xref: /openbmc/linux/fs/btrfs/super.c (revision f7c35abe)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #include "qgroup.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66 
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69 
70 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71 
72 const char *btrfs_decode_error(int errno)
73 {
74 	char *errstr = "unknown";
75 
76 	switch (errno) {
77 	case -EIO:
78 		errstr = "IO failure";
79 		break;
80 	case -ENOMEM:
81 		errstr = "Out of memory";
82 		break;
83 	case -EROFS:
84 		errstr = "Readonly filesystem";
85 		break;
86 	case -EEXIST:
87 		errstr = "Object already exists";
88 		break;
89 	case -ENOSPC:
90 		errstr = "No space left";
91 		break;
92 	case -ENOENT:
93 		errstr = "No such entry";
94 		break;
95 	}
96 
97 	return errstr;
98 }
99 
100 /* btrfs handle error by forcing the filesystem readonly */
101 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
102 {
103 	struct super_block *sb = fs_info->sb;
104 
105 	if (sb->s_flags & MS_RDONLY)
106 		return;
107 
108 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
109 		sb->s_flags |= MS_RDONLY;
110 		btrfs_info(fs_info, "forced readonly");
111 		/*
112 		 * Note that a running device replace operation is not
113 		 * canceled here although there is no way to update
114 		 * the progress. It would add the risk of a deadlock,
115 		 * therefore the canceling is omitted. The only penalty
116 		 * is that some I/O remains active until the procedure
117 		 * completes. The next time when the filesystem is
118 		 * mounted writeable again, the device replace
119 		 * operation continues.
120 		 */
121 	}
122 }
123 
124 /*
125  * __btrfs_handle_fs_error decodes expected errors from the caller and
126  * invokes the approciate error response.
127  */
128 __cold
129 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
130 		       unsigned int line, int errno, const char *fmt, ...)
131 {
132 	struct super_block *sb = fs_info->sb;
133 #ifdef CONFIG_PRINTK
134 	const char *errstr;
135 #endif
136 
137 	/*
138 	 * Special case: if the error is EROFS, and we're already
139 	 * under MS_RDONLY, then it is safe here.
140 	 */
141 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
142   		return;
143 
144 #ifdef CONFIG_PRINTK
145 	errstr = btrfs_decode_error(errno);
146 	if (fmt) {
147 		struct va_format vaf;
148 		va_list args;
149 
150 		va_start(args, fmt);
151 		vaf.fmt = fmt;
152 		vaf.va = &args;
153 
154 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
155 			sb->s_id, function, line, errno, errstr, &vaf);
156 		va_end(args);
157 	} else {
158 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
159 			sb->s_id, function, line, errno, errstr);
160 	}
161 #endif
162 
163 	/*
164 	 * Today we only save the error info to memory.  Long term we'll
165 	 * also send it down to the disk
166 	 */
167 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
168 
169 	/* Don't go through full error handling during mount */
170 	if (sb->s_flags & MS_BORN)
171 		btrfs_handle_error(fs_info);
172 }
173 
174 #ifdef CONFIG_PRINTK
175 static const char * const logtypes[] = {
176 	"emergency",
177 	"alert",
178 	"critical",
179 	"error",
180 	"warning",
181 	"notice",
182 	"info",
183 	"debug",
184 };
185 
186 
187 /*
188  * Use one ratelimit state per log level so that a flood of less important
189  * messages doesn't cause more important ones to be dropped.
190  */
191 static struct ratelimit_state printk_limits[] = {
192 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
193 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
194 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
195 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
196 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
197 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
198 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
199 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
200 };
201 
202 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
203 {
204 	struct super_block *sb = fs_info->sb;
205 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
206 	struct va_format vaf;
207 	va_list args;
208 	int kern_level;
209 	const char *type = logtypes[4];
210 	struct ratelimit_state *ratelimit = &printk_limits[4];
211 
212 	va_start(args, fmt);
213 
214 	while ((kern_level = printk_get_level(fmt)) != 0) {
215 		size_t size = printk_skip_level(fmt) - fmt;
216 
217 		if (kern_level >= '0' && kern_level <= '7') {
218 			memcpy(lvl, fmt,  size);
219 			lvl[size] = '\0';
220 			type = logtypes[kern_level - '0'];
221 			ratelimit = &printk_limits[kern_level - '0'];
222 		}
223 		fmt += size;
224 	}
225 
226 	vaf.fmt = fmt;
227 	vaf.va = &args;
228 
229 	if (__ratelimit(ratelimit))
230 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
231 
232 	va_end(args);
233 }
234 #endif
235 
236 /*
237  * We only mark the transaction aborted and then set the file system read-only.
238  * This will prevent new transactions from starting or trying to join this
239  * one.
240  *
241  * This means that error recovery at the call site is limited to freeing
242  * any local memory allocations and passing the error code up without
243  * further cleanup. The transaction should complete as it normally would
244  * in the call path but will return -EIO.
245  *
246  * We'll complete the cleanup in btrfs_end_transaction and
247  * btrfs_commit_transaction.
248  */
249 __cold
250 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
251 			       const char *function,
252 			       unsigned int line, int errno)
253 {
254 	struct btrfs_fs_info *fs_info = trans->fs_info;
255 
256 	trans->aborted = errno;
257 	/* Nothing used. The other threads that have joined this
258 	 * transaction may be able to continue. */
259 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
260 		const char *errstr;
261 
262 		errstr = btrfs_decode_error(errno);
263 		btrfs_warn(fs_info,
264 		           "%s:%d: Aborting unused transaction(%s).",
265 		           function, line, errstr);
266 		return;
267 	}
268 	WRITE_ONCE(trans->transaction->aborted, errno);
269 	/* Wake up anybody who may be waiting on this transaction */
270 	wake_up(&fs_info->transaction_wait);
271 	wake_up(&fs_info->transaction_blocked_wait);
272 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
273 }
274 /*
275  * __btrfs_panic decodes unexpected, fatal errors from the caller,
276  * issues an alert, and either panics or BUGs, depending on mount options.
277  */
278 __cold
279 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
280 		   unsigned int line, int errno, const char *fmt, ...)
281 {
282 	char *s_id = "<unknown>";
283 	const char *errstr;
284 	struct va_format vaf = { .fmt = fmt };
285 	va_list args;
286 
287 	if (fs_info)
288 		s_id = fs_info->sb->s_id;
289 
290 	va_start(args, fmt);
291 	vaf.va = &args;
292 
293 	errstr = btrfs_decode_error(errno);
294 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
295 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
296 			s_id, function, line, &vaf, errno, errstr);
297 
298 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
299 		   function, line, &vaf, errno, errstr);
300 	va_end(args);
301 	/* Caller calls BUG() */
302 }
303 
304 static void btrfs_put_super(struct super_block *sb)
305 {
306 	close_ctree(btrfs_sb(sb));
307 }
308 
309 enum {
310 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
311 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
312 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
313 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
314 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
315 	Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
316 	Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
317 	Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
318 	Opt_skip_balance, Opt_check_integrity,
319 	Opt_check_integrity_including_extent_data,
320 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
321 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
322 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
323 	Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
324 	Opt_nologreplay, Opt_norecovery,
325 #ifdef CONFIG_BTRFS_DEBUG
326 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
327 #endif
328 	Opt_err,
329 };
330 
331 static const match_table_t tokens = {
332 	{Opt_degraded, "degraded"},
333 	{Opt_subvol, "subvol=%s"},
334 	{Opt_subvolid, "subvolid=%s"},
335 	{Opt_device, "device=%s"},
336 	{Opt_nodatasum, "nodatasum"},
337 	{Opt_datasum, "datasum"},
338 	{Opt_nodatacow, "nodatacow"},
339 	{Opt_datacow, "datacow"},
340 	{Opt_nobarrier, "nobarrier"},
341 	{Opt_barrier, "barrier"},
342 	{Opt_max_inline, "max_inline=%s"},
343 	{Opt_alloc_start, "alloc_start=%s"},
344 	{Opt_thread_pool, "thread_pool=%d"},
345 	{Opt_compress, "compress"},
346 	{Opt_compress_type, "compress=%s"},
347 	{Opt_compress_force, "compress-force"},
348 	{Opt_compress_force_type, "compress-force=%s"},
349 	{Opt_ssd, "ssd"},
350 	{Opt_ssd_spread, "ssd_spread"},
351 	{Opt_nossd, "nossd"},
352 	{Opt_acl, "acl"},
353 	{Opt_noacl, "noacl"},
354 	{Opt_notreelog, "notreelog"},
355 	{Opt_treelog, "treelog"},
356 	{Opt_nologreplay, "nologreplay"},
357 	{Opt_norecovery, "norecovery"},
358 	{Opt_flushoncommit, "flushoncommit"},
359 	{Opt_noflushoncommit, "noflushoncommit"},
360 	{Opt_ratio, "metadata_ratio=%d"},
361 	{Opt_discard, "discard"},
362 	{Opt_nodiscard, "nodiscard"},
363 	{Opt_space_cache, "space_cache"},
364 	{Opt_space_cache_version, "space_cache=%s"},
365 	{Opt_clear_cache, "clear_cache"},
366 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
367 	{Opt_enospc_debug, "enospc_debug"},
368 	{Opt_noenospc_debug, "noenospc_debug"},
369 	{Opt_subvolrootid, "subvolrootid=%d"},
370 	{Opt_defrag, "autodefrag"},
371 	{Opt_nodefrag, "noautodefrag"},
372 	{Opt_inode_cache, "inode_cache"},
373 	{Opt_noinode_cache, "noinode_cache"},
374 	{Opt_no_space_cache, "nospace_cache"},
375 	{Opt_recovery, "recovery"}, /* deprecated */
376 	{Opt_usebackuproot, "usebackuproot"},
377 	{Opt_skip_balance, "skip_balance"},
378 	{Opt_check_integrity, "check_int"},
379 	{Opt_check_integrity_including_extent_data, "check_int_data"},
380 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
381 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
382 	{Opt_fatal_errors, "fatal_errors=%s"},
383 	{Opt_commit_interval, "commit=%d"},
384 #ifdef CONFIG_BTRFS_DEBUG
385 	{Opt_fragment_data, "fragment=data"},
386 	{Opt_fragment_metadata, "fragment=metadata"},
387 	{Opt_fragment_all, "fragment=all"},
388 #endif
389 	{Opt_err, NULL},
390 };
391 
392 /*
393  * Regular mount options parser.  Everything that is needed only when
394  * reading in a new superblock is parsed here.
