xref: /openbmc/linux/fs/btrfs/super.c (revision e953aeaa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "tests/btrfs-tests.h"
48 #include "block-group.h"
49 #include "discard.h"
50 
51 #include "qgroup.h"
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/btrfs.h>
54 
55 static const struct super_operations btrfs_super_ops;
56 
57 /*
58  * Types for mounting the default subvolume and a subvolume explicitly
59  * requested by subvol=/path. That way the callchain is straightforward and we
60  * don't have to play tricks with the mount options and recursive calls to
61  * btrfs_mount.
62  *
63  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
64  */
65 static struct file_system_type btrfs_fs_type;
66 static struct file_system_type btrfs_root_fs_type;
67 
68 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
69 
70 /*
71  * Generally the error codes correspond to their respective errors, but there
72  * are a few special cases.
73  *
74  * EUCLEAN: Any sort of corruption that we encounter.  The tree-checker for
75  *          instance will return EUCLEAN if any of the blocks are corrupted in
76  *          a way that is problematic.  We want to reserve EUCLEAN for these
77  *          sort of corruptions.
78  *
79  * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
80  *        need to use EROFS for this case.  We will have no idea of the
81  *        original failure, that will have been reported at the time we tripped
82  *        over the error.  Each subsequent error that doesn't have any context
83  *        of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
84  */
85 const char * __attribute_const__ btrfs_decode_error(int errno)
86 {
87 	char *errstr = "unknown";
88 
89 	switch (errno) {
90 	case -ENOENT:		/* -2 */
91 		errstr = "No such entry";
92 		break;
93 	case -EIO:		/* -5 */
94 		errstr = "IO failure";
95 		break;
96 	case -ENOMEM:		/* -12*/
97 		errstr = "Out of memory";
98 		break;
99 	case -EEXIST:		/* -17 */
100 		errstr = "Object already exists";
101 		break;
102 	case -ENOSPC:		/* -28 */
103 		errstr = "No space left";
104 		break;
105 	case -EROFS:		/* -30 */
106 		errstr = "Readonly filesystem";
107 		break;
108 	case -EOPNOTSUPP:	/* -95 */
109 		errstr = "Operation not supported";
110 		break;
111 	case -EUCLEAN:		/* -117 */
112 		errstr = "Filesystem corrupted";
113 		break;
114 	case -EDQUOT:		/* -122 */
115 		errstr = "Quota exceeded";
116 		break;
117 	}
118 
119 	return errstr;
120 }
121 
122 /*
123  * __btrfs_handle_fs_error decodes expected errors from the caller and
124  * invokes the appropriate error response.
125  */
126 __cold
127 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
128 		       unsigned int line, int errno, const char *fmt, ...)
129 {
130 	struct super_block *sb = fs_info->sb;
131 #ifdef CONFIG_PRINTK
132 	const char *errstr;
133 #endif
134 
135 	/*
136 	 * Special case: if the error is EROFS, and we're already
137 	 * under SB_RDONLY, then it is safe here.
138 	 */
139 	if (errno == -EROFS && sb_rdonly(sb))
140   		return;
141 
142 #ifdef CONFIG_PRINTK
143 	errstr = btrfs_decode_error(errno);
144 	if (fmt) {
145 		struct va_format vaf;
146 		va_list args;
147 
148 		va_start(args, fmt);
149 		vaf.fmt = fmt;
150 		vaf.va = &args;
151 
152 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
153 			sb->s_id, function, line, errno, errstr, &vaf);
154 		va_end(args);
155 	} else {
156 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
157 			sb->s_id, function, line, errno, errstr);
158 	}
159 #endif
160 
161 	/*
162 	 * Today we only save the error info to memory.  Long term we'll
163 	 * also send it down to the disk
164 	 */
165 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
166 
167 	/* Don't go through full error handling during mount */
168 	if (!(sb->s_flags & SB_BORN))
169 		return;
170 
171 	if (sb_rdonly(sb))
172 		return;
173 
174 	btrfs_discard_stop(fs_info);
175 
176 	/* btrfs handle error by forcing the filesystem readonly */
177 	sb->s_flags |= SB_RDONLY;
178 	btrfs_info(fs_info, "forced readonly");
179 	/*
180 	 * Note that a running device replace operation is not canceled here
181 	 * although there is no way to update the progress. It would add the
182 	 * risk of a deadlock, therefore the canceling is omitted. The only
183 	 * penalty is that some I/O remains active until the procedure
184 	 * completes. The next time when the filesystem is mounted writable
185 	 * again, the device replace operation continues.
