compress_type = BTRFS_COMPRESS_ZSTD; 567 info->compress_level = 568 btrfs_compress_str2level( 569 BTRFS_COMPRESS_ZSTD, 570 args[0].from + 4); 571 btrfs_set_opt(info->mount_opt, COMPRESS); 572 btrfs_clear_opt(info->mount_opt, NODATACOW); 573 btrfs_clear_opt(info->mount_opt, NODATASUM); 574 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 575 no_compress = 0; 576 } else if (strncmp(args[0].from, "no", 2) == 0) { 577 compress_type = "no"; 578 btrfs_clear_opt(info->mount_opt, COMPRESS); 579 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 580 compress_force = false; 581 no_compress++; 582 } else { 583 ret = -EINVAL; 584 goto out; 585 } 586 587 if (compress_force) { 588 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 589 } else { 590 /* 591 * If we remount from compress-force=xxx to 592 * compress=xxx, we need clear FORCE_COMPRESS 593 * flag, otherwise, there is no way for users 594 * to disable forcible compression separately. 595 */ 596 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 597 } 598 if ((btrfs_test_opt(info, COMPRESS) && 599 (info->compress_type != saved_compress_type || 600 compress_force != saved_compress_force)) || 601 (!btrfs_test_opt(info, COMPRESS) && 602 no_compress == 1)) { 603 btrfs_info(info, "%s %s compression, level %d", 604 (compress_force) ? "force" : "use", 605 compress_type, info->compress_level); 606 } 607 compress_force = false; 608 break; 609 case Opt_ssd: 610 btrfs_set_and_info(info, SSD, 611 "enabling ssd optimizations"); 612 btrfs_clear_opt(info->mount_opt, NOSSD); 613 break; 614 case Opt_ssd_spread: 615 btrfs_set_and_info(info, SSD, 616 "enabling ssd optimizations"); 617 btrfs_set_and_info(info, SSD_SPREAD, 618 "using spread ssd allocation scheme"); 619 btrfs_clear_opt(info->mount_opt, NOSSD); 620 break; 621 case Opt_nossd: 622 btrfs_set_opt(info->mount_opt, NOSSD); 623 btrfs_clear_and_info(info, SSD, 624 "not using ssd optimizations"); 625 /* Fallthrough */ 626 case Opt_nossd_spread: 627 btrfs_clear_and_info(info, SSD_SPREAD, 628 "not using spread ssd allocation scheme"); 629 break; 630 case Opt_barrier: 631 btrfs_clear_and_info(info, NOBARRIER, 632 "turning on barriers"); 633 break; 634 case Opt_nobarrier: 635 btrfs_set_and_info(info, NOBARRIER, 636 "turning off barriers"); 637 break; 638 case Opt_thread_pool: 639 ret = match_int(&args[0], &intarg); 640 if (ret) { 641 goto out; 642 } else if (intarg == 0) { 643 ret = -EINVAL; 644 goto out; 645 } 646 info->thread_pool_size = intarg; 647 break; 648 case Opt_max_inline: 649 num = match_strdup(&args[0]); 650 if (num) { 651 info->max_inline = memparse(num, NULL); 652 kfree(num); 653 654 if (info->max_inline) { 655 info->max_inline = min_t(u64, 656 info->max_inline, 657 info->sectorsize); 658 } 659 btrfs_info(info, "max_inline at %llu", 660 info->max_inline); 661 } else { 662 ret = -ENOMEM; 663 goto out; 664 } 665 break; 666 case Opt_alloc_start: 667 btrfs_info(info, 668 "option alloc_start is obsolete, ignored"); 669 break; 670 case Opt_acl: 671 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 672 info->sb->s_flags |= SB_POSIXACL; 673 break; 674 #else 675 btrfs_err(info, "support for ACL not compiled in!"); 676 ret = -EINVAL; 677 goto out; 678 #endif 679 case Opt_noacl: 680 info->sb->s_flags &= ~SB_POSIXACL; 681 break; 682 case Opt_notreelog: 683 btrfs_set_and_info(info, NOTREELOG, 684 "disabling tree log"); 685 break; 686 case Opt_treelog: 687 btrfs_clear_and_info(info, NOTREELOG, 688 "enabling tree log"); 689 break; 690 case Opt_norecovery: 691 case Opt_nologreplay: 692 btrfs_set_and_info(info, NOLOGREPLAY, 693 "disabling log replay at mount time"); 694 break; 695 case Opt_flushoncommit: 696 btrfs_set_and_info(info, FLUSHONCOMMIT, 697 "turning on flush-on-commit"); 698 break; 699 case Opt_noflushoncommit: 700 btrfs_clear_and_info(info, FLUSHONCOMMIT, 701 "turning off flush-on-commit"); 702 break; 703 case Opt_ratio: 704 ret = match_int(&args[0], &intarg); 705 if (ret) 706 goto out; 707 info->metadata_ratio = intarg; 708 btrfs_info(info, "metadata ratio %u", 709 info->metadata_ratio); 710 break; 711 case Opt_discard: 712 case Opt_discard_mode: 713 if (token == Opt_discard || 714 strcmp(args[0].from, "sync") == 0) { 715 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC); 716 btrfs_set_and_info(info, DISCARD_SYNC, 717 "turning on sync discard"); 718 } else if (strcmp(args[0].from, "async") == 0) { 719 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC); 720 btrfs_set_and_info(info, DISCARD_ASYNC, 721 "turning on async discard"); 722 } else { 723 ret = -EINVAL; 724 goto out; 725 } 726 break; 727 case Opt_nodiscard: 728 btrfs_clear_and_info(info, DISCARD_SYNC, 729 "turning off discard"); 730 btrfs_clear_and_info(info, DISCARD_ASYNC, 731 "turning off async discard"); 732 break; 733 case Opt_space_cache: 734 case Opt_space_cache_version: 735 if (token == Opt_space_cache || 736 strcmp(args[0].from, "v1") == 0) { 737 btrfs_clear_opt(info->mount_opt, 738 FREE_SPACE_TREE); 739 btrfs_set_and_info(info, SPACE_CACHE, 740 "enabling disk space caching"); 741 } else if (strcmp(args[0].from, "v2") == 0) { 742 btrfs_clear_opt(info->mount_opt, 743 SPACE_CACHE); 744 btrfs_set_and_info(info, FREE_SPACE_TREE, 745 "enabling free space tree"); 746 } else { 747 ret = -EINVAL; 748 goto out; 749 } 750 break; 751 case Opt_rescan_uuid_tree: 752 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 753 break; 754 case Opt_no_space_cache: 755 if (btrfs_test_opt(info, SPACE_CACHE)) { 756 btrfs_clear_and_info(info, SPACE_CACHE, 757 "disabling disk space caching"); 758 } 759 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 760 btrfs_clear_and_info(info, FREE_SPACE_TREE, 761 "disabling free space tree"); 762 } 763 break; 764 case Opt_inode_cache: 765 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 766 "enabling inode map caching"); 767 break; 768 case Opt_noinode_cache: 769 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 770 "disabling inode map caching"); 771 break; 772 case Opt_clear_cache: 773 btrfs_set_and_info(info, CLEAR_CACHE, 774 "force clearing of disk cache"); 775 break; 776 case Opt_user_subvol_rm_allowed: 777 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 778 break; 779 case Opt_enospc_debug: 780 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 781 break; 782 case Opt_noenospc_debug: 783 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 784 break; 785 case Opt_defrag: 786 btrfs_set_and_info(info, AUTO_DEFRAG, 787 "enabling auto defrag"); 788 break; 789 case Opt_nodefrag: 790 btrfs_clear_and_info(info, AUTO_DEFRAG, 791 "disabling auto defrag"); 792 break; 793 case Opt_recovery: 794 btrfs_warn(info, 795 "'recovery' is deprecated, use 'usebackuproot' instead"); 796 /* fall through */ 797 case Opt_usebackuproot: 798 btrfs_info(info, 799 "trying to use backup root at mount time"); 800 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 801 break; 802 case Opt_skip_balance: 803 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 804 break; 805 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 806 case Opt_check_integrity_including_extent_data: 807 btrfs_info(info, 808 "enabling check