395  * XXX JDM: This needs to be cleaned up for remount.
396  */
397 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
398 			unsigned long new_flags)
399 {
400 	substring_t args[MAX_OPT_ARGS];
401 	char *p, *num, *orig = NULL;
402 	u64 cache_gen;
403 	int intarg;
404 	int ret = 0;
405 	char *compress_type;
406 	bool compress_force = false;
407 	enum btrfs_compression_type saved_compress_type;
408 	bool saved_compress_force;
409 	int no_compress = 0;
410 
411 	cache_gen = btrfs_super_cache_generation(info->super_copy);
412 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
413 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
414 	else if (cache_gen)
415 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
416 
417 	/*
418 	 * Even the options are empty, we still need to do extra check
419 	 * against new flags
420 	 */
421 	if (!options)
422 		goto check;
423 
424 	/*
425 	 * strsep changes the string, duplicate it because parse_options
426 	 * gets called twice
427 	 */
428 	options = kstrdup(options, GFP_NOFS);
429 	if (!options)
430 		return -ENOMEM;
431 
432 	orig = options;
433 
434 	while ((p = strsep(&options, ",")) != NULL) {
435 		int token;
436 		if (!*p)
437 			continue;
438 
439 		token = match_token(p, tokens, args);
440 		switch (token) {
441 		case Opt_degraded:
442 			btrfs_info(info, "allowing degraded mounts");
443 			btrfs_set_opt(info->mount_opt, DEGRADED);
444 			break;
445 		case Opt_subvol:
446 		case Opt_subvolid:
447 		case Opt_subvolrootid:
448 		case Opt_device:
449 			/*
450 			 * These are parsed by btrfs_parse_early_options
451 			 * and can be happily ignored here.
452 			 */
453 			break;
454 		case Opt_nodatasum:
455 			btrfs_set_and_info(info, NODATASUM,
456 					   "setting nodatasum");
457 			break;
458 		case Opt_datasum:
459 			if (btrfs_test_opt(info, NODATASUM)) {
460 				if (btrfs_test_opt(info, NODATACOW))
461 					btrfs_info(info,
462 						   "setting datasum, datacow enabled");
463 				else
464 					btrfs_info(info, "setting datasum");
465 			}
466 			btrfs_clear_opt(info->mount_opt, NODATACOW);
467 			btrfs_clear_opt(info->mount_opt, NODATASUM);
468 			break;
469 		case Opt_nodatacow:
470 			if (!btrfs_test_opt(info, NODATACOW)) {
471 				if (!btrfs_test_opt(info, COMPRESS) ||
472 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
473 					btrfs_info(info,
474 						   "setting nodatacow, compression disabled");
475 				} else {
476 					btrfs_info(info, "setting nodatacow");
477 				}
478 			}
479 			btrfs_clear_opt(info->mount_opt, COMPRESS);
480 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
481 			btrfs_set_opt(info->mount_opt, NODATACOW);
482 			btrfs_set_opt(info->mount_opt, NODATASUM);
483 			break;
484 		case Opt_datacow:
485 			btrfs_clear_and_info(info, NODATACOW,
486 					     "setting datacow");
487 			break;
488 		case Opt_compress_force:
489 		case Opt_compress_force_type:
490 			compress_force = true;
491 			/* Fallthrough */
492 		case Opt_compress:
493 		case Opt_compress_type:
494 			saved_compress_type = btrfs_test_opt(info,
495 							     COMPRESS) ?
496 				info->compress_type : BTRFS_COMPRESS_NONE;
497 			saved_compress_force =
498 				btrfs_test_opt(info, FORCE_COMPRESS);
499 			if (token == Opt_compress ||
500 			    token == Opt_compress_force ||
501 			    strcmp(args[0].from, "zlib") == 0) {
502 				compress_type = "zlib";
503 				info->compress_type = BTRFS_COMPRESS_ZLIB;
504 				btrfs_set_opt(info->mount_opt, COMPRESS);
505 				btrfs_clear_opt(info->mount_opt, NODATACOW);
506 				btrfs_clear_opt(info->mount_opt, NODATASUM);
507 				no_compress = 0;
508 			} else if (strcmp(args[0].from, "lzo") == 0) {
509 				compress_type = "lzo";
510 				info->compress_type = BTRFS_COMPRESS_LZO;
511 				btrfs_set_opt(info->mount_opt, COMPRESS);
512 				btrfs_clear_opt(info->mount_opt, NODATACOW);
513 				btrfs_clear_opt(info->mount_opt, NODATASUM);
514 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
515 				no_compress = 0;
516 			} else if (strncmp(args[0].from, "no", 2) == 0) {
517 				compress_type = "no";
518 				btrfs_clear_opt(info->mount_opt, COMPRESS);
519 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
520 				compress_force = false;
521 				no_compress++;
522 			} else {
523 				ret = -EINVAL;
524 				goto out;
525 			}
526 
527 			if (compress_force) {
528 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
529 			} else {
530 				/*
531 				 * If we remount from compress-force=xxx to
532 				 * compress=xxx, we need clear FORCE_COMPRESS
533 				 * flag, otherwise, there is no way for users
534 				 * to disable forcible compression separately.
535 				 */
536 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
537 			}
538 			if ((btrfs_test_opt(info, COMPRESS) &&
539 			     (info->compress_type != saved_compress_type ||
540 			      compress_force != saved_compress_force)) ||
541 			    (!btrfs_test_opt(info, COMPRESS) &&
542 			     no_compress == 1)) {
543 				btrfs_info(info, "%s %s compression",
544 					   (compress_force) ? "force" : "use",
545 					   compress_type);
546 			}
547 			compress_force = false;
548 			break;
549 		case Opt_ssd:
550 			btrfs_set_and_info(info, SSD,
551 					   "use ssd allocation scheme");
552 			break;
553 		case Opt_ssd_spread:
554 			btrfs_set_and_info(info, SSD_SPREAD,
555 					   "use spread ssd allocation scheme");
556 			btrfs_set_opt(info->mount_opt, SSD);
557 			break;
558 		case Opt_nossd:
559 			btrfs_set_and_info(info, NOSSD,
560 					     "not using ssd allocation scheme");
561 			btrfs_clear_opt(info->mount_opt, SSD);
562 			break;
563 		case Opt_barrier:
564 			btrfs_clear_and_info(info, NOBARRIER,
565 					     "turning on barriers");
566 			break;
567 		case Opt_nobarrier:
568 			btrfs_set_and_info(info, NOBARRIER,
569 					   "turning off barriers");
570 			break;
571 		case Opt_thread_pool:
572 			ret = match_int(&args[0], &intarg);
573 			if (ret) {
574 				goto out;
575 			} else if (intarg > 0) {
576 				info->thread_pool_size = intarg;
577 			} else {
578 				ret = -EINVAL;
579 				goto out;
580 			}
581 			break;
582 		case Opt_max_inline:
583 			num = match_strdup(&args[0]);
584 			if (num) {
585 				info->max_inline = memparse(num, NULL);
586 				kfree(num);
587 
588 				if (info->max_inline) {
589 					info->max_inline = min_t(u64,
590 						info->max_inline,
591 						info->sectorsize);
592 				}
593 				btrfs_info(info, "max_inline at %llu",
594 					   info->max_inline);
595 			} else {
596 				ret = -ENOMEM;
597 				goto out;
598 			}
599 			break;
600 		case Opt_alloc_start:
601 			num = match_strdup(&args[0]);
602 			if (num) {
603 				mutex_lock(&info->chunk_mutex);
604 				info->alloc_start = memparse(num, NULL);
605 				mutex_unlock(&info->chunk_mutex);
606 				kfree(num);
607 				btrfs_info(info, "allocations start at %llu",
608 					   info->alloc_start);
609 			} else {
610 				ret = -ENOMEM;
611 				goto out;
612 			}
613 			break;
614 		case Opt_acl:
615 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
616 			info->sb->s_flags |= MS_POSIXACL;
617 			break;
618 #else
619 			btrfs_err(info, "support for ACL not compiled in!");
620 			ret = -EINVAL;
621 			goto out;
622 #endif
623 		case Opt_noacl:
624 			info->sb->s_flags &= ~MS_POSIXACL;
625 			break;
626 		case Opt_notreelog:
627 			btrfs_set_and_info(info, NOTREELOG,
628 					   "disabling tree log");
629 			break;
630 		case Opt_treelog:
631 			btrfs_clear_and_info(info, NOTREELOG,
632 					     "enabling tree log");
633 			break;
634 		case Opt_norecovery:
635 		case Opt_nologreplay:
636 			btrfs_set_and_info(info, NOLOGREPLAY,
637 					   "disabling log replay at mount time");
638 			break;
639 		case Opt_flushoncommit:
640 			btrfs_set_and_info(info, FLUSHONCOMMIT,
641 					   "turning on flush-on-commit");
642 			break;
643 		case Opt_noflushoncommit:
644 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
645 					     "turning off flush-on-commit");
646 			break;
647 		case Opt_ratio:
648 			ret = match_int(&args[0], &intarg);
649 			if (ret) {
650 				goto out;
651 			} else if (intarg >= 0) {
652 				info->metadata_ratio = intarg;
653 				btrfs_info(info, "metadata ratio %d",
654 					   info->metadata_ratio);
655 			} else {
656 				ret = -EINVAL;
657 				goto out;
658 			}
659 			break;
660 		case Opt_discard:
661 			btrfs_set_and_info(info, DISCARD,
662 					   "turning on discard");
663 			break;
664 		case Opt_nodiscard:
665 			btrfs_clear_and_info(info, DISCARD,
666 					     "turning off discard");
667 			break;
668 		case Opt_space_cache:
669 		case Opt_space_cache_version:
670 			if (token == Opt_space_cache ||
671 			    strcmp(args[0].from, "v1") == 0) {
672 				btrfs_clear_opt(info->mount_opt,
673 						FREE_SPACE_TREE);
674 				btrfs_set_and_info(info, SPACE_CACHE,
