1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "compat.h" 46 #include "delayed-inode.h" 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "xattr.h" 53 #include "volumes.h" 54 #include "export.h" 55 #include "compression.h" 56 #include "rcu-string.h" 57 #include "dev-replace.h" 58 #include "free-space-cache.h" 59 #include "backref.h" 60 #include "tests/btrfs-tests.h" 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/btrfs.h> 64 65 static const struct super_operations btrfs_super_ops; 66 static struct file_system_type btrfs_fs_type; 67 68 static const char *btrfs_decode_error(int errno) 69 { 70 char *errstr = "unknown"; 71 72 switch (errno) { 73 case -EIO: 74 errstr = "IO failure"; 75 break; 76 case -ENOMEM: 77 errstr = "Out of memory"; 78 break; 79 case -EROFS: 80 errstr = "Readonly filesystem"; 81 break; 82 case -EEXIST: 83 errstr = "Object already exists"; 84 break; 85 case -ENOSPC: 86 errstr = "No space left"; 87 break; 88 case -ENOENT: 89 errstr = "No such entry"; 90 break; 91 } 92 93 return errstr; 94 } 95 96 static void save_error_info(struct btrfs_fs_info *fs_info) 97 { 98 /* 99 * today we only save the error info into ram. Long term we'll 100 * also send it down to the disk 101 */ 102 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 103 } 104 105 /* btrfs handle error by forcing the filesystem readonly */ 106 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 107 { 108 struct super_block *sb = fs_info->sb; 109 110 if (sb->s_flags & MS_RDONLY) 111 return; 112 113 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 114 sb->s_flags |= MS_RDONLY; 115 btrfs_info(fs_info, "forced readonly"); 116 /* 117 * Note that a running device replace operation is not 118 * canceled here although there is no way to update 119 * the progress. It would add the risk of a deadlock, 120 * therefore the canceling is ommited. The only penalty 121 * is that some I/O remains active until the procedure 122 * completes. The next time when the filesystem is 123 * mounted writeable again, the device replace 124 * operation continues. 125 */ 126 } 127 } 128 129 #ifdef CONFIG_PRINTK 130 /* 131 * __btrfs_std_error decodes expected errors from the caller and 132 * invokes the approciate error response. 133 */ 134 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 135 unsigned int line, int errno, const char *fmt, ...) 136 { 137 struct super_block *sb = fs_info->sb; 138 const char *errstr; 139 140 /* 141 * Special case: if the error is EROFS, and we're already 142 * under MS_RDONLY, then it is safe here. 143 */ 144 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 145 return; 146 147 errstr = btrfs_decode_error(errno); 148 if (fmt) { 149 struct va_format vaf; 150 va_list args; 151 152 va_start(args, fmt); 153 vaf.fmt = fmt; 154 vaf.va = &args; 155 156 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n", 157 sb->s_id, function, line, errno, errstr, &vaf); 158 va_end(args); 159 } else { 160 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n", 161 sb->s_id, function, line, errno, errstr); 162 } 163 164 /* Don't go through full error handling during mount */ 165 save_error_info(fs_info); 166 if (sb->s_flags & MS_BORN) 167 btrfs_handle_error(fs_info); 168 } 169 170 static const char * const logtypes[] = { 171 "emergency", 172 "alert", 173 "critical", 174 "error", 175 "warning", 176 "notice", 177 "info", 178 "debug", 179 }; 180 181 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 182 { 183 struct super_block *sb = fs_info->sb; 184 char lvl[4]; 185 struct va_format vaf; 186 va_list args; 187 const char *type = logtypes[4]; 188 int kern_level; 189 190 va_start(args, fmt); 191 192 kern_level = printk_get_level(fmt); 193 if (kern_level) { 194 size_t size = printk_skip_level(fmt) - fmt; 195 memcpy(lvl, fmt, size); 196 lvl[size] = '\0'; 197 fmt += size; 198 type = logtypes[kern_level - '0']; 199 } else 200 *lvl = '\0'; 201 202 vaf.fmt = fmt; 203 vaf.va = &args; 204 205 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); 206 207 va_end(args); 208 } 209 210 #else 211 212 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 213 unsigned int line, int errno, const char *fmt, ...) 214 { 215 struct super_block *sb = fs_info->sb; 216 217 /* 218 * Special case: if the error is EROFS, and we're already 219 * under MS_RDONLY, then it is safe here. 220 */ 221 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 222 return; 223 224 /* Don't go through full error handling during mount */ 225 if (sb->s_flags & MS_BORN) { 226 save_error_info(fs_info); 227 btrfs_handle_error(fs_info); 228 } 229 } 230 #endif 231 232 /* 233 * We only mark the transaction aborted and then set the file system read-only. 234 * This will prevent new transactions from starting or trying to join this 235 * one. 236 * 237 * This means that error recovery at the call site is limited to freeing 238 * any local memory allocations and passing the error code up without 239 * further cleanup. The transaction should complete as it normally would 240 * in the call path but will return -EIO. 241 * 242 * We'll complete the cleanup in btrfs_end_transaction and 243 * btrfs_commit_transaction. 244 */ 245 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 246 struct btrfs_root *root, const char *function, 247 unsigned int line, int errno) 248 { 249 /* 250 * Report first abort since mount 251 */ 252 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, 253 &root->fs_info->fs_state)) { 254 WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n", 255 errno); 256 } 257 trans->aborted = errno; 258 /* Nothing used. The other threads that have joined this 259 * transaction may be able to continue. */ 260 if (!trans->blocks_used) { 261 const char *errstr; 262 263 errstr = btrfs_decode_error(errno); 264 btrfs_warn(root->fs_info, 265 "%s:%d: Aborting unused transaction(%s).", 266 function, line, errstr); 267 return; 268 } 269 ACCESS_ONCE(trans->transaction->aborted) = errno; 270 /* Wake up anybody who may be waiting on this transaction */ 271 wake_up(&root->fs_info->transaction_wait); 272 wake_up(&root->fs_info->transaction_blocked_wait); 273 __btrfs_std_error(root->fs_info, function, line, errno, NULL); 274 } 275 /* 276 * __btrfs_panic decodes unexpected, fatal errors from the caller, 277 * issues an alert, and either panics or BUGs, depending on mount options. 278 */ 279 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 280 unsigned int line, int errno, const char *fmt, ...) 