integrity including extent data"); 809 btrfs_set_opt(info->mount_opt, 810 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 811 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 812 break; 813 case Opt_check_integrity: 814 btrfs_info(info, "enabling check integrity"); 815 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 816 break; 817 case Opt_check_integrity_print_mask: 818 ret = match_int(&args[0], &intarg); 819 if (ret) 820 goto out; 821 info->check_integrity_print_mask = intarg; 822 btrfs_info(info, "check_integrity_print_mask 0x%x", 823 info->check_integrity_print_mask); 824 break; 825 #else 826 case Opt_check_integrity_including_extent_data: 827 case Opt_check_integrity: 828 case Opt_check_integrity_print_mask: 829 btrfs_err(info, 830 "support for check_integrity* not compiled in!"); 831 ret = -EINVAL; 832 goto out; 833 #endif 834 case Opt_fatal_errors: 835 if (strcmp(args[0].from, "panic") == 0) 836 btrfs_set_opt(info->mount_opt, 837 PANIC_ON_FATAL_ERROR); 838 else if (strcmp(args[0].from, "bug") == 0) 839 btrfs_clear_opt(info->mount_opt, 840 PANIC_ON_FATAL_ERROR); 841 else { 842 ret = -EINVAL; 843 goto out; 844 } 845 break; 846 case Opt_commit_interval: 847 intarg = 0; 848 ret = match_int(&args[0], &intarg); 849 if (ret) 850 goto out; 851 if (intarg == 0) { 852 btrfs_info(info, 853 "using default commit interval %us", 854 BTRFS_DEFAULT_COMMIT_INTERVAL); 855 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 856 } else if (intarg > 300) { 857 btrfs_warn(info, "excessive commit interval %d", 858 intarg); 859 } 860 info->commit_interval = intarg; 861 break; 862 #ifdef CONFIG_BTRFS_DEBUG 863 case Opt_fragment_all: 864 btrfs_info(info, "fragmenting all space"); 865 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 866 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 867 break; 868 case Opt_fragment_metadata: 869 btrfs_info(info, "fragmenting metadata"); 870 btrfs_set_opt(info->mount_opt, 871 FRAGMENT_METADATA); 872 break; 873 case Opt_fragment_data: 874 btrfs_info(info, "fragmenting data"); 875 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 876 break; 877 #endif 878 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 879 case Opt_ref_verify: 880 btrfs_info(info, "doing ref verification"); 881 btrfs_set_opt(info->mount_opt, REF_VERIFY); 882 break; 883 #endif 884 case Opt_err: 885 btrfs_err(info, "unrecognized mount option '%s'", p); 886 ret = -EINVAL; 887 goto out; 888 default: 889 break; 890 } 891 } 892 check: 893 /* 894 * Extra check for current option against current flag 895 */ 896 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) { 897 btrfs_err(info, 898 "nologreplay must be used with ro mount option"); 899 ret = -EINVAL; 900 } 901 out: 902 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 903 !btrfs_test_opt(info, FREE_SPACE_TREE) && 904 !btrfs_test_opt(info, CLEAR_CACHE)) { 905 btrfs_err(info, "cannot disable free space tree"); 906 ret = -EINVAL; 907 908 } 909 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 910 btrfs_info(info, "disk space caching is enabled"); 911 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 912 btrfs_info(info, "using free space tree"); 913 return ret; 914 } 915 916 /* 917 * Parse mount options that are required early in the mount process. 918 * 919 * All other options will be parsed on much later in the mount process and 920 * only when we need to allocate a new super block. 921 */ 922 static int btrfs_parse_device_options(const char *options, fmode_t flags, 923 void *holder) 924 { 925 substring_t args[MAX_OPT_ARGS]; 926 char *device_name, *opts, *orig, *p; 927 struct btrfs_device *device = NULL; 928 int error = 0; 929 930 lockdep_assert_held(&uuid_mutex); 931 932 if (!options) 933 return 0; 934 935 /* 936 * strsep changes the string, duplicate it because btrfs_parse_options 937 * gets called later 938 */ 939 opts = kstrdup(options, GFP_KERNEL); 940 if (!opts) 941 return -ENOMEM; 942 orig = opts; 943 944 while ((p = strsep(&opts, ",")) != NULL) { 945 int token; 946 947 if (!*p) 948 continue; 949 950 token = match_token(p, tokens, args); 951 if (token == Opt_device) { 952 device_name = match_strdup(&args[0]); 953 if (!device_name) { 954 error = -ENOMEM; 955 goto out; 956 } 957 device = btrfs_scan_one_device(device_name, flags, 958 holder); 959 kfree(device_name); 960 if (IS_ERR(device)) { 961 error = PTR_ERR(device); 962 goto out; 963 } 964 } 965 } 966 967 out: 968 kfree(orig); 969 return error; 970 } 971 972 /* 973 * Parse mount options that are related to subvolume id 974 * 975 * The value is later passed to mount_subvol() 976 */ 977 static int btrfs_parse_subvol_options(const char *options, char **subvol_name, 978 u64 *subvol_objectid) 979 { 980 substring_t args[MAX_OPT_ARGS]; 981 char *opts, *orig, *p; 982 int error = 0; 983 u64 subvolid; 984 985 if (!options) 986 return 0; 987 988 /* 989 * strsep changes the string, duplicate it because 990 * btrfs_parse_device_options gets called later 991 */ 992 opts = kstrdup(options, GFP_KERNEL); 993 if (!opts) 994 return -ENOMEM; 995 orig = opts; 996 997 while ((p = strsep(&opts, ",")) != NULL) { 998 int token; 999 if (!*p) 1000 continue; 1001 1002 token = match_token(p, tokens, args); 1003 switch (token) { 1004 case Opt_subvol: 1005 kfree(*subvol_name); 1006 *subvol_name = match_strdup(&args[0]); 1007 if (!*subvol_name) { 1008 error = -ENOMEM; 1009 goto out; 1010 } 1011 break; 1012 case Opt_subvolid: 1013 error = match_u64(&args[0], &subvolid); 1014 if (error) 1015 goto out; 1016 1017 /* we want the original fs_tree */ 1018 if (subvolid == 0) 1019 subvolid = BTRFS_FS_TREE_OBJECTID; 1020 1021 *subvol_objectid = subvolid; 1022 break; 1023 case Opt_subvolrootid: 1024 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); 1025 break; 1026 default: 1027 break; 1028 } 1029 } 1030 1031 out: 1032 kfree(orig); 1033 return error; 1034 } 1035 1036 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 1037 u64 subvol_objectid) 1038 { 1039 struct btrfs_root *root = fs_info->tree_root; 1040 struct btrfs_root *fs_root = NULL; 1041 struct btrfs_root_ref *root_ref; 1042 struct btrfs_inode_ref *inode_ref; 1043 struct btrfs_key key; 1044 struct btrfs_path *path = NULL; 1045 char *name = NULL, *ptr; 1046 u64 dirid; 1047 int len; 1048 int ret; 1049 1050 path = btrfs_alloc_path(); 1051 if (!path) { 1052 ret = -ENOMEM; 1053 goto err; 1054 } 1055 path->leave_spinning = 1; 1056 1057 name = kmalloc(PATH_MAX, GFP_KERNEL); 1058 if (!name) { 1059 ret = -ENOMEM; 1060 goto err; 1061 } 1062 ptr = name + PATH_MAX - 1; 1063 ptr[0] = '\0'; 1064 1065 /* 1066 * Walk up the subvolume trees in the tree of tree roots by root 1067 * backrefs until we hit the top-level subvolume. 