186 	 */
187 }
188 
189 #ifdef CONFIG_PRINTK
190 static const char * const logtypes[] = {
191 	"emergency",
192 	"alert",
193 	"critical",
194 	"error",
195 	"warning",
196 	"notice",
197 	"info",
198 	"debug",
199 };
200 
201 
202 /*
203  * Use one ratelimit state per log level so that a flood of less important
204  * messages doesn't cause more important ones to be dropped.
205  */
206 static struct ratelimit_state printk_limits[] = {
207 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
208 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
209 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
210 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
211 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
212 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
213 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
214 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
215 };
216 
217 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
218 {
219 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
220 	struct va_format vaf;
221 	va_list args;
222 	int kern_level;
223 	const char *type = logtypes[4];
224 	struct ratelimit_state *ratelimit = &printk_limits[4];
225 
226 	va_start(args, fmt);
227 
228 	while ((kern_level = printk_get_level(fmt)) != 0) {
229 		size_t size = printk_skip_level(fmt) - fmt;
230 
231 		if (kern_level >= '0' && kern_level <= '7') {
232 			memcpy(lvl, fmt,  size);
233 			lvl[size] = '\0';
234 			type = logtypes[kern_level - '0'];
235 			ratelimit = &printk_limits[kern_level - '0'];
236 		}
237 		fmt += size;
238 	}
239 
240 	vaf.fmt = fmt;
241 	vaf.va = &args;
242 
243 	if (__ratelimit(ratelimit))
244 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
245 			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
246 
247 	va_end(args);
248 }
249 #endif
250 
251 /*
252  * We only mark the transaction aborted and then set the file system read-only.
253  * This will prevent new transactions from starting or trying to join this
254  * one.
255  *
256  * This means that error recovery at the call site is limited to freeing
257  * any local memory allocations and passing the error code up without
258  * further cleanup. The transaction should complete as it normally would
259  * in the call path but will return -EIO.
260  *
261  * We'll complete the cleanup in btrfs_end_transaction and
262  * btrfs_commit_transaction.
263  */
264 __cold
265 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
266 			       const char *function,
267 			       unsigned int line, int errno)
268 {
269 	struct btrfs_fs_info *fs_info = trans->fs_info;
270 
271 	WRITE_ONCE(trans->aborted, errno);
272 	/* Nothing used. The other threads that have joined this
273 	 * transaction may be able to continue. */
274 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
275 		const char *errstr;
276 
277 		errstr = btrfs_decode_error(errno);
278 		btrfs_warn(fs_info,
279 		           "%s:%d: Aborting unused transaction(%s).",
280 		           function, line, errstr);
281 		return;
282 	}
283 	WRITE_ONCE(trans->transaction->aborted, errno);
284 	/* Wake up anybody who may be waiting on this transaction */
285 	wake_up(&fs_info->transaction_wait);
286 	wake_up(&fs_info->transaction_blocked_wait);
287 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
288 }
289 /*
290  * __btrfs_panic decodes unexpected, fatal errors from the caller,
291  * issues an alert, and either panics or BUGs, depending on mount options.
292  */
293 __cold
294 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
295 		   unsigned int line, int errno, const char *fmt, ...)