281 { 282 char *s_id = "<unknown>"; 283 const char *errstr; 284 struct va_format vaf = { .fmt = fmt }; 285 va_list args; 286 287 if (fs_info) 288 s_id = fs_info->sb->s_id; 289 290 va_start(args, fmt); 291 vaf.va = &args; 292 293 errstr = btrfs_decode_error(errno); 294 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) 295 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 296 s_id, function, line, &vaf, errno, errstr); 297 298 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 299 s_id, function, line, &vaf, errno, errstr); 300 va_end(args); 301 /* Caller calls BUG() */ 302 } 303 304 static void btrfs_put_super(struct super_block *sb) 305 { 306 (void)close_ctree(btrfs_sb(sb)->tree_root); 307 /* FIXME: need to fix VFS to return error? */ 308 /* AV: return it _where_? ->put_super() can be triggered by any number 309 * of async events, up to and including delivery of SIGKILL to the 310 * last process that kept it busy. Or segfault in the aforementioned 311 * process... Whom would you report that to? 312 */ 313 } 314 315 enum { 316 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 317 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 318 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 319 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 320 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 321 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, 322 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache, 323 Opt_no_space_cache, Opt_recovery, Opt_skip_balance, 324 Opt_check_integrity, Opt_check_integrity_including_extent_data, 325 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, 326 Opt_commit_interval, 327 Opt_err, 328 }; 329 330 static match_table_t tokens = { 331 {Opt_degraded, "degraded"}, 332 {Opt_subvol, "subvol=%s"}, 333 {Opt_subvolid, "subvolid=%s"}, 334 {Opt_device, "device=%s"}, 335 {Opt_nodatasum, "nodatasum"}, 336 {Opt_nodatacow, "nodatacow"}, 337 {Opt_nobarrier, "nobarrier"}, 338 {Opt_max_inline, "max_inline=%s"}, 339 {Opt_alloc_start, "alloc_start=%s"}, 340 {Opt_thread_pool, "thread_pool=%d"}, 341 {Opt_compress, "compress"}, 342 {Opt_compress_type, "compress=%s"}, 343 {Opt_compress_force, "compress-force"}, 344 {Opt_compress_force_type, "compress-force=%s"}, 345 {Opt_ssd, "ssd"}, 346 {Opt_ssd_spread, "ssd_spread"}, 347 {Opt_nossd, "nossd"}, 348 {Opt_noacl, "noacl"}, 349 {Opt_notreelog, "notreelog"}, 350 {Opt_flushoncommit, "flushoncommit"}, 351 {Opt_ratio, "metadata_ratio=%d"}, 352 {Opt_discard, "discard"}, 353 {Opt_space_cache, "space_cache"}, 354 {Opt_clear_cache, "clear_cache"}, 355 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 356 {Opt_enospc_debug, "enospc_debug"}, 357 {Opt_subvolrootid, "subvolrootid=%d"}, 358 {Opt_defrag, "autodefrag"}, 359 {Opt_inode_cache, "inode_cache"}, 360 {Opt_no_space_cache, "nospace_cache"}, 361 {Opt_recovery, "recovery"}, 362 {Opt_skip_balance, "skip_balance"}, 363 {Opt_check_integrity, "check_int"}, 364 {Opt_check_integrity_including_extent_data, "check_int_data"}, 365 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 366 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 367 {Opt_fatal_errors, "fatal_errors=%s"}, 368 {Opt_commit_interval, "commit=%d"}, 369 {Opt_err, NULL}, 370 }; 371 372 /* 373 * Regular mount options parser. Everything that is needed only when 374 * reading in a new superblock is parsed here. 375 * XXX JDM: This needs to be cleaned up for remount. 376 */ 377 int btrfs_parse_options(struct btrfs_root *root, char *options) 378 { 379 struct btrfs_fs_info *info = root->fs_info; 380 substring_t args[MAX_OPT_ARGS]; 381 char *p, *num, *orig = NULL; 382 u64 cache_gen; 383 int intarg; 384 int ret = 0; 385 char *compress_type; 386 bool compress_force = false; 387 388 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 389 if (cache_gen) 390 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 391 392 if (!options) 393 goto out; 394 395 /* 396 * strsep changes the string, duplicate it because parse_options 397 * gets called twice 398 */ 399 options = kstrdup(options, GFP_NOFS); 400 if (!options) 401 return -ENOMEM; 402 403 orig = options; 404 405 while ((p = strsep(&options, ",")) != NULL) { 406 int token; 407 if (!*p) 408 continue; 409 410 token = match_token(p, tokens, args); 411 switch (token) { 412 case Opt_degraded: 413 printk(KERN_INFO "btrfs: allowing degraded mounts\n"); 414 btrfs_set_opt(info->mount_opt, DEGRADED); 415 break; 416 case Opt_subvol: 417 case Opt_subvolid: 418 case Opt_subvolrootid: 419 case Opt_device: 420 /* 421 * These are parsed by btrfs_parse_early_options 422 * and can be happily ignored here. 423 */ 424 break; 425 case Opt_nodatasum: 426 printk(KERN_INFO "btrfs: setting nodatasum\n"); 427 btrfs_set_opt(info->mount_opt, NODATASUM); 428 break; 429 case Opt_nodatacow: 430 if (!btrfs_test_opt(root, COMPRESS) || 431 !btrfs_test_opt(root, FORCE_COMPRESS)) { 432 printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n"); 433 } else { 434 printk(KERN_INFO "btrfs: setting nodatacow\n"); 435 } 436 info->compress_type = BTRFS_COMPRESS_NONE; 437 btrfs_clear_opt(info->mount_opt, COMPRESS); 438 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 439 btrfs_set_opt(info->mount_opt, NODATACOW); 440 btrfs_set_opt(info->mount_opt, NODATASUM); 441 break; 442 case Opt_compress_force: 443 case Opt_compress_force_type: 444 compress_force = true; 445 /* Fallthrough */ 446 case Opt_compress: 447 case Opt_compress_type: 448 if (token == Opt_compress || 449 token == Opt_compress_force || 450 strcmp(args[0].from, "zlib") == 0) { 451 compress_type = "zlib"; 452 info->compress_type = BTRFS_COMPRESS_ZLIB; 453 btrfs_set_opt(info->mount_opt, COMPRESS); 454 btrfs_clear_opt(info->mount_opt, NODATACOW); 455 btrfs_clear_opt(info->mount_opt, NODATASUM); 456 } else if (strcmp(args[0].from, "lzo") == 0) { 457 compress_type = "lzo"; 458 info->compress_type = BTRFS_COMPRESS_LZO; 459 btrfs_set_opt(info->mount_opt, COMPRESS); 460 btrfs_clear_opt(info->mount_opt, NODATACOW); 461 btrfs_clear_opt(info->mount_opt, NODATASUM); 462 btrfs_set_fs_incompat(info, COMPRESS_LZO); 463 } else if (strncmp(args[0].from, "no", 2) == 0) { 464 compress_type = "no"; 465 info->compress_type = BTRFS_COMPRESS_NONE; 466 btrfs_clear_opt(info->mount_opt, COMPRESS); 467 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 468 compress_force = false; 469 } else { 470 ret = -EINVAL; 471 goto out; 472 } 473 474 if (compress_force) { 475 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 476 pr_info("btrfs: force %s compression\n", 477 compress_type); 478 } else 479 pr_info("btrfs: use %s compression\n", 480 compress_type); 481 break; 482 case Opt_ssd: 483 printk(KERN_INFO "btrfs: use ssd allocation scheme\n"); 484 btrfs_set_opt(info->mount_opt, SSD); 485 break; 486 case Opt_ssd_spread: 487 printk(KERN_INFO "btrfs: use spread ssd " 488 "allocation scheme\n"); 489 btrfs_set_opt(info->mount_opt, SSD); 490 btrfs_set_opt(info->mount_opt, SSD_SPREAD); 