1068 */ 1069 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1070 key.objectid = subvol_objectid; 1071 key.type = BTRFS_ROOT_BACKREF_KEY; 1072 key.offset = (u64)-1; 1073 1074 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1075 if (ret < 0) { 1076 goto err; 1077 } else if (ret > 0) { 1078 ret = btrfs_previous_item(root, path, subvol_objectid, 1079 BTRFS_ROOT_BACKREF_KEY); 1080 if (ret < 0) { 1081 goto err; 1082 } else if (ret > 0) { 1083 ret = -ENOENT; 1084 goto err; 1085 } 1086 } 1087 1088 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1089 subvol_objectid = key.offset; 1090 1091 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1092 struct btrfs_root_ref); 1093 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1094 ptr -= len + 1; 1095 if (ptr < name) { 1096 ret = -ENAMETOOLONG; 1097 goto err; 1098 } 1099 read_extent_buffer(path->nodes[0], ptr + 1, 1100 (unsigned long)(root_ref + 1), len); 1101 ptr[0] = '/'; 1102 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1103 btrfs_release_path(path); 1104 1105 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 1106 if (IS_ERR(fs_root)) { 1107 ret = PTR_ERR(fs_root); 1108 fs_root = NULL; 1109 goto err; 1110 } 1111 1112 /* 1113 * Walk up the filesystem tree by inode refs until we hit the 1114 * root directory. 1115 */ 1116 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1117 key.objectid = dirid; 1118 key.type = BTRFS_INODE_REF_KEY; 1119 key.offset = (u64)-1; 1120 1121 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1122 if (ret < 0) { 1123 goto err; 1124 } else if (ret > 0) { 1125 ret = btrfs_previous_item(fs_root, path, dirid, 1126 BTRFS_INODE_REF_KEY); 1127 if (ret < 0) { 1128 goto err; 1129 } else if (ret > 0) { 1130 ret = -ENOENT; 1131 goto err; 1132 } 1133 } 1134 1135 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1136 dirid = key.offset; 1137 1138 inode_ref = btrfs_item_ptr(path->nodes[0], 1139 path->slots[0], 1140 struct btrfs_inode_ref); 1141 len = btrfs_inode_ref_name_len(path->nodes[0], 1142 inode_ref); 1143 ptr -= len + 1; 1144 if (ptr < name) { 1145 ret = -ENAMETOOLONG; 1146 goto err; 1147 } 1148 read_extent_buffer(path->nodes[0], ptr + 1, 1149 (unsigned long)(inode_ref + 1), len); 1150 ptr[0] = '/'; 1151 btrfs_release_path(path); 1152 } 1153 btrfs_put_root(fs_root); 1154 fs_root = NULL; 1155 } 1156 1157 btrfs_free_path(path); 1158 if (ptr == name + PATH_MAX - 1) { 1159 name[0] = '/'; 1160 name[1] = '\0'; 1161 } else { 1162 memmove(name, ptr, name + PATH_MAX - ptr); 1163 } 1164 return name; 1165 1166 err: 1167 btrfs_put_root(fs_root); 1168 btrfs_free_path(path); 1169 kfree(name); 1170 return ERR_PTR(ret); 1171 } 1172 1173 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1174 { 1175 struct btrfs_root *root = fs_info->tree_root; 1176 struct btrfs_dir_item *di; 1177 struct btrfs_path *path; 1178 struct btrfs_key location; 1179 u64 dir_id; 1180 1181 path = btrfs_alloc_path(); 1182 if (!path) 1183 return -ENOMEM; 1184 path->leave_spinning = 1; 1185 1186 /* 1187 * Find the "default" dir item which points to the root item that we 1188 * will mount by default if we haven't been given a specific subvolume 1189 * to mount. 1190 */ 1191 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1192 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1193 if (IS_ERR(di)) { 1194 btrfs_free_path(path); 1195 return PTR_ERR(di); 1196 } 1197 if (!di) { 1198 /* 1199 * Ok the default dir item isn't there. This is weird since 1200 * it's always been there, but don't freak out, just try and 1201 * mount the top-level subvolume. 1202 */ 1203 btrfs_free_path(path); 1204 *objectid = BTRFS_FS_TREE_OBJECTID; 1205 return 0; 1206 } 1207 1208 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1209 btrfs_free_path(path); 1210 *objectid = location.objectid; 1211 return 0; 1212 } 1213 1214 static int btrfs_fill_super(struct super_block *sb, 1215 struct btrfs_fs_devices *fs_devices, 1216 void *data) 1217 { 1218 struct inode *inode; 1219 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1220 int err; 1221 1222 sb->s_maxbytes = MAX_LFS_FILESIZE; 1223 sb->s_magic = BTRFS_SUPER_MAGIC; 1224 sb->s_op = &btrfs_super_ops; 1225 sb->s_d_op = &btrfs_dentry_operations; 1226 sb->s_export_op = &btrfs_export_ops; 1227 sb->s_xattr = btrfs_xattr_handlers; 1228 sb->s_time_gran = 1; 1229 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1230 sb->s_flags |= SB_POSIXACL; 1231 #endif 1232 sb->s_flags |= SB_I_VERSION; 1233 sb->s_iflags |= SB_I_CGROUPWB; 1234 1235 err = super_setup_bdi(sb); 1236 if (err) { 1237 btrfs_err(fs_info, "super_setup_bdi failed"); 1238 return err; 1239 } 1240 1241 err = open_ctree(sb, fs_devices, (char *)data); 1242 if (err) { 1243 btrfs_err(fs_info, "open_ctree failed"); 1244 return err; 1245 } 1246 1247 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 1248 if (IS_ERR(inode)) { 1249 err = PTR_ERR(inode); 1250 goto fail_close; 1251 } 1252 1253 sb->s_root = d_make_root(inode); 1254 if (!sb->s_root) { 1255 err = -ENOMEM; 1256 goto fail_close; 1257 } 1258 1259 cleancache_init_fs(sb); 1260 sb->s_flags |= SB_ACTIVE; 1261 return 0; 1262 1263 fail_close: 1264 close_ctree(fs_info); 1265 return err; 1266 } 1267 1268 int btrfs_sync_fs(struct super_block *sb, int wait) 1269 { 1270 struct btrfs_trans_handle *trans; 1271 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1272 struct btrfs_root *root = fs_info->tree_root; 1273 1274 trace_btrfs_sync_fs(fs_info, wait); 1275 1276 if (!wait) { 1277 filemap_flush(fs_info->btree_inode->i_mapping); 1278 return 0; 1279 } 1280 1281 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1282 1283 trans = btrfs_attach_transaction_barrier(root); 1284 if (IS_ERR(trans)) { 1285 /* no transaction, don't bother */ 1286 if (PTR_ERR(trans) == -ENOENT) { 1287 /* 1288 * Exit unless we have some pending changes 1289 * that need to go through commit 1290 */ 1291 if (fs_info->pending_changes == 0) 1292 return 0; 1293 /* 1294 * A non-blocking test if the fs is frozen. We must not 1295 * start a new transaction here otherwise a deadlock 1296 * happens. The pending operations are delayed to the 1297 * next commit after thawing. 1298 */ 1299 if (sb_start_write_trylock(sb)) 1300 sb_end_write(sb); 1301 else 1302 return 0; 1303 trans = btrfs_start_transaction(root, 0); 1304 } 1305 if (IS_ERR(trans)) 1306 return PTR_ERR(trans); 1307 } 1308 return btrfs_commit_transaction(trans); 1309 } 1310 1311 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1312 { 1313 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1314 const char *compress_type; 1315 1316 if (btrfs_test_opt(info, DEGRADED)) 1317 seq_puts(seq, ",degraded"); 1318 if (btrfs_test_opt(info, NODATASUM)) 1319 seq_puts(seq, ",nodatasum"); 1320 if (btrfs_test_opt(info, NODATACOW)) 1321 seq_puts(seq, ",nodatacow"); 1322 if (btrfs_test_opt(info, NOBARRIER)) 1323 seq_puts(seq, ",nobarrier"); 1324 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1325 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1326 if (info->thread_pool_size != min_t(unsigned long, 1327 num_online_cpus() + 2, 8)) 1328 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1329 if (btrfs_test_opt(info, COMPRESS)) { 1330 compress_type = btrfs_compress_type2str(info->compress_type); 1331 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1332 seq_printf(seq, ",compress-force=%s", compress_type); 1333 else 1334 seq_printf(seq, ",compress=%s", compress_type); 1335 if (info->compress_level) 1336 seq_printf(seq, ":%d", info->compress_level); 1337 } 1338 if (btrfs_test_opt(info, NOSSD)) 1339 seq_puts(seq, ",nossd"); 1340 if (btrfs_test_opt(info, SSD_SPREAD)) 1341 seq_puts(seq, ",ssd_spread"); 1342 else if (btrfs_test_opt(info, SSD)) 1343 seq_puts(seq, ",ssd"); 1344 if (btrfs_test_opt(info, NOTREELOG)) 1345 seq_puts(seq, ",notreelog"); 1346 if (btrfs_test_opt(info, NOLOGREPLAY)) 1347 seq_puts(seq, ",nologreplay"); 1348 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1349 seq_puts(seq, ",flushoncommit"); 1350 if (btrfs_test_opt(info, DISCARD_SYNC)) 1351 seq_puts(seq, ",discard"); 1352 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1353 seq_puts(seq, ",discard=async"); 1354 if (!