296 {
297 	char *s_id = "<unknown>";
298 	const char *errstr;
299 	struct va_format vaf = { .fmt = fmt };
300 	va_list args;
301 
302 	if (fs_info)
303 		s_id = fs_info->sb->s_id;
304 
305 	va_start(args, fmt);
306 	vaf.va = &args;
307 
308 	errstr = btrfs_decode_error(errno);
309 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
310 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
311 			s_id, function, line, &vaf, errno, errstr);
312 
313 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
314 		   function, line, &vaf, errno, errstr);
315 	va_end(args);
316 	/* Caller calls BUG() */
317 }
318 
319 static void btrfs_put_super(struct super_block *sb)
320 {
321 	close_ctree(btrfs_sb(sb));
322 }
323 
324 enum {
325 	Opt_acl, Opt_noacl,
326 	Opt_clear_cache,
327 	Opt_commit_interval,
328 	Opt_compress,
329 	Opt_compress_force,
330 	Opt_compress_force_type,
331 	Opt_compress_type,
332 	Opt_degraded,
333 	Opt_device,
334 	Opt_fatal_errors,
335 	Opt_flushoncommit, Opt_noflushoncommit,
336 	Opt_inode_cache, Opt_noinode_cache,
337 	Opt_max_inline,
338 	Opt_barrier, Opt_nobarrier,
339 	Opt_datacow, Opt_nodatacow,
340 	Opt_datasum, Opt_nodatasum,
341 	Opt_defrag, Opt_nodefrag,
342 	Opt_discard, Opt_nodiscard,
343 	Opt_discard_mode,
344 	Opt_norecovery,
345 	Opt_ratio,
346 	Opt_rescan_uuid_tree,
347 	Opt_skip_balance,
348 	Opt_space_cache, Opt_no_space_cache,
349 	Opt_space_cache_version,
350 	Opt_ssd, Opt_nossd,
351 	Opt_ssd_spread, Opt_nossd_spread,
352 	Opt_subvol,
353 	Opt_subvol_empty,
354 	Opt_subvolid,
355 	Opt_thread_pool,
356 	Opt_treelog, Opt_notreelog,
357 	Opt_user_subvol_rm_allowed,
358 
359 	/* Rescue options */
360 	Opt_rescue,
361 	Opt_usebackuproot,
362 	Opt_nologreplay,
363 
364 	/* Deprecated options */
365 	Opt_recovery,
366 
367 	/* Debugging options */
368 	Opt_check_integrity,
369 	Opt_check_integrity_including_extent_data,
370 	Opt_check_integrity_print_mask,
371 	Opt_enospc_debug, Opt_noenospc_debug,
372 #ifdef CONFIG_BTRFS_DEBUG
373 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
374 #endif
375 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
376 	Opt_ref_verify,
377 #endif
378 	Opt_err,
379 };
380 
381 static const match_table_t tokens = {
382 	{Opt_acl, "acl"},
383 	{Opt_noacl, "noacl"},
384 	{Opt_clear_cache, "clear_cache"},
385 	{Opt_commit_interval, "commit=%u"},
386 	{Opt_compress, "compress"},
387 	{Opt_compress_type, "compress=%s"},
388 	{Opt_compress_force, "compress-force"},
389 	{Opt_compress_force_type, "compress-force=%s"},
390 	{Opt_degraded, "degraded"},
391 	{Opt_device, "device=%s"},
392 	{Opt_fatal_errors, "fatal_errors=%s"},
393 	{Opt_flushoncommit, "flushoncommit"},
394 	{Opt_noflushoncommit, "noflushoncommit"},
395 	{Opt_inode_cache, "inode_cache"},
396 	{Opt_noinode_cache, "noinode_cache"},
397 	{Opt_max_inline, "max_inline=%s"},
398 	{Opt_barrier, "barrier"},
399 	{Opt_nobarrier, "nobarrier"},
400 	{Opt_datacow, "datacow"},
401 	{Opt_nodatacow, "nodatacow"},
402 	{Opt_datasum, "datasum"},
403 	{Opt_nodatasum, "nodatasum"},
404 	{Opt_defrag, "autodefrag"},
405 	{Opt_nodefrag, "noautodefrag"},