675 					   "enabling disk space caching");
676 			} else if (strcmp(args[0].from, "v2") == 0) {
677 				btrfs_clear_opt(info->mount_opt,
678 						SPACE_CACHE);
679 				btrfs_set_and_info(info, FREE_SPACE_TREE,
680 						   "enabling free space tree");
681 			} else {
682 				ret = -EINVAL;
683 				goto out;
684 			}
685 			break;
686 		case Opt_rescan_uuid_tree:
687 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
688 			break;
689 		case Opt_no_space_cache:
690 			if (btrfs_test_opt(info, SPACE_CACHE)) {
691 				btrfs_clear_and_info(info, SPACE_CACHE,
692 					     "disabling disk space caching");
693 			}
694 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
695 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
696 					     "disabling free space tree");
697 			}
698 			break;
699 		case Opt_inode_cache:
700 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
701 					   "enabling inode map caching");
702 			break;
703 		case Opt_noinode_cache:
704 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
705 					     "disabling inode map caching");
706 			break;
707 		case Opt_clear_cache:
708 			btrfs_set_and_info(info, CLEAR_CACHE,
709 					   "force clearing of disk cache");
710 			break;
711 		case Opt_user_subvol_rm_allowed:
712 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
713 			break;
714 		case Opt_enospc_debug:
715 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
716 			break;
717 		case Opt_noenospc_debug:
718 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
719 			break;
720 		case Opt_defrag:
721 			btrfs_set_and_info(info, AUTO_DEFRAG,
722 					   "enabling auto defrag");
723 			break;
724 		case Opt_nodefrag:
725 			btrfs_clear_and_info(info, AUTO_DEFRAG,
726 					     "disabling auto defrag");
727 			break;
728 		case Opt_recovery:
729 			btrfs_warn(info,
730 				   "'recovery' is deprecated, use 'usebackuproot' instead");
731 		case Opt_usebackuproot:
732 			btrfs_info(info,
733 				   "trying to use backup root at mount time");
734 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
735 			break;
736 		case Opt_skip_balance:
737 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
738 			break;
739 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
740 		case Opt_check_integrity_including_extent_data:
741 			btrfs_info(info,
742 				   "enabling check integrity including extent data");
743 			btrfs_set_opt(info->mount_opt,
744 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
745 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
746 			break;
747 		case Opt_check_integrity:
748 			btrfs_info(info, "enabling check integrity");
749 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
750 			break;
751 		case Opt_check_integrity_print_mask:
752 			ret = match_int(&args[0], &intarg);
753 			if (ret) {
754 				goto out;
755 			} else if (intarg >= 0) {
756 				info->check_integrity_print_mask = intarg;
757 				btrfs_info(info,
758 					   "check_integrity_print_mask 0x%x",
759 					   info->check_integrity_print_mask);
760 			} else {
761 				ret = -EINVAL;
762 				goto out;
763 			}
764 			break;
765 #else
766 		case Opt_check_integrity_including_extent_data:
767 		case Opt_check_integrity:
768 		case Opt_check_integrity_print_mask:
769 			btrfs_err(info,
770 				  "support for check_integrity* not compiled in!");
771 			ret = -EINVAL;
772 			goto out;
773 #endif
774 		case Opt_fatal_errors:
775 			if (strcmp(args[0].from, "panic") == 0)
776 				btrfs_set_opt(info->mount_opt,
777 					      PANIC_ON_FATAL_ERROR);
778 			else if (strcmp(args[0].from, "bug") == 0)
779 				btrfs_clear_opt(info->mount_opt,
780 					      PANIC_ON_FATAL_ERROR);
781 			else {
782 				ret = -EINVAL;
783 				goto out;
784 			}
785 			break;
786 		case Opt_commit_interval:
787 			intarg = 0;
788 			ret = match_int(&args[0], &intarg);
789 			if (ret < 0) {
790 				btrfs_err(info, "invalid commit interval");
791 				ret = -EINVAL;
792 				goto out;
793 			}
794 			if (intarg > 0) {
795 				if (intarg > 300) {
796 					btrfs_warn(info,
797 						"excessive commit interval %d",
798 						intarg);
799 				}
800 				info->commit_interval = intarg;
801 			} else {
802 				btrfs_info(info,
803 					   "using default commit interval %ds",
804 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
805 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
806 			}
807 			break;
808 #ifdef CONFIG_BTRFS_DEBUG
809 		case Opt_fragment_all:
810 			btrfs_info(info, "fragmenting all space");
811 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
812 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
813 			break;
814 		case Opt_fragment_metadata:
815 			btrfs_info(info, "fragmenting metadata");
816 			btrfs_set_opt(info->mount_opt,
817 				      FRAGMENT_METADATA);
818 			break;
819 		case Opt_fragment_data:
820 			btrfs_info(info, "fragmenting data");
821 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
822 			break;
823 #endif
824 		case Opt_err:
825 			btrfs_info(info, "unrecognized mount option '%s'", p);
826 			ret = -EINVAL;
827 			goto out;
828 		default:
829 			break;
830 		}
831 	}
832 check:
833 	/*
834 	 * Extra check for current option against current flag
835 	 */
836 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) {
837 		btrfs_err(info,
838 			  "nologreplay must be used with ro mount option");
839 		ret = -EINVAL;
840 	}
841 out:
842 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
843 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
844 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
845 		btrfs_err(info, "cannot disable free space tree");
846 		ret = -EINVAL;
847 
848 	}
849 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
850 		btrfs_info(info, "disk space caching is enabled");
851 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
852 		btrfs_info(info, "using free space tree");
853 	kfree(orig);
854 	return ret;
855 }
856 
857 /*
858  * Parse mount options that are required early in the mount process.
859  *
860  * All other options will be parsed on much later in the mount process and
861  * only when we need to allocate a new super block.
862  */
863 static int btrfs_parse_early_options(const char *options, fmode_t flags,
864 		void *holder, char **subvol_name, u64 *subvol_objectid,
865 		struct btrfs_fs_devices **fs_devices)
866 {
867 	substring_t args[MAX_OPT_ARGS];
868 	char *device_name, *opts, *orig, *p;
869 	char *num = NULL;
870 	int error = 0;
871 
872 	if (!options)
873 		return 0;
874 
875 	/*
876 	 * strsep changes the string, duplicate it because parse_options
877 	 * gets called twice
878 	 */
879 	opts = kstrdup(options, GFP_KERNEL);
880 	if (!opts)
881 		return -ENOMEM;
882 	orig = opts;
883 
884 	while ((p = strsep(&opts, ",")) != NULL) {
885 		int token;
886 		if (!*p)
887 			continue;
888 
889 		token = match_token(p, tokens, args);
890 		switch (token) {
891 		case Opt_subvol:
892 			kfree(*subvol_name);
893 			*subvol_name = match_strdup(&args[0]);
894 			if (!*subvol_name) {
895 				error = -ENOMEM;
896 				goto out;
897 			}
898 			break;
899 		case Opt_subvolid:
900 			num = match_strdup(&args[0]);
901 			if (num) {
902 				*subvol_objectid = memparse(num, NULL);
903 				kfree(num);
904 				/* we want the original fs_tree */
905 				if (!*subvol_objectid)
906 					*subvol_objectid =
907 						BTRFS_FS_TREE_OBJECTID;
908 			} else {
909 				error = -EINVAL;
910 				goto out;
911 			}
912 			break;
913 		case Opt_subvolrootid:
914 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
915 			break;
916 		case Opt_device:
917 			device_name = match_strdup(&args[0]);
918 			if (!device_name) {
919 				error = -ENOMEM;
920 				goto out;
921 			}
922 			error = btrfs_scan_one_device(device_name,
923 					flags, holder, fs_devices);
924 			kfree(device_name);
925 			if (error)
926 				goto out;
927 			break;
928 		default:
929 			break;
930 		}
931 	}
932 
933 out:
934 	kfree(orig);
935 	return error;
936 }
937 
938 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
939 					   u64 subvol_objectid)
940 {
941 	struct btrfs_root *root = fs_info->tree_root;
942 	struct btrfs_root *fs_root;
943 	struct btrfs_root_ref *root_ref;
944 	struct btrfs_inode_ref *inode_ref;
945 	struct btrfs_key key;
946 	struct btrfs_path *path = NULL;
947 	char *name = NULL, *ptr;
948 	u64 dirid;
949 	int len;
950 	int ret;
951 
952 	path = btrfs_alloc_path();
953 	if (!path) {
954 		ret = -ENOMEM;
955 		goto err;
956 	}
957 	path->leave_spinning = 1;
958 
959 	name = kmalloc(PATH_MAX, GFP_NOFS);
960 	if (!name) {
961 		ret = -ENOMEM;
962 		goto err;
963 	}
964 	ptr = name + PATH_MAX - 1;
965 	ptr[0] = '\0';
966 
967 	/*
968 	 * Walk up the subvolume trees in the tree of tree roots by root
969 	 * backrefs until we hit the top-level subvolume.