491 break; 492 case Opt_nossd: 493 printk(KERN_INFO "btrfs: not using ssd allocation " 494 "scheme\n"); 495 btrfs_set_opt(info->mount_opt, NOSSD); 496 btrfs_clear_opt(info->mount_opt, SSD); 497 btrfs_clear_opt(info->mount_opt, SSD_SPREAD); 498 break; 499 case Opt_nobarrier: 500 printk(KERN_INFO "btrfs: turning off barriers\n"); 501 btrfs_set_opt(info->mount_opt, NOBARRIER); 502 break; 503 case Opt_thread_pool: 504 ret = match_int(&args[0], &intarg); 505 if (ret) { 506 goto out; 507 } else if (intarg > 0) { 508 info->thread_pool_size = intarg; 509 } else { 510 ret = -EINVAL; 511 goto out; 512 } 513 break; 514 case Opt_max_inline: 515 num = match_strdup(&args[0]); 516 if (num) { 517 info->max_inline = memparse(num, NULL); 518 kfree(num); 519 520 if (info->max_inline) { 521 info->max_inline = max_t(u64, 522 info->max_inline, 523 root->sectorsize); 524 } 525 printk(KERN_INFO "btrfs: max_inline at %llu\n", 526 info->max_inline); 527 } else { 528 ret = -ENOMEM; 529 goto out; 530 } 531 break; 532 case Opt_alloc_start: 533 num = match_strdup(&args[0]); 534 if (num) { 535 mutex_lock(&info->chunk_mutex); 536 info->alloc_start = memparse(num, NULL); 537 mutex_unlock(&info->chunk_mutex); 538 kfree(num); 539 printk(KERN_INFO 540 "btrfs: allocations start at %llu\n", 541 info->alloc_start); 542 } else { 543 ret = -ENOMEM; 544 goto out; 545 } 546 break; 547 case Opt_noacl: 548 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 549 break; 550 case Opt_notreelog: 551 printk(KERN_INFO "btrfs: disabling tree log\n"); 552 btrfs_set_opt(info->mount_opt, NOTREELOG); 553 break; 554 case Opt_flushoncommit: 555 printk(KERN_INFO "btrfs: turning on flush-on-commit\n"); 556 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT); 557 break; 558 case Opt_ratio: 559 ret = match_int(&args[0], &intarg); 560 if (ret) { 561 goto out; 562 } else if (intarg >= 0) { 563 info->metadata_ratio = intarg; 564 printk(KERN_INFO "btrfs: metadata ratio %d\n", 565 info->metadata_ratio); 566 } else { 567 ret = -EINVAL; 568 goto out; 569 } 570 break; 571 case Opt_discard: 572 btrfs_set_opt(info->mount_opt, DISCARD); 573 break; 574 case Opt_space_cache: 575 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 576 break; 577 case Opt_rescan_uuid_tree: 578 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 579 break; 580 case Opt_no_space_cache: 581 printk(KERN_INFO "btrfs: disabling disk space caching\n"); 582 btrfs_clear_opt(info->mount_opt, SPACE_CACHE); 583 break; 584 case Opt_inode_cache: 585 printk(KERN_INFO "btrfs: enabling inode map caching\n"); 586 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE); 587 break; 588 case Opt_clear_cache: 589 printk(KERN_INFO "btrfs: force clearing of disk cache\n"); 590 btrfs_set_opt(info->mount_opt, CLEAR_CACHE); 591 break; 592 case Opt_user_subvol_rm_allowed: 593 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 594 break; 595 case Opt_enospc_debug: 596 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 597 break; 598 case Opt_defrag: 599 printk(KERN_INFO "btrfs: enabling auto defrag\n"); 600 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG); 601 break; 602 case Opt_recovery: 603 printk(KERN_INFO "btrfs: enabling auto recovery\n"); 604 btrfs_set_opt(info->mount_opt, RECOVERY); 605 break; 606 case Opt_skip_balance: 607 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 608 break; 609 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 610 case Opt_check_integrity_including_extent_data: 611 printk(KERN_INFO "btrfs: enabling check integrity" 612 " including extent data\n"); 613 btrfs_set_opt(info->mount_opt, 614 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 615 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 616 break; 617 case Opt_check_integrity: 618 printk(KERN_INFO "btrfs: enabling check integrity\n"); 619 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 620 break; 621 case Opt_check_integrity_print_mask: 622 ret = match_int(&args[0], &intarg); 623 if (ret) { 624 goto out; 625 } else if (intarg >= 0) { 626 info->check_integrity_print_mask = intarg; 627 printk(KERN_INFO "btrfs:" 628 " check_integrity_print_mask 0x%x\n", 629 info->check_integrity_print_mask); 630 } else { 631 ret = -EINVAL; 632 goto out; 633 } 634 break; 635 #else 636 case Opt_check_integrity_including_extent_data: 637 case Opt_check_integrity: 638 case Opt_check_integrity_print_mask: 639 printk(KERN_ERR "btrfs: support for check_integrity*" 640 " not compiled in!\n"); 641 ret = -EINVAL; 642 goto out; 643 #endif 644 case Opt_fatal_errors: 645 if (strcmp(args[0].from, "panic") == 0) 646 btrfs_set_opt(info->mount_opt, 647 PANIC_ON_FATAL_ERROR); 648 else if (strcmp(args[0].from, "bug") == 0) 649 btrfs_clear_opt(info->mount_opt, 650 PANIC_ON_FATAL_ERROR); 651 else { 652 ret = -EINVAL; 653 goto out; 654 } 655 break; 656 case Opt_commit_interval: 657 intarg = 0; 658 ret = match_int(&args[0], &intarg); 659 if (ret < 0) { 660 printk(KERN_ERR 661 "btrfs: invalid commit interval\n"); 662 ret = -EINVAL; 663 goto out; 664 } 665 if (intarg > 0) { 666 if (intarg > 300) { 667 printk(KERN_WARNING 668 "btrfs: excessive commit interval %d\n", 669 intarg); 670 } 671 info->commit_interval = intarg; 672 } else { 673 printk(KERN_INFO 674 "btrfs: using default commit interval %ds\n", 675 BTRFS_DEFAULT_COMMIT_INTERVAL); 676 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 677 } 678 break; 679 case Opt_err: 680 printk(KERN_INFO "btrfs: unrecognized mount option " 681 "'%s'\n", p); 682 ret = -EINVAL; 683 goto out; 684 default: 685 break; 686 } 687 } 688 out: 689 if (!ret && btrfs_test_opt(root, SPACE_CACHE)) 690 printk(KERN_INFO "btrfs: disk space caching is enabled\n"); 691 kfree(orig); 692 return ret; 693 } 694 695 /* 696 * Parse mount options that are required early in the mount process. 697 * 698 * All other options will be parsed on much later in the mount process and 699 * only when we need to allocate a new super block. 700 */ 701 static int btrfs_parse_early_options(const char *options, fmode_t flags, 702 void *holder, char **subvol_name, u64 *subvol_objectid, 703 struct btrfs_fs_devices **fs_devices) 704 { 705 substring_t args[MAX_OPT_ARGS]; 706 char *device_name, *opts, *orig, *p; 707 char *num = NULL; 708 int error = 0; 709 710 if (!options) 711 return 0; 712 713 /* 714 * strsep changes the string, duplicate it because parse_options 715 * gets called twice 716 */ 717 opts = kstrdup(options, GFP_KERNEL); 718 if (!opts) 719 return -ENOMEM; 720 orig = opts; 721 722 while ((p = strsep(&opts, ",")) != NULL) { 723 int token; 724 if (!*p) 725 continue; 726 727 token = match_token(p, tokens, args); 728 switch (token) { 729 case Opt_subvol: 730 kfree(*subvol_name); 731 *subvol_name = match_strdup(&args[0]); 732 if (!