406 	{Opt_discard, "discard"},
407 	{Opt_discard_mode, "discard=%s"},
408 	{Opt_nodiscard, "nodiscard"},
409 	{Opt_norecovery, "norecovery"},
410 	{Opt_ratio, "metadata_ratio=%u"},
411 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
412 	{Opt_skip_balance, "skip_balance"},
413 	{Opt_space_cache, "space_cache"},
414 	{Opt_no_space_cache, "nospace_cache"},
415 	{Opt_space_cache_version, "space_cache=%s"},
416 	{Opt_ssd, "ssd"},
417 	{Opt_nossd, "nossd"},
418 	{Opt_ssd_spread, "ssd_spread"},
419 	{Opt_nossd_spread, "nossd_spread"},
420 	{Opt_subvol, "subvol=%s"},
421 	{Opt_subvol_empty, "subvol="},
422 	{Opt_subvolid, "subvolid=%s"},
423 	{Opt_thread_pool, "thread_pool=%u"},
424 	{Opt_treelog, "treelog"},
425 	{Opt_notreelog, "notreelog"},
426 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
427 
428 	/* Rescue options */
429 	{Opt_rescue, "rescue=%s"},
430 	/* Deprecated, with alias rescue=nologreplay */
431 	{Opt_nologreplay, "nologreplay"},
432 	/* Deprecated, with alias rescue=usebackuproot */
433 	{Opt_usebackuproot, "usebackuproot"},
434 
435 	/* Deprecated options */
436 	{Opt_recovery, "recovery"},
437 
438 	/* Debugging options */
439 	{Opt_check_integrity, "check_int"},
440 	{Opt_check_integrity_including_extent_data, "check_int_data"},
441 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
442 	{Opt_enospc_debug, "enospc_debug"},
443 	{Opt_noenospc_debug, "noenospc_debug"},
444 #ifdef CONFIG_BTRFS_DEBUG
445 	{Opt_fragment_data, "fragment=data"},
446 	{Opt_fragment_metadata, "fragment=metadata"},
447 	{Opt_fragment_all, "fragment=all"},
448 #endif
449 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
450 	{Opt_ref_verify, "ref_verify"},
451 #endif
452 	{Opt_err, NULL},
453 };
454 
455 static const match_table_t rescue_tokens = {
456 	{Opt_usebackuproot, "usebackuproot"},
457 	{Opt_nologreplay, "nologreplay"},
458 	{Opt_err, NULL},
459 };
460 
461 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
462 {
463 	char *opts;
464 	char *orig;
465 	char *p;
466 	substring_t args[MAX_OPT_ARGS];
467 	int ret = 0;
468 
469 	opts = kstrdup(options, GFP_KERNEL);
470 	if (!opts)
471 		return -ENOMEM;
472 	orig = opts;
473 
474 	while ((p = strsep(&opts, ":")) != NULL) {
475 		int token;
476 
477 		if (!*p)
478 			continue;
479 		token = match_token(p, rescue_tokens, args);
480 		switch (token){
481 		case Opt_usebackuproot:
482 			btrfs_info(info,
483 				   "trying to use backup root at mount time");
484 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
485 			break;
486 		case Opt_nologreplay:
487 			btrfs_set_and_info(info, NOLOGREPLAY,
488 					   "disabling log replay at mount time");
489 			break;
490 		case Opt_err:
491 			btrfs_info(info, "unrecognized rescue option '%s'", p);
492 			ret = -EINVAL;
493 			goto out;
494 		default:
495 			break;
496 		}
497 
498 	}
499 out:
500 	kfree(orig);
501 	return ret;
502 }
503 
504 /*
505  * Regular mount options parser.  Everything that is needed only when
506  * reading in a new superblock is parsed here.
507  * XXX JDM: This needs to be cleaned up for remount.