970 	 */
971 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
972 		key.objectid = subvol_objectid;
973 		key.type = BTRFS_ROOT_BACKREF_KEY;
974 		key.offset = (u64)-1;
975 
976 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
977 		if (ret < 0) {
978 			goto err;
979 		} else if (ret > 0) {
980 			ret = btrfs_previous_item(root, path, subvol_objectid,
981 						  BTRFS_ROOT_BACKREF_KEY);
982 			if (ret < 0) {
983 				goto err;
984 			} else if (ret > 0) {
985 				ret = -ENOENT;
986 				goto err;
987 			}
988 		}
989 
990 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
991 		subvol_objectid = key.offset;
992 
993 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
994 					  struct btrfs_root_ref);
995 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
996 		ptr -= len + 1;
997 		if (ptr < name) {
998 			ret = -ENAMETOOLONG;
999 			goto err;
1000 		}
1001 		read_extent_buffer(path->nodes[0], ptr + 1,
1002 				   (unsigned long)(root_ref + 1), len);
1003 		ptr[0] = '/';
1004 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1005 		btrfs_release_path(path);
1006 
1007 		key.objectid = subvol_objectid;
1008 		key.type = BTRFS_ROOT_ITEM_KEY;
1009 		key.offset = (u64)-1;
1010 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1011 		if (IS_ERR(fs_root)) {
1012 			ret = PTR_ERR(fs_root);
1013 			goto err;
1014 		}
1015 
1016 		/*
1017 		 * Walk up the filesystem tree by inode refs until we hit the
1018 		 * root directory.
1019 		 */
1020 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1021 			key.objectid = dirid;
1022 			key.type = BTRFS_INODE_REF_KEY;
1023 			key.offset = (u64)-1;
1024 
1025 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1026 			if (ret < 0) {
1027 				goto err;
1028 			} else if (ret > 0) {
1029 				ret = btrfs_previous_item(fs_root, path, dirid,
1030 							  BTRFS_INODE_REF_KEY);
1031 				if (ret < 0) {
1032 					goto err;
1033 				} else if (ret > 0) {
1034 					ret = -ENOENT;
1035 					goto err;
1036 				}
1037 			}
1038 
1039 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1040 			dirid = key.offset;
1041 
1042 			inode_ref = btrfs_item_ptr(path->nodes[0],
1043 						   path->slots[0],
1044 						   struct btrfs_inode_ref);
1045 			len = btrfs_inode_ref_name_len(path->nodes[0],
1046 						       inode_ref);
1047 			ptr -= len + 1;
1048 			if (ptr < name) {
1049 				ret = -ENAMETOOLONG;
1050 				goto err;
1051 			}
1052 			read_extent_buffer(path->nodes[0], ptr + 1,
1053 					   (unsigned long)(inode_ref + 1), len);
1054 			ptr[0] = '/';
1055 			btrfs_release_path(path);
1056 		}
1057 	}
1058 
1059 	btrfs_free_path(path);
1060 	if (ptr == name + PATH_MAX - 1) {
1061 		name[0] = '/';
1062 		name[1] = '\0';
1063 	} else {
1064 		memmove(name, ptr, name + PATH_MAX - ptr);
1065 	}
1066 	return name;
1067 
1068 err:
1069 	btrfs_free_path(path);
1070 	kfree(name);
1071 	return ERR_PTR(ret);
1072 }
1073 
1074 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1075 {
1076 	struct btrfs_root *root = fs_info->tree_root;
1077 	struct btrfs_dir_item *di;
1078 	struct btrfs_path *path;
1079 	struct btrfs_key location;
1080 	u64 dir_id;
1081 
1082 	path = btrfs_alloc_path();
1083 	if (!path)
1084 		return -ENOMEM;
1085 	path->leave_spinning = 1;
1086 
1087 	/*
1088 	 * Find the "default" dir item which points to the root item that we
1089 	 * will mount by default if we haven't been given a specific subvolume
1090 	 * to mount.
1091 	 */
1092 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1093 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1094 	if (IS_ERR(di)) {
1095 		btrfs_free_path(path);
1096 		return PTR_ERR(di);
1097 	}
1098 	if (!di) {
1099 		/*
1100 		 * Ok the default dir item isn't there.  This is weird since
1101 		 * it's always been there, but don't freak out, just try and
1102 		 * mount the top-level subvolume.
1103 		 */
1104 		btrfs_free_path(path);
1105 		*objectid = BTRFS_FS_TREE_OBJECTID;
1106 		return 0;
1107 	}
1108 
1109 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1110 	btrfs_free_path(path);
1111 	*objectid = location.objectid;
1112 	return 0;
1113 }
1114 
1115 static int btrfs_fill_super(struct super_block *sb,
1116 			    struct btrfs_fs_devices *fs_devices,
1117 			    void *data)
1118 {
1119 	struct inode *inode;
1120 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1121 	struct btrfs_key key;
1122 	int err;
1123 
1124 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1125 	sb->s_magic = BTRFS_SUPER_MAGIC;
1126 	sb->s_op = &btrfs_super_ops;
1127 	sb->s_d_op = &btrfs_dentry_operations;
1128 	sb->s_export_op = &btrfs_export_ops;
1129 	sb->s_xattr = btrfs_xattr_handlers;
1130 	sb->s_time_gran = 1;
1131 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1132 	sb->s_flags |= MS_POSIXACL;
1133 #endif
1134 	sb->s_flags |= MS_I_VERSION;
1135 	sb->s_iflags |= SB_I_CGROUPWB;
1136 	err = open_ctree(sb, fs_devices, (char *)data);
1137 	if (err) {
1138 		btrfs_err(fs_info, "open_ctree failed");
1139 		return err;
1140 	}
1141 
1142 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1143 	key.type = BTRFS_INODE_ITEM_KEY;
1144 	key.offset = 0;
1145 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1146 	if (IS_ERR(inode)) {
1147 		err = PTR_ERR(inode);
1148 		goto fail_close;
1149 	}
1150 
1151 	sb->s_root = d_make_root(inode);
1152 	if (!sb->s_root) {
1153 		err = -ENOMEM;
1154 		goto fail_close;
1155 	}
1156 
1157 	save_mount_options(sb, data);
1158 	cleancache_init_fs(sb);
1159 	sb->s_flags |= MS_ACTIVE;
1160 	return 0;
1161 
1162 fail_close:
1163 	close_ctree(fs_info);
1164 	return err;
1165 }
1166 
1167 int btrfs_sync_fs(struct super_block *sb, int wait)
1168 {
1169 	struct btrfs_trans_handle *trans;
1170 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1171 	struct btrfs_root *root = fs_info->tree_root;
1172 
1173 	trace_btrfs_sync_fs(fs_info, wait);
1174 
1175 	if (!wait) {
1176 		filemap_flush(fs_info->btree_inode->i_mapping);
1177 		return 0;
1178 	}
1179 
1180 	btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1181 
1182 	trans = btrfs_attach_transaction_barrier(root);
1183 	if (IS_ERR(trans)) {
1184 		/* no transaction, don't bother */
1185 		if (PTR_ERR(trans) == -ENOENT) {
1186 			/*
1187 			 * Exit unless we have some pending changes
1188 			 * that need to go through commit
1189 			 */
1190 			if (fs_info->pending_changes == 0)
1191 				return 0;
1192 			/*
1193 			 * A non-blocking test if the fs is frozen. We must not
1194 			 * start a new transaction here otherwise a deadlock
1195 			 * happens. The pending operations are delayed to the
1196 			 * next commit after thawing.