*subvol_name) { 733 error = -ENOMEM; 734 goto out; 735 } 736 break; 737 case Opt_subvolid: 738 num = match_strdup(&args[0]); 739 if (num) { 740 *subvol_objectid = memparse(num, NULL); 741 kfree(num); 742 /* we want the original fs_tree */ 743 if (!*subvol_objectid) 744 *subvol_objectid = 745 BTRFS_FS_TREE_OBJECTID; 746 } else { 747 error = -EINVAL; 748 goto out; 749 } 750 break; 751 case Opt_subvolrootid: 752 printk(KERN_WARNING 753 "btrfs: 'subvolrootid' mount option is deprecated and has no effect\n"); 754 break; 755 case Opt_device: 756 device_name = match_strdup(&args[0]); 757 if (!device_name) { 758 error = -ENOMEM; 759 goto out; 760 } 761 error = btrfs_scan_one_device(device_name, 762 flags, holder, fs_devices); 763 kfree(device_name); 764 if (error) 765 goto out; 766 break; 767 default: 768 break; 769 } 770 } 771 772 out: 773 kfree(orig); 774 return error; 775 } 776 777 static struct dentry *get_default_root(struct super_block *sb, 778 u64 subvol_objectid) 779 { 780 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 781 struct btrfs_root *root = fs_info->tree_root; 782 struct btrfs_root *new_root; 783 struct btrfs_dir_item *di; 784 struct btrfs_path *path; 785 struct btrfs_key location; 786 struct inode *inode; 787 u64 dir_id; 788 int new = 0; 789 790 /* 791 * We have a specific subvol we want to mount, just setup location and 792 * go look up the root. 793 */ 794 if (subvol_objectid) { 795 location.objectid = subvol_objectid; 796 location.type = BTRFS_ROOT_ITEM_KEY; 797 location.offset = (u64)-1; 798 goto find_root; 799 } 800 801 path = btrfs_alloc_path(); 802 if (!path) 803 return ERR_PTR(-ENOMEM); 804 path->leave_spinning = 1; 805 806 /* 807 * Find the "default" dir item which points to the root item that we 808 * will mount by default if we haven't been given a specific subvolume 809 * to mount. 810 */ 811 dir_id = btrfs_super_root_dir(fs_info->super_copy); 812 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 813 if (IS_ERR(di)) { 814 btrfs_free_path(path); 815 return ERR_CAST(di); 816 } 817 if (!di) { 818 /* 819 * Ok the default dir item isn't there. This is weird since 820 * it's always been there, but don't freak out, just try and 821 * mount to root most subvolume. 822 */ 823 btrfs_free_path(path); 824 dir_id = BTRFS_FIRST_FREE_OBJECTID; 825 new_root = fs_info->fs_root; 826 goto setup_root; 827 } 828 829 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 830 btrfs_free_path(path); 831 832 find_root: 833 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 834 if (IS_ERR(new_root)) 835 return ERR_CAST(new_root); 836 837 dir_id = btrfs_root_dirid(&new_root->root_item); 838 setup_root: 839 location.objectid = dir_id; 840 location.type = BTRFS_INODE_ITEM_KEY; 841 location.offset = 0; 842 843 inode = btrfs_iget(sb, &location, new_root, &new); 844 if (IS_ERR(inode)) 845 return ERR_CAST(inode); 846 847 /* 848 * If we're just mounting the root most subvol put the inode and return 849 * a reference to the dentry. We will have already gotten a reference 850 * to the inode in btrfs_fill_super so we're good to go. 851 */ 852 if (!new && sb->s_root->d_inode == inode) { 853 iput(inode); 854 return dget(sb->s_root); 855 } 856 857 return d_obtain_alias(inode); 858 } 859 860 static int btrfs_fill_super(struct super_block *sb, 861 struct btrfs_fs_devices *fs_devices, 862 void *data, int silent) 863 { 864 struct inode *inode; 865 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 866 struct btrfs_key key; 867 int err; 868 869 sb->s_maxbytes = MAX_LFS_FILESIZE; 870 sb->s_magic = BTRFS_SUPER_MAGIC; 871 sb->s_op = &btrfs_super_ops; 872 sb->s_d_op = &btrfs_dentry_operations; 873 sb->s_export_op = &btrfs_export_ops; 874 sb->s_xattr = btrfs_xattr_handlers; 875 sb->s_time_gran = 1; 876 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 877 sb->s_flags |= MS_POSIXACL; 878 #endif 879 sb->s_flags |= MS_I_VERSION; 880 err = open_ctree(sb, fs_devices, (char *)data); 881 if (err) { 882 printk("btrfs: open_ctree failed\n"); 883 return err; 884 } 885 886 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 887 key.type = BTRFS_INODE_ITEM_KEY; 888 key.offset = 0; 889 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 890 if (IS_ERR(inode)) { 891 err = PTR_ERR(inode); 892 goto fail_close; 893 } 894 895 sb->s_root = d_make_root(inode); 896 if (!sb->s_root) { 897 err = -ENOMEM; 898 goto fail_close; 899 } 900 901 save_mount_options(sb, data); 902 cleancache_init_fs(sb); 903 sb->s_flags |= MS_ACTIVE; 904 return 0; 905 906 fail_close: 907 close_ctree(fs_info->tree_root); 908 return err; 909 } 910 911 int btrfs_sync_fs(struct super_block *sb, int wait) 912 { 913 struct btrfs_trans_handle *trans; 914 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 915 struct btrfs_root *root = fs_info->tree_root; 916 917 trace_btrfs_sync_fs(wait); 918 919 if (!wait) { 920 filemap_flush(fs_info->btree_inode->i_mapping); 921 return 0; 922 } 923 924 btrfs_wait_all_ordered_extents(fs_info); 925 926 trans = btrfs_attach_transaction_barrier(root); 927 if (IS_ERR(trans)) { 928 /* no transaction, don't bother */ 929 if (PTR_ERR(trans) == -ENOENT) 930 return 0; 931 return PTR_ERR(trans); 932 } 933 return btrfs_commit_transaction(trans, root); 934 } 935 936 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 937 { 938 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 939 struct btrfs_root *root = info->tree_root; 940 char *compress_type; 941 942 if (btrfs_test_opt(root, DEGRADED)) 943 seq_puts(seq, ",degraded"); 944 if (btrfs_test_opt(root, NODATASUM)) 945 seq_puts(seq, ",nodatasum"); 946 if (btrfs_test_opt(root, NODATACOW)) 947 seq_puts(seq, ",nodatacow"); 948 if (btrfs_test_opt(root, NOBARRIER)) 949 seq_puts(seq, ",nobarrier"); 950 if (info->max_inline != 8192 * 1024) 951 seq_printf(seq, ",max_inline=%llu", info->max_inline); 952 if (info->alloc_start != 0) 953 seq_printf(seq, ",alloc_start=%llu", info->alloc_start); 954 if (info->thread_pool_size != min_t(unsigned long, 955 num_online_cpus() + 2, 8)) 956 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 957 if (btrfs_test_opt(root, COMPRESS)) { 958 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 959 compress_type = "zlib"; 960 else 961 compress_type = "lzo"; 962 if (btrfs_test_opt(root, FORCE_COMPRESS)) 963 seq_printf(seq, ",compress-force=%s", compress_type); 964 else 965 seq_printf(seq, ",compress=%s", compress_type); 966 } 967 if (btrfs_test_opt(root, NOSSD)) 968 seq_puts(seq, ",nossd"); 969 if (btrfs_test_opt(root, SSD_SPREAD)) 970 seq_puts(seq, ",ssd_spread"); 971 else if (btrfs_test_opt(root, SSD)) 972 seq_puts(seq, ",ssd"); 973 if (btrfs_test_opt(root, NOTREELOG)) 