(info->sb->s_flags & SB_POSIXACL)) 1355 seq_puts(seq, ",noacl"); 1356 if (btrfs_test_opt(info, SPACE_CACHE)) 1357 seq_puts(seq, ",space_cache"); 1358 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1359 seq_puts(seq, ",space_cache=v2"); 1360 else 1361 seq_puts(seq, ",nospace_cache"); 1362 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1363 seq_puts(seq, ",rescan_uuid_tree"); 1364 if (btrfs_test_opt(info, CLEAR_CACHE)) 1365 seq_puts(seq, ",clear_cache"); 1366 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1367 seq_puts(seq, ",user_subvol_rm_allowed"); 1368 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1369 seq_puts(seq, ",enospc_debug"); 1370 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1371 seq_puts(seq, ",autodefrag"); 1372 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1373 seq_puts(seq, ",inode_cache"); 1374 if (btrfs_test_opt(info, SKIP_BALANCE)) 1375 seq_puts(seq, ",skip_balance"); 1376 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1377 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1378 seq_puts(seq, ",check_int_data"); 1379 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1380 seq_puts(seq, ",check_int"); 1381 if (info->check_integrity_print_mask) 1382 seq_printf(seq, ",check_int_print_mask=%d", 1383 info->check_integrity_print_mask); 1384 #endif 1385 if (info->metadata_ratio) 1386 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1387 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1388 seq_puts(seq, ",fatal_errors=panic"); 1389 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1390 seq_printf(seq, ",commit=%u", info->commit_interval); 1391 #ifdef CONFIG_BTRFS_DEBUG 1392 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1393 seq_puts(seq, ",fragment=data"); 1394 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1395 seq_puts(seq, ",fragment=metadata"); 1396 #endif 1397 if (btrfs_test_opt(info, REF_VERIFY)) 1398 seq_puts(seq, ",ref_verify"); 1399 seq_printf(seq, ",subvolid=%llu", 1400 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1401 seq_puts(seq, ",subvol="); 1402 seq_dentry(seq, dentry, " \t\n\\"); 1403 return 0; 1404 } 1405 1406 static int btrfs_test_super(struct super_block *s, void *data) 1407 { 1408 struct btrfs_fs_info *p = data; 1409 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1410 1411 return fs_info->fs_devices == p->fs_devices; 1412 } 1413 1414 static int btrfs_set_super(struct super_block *s, void *data) 1415 { 1416 int err = set_anon_super(s, data); 1417 if (!err) 1418 s->s_fs_info = data; 1419 return err; 1420 } 1421 1422 /* 1423 * subvolumes are identified by ino 256 1424 */ 1425 static inline int is_subvolume_inode(struct inode *inode) 1426 { 1427 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1428 return 1; 1429 return 0; 1430 } 1431 1432 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1433 struct vfsmount *mnt) 1434 { 1435 struct dentry *root; 1436 int ret; 1437 1438 if (!subvol_name) { 1439 if (!subvol_objectid) { 1440 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1441 &subvol_objectid); 1442 if (ret) { 1443 root = ERR_PTR(ret); 1444 goto out; 1445 } 1446 } 1447 subvol_name = btrfs_get_subvol_name_from_objectid( 1448 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1449 if (IS_ERR(subvol_name)) { 1450 root = ERR_CAST(subvol_name); 1451 subvol_name = NULL; 1452 goto out; 1453 } 1454 1455 } 1456 1457 root = mount_subtree(mnt, subvol_name); 1458 /* mount_subtree() drops our reference on the vfsmount. */ 1459 mnt = NULL; 1460 1461 if (!IS_ERR(root)) { 1462 struct super_block *s = root->d_sb; 1463 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1464 struct inode *root_inode = d_inode(root); 1465 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1466 1467 ret = 0; 1468 if (!is_subvolume_inode(root_inode)) { 1469 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1470 subvol_name); 1471 ret = -EINVAL; 1472 } 1473 if (subvol_objectid && root_objectid != subvol_objectid) { 1474 /* 1475 * This will also catch a race condition where a 1476 * subvolume which was passed by ID is renamed and 1477 * another subvolume is renamed over the old location. 1478 */ 1479 btrfs_err(fs_info, 1480 "subvol '%s' does not match subvolid %llu", 1481 subvol_name, subvol_objectid); 1482 ret = -EINVAL; 1483 } 1484 if (ret) { 1485 dput(root); 1486 root = ERR_PTR(ret); 1487 deactivate_locked_super(s); 1488 } 1489 } 1490 1491 out: 1492 mntput(mnt); 1493 kfree(subvol_name); 1494 return root; 1495 } 1496 1497 /* 1498 * Find a superblock for the given device / mount point. 1499 * 1500 * Note: This is based on mount_bdev from fs/super.c with a few additions 1501 * for multiple device setup. Make sure to keep it in sync. 1502 */ 1503 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1504 int flags, const char *device_name, void *data) 1505 { 1506 struct block_device *bdev = NULL; 1507 struct super_block *s; 1508 struct btrfs_device *device = NULL; 1509 struct btrfs_fs_devices *fs_devices = NULL; 1510 struct btrfs_fs_info *fs_info = NULL; 1511 void *new_sec_opts = NULL; 1512 fmode_t mode = FMODE_READ; 1513 int error = 0; 1514 1515 if (!(flags & SB_RDONLY)) 1516 mode |= FMODE_WRITE; 1517 1518 if (data) { 1519 error = security_sb_eat_lsm_opts(data, &new_sec_opts); 1520 if (error) 1521 return ERR_PTR(error); 1522 } 1523 1524 /* 1525 * Setup a dummy root and fs_info for test/set super. This is because 1526 * we don't actually fill this stuff out until open_ctree, but we need 1527 * then open_ctree will properly initialize the file system specific 1528 * settings later. btrfs_init_fs_info initializes the static elements 1529 * of the fs_info (locks and such) to make cleanup easier if we find a 1530 * superblock with our given fs_devices later on at sget() time. 1531 */ 1532 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1533 if (!fs_info) { 1534 error = -ENOMEM; 1535 goto error_sec_opts; 1536 } 1537 btrfs_init_fs_info(fs_info); 1538 1539 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1540 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1541 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1542 error = -ENOMEM; 1543 goto error_fs_info; 1544 } 1545 1546 mutex_lock(&uuid_mutex); 1547 error = btrfs_parse_device_options(data, mode, fs_type); 1548 if (error) { 1549 mutex_unlock(&uuid_mutex); 1550 goto error_fs_info; 1551 } 1552 1553 device = btrfs_scan_one_device(device_name, mode, fs_type); 1554 if (IS_ERR(device)) { 1555 mutex_unlock(&uuid_mutex); 1556 error = PTR_ERR(device); 1557 goto error_fs_info; 1558 } 1559 1560 fs_devices = device->fs_devices; 