1197 			 */
1198 			if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1199 				__sb_end_write(sb, SB_FREEZE_WRITE);
1200 			else
1201 				return 0;
1202 			trans = btrfs_start_transaction(root, 0);
1203 		}
1204 		if (IS_ERR(trans))
1205 			return PTR_ERR(trans);
1206 	}
1207 	return btrfs_commit_transaction(trans);
1208 }
1209 
1210 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1211 {
1212 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1213 	char *compress_type;
1214 
1215 	if (btrfs_test_opt(info, DEGRADED))
1216 		seq_puts(seq, ",degraded");
1217 	if (btrfs_test_opt(info, NODATASUM))
1218 		seq_puts(seq, ",nodatasum");
1219 	if (btrfs_test_opt(info, NODATACOW))
1220 		seq_puts(seq, ",nodatacow");
1221 	if (btrfs_test_opt(info, NOBARRIER))
1222 		seq_puts(seq, ",nobarrier");
1223 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1224 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1225 	if (info->alloc_start != 0)
1226 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1227 	if (info->thread_pool_size !=  min_t(unsigned long,
1228 					     num_online_cpus() + 2, 8))
1229 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1230 	if (btrfs_test_opt(info, COMPRESS)) {
1231 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1232 			compress_type = "zlib";
1233 		else
1234 			compress_type = "lzo";
1235 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1236 			seq_printf(seq, ",compress-force=%s", compress_type);
1237 		else
1238 			seq_printf(seq, ",compress=%s", compress_type);
1239 	}
1240 	if (btrfs_test_opt(info, NOSSD))
1241 		seq_puts(seq, ",nossd");
1242 	if (btrfs_test_opt(info, SSD_SPREAD))
1243 		seq_puts(seq, ",ssd_spread");
1244 	else if (btrfs_test_opt(info, SSD))
1245 		seq_puts(seq, ",ssd");
1246 	if (btrfs_test_opt(info, NOTREELOG))
1247 		seq_puts(seq, ",notreelog");
1248 	if (btrfs_test_opt(info, NOLOGREPLAY))
1249 		seq_puts(seq, ",nologreplay");
1250 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1251 		seq_puts(seq, ",flushoncommit");
1252 	if (btrfs_test_opt(info, DISCARD))
1253 		seq_puts(seq, ",discard");
1254 	if (!(info->sb->s_flags & MS_POSIXACL))
1255 		seq_puts(seq, ",noacl");
1256 	if (btrfs_test_opt(info, SPACE_CACHE))
1257 		seq_puts(seq, ",space_cache");
1258 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1259 		seq_puts(seq, ",space_cache=v2");
1260 	else
1261 		seq_puts(seq, ",nospace_cache");
1262 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1263 		seq_puts(seq, ",rescan_uuid_tree");
1264 	if (btrfs_test_opt(info, CLEAR_CACHE))
1265 		seq_puts(seq, ",clear_cache");
1266 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1267 		seq_puts(seq, ",user_subvol_rm_allowed");
1268 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1269 		seq_puts(seq, ",enospc_debug");
1270 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1271 		seq_puts(seq, ",autodefrag");
1272 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1273 		seq_puts(seq, ",inode_cache");
1274 	if (btrfs_test_opt(info, SKIP_BALANCE))
1275 		seq_puts(seq, ",skip_balance");
1276 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1277 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1278 		seq_puts(seq, ",check_int_data");
1279 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1280 		seq_puts(seq, ",check_int");
1281 	if (info->check_integrity_print_mask)
1282 		seq_printf(seq, ",check_int_print_mask=%d",
1283 				info->check_integrity_print_mask);
1284 #endif
1285 	if (info->metadata_ratio)
1286 		seq_printf(seq, ",metadata_ratio=%d",
1287 				info->metadata_ratio);
1288 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1289 		seq_puts(seq, ",fatal_errors=panic");
1290 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1291 		seq_printf(seq, ",commit=%d", info->commit_interval);
1292 #ifdef CONFIG_BTRFS_DEBUG
1293 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1294 		seq_puts(seq, ",fragment=data");
1295 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1296 		seq_puts(seq, ",fragment=metadata");
1297 #endif
1298 	seq_printf(seq, ",subvolid=%llu",
1299 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1300 	seq_puts(seq, ",subvol=");
1301 	seq_dentry(seq, dentry, " \t\n\\");
1302 	return 0;
1303 }
1304 
1305 static int btrfs_test_super(struct super_block *s, void *data)
1306 {
1307 	struct btrfs_fs_info *p = data;
1308 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1309 
1310 	return fs_info->fs_devices == p->fs_devices;
1311 }
1312 
1313 static int btrfs_set_super(struct super_block *s, void *data)
1314 {
1315 	int err = set_anon_super(s, data);
1316 	if (!err)
1317 		s->s_fs_info = data;
1318 	return err;
1319 }
1320 
1321 /*
1322  * subvolumes are identified by ino 256
1323  */
1324 static inline int is_subvolume_inode(struct inode *inode)
1325 {
1326 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1327 		return 1;
1328 	return 0;
1329 }
1330 
1331 /*
1332  * This will add subvolid=0 to the argument string while removing any subvol=
1333  * and subvolid= arguments to make sure we get the top-level root for path
1334  * walking to the subvol we want.
1335  */
1336 static char *setup_root_args(char *args)
1337 {
1338 	char *buf, *dst, *sep;
1339 
1340 	if (!args)
1341 		return kstrdup("subvolid=0", GFP_NOFS);
1342 
1343 	/* The worst case is that we add ",subvolid=0" to the end. */
1344 	buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS);
1345 	if (!buf)
1346 		return NULL;
1347 
1348 	while (1) {
1349 		sep = strchrnul(args, ',');
1350 		if (!strstarts(args, "subvol=") &&
1351 		    !strstarts(args, "subvolid=")) {
1352 			memcpy(dst, args, sep - args);
1353 			dst += sep - args;
1354 			*dst++ = ',';
1355 		}
1356 		if (*sep)
1357 			args = sep + 1;
1358 		else
1359 			break;
1360 	}
1361 	strcpy(dst, "subvolid=0");
1362 
1363 	return buf;
1364 }
1365 
1366 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1367 				   int flags, const char *device_name,
1368 				   char *data)
1369 {
1370 	struct dentry *root;
1371 	struct vfsmount *mnt = NULL;
1372 	char *newargs;
1373 	int ret;
1374 
1375 	newargs = setup_root_args(data);
1376 	if (!newargs) {
1377 		root = ERR_PTR(-ENOMEM);
1378 		goto out;
1379 	}
1380 
1381 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1382 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1383 		if (flags & MS_RDONLY) {
1384 			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1385 					     device_name, newargs);
1386 		} else {
1387 			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1388 					     device_name, newargs);
1389 			if (IS_ERR(mnt)) {
1390 				root = ERR_CAST(mnt);
1391 				mnt = NULL;
1392 				goto out;
1393 			}
1394 
1395 			down_write(&mnt->mnt_sb->s_umount);
1396 			ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1397 			up_write(&mnt->mnt_sb->s_umount);
1398 			if (ret < 0) {
1399 				root = ERR_PTR(ret);
1400 				goto out;
1401 			}
1402 		}
1403 	}
1404 	if (IS_ERR(mnt)) {
1405 		root = ERR_CAST(mnt);
1406 		mnt = NULL;
1407 		goto out;
1408 	}
1409 
1410 	if (!subvol_name) {
1411 		if (!subvol_objectid) {
1412 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1413 							  &subvol_objectid);
1414 			if (ret) {
1415 				root = ERR_PTR(ret);
1416 				goto out;
1417 			}
1418 		}
1419 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1420 							    subvol_objectid);
1421 		if (IS_ERR(subvol_name)) {
1422 			root = ERR_CAST(subvol_name);
1423 			subvol_name = NULL;
1424 			goto out;
1425 		}
1426 
1427 	}
1428 
1429 	root = mount_subtree(mnt, subvol_name);
1430 	/* mount_subtree() drops our reference on the vfsmount. */
1431 	mnt = NULL;
1432 
1433 	if (!IS_ERR(root)) {
1434 		struct super_block *s = root->d_sb;
1435 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1436 		struct inode *root_inode = d_inode(root);
1437 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1438 
1439 		ret = 0;
1440 		if (!is_subvolume_inode(root_inode)) {
1441 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1442 			       subvol_name);
1443 			ret = -EINVAL;
1444 		}
1445 		if (subvol_objectid && root_objectid != subvol_objectid) {
1446 			/*
1447 			 * This will also catch a race condition where a
1448 			 * subvolume which was passed by ID is renamed and
1449 			 * another subvolume is renamed over the old location.
1450 			 */
1451 			btrfs_err(fs_info,
1452 				  "subvol '%s' does not match subvolid %llu",
1453 				  subvol_name, subvol_objectid);
1454 			ret = -EINVAL;
1455 		}
1456 		if (ret) {
1457 			dput(root);
1458 			root = ERR_PTR(ret);
1459 			deactivate_locked_super(s);
1460 		}
1461 	}
1462 
1463 out:
1464 	mntput(mnt);
1465 	kfree(newargs);
1466 	kfree(subvol_name);
1467 	return root;
1468 }
1469 
1470 static int parse_security_options(char *orig_opts,
1471 				  struct security_mnt_opts *sec_opts)
1472 {
1473 	char *secdata = NULL;
1474 	int ret = 0;
1475 
1476 	secdata = alloc_secdata();
1477 	if (!secdata)
1478 		return -ENOMEM;
1479 	ret = security_sb_copy_data(orig_opts, secdata);
1480 	if (ret) {
1481 		free_secdata(secdata);
1482 		return ret;
1483 	}
1484 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1485 	free_secdata(secdata);
1486 	return ret;
1487 }
1488 
1489 static int setup_security_options(struct btrfs_fs_info *fs_info,
1490 				  struct super_block *sb,
1491 				  struct security_mnt_opts *sec_opts)
1492 {
1493 	int ret = 0;
1494 
1495 	/*
1496 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1497 	 * is valid.
1498 	 */
1499 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1500 	if (ret)
1501 		return ret;
1502 
1503 #ifdef CONFIG_SECURITY
1504 	if (!fs_info->security_opts.num_mnt_opts) {
1505 		/* first time security setup, copy sec_opts to fs_info */
1506 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1507 	} else {
1508 		/*
1509 		 * Since SELinux (the only one supporting security_mnt_opts)
1510 		 * does NOT support changing context during remount/mount of
1511 		 * the same sb, this must be the same or part of the same
1512 		 * security options, just free it.
1513 		 */
1514 		security_free_mnt_opts(sec_opts);
1515 	}
1516 #endif
1517 	return ret;
1518 }
1519 
1520 /*
1521  * Find a superblock for the given device / mount point.
1522  *
1523  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1524  *	  for multiple device setup.  Make sure to keep it in sync.
1525  */
1526 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1527 		const char *device_name, void *data)
1528 {
1529 	struct block_device *bdev = NULL;
1530 	struct super_block *s;
1531 	struct btrfs_fs_devices *fs_devices = NULL;
1532 	struct btrfs_fs_info *fs_info = NULL;
1533 	struct security_mnt_opts new_sec_opts;
1534 	fmode_t mode = FMODE_READ;
1535 	char *subvol_name = NULL;
1536 	u64 subvol_objectid = 0;
1537 	int error = 0;
1538 
1539 	if (!(flags & MS_RDONLY))
1540 		mode |= FMODE_WRITE;
1541 
1542 	error = btrfs_parse_early_options(data, mode, fs_type,
1543 					  &subvol_name, &subvol_objectid,
1544 					  &fs_devices);
1545 	if (error) {
1546 		kfree(subvol_name);
1547 		return ERR_PTR(error);
1548 	}
1549 
1550 	if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1551 		/* mount_subvol() will free subvol_name. */
1552 		return mount_subvol(subvol_name, subvol_objectid, flags,
1553 				    device_name, data);
1554 	}
1555 
1556 	security_init_mnt_opts(&new_sec_opts);
1557 	if (data) {
1558 		error = parse_security_options(data, &new_sec_opts);
1559 		if (error)
1560 			return ERR_PTR(error);
1561 	}
1562 
1563 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1564 	if (error)
1565 		goto error_sec_opts;
1566 
1567 	/*
1568 	 * Setup a dummy root and fs_info for test/set super.  This is because
1569 	 * we don't actually fill this stuff out until open_ctree, but we need
1570 	 * it for searching for existing supers, so this lets us do that and
1571 	 * then open_ctree will properly initialize everything later.