508  */
509 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
510 			unsigned long new_flags)
511 {
512 	substring_t args[MAX_OPT_ARGS];
513 	char *p, *num;
514 	u64 cache_gen;
515 	int intarg;
516 	int ret = 0;
517 	char *compress_type;
518 	bool compress_force = false;
519 	enum btrfs_compression_type saved_compress_type;
520 	int saved_compress_level;
521 	bool saved_compress_force;
522 	int no_compress = 0;
523 
524 	cache_gen = btrfs_super_cache_generation(info->super_copy);
525 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
526 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
527 	else if (cache_gen)
528 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
529 
530 	/*
531 	 * Even the options are empty, we still need to do extra check
532 	 * against new flags
533 	 */
534 	if (!options)
535 		goto check;
536 
537 	while ((p = strsep(&options, ",")) != NULL) {
538 		int token;
539 		if (!*p)
540 			continue;
541 
542 		token = match_token(p, tokens, args);
543 		switch (token) {
544 		case Opt_degraded:
545 			btrfs_info(info, "allowing degraded mounts");
546 			btrfs_set_opt(info->mount_opt, DEGRADED);
547 			break;
548 		case Opt_subvol:
549 		case Opt_subvol_empty:
550 		case Opt_subvolid:
551 		case Opt_device:
552 			/*
553 			 * These are parsed by btrfs_parse_subvol_options or
554 			 * btrfs_parse_device_options and can be ignored here.
555 			 */
556 			break;
557 		case Opt_nodatasum:
558 			btrfs_set_and_info(info, NODATASUM,
559 					   "setting nodatasum");
560 			break;
561 		case Opt_datasum:
562 			if (btrfs_test_opt(info, NODATASUM)) {
563 				if (btrfs_test_opt(info, NODATACOW))
564 					btrfs_info(info,
565 						   "setting datasum, datacow enabled");
566 				else
567 					btrfs_info(info, "setting datasum");
568 			}
569 			btrfs_clear_opt(info->mount_opt, NODATACOW);
570 			btrfs_clear_opt(info->mount_opt, NODATASUM);
571 			break;
572 		case Opt_nodatacow:
573 			if (!btrfs_test_opt(info, NODATACOW)) {
574 				if (!btrfs_test_opt(info, COMPRESS) ||
575 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
576 					btrfs_info(info,
577 						   "setting nodatacow, compression disabled");
578 				} else {
579 					btrfs_info(info, "setting nodatacow");
580 				}
581 			}
582 			btrfs_clear_opt(info->mount_opt, COMPRESS);
583 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
584 			btrfs_set_opt(info->mount_opt, NODATACOW);
585 			btrfs_set_opt(info->mount_opt, NODATASUM);
586 			break;
587 		case Opt_datacow:
588 			btrfs_clear_and_info(info, NODATACOW,
589 					     "setting datacow");
590 			break;
591 		case Opt_compress_force:
592 		case Opt_compress_force_type:
593 			compress_force = true;
594 			fallthrough;
595 		case Opt_compress:
596 		case Opt_compress_type:
597 			saved_compress_type = btrfs_test_opt(info,
598 							     COMPRESS) ?
599 				info->compress_type : BTRFS_COMPRESS_NONE;
600 			saved_compress_force =
601 				btrfs_test_opt(info, FORCE_COMPRESS);
602 			saved_compress_level = info->compress_level;
603 			if (token == Opt_compress ||
604 			    token == Opt_compress_force ||
605 			    strncmp(args[0].from, "zlib", 4) == 0) {
606 				compress_type = "zlib";
607 
608 				info->compress_type = BTRFS_COMPRESS_ZLIB;
609 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
610 				/*
611 				 * args[0] contains uninitialized data since
612 				 * for these tokens we don't expect any
613 				 * parameter.