1561 fs_info->fs_devices = fs_devices; 1562 1563 error = btrfs_open_devices(fs_devices, mode, fs_type); 1564 mutex_unlock(&uuid_mutex); 1565 if (error) 1566 goto error_fs_info; 1567 1568 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1569 error = -EACCES; 1570 goto error_close_devices; 1571 } 1572 1573 bdev = fs_devices->latest_bdev; 1574 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1575 fs_info); 1576 if (IS_ERR(s)) { 1577 error = PTR_ERR(s); 1578 goto error_close_devices; 1579 } 1580 1581 if (s->s_root) { 1582 btrfs_close_devices(fs_devices); 1583 btrfs_free_fs_info(fs_info); 1584 if ((flags ^ s->s_flags) & SB_RDONLY) 1585 error = -EBUSY; 1586 } else { 1587 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1588 btrfs_sb(s)->bdev_holder = fs_type; 1589 if (!strstr(crc32c_impl(), "generic")) 1590 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 1591 error = btrfs_fill_super(s, fs_devices, data); 1592 } 1593 if (!error) 1594 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL); 1595 security_free_mnt_opts(&new_sec_opts); 1596 if (error) { 1597 deactivate_locked_super(s); 1598 return ERR_PTR(error); 1599 } 1600 1601 return dget(s->s_root); 1602 1603 error_close_devices: 1604 btrfs_close_devices(fs_devices); 1605 error_fs_info: 1606 btrfs_free_fs_info(fs_info); 1607 error_sec_opts: 1608 security_free_mnt_opts(&new_sec_opts); 1609 return ERR_PTR(error); 1610 } 1611 1612 /* 1613 * Mount function which is called by VFS layer. 1614 * 1615 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1616 * which needs vfsmount* of device's root (/). This means device's root has to 1617 * be mounted internally in any case. 1618 * 1619 * Operation flow: 1620 * 1. Parse subvol id related options for later use in mount_subvol(). 1621 * 1622 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1623 * 1624 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1625 * first place. In order to avoid calling btrfs_mount() again, we use 1626 * different file_system_type which is not registered to VFS by 1627 * register_filesystem() (btrfs_root_fs_type). As a result, 1628 * btrfs_mount_root() is called. The return value will be used by 1629 * mount_subtree() in mount_subvol(). 1630 * 1631 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1632 * "btrfs subvolume set-default", mount_subvol() is called always. 1633 */ 1634 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1635 const char *device_name, void *data) 1636 { 1637 struct vfsmount *mnt_root; 1638 struct dentry *root; 1639 char *subvol_name = NULL; 1640 u64 subvol_objectid = 0; 1641 int error = 0; 1642 1643 error = btrfs_parse_subvol_options(data, &subvol_name, 1644 &subvol_objectid); 1645 if (error) { 1646 kfree(subvol_name); 1647 return ERR_PTR(error); 1648 } 1649 1650 /* mount device's root (/) */ 1651 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1652 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1653 if (flags & SB_RDONLY) { 1654 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1655 flags & ~SB_RDONLY, device_name, data); 1656 } else { 1657 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1658 flags | SB_RDONLY, device_name, data); 1659 if (IS_ERR(mnt_root)) { 1660 root = ERR_CAST(mnt_root); 1661 kfree(subvol_name); 1662 goto out; 1663 } 1664 1665 down_write(&mnt_root->mnt_sb->s_umount); 1666 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1667 up_write(&mnt_root->mnt_sb->s_umount); 1668 if (error < 0) { 1669 root = ERR_PTR(error); 1670 mntput(mnt_root); 1671 kfree(subvol_name); 1672 goto out; 1673 } 1674 } 1675 } 1676 if (IS_ERR(mnt_root)) { 1677 root = ERR_CAST(mnt_root); 1678 kfree(subvol_name); 1679 goto out; 1680 } 1681 1682 /* mount_subvol() will free subvol_name and mnt_root */ 1683 root = mount_subvol(subvol_name, subvol_objectid, mnt_root); 1684 1685 out: 1686 return root; 1687 } 1688 1689 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1690 u32 new_pool_size, u32 old_pool_size) 1691 { 1692 if (new_pool_size == old_pool_size) 1693 return; 1694 1695 fs_info->thread_pool_size = new_pool_size; 1696 1697 btrfs_info(fs_info, "resize thread pool %d -> %d", 1698 old_pool_size, new_pool_size); 1699 1700 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1701 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1702 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1703 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1704 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1705 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1706 new_pool_size); 1707 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1708 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1709 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1710 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1711 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1712 new_pool_size); 1713 } 1714 1715 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1716 { 1717 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1718 } 1719 1720 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1721 unsigned long old_opts, int flags) 1722 { 1723 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1724 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1725 (flags & SB_RDONLY))) { 1726 /* wait for any defraggers to finish */ 1727 wait_event(fs_info->transaction_wait, 1728 (atomic_read(&fs_info->defrag_running) == 0)); 1729 if (flags & SB_RDONLY) 1730 sync_filesystem(fs_info->sb); 1731 } 1732 } 1733 1734 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1735 unsigned long old_opts) 1736 { 1737 /* 1738 * We need to cleanup all defragable inodes if the autodefragment is 1739 * close or the filesystem is read only. 1740 */ 1741 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1742 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1743 btrfs_cleanup_defrag_inodes(fs_info); 1744 } 1745 1746 /* If we toggled discard async */ 1747 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1748 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1749 btrfs_discard_resume(fs_info); 1750 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1751 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1752 btrfs_discard_cleanup(fs_info); 1753 1754 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1755 } 1756 1757 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1758 { 1759 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1760 struct btrfs_root *root = fs_info->tree_root; 1761 unsigned old_flags = sb->s_flags; 1762 unsigned long old_opts = fs_info->mount_opt; 1763 unsigned long old_compress_type = fs_info->compress_type; 1764 u64 old_max_inline = fs_info->max_inline; 1765 u32 old_thread_pool_size = fs_info->thread_pool_size; 1766 u32 old_metadata_ratio = fs_info->metadata_ratio; 1767 int ret; 1768 1769 sync_filesystem(sb); 1770 btrfs_remount_prepare(fs_info); 1771 1772 if (data) { 1773 void *new_sec_opts = NULL; 1774 1775 ret = security_sb_eat_lsm_opts(data, &new_sec_opts); 1776 if (!ret) 1777 ret = security_sb_remount(sb, new_sec_opts); 1778 security_free_mnt_opts(&new_sec_opts); 1779 if (ret) 1780 goto restore; 1781 } 1782 1783 ret = btrfs_parse_options(fs_info, data, *flags); 1784 if (ret) 1785 goto restore; 1786 1787 btrfs_remount_begin(fs_info, old_opts, *flags); 1788 btrfs_resize_thread_pool(fs_info, 1789 fs_info->thread_pool_size, old_thread_pool_size); 1790 1791 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1792 goto out; 1793 1794 if (*flags & SB_RDONLY) { 1795 /* 1796 * this also happens on 'umount -rf' or on shutdown, when 1797 * the filesystem is busy. 1798 */ 1799 cancel_work_sync(&fs_info->async_reclaim_work); 1800 1801 btrfs_discard_cleanup(fs_info); 1802 1803 /* wait for the uuid_scan task to finish */ 1804 down(&fs_info->uuid_tree_rescan_sem); 1805 /* avoid complains from lockdep et al. */ 1806 up(&fs_info->uuid_tree_rescan_sem); 1807 1808 sb->s_flags |= SB_RDONLY; 1809 1810 /* 1811 * Setting SB_RDONLY will put the cleaner thread to 1812 * sleep at the next loop if it's already active. 