1572 	 */
1573 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1574 	if (!fs_info) {
1575 		error = -ENOMEM;
1576 		goto error_sec_opts;
1577 	}
1578 
1579 	fs_info->fs_devices = fs_devices;
1580 
1581 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1582 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1583 	security_init_mnt_opts(&fs_info->security_opts);
1584 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1585 		error = -ENOMEM;
1586 		goto error_fs_info;
1587 	}
1588 
1589 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1590 	if (error)
1591 		goto error_fs_info;
1592 
1593 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1594 		error = -EACCES;
1595 		goto error_close_devices;
1596 	}
1597 
1598 	bdev = fs_devices->latest_bdev;
1599 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1600 		 fs_info);
1601 	if (IS_ERR(s)) {
1602 		error = PTR_ERR(s);
1603 		goto error_close_devices;
1604 	}
1605 
1606 	if (s->s_root) {
1607 		btrfs_close_devices(fs_devices);
1608 		free_fs_info(fs_info);
1609 		if ((flags ^ s->s_flags) & MS_RDONLY)
1610 			error = -EBUSY;
1611 	} else {
1612 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1613 		btrfs_sb(s)->bdev_holder = fs_type;
1614 		error = btrfs_fill_super(s, fs_devices, data);
1615 	}
1616 	if (error) {
1617 		deactivate_locked_super(s);
1618 		goto error_sec_opts;
1619 	}
1620 
1621 	fs_info = btrfs_sb(s);
1622 	error = setup_security_options(fs_info, s, &new_sec_opts);
1623 	if (error) {
1624 		deactivate_locked_super(s);
1625 		goto error_sec_opts;
1626 	}
1627 
1628 	return dget(s->s_root);
1629 
1630 error_close_devices:
1631 	btrfs_close_devices(fs_devices);
1632 error_fs_info:
1633 	free_fs_info(fs_info);
1634 error_sec_opts:
1635 	security_free_mnt_opts(&new_sec_opts);
1636 	return ERR_PTR(error);
1637 }
1638 
1639 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1640 				     int new_pool_size, int old_pool_size)
1641 {
1642 	if (new_pool_size == old_pool_size)
1643 		return;
1644 
1645 	fs_info->thread_pool_size = new_pool_size;
1646 
1647 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1648 	       old_pool_size, new_pool_size);
1649 
1650 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1651 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1652 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1653 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1654 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1655 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1656 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1657 				new_pool_size);
1658 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1659 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1660 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1661 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1662 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1663 				new_pool_size);
1664 }
1665 
1666 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1667 {
1668 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1669 }
1670 
1671 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1672 				       unsigned long old_opts, int flags)
1673 {
1674 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1675 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1676 	     (flags & MS_RDONLY))) {
1677 		/* wait for any defraggers to finish */
1678 		wait_event(fs_info->transaction_wait,
1679 			   (atomic_read(&fs_info->defrag_running) == 0));
1680 		if (flags & MS_RDONLY)
1681 			sync_filesystem(fs_info->sb);
1682 	}
1683 }
1684 
1685 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1686 					 unsigned long old_opts)
1687 {
1688 	/*
1689 	 * We need to cleanup all defragable inodes if the autodefragment is
1690 	 * close or the filesystem is read only.
1691 	 */
1692 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1693 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1694 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1695 		btrfs_cleanup_defrag_inodes(fs_info);
1696 	}
1697 
1698 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1699 }
1700 
1701 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1702 {
1703 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1704 	struct btrfs_root *root = fs_info->tree_root;
1705 	unsigned old_flags = sb->s_flags;
1706 	unsigned long old_opts = fs_info->mount_opt;
1707 	unsigned long old_compress_type = fs_info->compress_type;
1708 	u64 old_max_inline = fs_info->max_inline;
1709 	u64 old_alloc_start = fs_info->alloc_start;
1710 	int old_thread_pool_size = fs_info->thread_pool_size;
1711 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1712 	int ret;
1713 
1714 	sync_filesystem(sb);
1715 	btrfs_remount_prepare(fs_info);
1716 
1717 	if (data) {
1718 		struct security_mnt_opts new_sec_opts;
1719 
1720 		security_init_mnt_opts(&new_sec_opts);
1721 		ret = parse_security_options(data, &new_sec_opts);
1722 		if (ret)
1723 			goto restore;
1724 		ret = setup_security_options(fs_info, sb,
1725 					     &new_sec_opts);
1726 		if (ret) {
1727 			security_free_mnt_opts(&new_sec_opts);
1728 			goto restore;
1729 		}
1730 	}
1731 
1732 	ret = btrfs_parse_options(fs_info, data, *flags);
1733 	if (ret) {
1734 		ret = -EINVAL;
1735 		goto restore;
1736 	}
1737 
1738 	btrfs_remount_begin(fs_info, old_opts, *flags);
1739 	btrfs_resize_thread_pool(fs_info,
1740 		fs_info->thread_pool_size, old_thread_pool_size);
1741 
1742 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1743 		goto out;
1744 
1745 	if (*flags & MS_RDONLY) {
1746 		/*
1747 		 * this also happens on 'umount -rf' or on shutdown, when
1748 		 * the filesystem is busy.
1749 		 */
1750 		cancel_work_sync(&fs_info->async_reclaim_work);
1751 
1752 		/* wait for the uuid_scan task to finish */
1753 		down(&fs_info->uuid_tree_rescan_sem);
1754 		/* avoid complains from lockdep et al. */
1755 		up(&fs_info->uuid_tree_rescan_sem);
1756 
1757 		sb->s_flags |= MS_RDONLY;
1758 
1759 		/*
1760 		 * Setting MS_RDONLY will put the cleaner thread to
1761 		 * sleep at the next loop if it's already active.
1762 		 * If it's already asleep, we'll leave unused block
1763 		 * groups on disk until we're mounted read-write again
1764 		 * unless we clean them up here.
1765 		 */
1766 		btrfs_delete_unused_bgs(fs_info);
1767 
1768 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1769 		btrfs_scrub_cancel(fs_info);
1770 		btrfs_pause_balance(fs_info);
1771 
1772 		ret = btrfs_commit_super(fs_info);
1773 		if (ret)
1774 			goto restore;
1775 	} else {
1776 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1777 			btrfs_err(fs_info,
1778 				"Remounting read-write after error is not allowed");
1779 			ret = -EINVAL;
1780 			goto restore;
1781 		}
1782 		if (fs_info->fs_devices->rw_devices == 0) {
1783 			ret = -EACCES;
1784 			goto restore;
1785 		}
1786 
1787 		if (fs_info->fs_devices->missing_devices >
1788 		     fs_info->num_tolerated_disk_barrier_failures &&
1789 		    !(*flags & MS_RDONLY)) {
1790 			btrfs_warn(fs_info,
1791 				"too many missing devices, writeable remount is not allowed");
1792 			ret = -EACCES;
1793 			goto restore;
1794 		}
1795 
1796 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1797 			ret = -EINVAL;
1798 			goto restore;
1799 		}
1800 
1801 		ret = btrfs_cleanup_fs_roots(fs_info);
1802 		if (ret)
1803 			goto restore;
1804 
1805 		/* recover relocation */
1806 		mutex_lock(&fs_info->cleaner_mutex);
1807 		ret = btrfs_recover_relocation(root);
1808 		mutex_unlock(&fs_info->cleaner_mutex);
1809 		if (ret)
1810 			goto restore;
1811 
1812 		ret = btrfs_resume_balance_async(fs_info);
1813 		if (ret)
1814 			goto restore;
1815 
1816 		ret = btrfs_resume_dev_replace_async(fs_info);
1817 		if (ret) {
1818 			btrfs_warn(fs_info, "failed to resume dev_replace");
1819 			goto restore;
1820 		}
1821 
1822 		if (!fs_info->uuid_root) {
1823 			btrfs_info(fs_info, "creating UUID tree");
1824 			ret = btrfs_create_uuid_tree(fs_info);
1825 			if (ret) {
1826 				btrfs_warn(fs_info,
1827 					   "failed to create the UUID tree %d",
1828 					   ret);
1829 				goto restore;
1830 			}
1831 		}
1832 		sb->s_flags &= ~MS_RDONLY;
1833 
1834 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1835 	}
1836 out:
1837 	wake_up_process(fs_info->transaction_kthread);
1838 	btrfs_remount_cleanup(fs_info, old_opts);
1839 	return 0;
1840 
1841 restore:
1842 	/* We've hit an error - don't reset MS_RDONLY */
1843 	if (sb->s_flags & MS_RDONLY)
1844 		old_flags |= MS_RDONLY;
1845 	sb->s_flags = old_flags;
1846 	fs_info->mount_opt = old_opts;
1847 	fs_info->compress_type = old_compress_type;
1848 	fs_info->max_inline = old_max_inline;
1849 	mutex_lock(&fs_info->chunk_mutex);
1850 	fs_info->alloc_start = old_alloc_start;
1851 	mutex_unlock(&fs_info->chunk_mutex);
1852 	btrfs_resize_thread_pool(fs_info,
1853 		old_thread_pool_size, fs_info->thread_pool_size);
1854 	fs_info->metadata_ratio = old_metadata_ratio;
1855 	btrfs_remount_cleanup(fs_info, old_opts);
1856 	return ret;
1857 }
1858 
1859 /* Used to sort the devices by max_avail(descending sort) */
1860 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1861 				       const void *dev_info2)
1862 {
1863 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1864 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1865 		return -1;
1866 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1867 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1868 		return 1;
1869 	else
1870 	return 0;
1871 }
1872 
1873 /*
1874  * sort the devices by max_avail, in which max free extent size of each device
1875  * is stored.(Descending Sort)
1876  */
1877 static inline void btrfs_descending_sort_devices(
1878 					struct btrfs_device_info *devices,
1879 					size_t nr_devices)
1880 {
1881 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1882 	     btrfs_cmp_device_free_bytes, NULL);
1883 }
1884 
1885 /*
1886  * The helper to calc the free space on the devices that can be used to store
1887  * file data.