974 seq_puts(seq, ",notreelog"); 975 if (btrfs_test_opt(root, FLUSHONCOMMIT)) 976 seq_puts(seq, ",flushoncommit"); 977 if (btrfs_test_opt(root, DISCARD)) 978 seq_puts(seq, ",discard"); 979 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 980 seq_puts(seq, ",noacl"); 981 if (btrfs_test_opt(root, SPACE_CACHE)) 982 seq_puts(seq, ",space_cache"); 983 else 984 seq_puts(seq, ",nospace_cache"); 985 if (btrfs_test_opt(root, RESCAN_UUID_TREE)) 986 seq_puts(seq, ",rescan_uuid_tree"); 987 if (btrfs_test_opt(root, CLEAR_CACHE)) 988 seq_puts(seq, ",clear_cache"); 989 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 990 seq_puts(seq, ",user_subvol_rm_allowed"); 991 if (btrfs_test_opt(root, ENOSPC_DEBUG)) 992 seq_puts(seq, ",enospc_debug"); 993 if (btrfs_test_opt(root, AUTO_DEFRAG)) 994 seq_puts(seq, ",autodefrag"); 995 if (btrfs_test_opt(root, INODE_MAP_CACHE)) 996 seq_puts(seq, ",inode_cache"); 997 if (btrfs_test_opt(root, SKIP_BALANCE)) 998 seq_puts(seq, ",skip_balance"); 999 if (btrfs_test_opt(root, RECOVERY)) 1000 seq_puts(seq, ",recovery"); 1001 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1002 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1003 seq_puts(seq, ",check_int_data"); 1004 else if (btrfs_test_opt(root, CHECK_INTEGRITY)) 1005 seq_puts(seq, ",check_int"); 1006 if (info->check_integrity_print_mask) 1007 seq_printf(seq, ",check_int_print_mask=%d", 1008 info->check_integrity_print_mask); 1009 #endif 1010 if (info->metadata_ratio) 1011 seq_printf(seq, ",metadata_ratio=%d", 1012 info->metadata_ratio); 1013 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR)) 1014 seq_puts(seq, ",fatal_errors=panic"); 1015 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1016 seq_printf(seq, ",commit=%d", info->commit_interval); 1017 return 0; 1018 } 1019 1020 static int btrfs_test_super(struct super_block *s, void *data) 1021 { 1022 struct btrfs_fs_info *p = data; 1023 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1024 1025 return fs_info->fs_devices == p->fs_devices; 1026 } 1027 1028 static int btrfs_set_super(struct super_block *s, void *data) 1029 { 1030 int err = set_anon_super(s, data); 1031 if (!err) 1032 s->s_fs_info = data; 1033 return err; 1034 } 1035 1036 /* 1037 * subvolumes are identified by ino 256 1038 */ 1039 static inline int is_subvolume_inode(struct inode *inode) 1040 { 1041 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1042 return 1; 1043 return 0; 1044 } 1045 1046 /* 1047 * This will strip out the subvol=%s argument for an argument string and add 1048 * subvolid=0 to make sure we get the actual tree root for path walking to the 1049 * subvol we want. 1050 */ 1051 static char *setup_root_args(char *args) 1052 { 1053 unsigned len = strlen(args) + 2 + 1; 1054 char *src, *dst, *buf; 1055 1056 /* 1057 * We need the same args as before, but with this substitution: 1058 * s!subvol=[^,]+!subvolid=0! 1059 * 1060 * Since the replacement string is up to 2 bytes longer than the 1061 * original, allocate strlen(args) + 2 + 1 bytes. 1062 */ 1063 1064 src = strstr(args, "subvol="); 1065 /* This shouldn't happen, but just in case.. */ 1066 if (!src) 1067 return NULL; 1068 1069 buf = dst = kmalloc(len, GFP_NOFS); 1070 if (!buf) 1071 return NULL; 1072 1073 /* 1074 * If the subvol= arg is not at the start of the string, 1075 * copy whatever precedes it into buf. 1076 */ 1077 if (src != args) { 1078 *src++ = '\0'; 1079 strcpy(buf, args); 1080 dst += strlen(args); 1081 } 1082 1083 strcpy(dst, "subvolid=0"); 1084 dst += strlen("subvolid=0"); 1085 1086 /* 1087 * If there is a "," after the original subvol=... string, 1088 * copy that suffix into our buffer. Otherwise, we're done. 1089 */ 1090 src = strchr(src, ','); 1091 if (src) 1092 strcpy(dst, src); 1093 1094 return buf; 1095 } 1096 1097 static struct dentry *mount_subvol(const char *subvol_name, int flags, 1098 const char *device_name, char *data) 1099 { 1100 struct dentry *root; 1101 struct vfsmount *mnt; 1102 char *newargs; 1103 1104 newargs = setup_root_args(data); 1105 if (!newargs) 1106 return ERR_PTR(-ENOMEM); 1107 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, 1108 newargs); 1109 kfree(newargs); 1110 if (IS_ERR(mnt)) 1111 return ERR_CAST(mnt); 1112 1113 root = mount_subtree(mnt, subvol_name); 1114 1115 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) { 1116 struct super_block *s = root->d_sb; 1117 dput(root); 1118 root = ERR_PTR(-EINVAL); 1119 deactivate_locked_super(s); 1120 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n", 1121 subvol_name); 1122 } 1123 1124 return root; 1125 } 1126 1127 /* 1128 * Find a superblock for the given device / mount point. 1129 * 1130 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1131 * for multiple device setup. Make sure to keep it in sync. 1132 */ 1133 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1134 const char *device_name, void *data) 1135 { 1136 struct block_device *bdev = NULL; 1137 struct super_block *s; 1138 struct dentry *root; 1139 struct btrfs_fs_devices *fs_devices = NULL; 1140 struct btrfs_fs_info *fs_info = NULL; 1141 fmode_t mode = FMODE_READ; 1142 char *subvol_name = NULL; 1143 u64 subvol_objectid = 0; 1144 int error = 0; 1145 1146 if (!(flags & MS_RDONLY)) 1147 mode |= FMODE_WRITE; 1148 1149 error = btrfs_parse_early_options(data, mode, fs_type, 1150 &subvol_name, &subvol_objectid, 1151 &fs_devices); 1152 if (error) { 1153 kfree(subvol_name); 1154 return ERR_PTR(error); 1155 } 1156 1157 if (subvol_name) { 1158 root = mount_subvol(subvol_name, flags, device_name, data); 1159 kfree(subvol_name); 1160 return root; 1161 } 1162 1163 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1164 if (error) 1165 return ERR_PTR(error); 1166 1167 /* 1168 * Setup a dummy root and fs_info for test/set super. This is because 1169 * we don't actually fill this stuff out until open_ctree, but we need 1170 * it for searching for existing supers, so this lets us do that and 1171 * then open_ctree will properly initialize everything later. 1172 */ 1173 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 1174 if (!fs_info) 1175 return ERR_PTR(-ENOMEM); 1176 1177 fs_info->fs_devices = fs_devices; 1178 1179 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1180 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1181 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1182 error = -ENOMEM; 1183 goto error_fs_info; 1184 } 1185 1186 error = btrfs_open_devices(fs_devices, mode, fs_type); 1187 if (error) 1188 goto error_fs_info; 1189 1190 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1191 error = -EACCES; 1192 goto error_close_devices; 1193 } 1194 1195 bdev = fs_devices->latest_bdev; 1196 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1197 fs_info); 1198 if (IS_ERR(s)) { 1199 error = PTR_ERR(s); 1200 goto error_close_devices; 1201 } 1202 1203 if (s->s_root) { 1204 btrfs_close_devices(fs_devices); 1205 free_fs_info(fs_info); 1206 if ((flags ^ s->s_flags) & MS_RDONLY) 1207 error = -EBUSY; 1208 } else { 1209 char b[BDEVNAME_SIZE]; 1210 1211 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1212 btrfs_sb(s)->bdev_holder = fs_type; 1213 error = btrfs_fill_super(s, fs_devices, data, 1214 flags & MS_SILENT ? 