1813 * If it's already asleep, we'll leave unused block 1814 * groups on disk until we're mounted read-write again 1815 * unless we clean them up here. 1816 */ 1817 btrfs_delete_unused_bgs(fs_info); 1818 1819 btrfs_dev_replace_suspend_for_unmount(fs_info); 1820 btrfs_scrub_cancel(fs_info); 1821 btrfs_pause_balance(fs_info); 1822 1823 ret = btrfs_commit_super(fs_info); 1824 if (ret) 1825 goto restore; 1826 } else { 1827 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1828 btrfs_err(fs_info, 1829 "Remounting read-write after error is not allowed"); 1830 ret = -EINVAL; 1831 goto restore; 1832 } 1833 if (fs_info->fs_devices->rw_devices == 0) { 1834 ret = -EACCES; 1835 goto restore; 1836 } 1837 1838 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1839 btrfs_warn(fs_info, 1840 "too many missing devices, writable remount is not allowed"); 1841 ret = -EACCES; 1842 goto restore; 1843 } 1844 1845 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1846 btrfs_warn(fs_info, 1847 "mount required to replay tree-log, cannot remount read-write"); 1848 ret = -EINVAL; 1849 goto restore; 1850 } 1851 1852 ret = btrfs_cleanup_fs_roots(fs_info); 1853 if (ret) 1854 goto restore; 1855 1856 /* recover relocation */ 1857 mutex_lock(&fs_info->cleaner_mutex); 1858 ret = btrfs_recover_relocation(root); 1859 mutex_unlock(&fs_info->cleaner_mutex); 1860 if (ret) 1861 goto restore; 1862 1863 ret = btrfs_resume_balance_async(fs_info); 1864 if (ret) 1865 goto restore; 1866 1867 ret = btrfs_resume_dev_replace_async(fs_info); 1868 if (ret) { 1869 btrfs_warn(fs_info, "failed to resume dev_replace"); 1870 goto restore; 1871 } 1872 1873 btrfs_qgroup_rescan_resume(fs_info); 1874 1875 if (!fs_info->uuid_root) { 1876 btrfs_info(fs_info, "creating UUID tree"); 1877 ret = btrfs_create_uuid_tree(fs_info); 1878 if (ret) { 1879 btrfs_warn(fs_info, 1880 "failed to create the UUID tree %d", 1881 ret); 1882 goto restore; 1883 } 1884 } 1885 sb->s_flags &= ~SB_RDONLY; 1886 1887 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1888 } 1889 out: 1890 wake_up_process(fs_info->transaction_kthread); 1891 btrfs_remount_cleanup(fs_info, old_opts); 1892 return 0; 1893 1894 restore: 1895 /* We've hit an error - don't reset SB_RDONLY */ 1896 if (sb_rdonly(sb)) 1897 old_flags |= SB_RDONLY; 1898 sb->s_flags = old_flags; 1899 fs_info->mount_opt = old_opts; 1900 fs_info->compress_type = old_compress_type; 1901 fs_info->max_inline = old_max_inline; 1902 btrfs_resize_thread_pool(fs_info, 1903 old_thread_pool_size, fs_info->thread_pool_size); 1904 fs_info->metadata_ratio = old_metadata_ratio; 1905 btrfs_remount_cleanup(fs_info, old_opts); 1906 return ret; 1907 } 1908 1909 /* Used to sort the devices by max_avail(descending sort) */ 1910 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1, 1911 const void *dev_info2) 1912 { 1913 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1914 ((struct btrfs_device_info *)dev_info2)->max_avail) 1915 return -1; 1916 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1917 ((struct btrfs_device_info *)dev_info2)->max_avail) 1918 return 1; 1919 else 1920 return 0; 1921 } 1922 1923 /* 1924 * sort the devices by max_avail, in which max free extent size of each device 1925 * is stored.(Descending Sort) 1926 */ 1927 static inline void btrfs_descending_sort_devices( 1928 struct btrfs_device_info *devices, 1929 size_t nr_devices) 1930 { 1931 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1932 btrfs_cmp_device_free_bytes, NULL); 1933 } 1934 1935 /* 1936 * The helper to calc the free space on the devices that can be used to store 1937 * file data. 1938 */ 1939 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1940 u64 *free_bytes) 1941 { 1942 struct btrfs_device_info *devices_info; 1943 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1944 struct btrfs_device *device; 1945 u64 type; 1946 u64 avail_space; 1947 u64 min_stripe_size; 1948 int num_stripes = 1; 1949 int i = 0, nr_devices; 1950 const struct btrfs_raid_attr *rattr; 1951 1952 /* 1953 * We aren't under the device list lock, so this is racy-ish, but good 1954 * enough for our purposes. 1955 */ 1956 nr_devices = fs_info->fs_devices->open_devices; 1957 if (!nr_devices) { 1958 smp_mb(); 1959 nr_devices = fs_info->fs_devices->open_devices; 1960 ASSERT(nr_devices); 1961 if (!nr_devices) { 1962 *free_bytes = 0; 1963 return 0; 1964 } 1965 } 1966 1967 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1968 GFP_KERNEL); 1969 if (!devices_info) 1970 return -ENOMEM; 1971 1972 /* calc min stripe number for data space allocation */ 1973 type = btrfs_data_alloc_profile(fs_info); 1974 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 1975 1976 if (type & BTRFS_BLOCK_GROUP_RAID0) 1977 num_stripes = nr_devices; 1978 else if (type & BTRFS_BLOCK_GROUP_RAID1) 1979 num_stripes = 2; 1980 else if (type & BTRFS_BLOCK_GROUP_RAID1C3) 1981 num_stripes = 3; 1982 else if (type & BTRFS_BLOCK_GROUP_RAID1C4) 1983 num_stripes = 4; 1984 else if (type & BTRFS_BLOCK_GROUP_RAID10) 1985 num_stripes = 4; 1986 1987 /* Adjust for more than 1 stripe per device */ 1988 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 1989 1990 rcu_read_lock(); 1991 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1992 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1993 &device->dev_state) || 1994 !device->bdev || 1995 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1996 continue; 1997 1998 if (i >= nr_devices) 1999 break; 2000 2001 avail_space = device->total_bytes - device->bytes_used; 2002 2003 /* align with stripe_len */ 2004 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 2005 2006 /* 2007 * In order to avoid overwriting the superblock on the drive, 2008 * btrfs starts at an offset of at least 1MB when doing chunk 2009 * allocation. 