1888  */
1889 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1890 				       u64 *free_bytes)
1891 {
1892 	struct btrfs_root *root = fs_info->tree_root;
1893 	struct btrfs_device_info *devices_info;
1894 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1895 	struct btrfs_device *device;
1896 	u64 skip_space;
1897 	u64 type;
1898 	u64 avail_space;
1899 	u64 used_space;
1900 	u64 min_stripe_size;
1901 	int min_stripes = 1, num_stripes = 1;
1902 	int i = 0, nr_devices;
1903 	int ret;
1904 
1905 	/*
1906 	 * We aren't under the device list lock, so this is racy-ish, but good
1907 	 * enough for our purposes.
1908 	 */
1909 	nr_devices = fs_info->fs_devices->open_devices;
1910 	if (!nr_devices) {
1911 		smp_mb();
1912 		nr_devices = fs_info->fs_devices->open_devices;
1913 		ASSERT(nr_devices);
1914 		if (!nr_devices) {
1915 			*free_bytes = 0;
1916 			return 0;
1917 		}
1918 	}
1919 
1920 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1921 			       GFP_NOFS);
1922 	if (!devices_info)
1923 		return -ENOMEM;
1924 
1925 	/* calc min stripe number for data space allocation */
1926 	type = btrfs_get_alloc_profile(root, 1);
1927 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1928 		min_stripes = 2;
1929 		num_stripes = nr_devices;
1930 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1931 		min_stripes = 2;
1932 		num_stripes = 2;
1933 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1934 		min_stripes = 4;
1935 		num_stripes = 4;
1936 	}
1937 
1938 	if (type & BTRFS_BLOCK_GROUP_DUP)
1939 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1940 	else
1941 		min_stripe_size = BTRFS_STRIPE_LEN;
1942 
1943 	if (fs_info->alloc_start)
1944 		mutex_lock(&fs_devices->device_list_mutex);
1945 	rcu_read_lock();
1946 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1947 		if (!device->in_fs_metadata || !device->bdev ||
1948 		    device->is_tgtdev_for_dev_replace)
1949 			continue;
1950 
1951 		if (i >= nr_devices)
1952 			break;
1953 
1954 		avail_space = device->total_bytes - device->bytes_used;
1955 
1956 		/* align with stripe_len */
1957 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1958 		avail_space *= BTRFS_STRIPE_LEN;
1959 
1960 		/*
1961 		 * In order to avoid overwriting the superblock on the drive,
1962 		 * btrfs starts at an offset of at least 1MB when doing chunk
1963 		 * allocation.
1964 		 */
1965 		skip_space = SZ_1M;
1966 
1967 		/* user can set the offset in fs_info->alloc_start. */
1968 		if (fs_info->alloc_start &&
1969 		    fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1970 		    device->total_bytes) {
1971 			rcu_read_unlock();
1972 			skip_space = max(fs_info->alloc_start, skip_space);
1973 
1974 			/*
1975 			 * btrfs can not use the free space in
1976 			 * [0, skip_space - 1], we must subtract it from the
1977 			 * total. In order to implement it, we account the used
1978 			 * space in this range first.
1979 			 */
1980 			ret = btrfs_account_dev_extents_size(device, 0,
1981 							     skip_space - 1,
1982 							     &used_space);
1983 			if (ret) {
1984 				kfree(devices_info);
1985 				mutex_unlock(&fs_devices->device_list_mutex);
1986 				return ret;
1987 			}
1988 
1989 			rcu_read_lock();
1990 
1991 			/* calc the free space in [0, skip_space - 1] */
1992 			skip_space -= used_space;
1993 		}
1994 
1995 		/*
1996 		 * we can use the free space in [0, skip_space - 1], subtract
1997 		 * it from the total.
1998 		 */
1999 		if (avail_space && avail_space >= skip_space)
2000 			avail_space -= skip_space;
2001 		else
2002 			avail_space = 0;
2003 
2004 		if (avail_space < min_stripe_size)
2005 			continue;
2006 
2007 		devices_info[i].dev = device;
2008 		devices_info[i].max_avail = avail_space;
2009 
2010 		i++;
2011 	}
2012 	rcu_read_unlock();
2013 	if (fs_info->alloc_start)
2014 		mutex_unlock(&fs_devices->device_list_mutex);
2015 
2016 	nr_devices = i;
2017 
2018 	btrfs_descending_sort_devices(devices_info, nr_devices);
2019 
2020 	i = nr_devices - 1;
2021 	avail_space = 0;
2022 	while (nr_devices >= min_stripes) {
2023 		if (num_stripes > nr_devices)
2024 			num_stripes = nr_devices;
2025 
2026 		if (devices_info[i].max_avail >= min_stripe_size) {
2027 			int j;
2028 			u64 alloc_size;
2029 
2030 			avail_space += devices_info[i].max_avail * num_stripes;
2031 			alloc_size = devices_info[i].max_avail;
2032 			for (j = i + 1 - num_stripes; j <= i; j++)
2033 				devices_info[j].max_avail -= alloc_size;
2034 		}
2035 		i--;
2036 		nr_devices--;
2037 	}
2038 
2039 	kfree(devices_info);
2040 	*free_bytes = avail_space;
2041 	return 0;
2042 }
2043 
2044 /*
2045  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2046  *
2047  * If there's a redundant raid level at DATA block groups, use the respective
2048  * multiplier to scale the sizes.
2049  *
2050  * Unused device space usage is based on simulating the chunk allocator
2051  * algorithm that respects the device sizes, order of allocations and the
2052  * 'alloc_start' value, this is a close approximation of the actual use but
2053  * there are other factors that may change the result (like a new metadata
2054  * chunk).
2055  *
2056  * If metadata is exhausted, f_bavail will be 0.
2057  */
2058 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2059 {
2060 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2061 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2062 	struct list_head *head = &fs_info->space_info;
2063 	struct btrfs_space_info *found;
2064 	u64 total_used = 0;
2065 	u64 total_free_data = 0;
2066 	u64 total_free_meta = 0;
2067 	int bits = dentry->d_sb->s_blocksize_bits;
2068 	__be32 *fsid = (__be32 *)fs_info->fsid;
2069 	unsigned factor = 1;
2070 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2071 	int ret;
2072 	u64 thresh = 0;
2073 	int mixed = 0;
2074 
2075 	rcu_read_lock();
2076 	list_for_each_entry_rcu(found, head, list) {
2077 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2078 			int i;
2079 
2080 			total_free_data += found->disk_total - found->disk_used;
2081 			total_free_data -=
2082 				btrfs_account_ro_block_groups_free_space(found);
2083 
2084 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2085 				if (!list_empty(&found->block_groups[i])) {
2086 					switch (i) {
2087 					case BTRFS_RAID_DUP:
2088 					case BTRFS_RAID_RAID1:
2089 					case BTRFS_RAID_RAID10:
2090 						factor = 2;
2091 					}
2092 				}
2093 			}
2094 		}
2095 
2096 		/*
2097 		 * Metadata in mixed block goup profiles are accounted in data
2098 		 */
2099 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2100 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2101 				mixed = 1;
2102 			else
2103 				total_free_meta += found->disk_total -
2104 					found->disk_used;
2105 		}
2106 
2107 		total_used += found->disk_used;
2108 	}
2109 
2110 	rcu_read_unlock();
2111 
2112 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2113 	buf->f_blocks >>= bits;
2114 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2115 
2116 	/* Account global block reserve as used, it's in logical size already */
2117 	spin_lock(&block_rsv->lock);
2118 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2119 	if (buf->f_bfree >= block_rsv->size >> bits)
2120 		buf->f_bfree -= block_rsv->size >> bits;
2121 	else
2122 		buf->f_bfree = 0;
2123 	spin_unlock(&block_rsv->lock);
2124 
2125 	buf->f_bavail = div_u64(total_free_data, factor);
2126 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2127 	if (ret)
2128 		return ret;
2129 	buf->f_bavail += div_u64(total_free_data, factor);
2130 	buf->f_bavail = buf->f_bavail >> bits;
2131 
2132 	/*
2133 	 * We calculate the remaining metadata space minus global reserve. If
2134 	 * this is (supposedly) smaller than zero, there's no space. But this
2135 	 * does not hold in practice, the exhausted state happens where's still
2136 	 * some positive delta. So we apply some guesswork and compare the
2137 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2138 	 *
2139 	 * We probably cannot calculate the exact threshold value because this
2140 	 * depends on the internal reservations requested by various
2141 	 * operations, so some operations that consume a few metadata will
2142 	 * succeed even if the Avail is zero. But this is better than the other
2143 	 * way around.
2144 	 */
2145 	thresh = 4 * 1024 * 1024;
2146 
2147 	if (!mixed && total_free_meta - thresh < block_rsv->size)
2148 		buf->f_bavail = 0;
2149 
2150 	buf->f_type = BTRFS_SUPER_MAGIC;
2151 	buf->f_bsize = dentry->d_sb->s_blocksize;
2152 	buf->f_namelen = BTRFS_NAME_LEN;
2153 
2154 	/* We treat it as constant endianness (it doesn't matter _which_)
2155 	   because we want the fsid to come out the same whether mounted
2156 	   on a big-endian or little-endian host */
2157 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2158 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2159 	/* Mask in the root object ID too, to disambiguate subvols */
2160 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2161 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2162 
2163 	return 0;
2164 }
2165 
2166 static void btrfs_kill_super(struct super_block *sb)
2167 {
2168 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2169 	kill_anon_super(sb);
2170 	free_fs_info(fs_info);
2171 }
2172 
2173 static struct file_system_type btrfs_fs_type = {
2174 	.owner		= THIS_MODULE,
2175 	.name		= "btrfs",
2176 	.mount		= btrfs_mount,
2177 	.kill_sb	= btrfs_kill_super,
2178 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2179 };
2180 MODULE_ALIAS_FS("btrfs");
2181 
2182 static int btrfs_control_open(struct inode *inode, struct file *file)
2183 {
2184 	/*
2185 	 * The control file's private_data is used to hold the
2186 	 * transaction when it is started and is used to keep
2187 	 * track of whether a transaction is already in progress.