1 : 0); 1215 } 1216 1217 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error); 1218 if (IS_ERR(root)) 1219 deactivate_locked_super(s); 1220 1221 return root; 1222 1223 error_close_devices: 1224 btrfs_close_devices(fs_devices); 1225 error_fs_info: 1226 free_fs_info(fs_info); 1227 return ERR_PTR(error); 1228 } 1229 1230 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit) 1231 { 1232 spin_lock_irq(&workers->lock); 1233 workers->max_workers = new_limit; 1234 spin_unlock_irq(&workers->lock); 1235 } 1236 1237 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1238 int new_pool_size, int old_pool_size) 1239 { 1240 if (new_pool_size == old_pool_size) 1241 return; 1242 1243 fs_info->thread_pool_size = new_pool_size; 1244 1245 printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n", 1246 old_pool_size, new_pool_size); 1247 1248 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size); 1249 btrfs_set_max_workers(&fs_info->workers, new_pool_size); 1250 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size); 1251 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size); 1252 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size); 1253 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size); 1254 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size); 1255 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size); 1256 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size); 1257 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size); 1258 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size); 1259 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size); 1260 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size); 1261 btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers, 1262 new_pool_size); 1263 } 1264 1265 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1266 { 1267 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1268 } 1269 1270 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1271 unsigned long old_opts, int flags) 1272 { 1273 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1274 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1275 (flags & MS_RDONLY))) { 1276 /* wait for any defraggers to finish */ 1277 wait_event(fs_info->transaction_wait, 1278 (atomic_read(&fs_info->defrag_running) == 0)); 1279 if (flags & MS_RDONLY) 1280 sync_filesystem(fs_info->sb); 1281 } 1282 } 1283 1284 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1285 unsigned long old_opts) 1286 { 1287 /* 1288 * We need cleanup all defragable inodes if the autodefragment is 1289 * close or the fs is R/O. 1290 */ 1291 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1292 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1293 (fs_info->sb->s_flags & MS_RDONLY))) { 1294 btrfs_cleanup_defrag_inodes(fs_info); 1295 } 1296 1297 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1298 } 1299 1300 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1301 { 1302 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1303 struct btrfs_root *root = fs_info->tree_root; 1304 unsigned old_flags = sb->s_flags; 1305 unsigned long old_opts = fs_info->mount_opt; 1306 unsigned long old_compress_type = fs_info->compress_type; 1307 u64 old_max_inline = fs_info->max_inline; 1308 u64 old_alloc_start = fs_info->alloc_start; 1309 int old_thread_pool_size = fs_info->thread_pool_size; 1310 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1311 int ret; 1312 1313 btrfs_remount_prepare(fs_info); 1314 1315 ret = btrfs_parse_options(root, data); 1316 if (ret) { 1317 ret = -EINVAL; 1318 goto restore; 1319 } 1320 1321 btrfs_remount_begin(fs_info, old_opts, *flags); 1322 btrfs_resize_thread_pool(fs_info, 1323 fs_info->thread_pool_size, old_thread_pool_size); 1324 1325 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1326 goto out; 1327 1328 if (*flags & MS_RDONLY) { 1329 /* 1330 * this also happens on 'umount -rf' or on shutdown, when 1331 * the filesystem is busy. 1332 */ 1333 sb->s_flags |= MS_RDONLY; 1334 1335 btrfs_dev_replace_suspend_for_unmount(fs_info); 1336 btrfs_scrub_cancel(fs_info); 1337 btrfs_pause_balance(fs_info); 1338 1339 ret = btrfs_commit_super(root); 1340 if (ret) 1341 goto restore; 1342 } else { 1343 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1344 btrfs_err(fs_info, 1345 "Remounting read-write after error is not allowed\n"); 1346 ret = -EINVAL; 1347 goto restore; 1348 } 1349 if (fs_info->fs_devices->rw_devices == 0) { 1350 ret = -EACCES; 1351 goto restore; 1352 } 1353 1354 if (fs_info->fs_devices->missing_devices > 1355 fs_info->num_tolerated_disk_barrier_failures && 1356 !(*flags & MS_RDONLY)) { 1357 printk(KERN_WARNING 1358 "Btrfs: too many missing devices, writeable remount is not allowed\n"); 1359 ret = -EACCES; 1360 goto restore; 1361 } 1362 1363 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1364 ret = -EINVAL; 1365 goto restore; 1366 } 1367 1368 ret = btrfs_cleanup_fs_roots(fs_info); 1369 if (ret) 1370 goto restore; 1371 1372 /* recover relocation */ 1373 ret = btrfs_recover_relocation(root); 1374 if (ret) 1375 goto restore; 1376 1377 ret = btrfs_resume_balance_async(fs_info); 1378 if (ret) 1379 goto restore; 1380 1381 ret = btrfs_resume_dev_replace_async(fs_info); 1382 if (ret) { 1383 pr_warn("btrfs: failed to resume dev_replace\n"); 1384 goto restore; 1385 } 1386 1387 if (!fs_info->uuid_root) { 1388 pr_info("btrfs: creating UUID tree\n"); 1389 ret = btrfs_create_uuid_tree(fs_info); 1390 if (ret) { 1391 pr_warn("btrfs: failed to create the uuid tree" 1392 "%d\n", ret); 1393 goto restore; 1394 } 1395 } 1396 sb->s_flags &= ~MS_RDONLY; 1397 } 1398 out: 1399 btrfs_remount_cleanup(fs_info, old_opts); 1400 return 0; 1401 1402 restore: 1403 /* We've hit an error - don't reset MS_RDONLY */ 1404 if (sb->s_flags & MS_RDONLY) 1405 old_flags |= MS_RDONLY; 1406 sb->s_flags = old_flags; 1407 fs_info->mount_opt = old_opts; 1408 fs_info->compress_type = old_compress_type; 1409 fs_info->max_inline = old_max_inline; 1410 mutex_lock(&fs_info->chunk_mutex); 1411 fs_info->alloc_start = old_alloc_start; 1412 mutex_unlock(&fs_info->chunk_mutex); 1413 btrfs_resize_thread_pool(fs_info, 1414 old_thread_pool_size, fs_info->thread_pool_size); 1415 fs_info->metadata_ratio = old_metadata_ratio; 1416 btrfs_remount_cleanup(fs_info, old_opts); 1417 return ret; 1418 } 1419 1420 /* Used to sort the devices by max_avail(descending sort) */ 1421 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1422 const void *dev_info2) 1423 { 1424 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1425 ((struct btrfs_device_info *)dev_info2)->max_avail) 1426 return -1; 1427 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1428 ((struct btrfs_device_info *)dev_info2)->max_avail) 1429 return 1; 1430 else 1431 return 0; 1432 } 1433 1434 /* 1435 * sort the devices by max_avail, in which max free extent size of each device 1436 * is stored.