2010 * 2011 * This ensures we have at least min_stripe_size free space 2012 * after excluding 1MB. 2013 */ 2014 if (avail_space <= SZ_1M + min_stripe_size) 2015 continue; 2016 2017 avail_space -= SZ_1M; 2018 2019 devices_info[i].dev = device; 2020 devices_info[i].max_avail = avail_space; 2021 2022 i++; 2023 } 2024 rcu_read_unlock(); 2025 2026 nr_devices = i; 2027 2028 btrfs_descending_sort_devices(devices_info, nr_devices); 2029 2030 i = nr_devices - 1; 2031 avail_space = 0; 2032 while (nr_devices >= rattr->devs_min) { 2033 num_stripes = min(num_stripes, nr_devices); 2034 2035 if (devices_info[i].max_avail >= min_stripe_size) { 2036 int j; 2037 u64 alloc_size; 2038 2039 avail_space += devices_info[i].max_avail * num_stripes; 2040 alloc_size = devices_info[i].max_avail; 2041 for (j = i + 1 - num_stripes; j <= i; j++) 2042 devices_info[j].max_avail -= alloc_size; 2043 } 2044 i--; 2045 nr_devices--; 2046 } 2047 2048 kfree(devices_info); 2049 *free_bytes = avail_space; 2050 return 0; 2051 } 2052 2053 /* 2054 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2055 * 2056 * If there's a redundant raid level at DATA block groups, use the respective 2057 * multiplier to scale the sizes. 2058 * 2059 * Unused device space usage is based on simulating the chunk allocator 2060 * algorithm that respects the device sizes and order of allocations. This is 2061 * a close approximation of the actual use but there are other factors that may 2062 * change the result (like a new metadata chunk). 2063 * 2064 * If metadata is exhausted, f_bavail will be 0. 2065 */ 2066 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2067 { 2068 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2069 struct btrfs_super_block *disk_super = fs_info->super_copy; 2070 struct btrfs_space_info *found; 2071 u64 total_used = 0; 2072 u64 total_free_data = 0; 2073 u64 total_free_meta = 0; 2074 int bits = dentry->d_sb->s_blocksize_bits; 2075 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 2076 unsigned factor = 1; 2077 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2078 int ret; 2079 u64 thresh = 0; 2080 int mixed = 0; 2081 2082 rcu_read_lock(); 2083 list_for_each_entry_rcu(found, &fs_info->space_info, list) { 2084 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2085 int i; 2086 2087 total_free_data += found->disk_total - found->disk_used; 2088 total_free_data -= 2089 btrfs_account_ro_block_groups_free_space(found); 2090 2091 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2092 if (!list_empty(&found->block_groups[i])) 2093 factor = btrfs_bg_type_to_factor( 2094 btrfs_raid_array[i].bg_flag); 2095 } 2096 } 2097 2098 /* 2099 * Metadata in mixed block goup profiles are accounted in data 2100 */ 2101 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2102 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2103 mixed = 1; 2104 else 2105 total_free_meta += found->disk_total - 2106 found->disk_used; 2107 } 2108 2109 total_used += found->disk_used; 2110 } 2111 2112 rcu_read_unlock(); 2113 2114 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2115 buf->f_blocks >>= bits; 2116 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2117 2118 /* Account global block reserve as used, it's in logical size already */ 2119 spin_lock(&block_rsv->lock); 2120 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2121 if (buf->f_bfree >= block_rsv->size >> bits) 2122 buf->f_bfree -= block_rsv->size >> bits; 2123 else 2124 buf->f_bfree = 0; 2125 spin_unlock(&block_rsv->lock); 2126 2127 buf->f_bavail = div_u64(total_free_data, factor); 2128 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2129 if (ret) 2130 return ret; 2131 buf->f_bavail += div_u64(total_free_data, factor); 2132 buf->f_bavail = buf->f_bavail >> bits; 2133 2134 /* 2135 * We calculate the remaining metadata space minus global reserve. If 2136 * this is (supposedly) smaller than zero, there's no space. But this 2137 * does not hold in practice, the exhausted state happens where's still 2138 * some positive delta. So we apply some guesswork and compare the 2139 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2140 * 2141 * We probably cannot calculate the exact threshold value because this 2142 * depends on the internal reservations requested by various 2143 * operations, so some operations that consume a few metadata will 2144 * succeed even if the Avail is zero. But this is better than the other 2145 * way around. 2146 */ 2147 thresh = SZ_4M; 2148 2149 /* 2150 * We only want to claim there's no available space if we can no longer 2151 * allocate chunks for our metadata profile and our global reserve will 2152 * not fit in the free metadata space. If we aren't ->full then we 2153 * still can allocate chunks and thus are fine using the currently 2154 * calculated f_bavail. 2155 */ 2156 if (!mixed && block_rsv->space_info->full && 2157 total_free_meta - thresh < block_rsv->size) 2158 buf->f_bavail = 0; 2159 2160 buf->f_type = BTRFS_SUPER_MAGIC; 2161 buf->f_bsize = dentry->d_sb->s_blocksize; 2162 buf->f_namelen = BTRFS_NAME_LEN; 2163 2164 /* We treat it as constant endianness (it doesn't matter _which_) 2165 because we want the fsid to come out the same whether mounted 2166 on a big-endian or little-endian host */ 2167 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2168 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2169 /* Mask in the root object ID too, to disambiguate subvols */ 2170 buf->f_fsid.val[0] ^= 2171 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; 2172 buf->f_fsid.val[1] ^= 2173 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 2174 2175 return 0; 2176 } 2177 2178 static void btrfs_kill_super(struct super_block *sb) 2179 { 2180 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2181 kill_anon_super(sb); 2182 btrfs_free_fs_info(fs_info); 2183 } 2184 2185 static struct file_system_type btrfs_fs_type = { 2186 .owner = THIS_MODULE, 2187 .name = "btrfs", 2188 .mount = btrfs_mount, 2189 .kill_sb = btrfs_kill_super, 2190 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2191 }; 2192 2193 static struct file_system_type btrfs_root_fs_type = { 2194 .owner = THIS_MODULE, 2195 .name = "btrfs", 2196 .mount = btrfs_mount_root, 2197 .kill_sb = btrfs_kill_super, 2198 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2199 }; 2200 2201 MODULE_ALIAS_FS("btrfs"); 2202 2203 static int btrfs_control_open(struct inode *inode, struct file *file) 2204 { 2205 /* 2206 * The control file's private_data is used to hold the 2207 * transaction when it is started and is used to keep 2208 * track of whether a transaction is already in progress. 2209 */ 2210 file->private_data = NULL; 2211 return 0; 2212 } 2213 2214 /* 2215 * Used by /dev/btrfs-control for devices ioctls. 2216 */ 2217 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2218 unsigned long arg) 2219 { 2220 struct btrfs_ioctl_vol_args *vol; 2221 struct btrfs_device *device = NULL; 2222 int ret = -ENOTTY; 2223 2224 if (!capable(CAP_SYS_ADMIN)) 2225 return -EPERM; 2226 2227 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2228 if (IS_ERR(vol)) 2229 return PTR_ERR(vol); 2230 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2231 2232 switch (cmd) { 2233 case BTRFS_IOC_SCAN_DEV: 2234 mutex_lock(&uuid_mutex); 2235 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2236 &btrfs_root_fs_type); 2237 ret = PTR_ERR_OR_ZERO(device); 2238 mutex_unlock(&uuid_mutex); 2239 break; 2240 case BTRFS_IOC_FORGET_DEV: 2241 ret = btrfs_forget_devices(vol->name); 2242 break; 2243 case BTRFS_IOC_DEVICES_READY: 2244 mutex_lock(&uuid_mutex); 2245 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2246 &btrfs_root_fs_type); 2247 if (IS_ERR(device)) { 2248 mutex_unlock(&uuid_mutex); 2249 ret = PTR_ERR(device); 2250 break; 2251 } 2252 ret = !