2188 	 */
2189 	file->private_data = NULL;
2190 	return 0;
2191 }
2192 
2193 /*
2194  * used by btrfsctl to scan devices when no FS is mounted
2195  */
2196 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2197 				unsigned long arg)
2198 {
2199 	struct btrfs_ioctl_vol_args *vol;
2200 	struct btrfs_fs_devices *fs_devices;
2201 	int ret = -ENOTTY;
2202 
2203 	if (!capable(CAP_SYS_ADMIN))
2204 		return -EPERM;
2205 
2206 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2207 	if (IS_ERR(vol))
2208 		return PTR_ERR(vol);
2209 
2210 	switch (cmd) {
2211 	case BTRFS_IOC_SCAN_DEV:
2212 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2213 					    &btrfs_fs_type, &fs_devices);
2214 		break;
2215 	case BTRFS_IOC_DEVICES_READY:
2216 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2217 					    &btrfs_fs_type, &fs_devices);
2218 		if (ret)
2219 			break;
2220 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
2221 		break;
2222 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2223 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2224 		break;
2225 	}
2226 
2227 	kfree(vol);
2228 	return ret;
2229 }
2230 
2231 static int btrfs_freeze(struct super_block *sb)
2232 {
2233 	struct btrfs_trans_handle *trans;
2234 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2235 	struct btrfs_root *root = fs_info->tree_root;
2236 
2237 	fs_info->fs_frozen = 1;
2238 	/*
2239 	 * We don't need a barrier here, we'll wait for any transaction that
2240 	 * could be in progress on other threads (and do delayed iputs that
2241 	 * we want to avoid on a frozen filesystem), or do the commit
2242 	 * ourselves.
2243 	 */
2244 	trans = btrfs_attach_transaction_barrier(root);
2245 	if (IS_ERR(trans)) {
2246 		/* no transaction, don't bother */
2247 		if (PTR_ERR(trans) == -ENOENT)
2248 			return 0;
2249 		return PTR_ERR(trans);
2250 	}
2251 	return btrfs_commit_transaction(trans);
2252 }
2253 
2254 static int btrfs_unfreeze(struct super_block *sb)
2255 {
2256 	btrfs_sb(sb)->fs_frozen = 0;
2257 	return 0;
2258 }
2259 
2260 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2261 {
2262 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2263 	struct btrfs_fs_devices *cur_devices;
2264 	struct btrfs_device *dev, *first_dev = NULL;
2265 	struct list_head *head;
2266 	struct rcu_string *name;
2267 
2268 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2269 	cur_devices = fs_info->fs_devices;
2270 	while (cur_devices) {
2271 		head = &cur_devices->devices;
2272 		list_for_each_entry(dev, head, dev_list) {
2273 			if (dev->missing)
2274 				continue;
2275 			if (!dev->name)
2276 				continue;
2277 			if (!first_dev || dev->devid < first_dev->devid)
2278 				first_dev = dev;
2279 		}
2280 		cur_devices = cur_devices->seed;
2281 	}
2282 
2283 	if (first_dev) {
2284 		rcu_read_lock();
2285 		name = rcu_dereference(first_dev->name);
2286 		seq_escape(m, name->str, " \t\n\\");
2287 		rcu_read_unlock();
2288 	} else {
2289 		WARN_ON(1);
2290 	}
2291 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2292 	return 0;
2293 }
2294 
2295 static const struct super_operations btrfs_super_ops = {
2296 	.drop_inode	= btrfs_drop_inode,
2297 	.evict_inode	= btrfs_evict_inode,
2298 	.put_super	= btrfs_put_super,
2299 	.sync_fs	= btrfs_sync_fs,
2300 	.show_options	= btrfs_show_options,
2301 	.show_devname	= btrfs_show_devname,
2302 	.write_inode	= btrfs_write_inode,
2303 	.alloc_inode	= btrfs_alloc_inode,
2304 	.destroy_inode	= btrfs_destroy_inode,
2305 	.statfs		= btrfs_statfs,
2306 	.remount_fs	= btrfs_remount,
2307 	.freeze_fs	= btrfs_freeze,
2308 	.unfreeze_fs	= btrfs_unfreeze,
2309 };
2310 
2311 static const struct file_operations btrfs_ctl_fops = {
2312 	.open = btrfs_control_open,
2313 	.unlocked_ioctl	 = btrfs_control_ioctl,
2314 	.compat_ioctl = btrfs_control_ioctl,
2315 	.owner	 = THIS_MODULE,
2316 	.llseek = noop_llseek,
2317 };
2318 
2319 static struct miscdevice btrfs_misc = {
2320 	.minor		= BTRFS_MINOR,
2321 	.name		= "btrfs-control",
2322 	.fops		= &btrfs_ctl_fops
2323 };
2324 
2325 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2326 MODULE_ALIAS("devname:btrfs-control");
2327 
2328 static int btrfs_interface_init(void)
2329 {
2330 	return misc_register(&btrfs_misc);
2331 }
2332 
2333 static void btrfs_interface_exit(void)
2334 {
2335 	misc_deregister(&btrfs_misc);
2336 }
2337 
2338 static void btrfs_print_mod_info(void)
2339 {
2340 	pr_info("Btrfs loaded, crc32c=%s"
2341 #ifdef CONFIG_BTRFS_DEBUG
2342 			", debug=on"
2343 #endif
2344 #ifdef CONFIG_BTRFS_ASSERT
2345 			", assert=on"
2346 #endif
2347 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2348 			", integrity-checker=on"
2349 #endif
2350 			"\n",
2351 			btrfs_crc32c_impl());
2352 }
2353 
2354 static int __init init_btrfs_fs(void)
2355 {
2356 	int err;
2357 
2358 	err = btrfs_hash_init();
2359 	if (err)
2360 		return err;
2361 
2362 	btrfs_props_init();
2363 
2364 	err = btrfs_init_sysfs();
2365 	if (err)
2366 		goto free_hash;
2367 
2368 	btrfs_init_compress();
2369 
2370 	err = btrfs_init_cachep();
2371 	if (err)
2372 		goto free_compress;
2373 
2374 	err = extent_io_init();
2375 	if (err)
2376 		goto free_cachep;
2377 
2378 	err = extent_map_init();
2379 	if (err)
2380 		goto free_extent_io;
2381 
2382 	err = ordered_data_init();
2383 	if (err)
2384 		goto free_extent_map;
2385 
2386 	err = btrfs_delayed_inode_init();
2387 	if (err)
2388 		goto free_ordered_data;
2389 
2390 	err = btrfs_auto_defrag_init();
2391 	if (err)
2392 		goto free_delayed_inode;
2393 
2394 	err = btrfs_delayed_ref_init();
2395 	if (err)
2396 		goto free_auto_defrag;
2397 
2398 	err = btrfs_prelim_ref_init();
2399 	if (err)
2400 		goto free_delayed_ref;
2401 
2402 	err = btrfs_end_io_wq_init();
2403 	if (err)
2404 		goto free_prelim_ref;
2405 
2406 	err = btrfs_interface_init();
2407 	if (err)
2408 		goto free_end_io_wq;
2409 
2410 	btrfs_init_lockdep();
2411 
2412 	btrfs_print_mod_info();
2413 
2414 	err = btrfs_run_sanity_tests();
2415 	if (err)
2416 		goto unregister_ioctl;
2417 
2418 	err = register_filesystem(&btrfs_fs_type);
2419 	if (err)
2420 		goto unregister_ioctl;
2421 
2422 	return 0;
2423 
2424 unregister_ioctl:
2425 	btrfs_interface_exit();
2426 free_end_io_wq:
2427 	btrfs_end_io_wq_exit();
2428 free_prelim_ref:
2429 	btrfs_prelim_ref_exit();
2430 free_delayed_ref:
2431 	btrfs_delayed_ref_exit();
2432 free_auto_defrag:
2433 	btrfs_auto_defrag_exit();
2434 free_delayed_inode:
2435 	btrfs_delayed_inode_exit();
2436 free_ordered_data:
2437 	ordered_data_exit();
2438 free_extent_map:
2439 	extent_map_exit();
2440 free_extent_io:
2441 	extent_io_exit();
2442 free_cachep:
2443 	btrfs_destroy_cachep();
2444 free_compress:
2445 	btrfs_exit_compress();
2446 	btrfs_exit_sysfs();
2447 free_hash:
2448 	btrfs_hash_exit();
2449 	return err;
2450 }
2451 
2452 static void __exit exit_btrfs_fs(void)
2453 {
2454 	btrfs_destroy_cachep();
2455 	btrfs_delayed_ref_exit();
2456 	btrfs_auto_defrag_exit();
2457 	btrfs_delayed_inode_exit();
2458 	btrfs_prelim_ref_exit();
2459 	ordered_data_exit();
2460 	extent_map_exit();
2461 	extent_io_exit();
2462 	btrfs_interface_exit();
2463 	btrfs_end_io_wq_exit();
2464 	unregister_filesystem(&btrfs_fs_type);
2465 	btrfs_exit_sysfs();
2466 	btrfs_cleanup_fs_uuids();
2467 	btrfs_exit_compress();
2468 	btrfs_hash_exit();
2469 }
2470 
2471 late_initcall(init_btrfs_fs);
2472 module_exit(exit_btrfs_fs)
2473 
2474 MODULE_LICENSE("GPL");
2475