(Descending Sort) 1437 */ 1438 static inline void btrfs_descending_sort_devices( 1439 struct btrfs_device_info *devices, 1440 size_t nr_devices) 1441 { 1442 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1443 btrfs_cmp_device_free_bytes, NULL); 1444 } 1445 1446 /* 1447 * The helper to calc the free space on the devices that can be used to store 1448 * file data. 1449 */ 1450 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 1451 { 1452 struct btrfs_fs_info *fs_info = root->fs_info; 1453 struct btrfs_device_info *devices_info; 1454 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1455 struct btrfs_device *device; 1456 u64 skip_space; 1457 u64 type; 1458 u64 avail_space; 1459 u64 used_space; 1460 u64 min_stripe_size; 1461 int min_stripes = 1, num_stripes = 1; 1462 int i = 0, nr_devices; 1463 int ret; 1464 1465 nr_devices = fs_info->fs_devices->open_devices; 1466 BUG_ON(!nr_devices); 1467 1468 devices_info = kmalloc(sizeof(*devices_info) * nr_devices, 1469 GFP_NOFS); 1470 if (!devices_info) 1471 return -ENOMEM; 1472 1473 /* calc min stripe number for data space alloction */ 1474 type = btrfs_get_alloc_profile(root, 1); 1475 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1476 min_stripes = 2; 1477 num_stripes = nr_devices; 1478 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1479 min_stripes = 2; 1480 num_stripes = 2; 1481 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1482 min_stripes = 4; 1483 num_stripes = 4; 1484 } 1485 1486 if (type & BTRFS_BLOCK_GROUP_DUP) 1487 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1488 else 1489 min_stripe_size = BTRFS_STRIPE_LEN; 1490 1491 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1492 if (!device->in_fs_metadata || !device->bdev || 1493 device->is_tgtdev_for_dev_replace) 1494 continue; 1495 1496 avail_space = device->total_bytes - device->bytes_used; 1497 1498 /* align with stripe_len */ 1499 do_div(avail_space, BTRFS_STRIPE_LEN); 1500 avail_space *= BTRFS_STRIPE_LEN; 1501 1502 /* 1503 * In order to avoid overwritting the superblock on the drive, 1504 * btrfs starts at an offset of at least 1MB when doing chunk 1505 * allocation. 1506 */ 1507 skip_space = 1024 * 1024; 1508 1509 /* user can set the offset in fs_info->alloc_start. */ 1510 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1511 device->total_bytes) 1512 skip_space = max(fs_info->alloc_start, skip_space); 1513 1514 /* 1515 * btrfs can not use the free space in [0, skip_space - 1], 1516 * we must subtract it from the total. In order to implement 1517 * it, we account the used space in this range first. 1518 */ 1519 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1, 1520 &used_space); 1521 if (ret) { 1522 kfree(devices_info); 1523 return ret; 1524 } 1525 1526 /* calc the free space in [0, skip_space - 1] */ 1527 skip_space -= used_space; 1528 1529 /* 1530 * we can use the free space in [0, skip_space - 1], subtract 1531 * it from the total. 1532 */ 1533 if (avail_space && avail_space >= skip_space) 1534 avail_space -= skip_space; 1535 else 1536 avail_space = 0; 1537 1538 if (avail_space < min_stripe_size) 1539 continue; 1540 1541 devices_info[i].dev = device; 1542 devices_info[i].max_avail = avail_space; 1543 1544 i++; 1545 } 1546 1547 nr_devices = i; 1548 1549 btrfs_descending_sort_devices(devices_info, nr_devices); 1550 1551 i = nr_devices - 1; 1552 avail_space = 0; 1553 while (nr_devices >= min_stripes) { 1554 if (num_stripes > nr_devices) 1555 num_stripes = nr_devices; 1556 1557 if (devices_info[i].max_avail >= min_stripe_size) { 1558 int j; 1559 u64 alloc_size; 1560 1561 avail_space += devices_info[i].max_avail * num_stripes; 1562 alloc_size = devices_info[i].max_avail; 1563 for (j = i + 1 - num_stripes; j <= i; j++) 1564 devices_info[j].max_avail -= alloc_size; 1565 } 1566 i--; 1567 nr_devices--; 1568 } 1569 1570 kfree(devices_info); 1571 *free_bytes = avail_space; 1572 return 0; 1573 } 1574 1575 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1576 { 1577 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1578 struct btrfs_super_block *disk_super = fs_info->super_copy; 1579 struct list_head *head = &fs_info->space_info; 1580 struct btrfs_space_info *found; 1581 u64 total_used = 0; 1582 u64 total_free_data = 0; 1583 int bits = dentry->d_sb->s_blocksize_bits; 1584 __be32 *fsid = (__be32 *)fs_info->fsid; 1585 int ret; 1586 1587 /* holding chunk_muext to avoid allocating new chunks */ 1588 mutex_lock(&fs_info->chunk_mutex); 1589 rcu_read_lock(); 1590 list_for_each_entry_rcu(found, head, list) { 1591 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1592 total_free_data += found->disk_total - found->disk_used; 1593 total_free_data -= 1594 btrfs_account_ro_block_groups_free_space(found); 1595 } 1596 1597 total_used += found->disk_used; 1598 } 1599 rcu_read_unlock(); 1600 1601 buf->f_namelen = BTRFS_NAME_LEN; 1602 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits; 1603 buf->f_bfree = buf->f_blocks - (total_used >> bits); 1604 buf->f_bsize = dentry->d_sb->s_blocksize; 1605 buf->f_type = BTRFS_SUPER_MAGIC; 1606 buf->f_bavail = total_free_data; 1607 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); 1608 if (ret) { 1609 mutex_unlock(&fs_info->chunk_mutex); 1610 return ret; 1611 } 1612 buf->f_bavail += total_free_data; 1613 buf->f_bavail = buf->f_bavail >> bits; 1614 mutex_unlock(&fs_info->chunk_mutex); 1615 1616 /* We treat it as constant endianness (it doesn't matter _which_) 1617 because we want the fsid to come out the same whether mounted 1618 on a big-endian or little-endian host */ 1619 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1620 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1621 /* Mask in the root object ID too, to disambiguate subvols */ 1622 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32; 1623 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid; 1624 1625 return 0; 1626 } 1627 1628 static void btrfs_kill_super(struct super_block *sb) 1629 { 1630 