(device->fs_devices->num_devices == 2253 device->fs_devices->total_devices); 2254 mutex_unlock(&uuid_mutex); 2255 break; 2256 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2257 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2258 break; 2259 } 2260 2261 kfree(vol); 2262 return ret; 2263 } 2264 2265 static int btrfs_freeze(struct super_block *sb) 2266 { 2267 struct btrfs_trans_handle *trans; 2268 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2269 struct btrfs_root *root = fs_info->tree_root; 2270 2271 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2272 /* 2273 * We don't need a barrier here, we'll wait for any transaction that 2274 * could be in progress on other threads (and do delayed iputs that 2275 * we want to avoid on a frozen filesystem), or do the commit 2276 * ourselves. 2277 */ 2278 trans = btrfs_attach_transaction_barrier(root); 2279 if (IS_ERR(trans)) { 2280 /* no transaction, don't bother */ 2281 if (PTR_ERR(trans) == -ENOENT) 2282 return 0; 2283 return PTR_ERR(trans); 2284 } 2285 return btrfs_commit_transaction(trans); 2286 } 2287 2288 static int btrfs_unfreeze(struct super_block *sb) 2289 { 2290 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2291 2292 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2293 return 0; 2294 } 2295 2296 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2297 { 2298 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2299 struct btrfs_fs_devices *cur_devices; 2300 struct btrfs_device *dev, *first_dev = NULL; 2301 struct list_head *head; 2302 2303 /* 2304 * Lightweight locking of the devices. We should not need 2305 * device_list_mutex here as we only read the device data and the list 2306 * is protected by RCU. Even if a device is deleted during the list 2307 * traversals, we'll get valid data, the freeing callback will wait at 2308 * least until the rcu_read_unlock. 2309 */ 2310 rcu_read_lock(); 2311 cur_devices = fs_info->fs_devices; 2312 while (cur_devices) { 2313 head = &cur_devices->devices; 2314 list_for_each_entry_rcu(dev, head, dev_list) { 2315 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 2316 continue; 2317 if (!dev->name) 2318 continue; 2319 if (!first_dev || dev->devid < first_dev->devid) 2320 first_dev = dev; 2321 } 2322 cur_devices = cur_devices->seed; 2323 } 2324 2325 if (first_dev) 2326 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\"); 2327 else 2328 WARN_ON(1); 2329 rcu_read_unlock(); 2330 return 0; 2331 } 2332 2333 static const struct super_operations btrfs_super_ops = { 2334 .drop_inode = btrfs_drop_inode, 2335 .evict_inode = btrfs_evict_inode, 2336 .put_super = btrfs_put_super, 2337 .sync_fs = btrfs_sync_fs, 2338 .show_options = btrfs_show_options, 2339 .show_devname = btrfs_show_devname, 2340 .alloc_inode = btrfs_alloc_inode, 2341 .destroy_inode = btrfs_destroy_inode, 2342 .free_inode = btrfs_free_inode, 2343 .statfs = btrfs_statfs, 2344 .remount_fs = btrfs_remount, 2345 .freeze_fs = btrfs_freeze, 2346 .unfreeze_fs = btrfs_unfreeze, 2347 }; 2348 2349 static const struct file_operations btrfs_ctl_fops = { 2350 .open = btrfs_control_open, 2351 .unlocked_ioctl = btrfs_control_ioctl, 2352 .compat_ioctl = compat_ptr_ioctl, 2353 .owner = THIS_MODULE, 2354 .llseek = noop_llseek, 2355 }; 2356 2357 static struct miscdevice btrfs_misc = { 2358 .minor = BTRFS_MINOR, 2359 .name = "btrfs-control", 2360 .fops = &btrfs_ctl_fops 2361 }; 2362 2363 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2364 MODULE_ALIAS("devname:btrfs-control"); 2365 2366 static int __init btrfs_interface_init(void) 2367 { 2368 return misc_register(&btrfs_misc); 2369 } 2370 2371 static __cold void btrfs_interface_exit(void) 2372 { 2373 misc_deregister(&btrfs_misc); 2374 } 2375 2376 static void __init btrfs_print_mod_info(void) 2377 { 2378 static const char options[] = "" 2379 #ifdef CONFIG_BTRFS_DEBUG 2380 ", debug=on" 2381 #endif 2382 #ifdef CONFIG_BTRFS_ASSERT 2383 ", assert=on" 2384 #endif 2385 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2386 ", integrity-checker=on" 2387 #endif 2388 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2389 ", ref-verify=on" 2390 #endif 2391 ; 2392 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2393 } 2394 2395 static int __init init_btrfs_fs(void) 2396 { 2397 int err; 2398 2399 btrfs_props_init(); 2400 2401 err = btrfs_init_sysfs(); 2402 if (err) 2403 return err; 2404 2405 btrfs_init_compress(); 2406 2407 err = btrfs_init_cachep(); 2408 if (err) 2409 goto free_compress; 2410 2411 err = extent_io_init(); 2412 if (err) 2413 goto free_cachep; 2414 2415 err = extent_state_cache_init(); 2416 if (err) 2417 goto free_extent_io; 2418 2419 err = extent_map_init(); 2420 if (err) 2421 goto free_extent_state_cache; 2422 2423 err = ordered_data_init(); 2424 if (err) 2425 goto free_extent_map; 2426 2427 err = btrfs_delayed_inode_init(); 2428 if (err) 2429 goto free_ordered_data; 2430 2431 err = btrfs_auto_defrag_init(); 2432 if (err) 2433 goto free_delayed_inode; 2434 2435 err = btrfs_delayed_ref_init(); 2436 if (err) 2437 goto free_auto_defrag; 2438 2439 err = btrfs_prelim_ref_init(); 2440 if (err) 2441 goto free_delayed_ref; 2442 2443 err = btrfs_end_io_wq_init(); 2444 if (err) 2445 goto free_prelim_ref; 2446 2447 err = btrfs_interface_init(); 2448 if (err) 2449 goto free_end_io_wq; 2450 2451 btrfs_init_lockdep(); 2452 2453 btrfs_print_mod_info(); 2454 2455 err = btrfs_run_sanity_tests(); 2456 if (err) 2457 goto unregister_ioctl; 2458 2459 err = register_filesystem(&btrfs_fs_type); 2460 if (err) 2461 goto unregister_ioctl; 2462 2463 return 0; 2464 2465 unregister_ioctl: 2466 btrfs_interface_exit(); 2467 free_end_io_wq: 2468 btrfs_end_io_wq_exit(); 2469 free_prelim_ref: 2470 btrfs_prelim_ref_exit(); 2471 free_delayed_ref: 2472 btrfs_delayed_ref_exit(); 2473 free_auto_defrag: 2474 btrfs_auto_defrag_exit(); 2475 free_delayed_inode: 2476 btrfs_delayed_inode_exit(); 2477 free_ordered_data: 2478 ordered_data_exit(); 2479 free_extent_map: 2480 extent_map_exit(); 2481 free_extent_state_cache: 2482 extent_state_cache_exit(); 2483 free_extent_io: 2484 extent_io_exit(); 2485 free_cachep: 2486 btrfs_destroy_cachep(); 2487 free_compress: 2488 btrfs_exit_compress(); 2489 btrfs_exit_sysfs(); 2490 2491 return err; 2492 } 2493 2494 static void __exit exit_btrfs_fs(void) 2495 { 2496 btrfs_destroy_cachep(); 2497 btrfs_delayed_ref_exit(); 2498 btrfs_auto_defrag_exit(); 2499 btrfs_delayed_inode_exit(); 2500 btrfs_prelim_ref_exit(); 2501 ordered_data_exit(); 2502 extent_map_exit(); 2503 extent_state_cache_exit(); 2504 extent_io_exit(); 2505 btrfs_interface_exit(); 2506 btrfs_end_io_wq_exit(); 2507 unregister_filesystem(&btrfs_fs_type); 2508 btrfs_exit_sysfs(); 2509 btrfs_cleanup_fs_uuids(); 2510 btrfs_exit_compress(); 2511 } 2512 2513 late_initcall(init_btrfs_fs); 2514 module_exit(exit_btrfs_fs) 2515 2516 MODULE_LICENSE("GPL"); 2517 MODULE_SOFTDEP("pre: crc32c"); 2518 MODULE_SOFTDEP("pre: xxhash64"); 2519 MODULE_SOFTDEP("pre: sha256"); 2520 MODULE_SOFTDEP("pre: blake2b-256"); 2521