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1631 kill_anon_super(sb); 1632 free_fs_info(fs_info); 1633 } 1634 1635 static struct file_system_type btrfs_fs_type = { 1636 .owner = THIS_MODULE, 1637 .name = "btrfs", 1638 .mount = btrfs_mount, 1639 .kill_sb = btrfs_kill_super, 1640 .fs_flags = FS_REQUIRES_DEV, 1641 }; 1642 MODULE_ALIAS_FS("btrfs"); 1643 1644 /* 1645 * used by btrfsctl to scan devices when no FS is mounted 1646 */ 1647 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 1648 unsigned long arg) 1649 { 1650 struct btrfs_ioctl_vol_args *vol; 1651 struct btrfs_fs_devices *fs_devices; 1652 int ret = -ENOTTY; 1653 1654 if (!capable(CAP_SYS_ADMIN)) 1655 return -EPERM; 1656 1657 vol = memdup_user((void __user *)arg, sizeof(*vol)); 1658 if (IS_ERR(vol)) 1659 return PTR_ERR(vol); 1660 1661 switch (cmd) { 1662 case BTRFS_IOC_SCAN_DEV: 1663 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1664 &btrfs_fs_type, &fs_devices); 1665 break; 1666 case BTRFS_IOC_DEVICES_READY: 1667 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1668 &btrfs_fs_type, &fs_devices); 1669 if (ret) 1670 break; 1671 ret = !(fs_devices->num_devices == fs_devices->total_devices); 1672 break; 1673 } 1674 1675 kfree(vol); 1676 return ret; 1677 } 1678 1679 static int btrfs_freeze(struct super_block *sb) 1680 { 1681 struct btrfs_trans_handle *trans; 1682 struct btrfs_root *root = btrfs_sb(sb)->tree_root; 1683 1684 trans = btrfs_attach_transaction_barrier(root); 1685 if (IS_ERR(trans)) { 1686 /* no transaction, don't bother */ 1687 if (PTR_ERR(trans) == -ENOENT) 1688 return 0; 1689 return PTR_ERR(trans); 1690 } 1691 return btrfs_commit_transaction(trans, root); 1692 } 1693 1694 static int btrfs_unfreeze(struct super_block *sb) 1695 { 1696 return 0; 1697 } 1698 1699 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 1700 { 1701 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 1702 struct btrfs_fs_devices *cur_devices; 1703 struct btrfs_device *dev, *first_dev = NULL; 1704 struct list_head *head; 1705 struct rcu_string *name; 1706 1707 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1708 cur_devices = fs_info->fs_devices; 1709 while (cur_devices) { 1710 head = &cur_devices->devices; 1711 list_for_each_entry(dev, head, dev_list) { 1712 if (dev->missing) 1713 continue; 1714 if (!first_dev || dev->devid < first_dev->devid) 1715 first_dev = dev; 1716 } 1717 cur_devices = cur_devices->seed; 1718 } 1719 1720 if (first_dev) { 1721 rcu_read_lock(); 1722 name = rcu_dereference(first_dev->name); 1723 seq_escape(m, name->str, " \t\n\\"); 1724 rcu_read_unlock(); 1725 } else { 1726 WARN_ON(1); 1727 } 1728 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1729 return 0; 1730 } 1731 1732 static const struct super_operations btrfs_super_ops = { 1733 .drop_inode = btrfs_drop_inode, 1734 .evict_inode = btrfs_evict_inode, 1735 .put_super = btrfs_put_super, 1736 .sync_fs = btrfs_sync_fs, 1737 .show_options = btrfs_show_options, 1738 .show_devname = btrfs_show_devname, 1739 .write_inode = btrfs_write_inode, 1740 .alloc_inode = btrfs_alloc_inode, 1741 .destroy_inode = btrfs_destroy_inode, 1742 .statfs = btrfs_statfs, 1743 .remount_fs = btrfs_remount, 1744 .freeze_fs = btrfs_freeze, 1745 .unfreeze_fs = btrfs_unfreeze, 1746 }; 1747 1748 static const struct file_operations btrfs_ctl_fops = { 1749 .unlocked_ioctl = btrfs_control_ioctl, 1750 .compat_ioctl = btrfs_control_ioctl, 1751 .owner = THIS_MODULE, 1752 .llseek = noop_llseek, 1753 }; 1754 1755 static struct miscdevice btrfs_misc = { 1756 .minor = BTRFS_MINOR, 1757 .name = "btrfs-control", 1758 .fops = &btrfs_ctl_fops 1759 }; 1760 1761 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 1762 MODULE_ALIAS("devname:btrfs-control"); 1763 1764 static int btrfs_interface_init(void) 1765 { 1766 return misc_register(&btrfs_misc); 1767 } 1768 1769 static void btrfs_interface_exit(void) 1770 { 1771 if (misc_deregister(&btrfs_misc) < 0) 1772 printk(KERN_INFO "btrfs: misc_deregister failed for control device\n"); 1773 } 1774 1775 static void btrfs_print_info(void) 1776 { 1777 printk(KERN_INFO "Btrfs loaded" 1778 #ifdef CONFIG_BTRFS_DEBUG 1779 ", debug=on" 1780 #endif 1781 #ifdef CONFIG_BTRFS_ASSERT 1782 ", assert=on" 1783 #endif 1784 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1785 ", integrity-checker=on" 1786 #endif 1787 "\n"); 1788 } 1789 1790 static int btrfs_run_sanity_tests(void) 1791 { 1792 return btrfs_test_free_space_cache(); 1793 } 1794 1795 static int __init init_btrfs_fs(void) 1796 { 1797 int err; 1798 1799 err = btrfs_init_sysfs(); 1800 if (err) 1801 return err; 1802 1803 btrfs_init_compress(); 1804 1805 err = btrfs_init_cachep(); 1806 if (err) 1807 goto free_compress; 1808 1809 err = extent_io_init(); 1810 if (err) 1811 goto free_cachep; 1812 1813 err = extent_map_init(); 1814 if (err) 1815 goto free_extent_io; 1816 1817 err = ordered_data_init(); 1818 if (err) 1819 goto free_extent_map; 1820 1821 err = btrfs_delayed_inode_init(); 1822 if (err) 1823 goto free_ordered_data; 1824 1825 err = btrfs_auto_defrag_init(); 1826 if (err) 1827 goto free_delayed_inode; 1828 1829 err = btrfs_delayed_ref_init(); 1830 if (err) 1831 goto free_auto_defrag; 1832 1833 err = btrfs_prelim_ref_init(); 1834 if (err) 1835 goto free_prelim_ref; 1836 1837 err = btrfs_interface_init(); 1838 if (err) 1839 goto free_delayed_ref; 1840 1841 btrfs_init_lockdep(); 1842 1843 btrfs_print_info(); 1844 1845 err = btrfs_run_sanity_tests(); 1846 if (err) 1847 goto unregister_ioctl; 1848 1849 err = register_filesystem(&btrfs_fs_type); 1850 if (err) 1851 goto unregister_ioctl; 1852 1853 return 0; 1854 1855 unregister_ioctl: 1856 btrfs_interface_exit(); 1857 free_prelim_ref: 1858 btrfs_prelim_ref_exit(); 1859 free_delayed_ref: 1860 btrfs_delayed_ref_exit(); 1861 free_auto_defrag: 1862 btrfs_auto_defrag_exit(); 1863 free_delayed_inode: 1864 btrfs_delayed_inode_exit(); 1865 free_ordered_data: 1866 ordered_data_exit(); 1867 free_extent_map: 1868 extent_map_exit(); 1869 free_extent_io: 1870 extent_io_exit(); 1871 free_cachep: 1872 btrfs_destroy_cachep(); 1873 free_compress: 1874 btrfs_exit_compress(); 1875 btrfs_exit_sysfs(); 1876 return err; 1877 } 1878 1879 static void __exit exit_btrfs_fs(void) 1880 { 1881 btrfs_destroy_cachep(); 1882 btrfs_delayed_ref_exit(); 1883 btrfs_auto_defrag_exit(); 1884 btrfs_delayed_inode_exit(); 1885 btrfs_prelim_ref_exit(); 1886 ordered_data_exit(); 1887 extent_map_exit(); 1888 extent_io_exit(); 1889 btrfs_interface_exit(); 1890 unregister_filesystem(&btrfs_fs_type); 1891 btrfs_exit_sysfs(); 1892 btrfs_cleanup_fs_uuids(); 1893 btrfs_exit_compress(); 1894 } 1895 1896 module_init(init_btrfs_fs) 1897 module_exit(exit_btrfs_fs) 1898 1899 MODULE_LICENSE("GPL"); 1900