614 				 */
615 				if (token != Opt_compress &&
616 				    token != Opt_compress_force)
617 					info->compress_level =
618 					  btrfs_compress_str2level(
619 							BTRFS_COMPRESS_ZLIB,
620 							args[0].from + 4);
621 				btrfs_set_opt(info->mount_opt, COMPRESS);
622 				btrfs_clear_opt(info->mount_opt, NODATACOW);
623 				btrfs_clear_opt(info->mount_opt, NODATASUM);
624 				no_compress = 0;
625 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
626 				compress_type = "lzo";
627 				info->compress_type = BTRFS_COMPRESS_LZO;
628 				btrfs_set_opt(info->mount_opt, COMPRESS);
629 				btrfs_clear_opt(info->mount_opt, NODATACOW);
630 				btrfs_clear_opt(info->mount_opt, NODATASUM);
631 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
632 				no_compress = 0;
633 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
634 				compress_type = "zstd";
635 				info->compress_type = BTRFS_COMPRESS_ZSTD;
636 				info->compress_level =
637 					btrfs_compress_str2level(
638 							 BTRFS_COMPRESS_ZSTD,
639 							 args[0].from + 4);
640 				btrfs_set_opt(info->mount_opt, COMPRESS);
641 				btrfs_clear_opt(info->mount_opt, NODATACOW);
642 				btrfs_clear_opt(info->mount_opt, NODATASUM);
643 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
644 				no_compress = 0;
645 			} else if (strncmp(args[0].from, "no", 2) == 0) {
646 				compress_type = "no";
647 				info->compress_level = 0;
648 				info->compress_type = 0;
649 				btrfs_clear_opt(info->mount_opt, COMPRESS);
650 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
651 				compress_force = false;
652 				no_compress++;
653 			} else {
654 				ret = -EINVAL;
655 				goto out;
656 			}
657 
658 			if (compress_force) {
659 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
660 			} else {
661 				/*
662 				 * If we remount from compress-force=xxx to
663 				 * compress=xxx, we need clear FORCE_COMPRESS
664 				 * flag, otherwise, there is no way for users
665 				 * to disable forcible compression separately.
666 				 */
667 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
668 			}
669 			if (no_compress == 1) {
670 				btrfs_info(info, "use no compression");
671 			} else if ((info->compress_type != saved_compress_type) ||
672 				   (compress_force != saved_compress_force) ||
673 				   (info->compress_level != saved_compress_level)) {
674 				btrfs_info(info, "%s %s compression, level %d",
675 					   (compress_force) ? "force" : "use",
676 					   compress_type, info->compress_level);
677 			}
678 			compress_force = false;
679 			break;
680 		case Opt_ssd:
681 			btrfs_set_and_info(info, SSD,
682 					   "enabling ssd optimizations");
683 			btrfs_clear_opt(info->mount_opt, NOSSD);
684 			break;
685 		case Opt_ssd_spread:
686 			btrfs_set_and_info(info, SSD,
687 					   "enabling ssd optimizations");
688 			btrfs_set_and_info(info, SSD_SPREAD,
689 					   "using spread ssd allocation scheme");
690 			btrfs_clear_opt(info->mount_opt, NOSSD);
691 			break;
692 		case Opt_nossd:
693 			btrfs_set_opt(info->mount_opt, NOSSD);
694 			btrfs_clear_and_info(info, SSD,
695 					     "not using ssd optimizations");
696 			fallthrough;
697 		case Opt_nossd_spread:
698 			btrfs_clear_and_info(info, SSD_SPREAD,
699 					     "not using spread ssd allocation scheme");
700 			break;
701 		case Opt_barrier:
702 			btrfs_clear_and_info(info, NOBARRIER,
703 					     "turning on barriers");
704 			break;
705 		case Opt_nobarrier:
706 			btrfs_set_and_info(info, NOBARRIER,
707 					   "turning off barriers");
708 			break;
709 		case Opt_thread_pool:
710 			ret = match_int(&args[0], &intarg);
711 			if (ret) {
712 				goto out;
713 			} else if (intarg == 0) {
714 				ret = -EINVAL;
715 				goto out;
716 			}
717 			info->thread_pool_size = intarg;
718 			break;
719 		case Opt_max_inline:
720 			num = match_strdup(&args[0]);
721 			if (num) {
722 				info->max_inline = memparse(num, NULL);
723 				kfree(num);
724 
725 				if (info->max_inline) {
726 					info->max_inline = min_t(u64,
727 						info->max_inline,
728 						info->sectorsize);
729 				}
730 				btrfs_info(info, "max_inline at %llu",
731 					   info->max_inline);
732 			} else {
733 				ret = -ENOMEM;
734 				goto out;
735 			}
736 			break;
737 		case Opt_acl:
738 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
739 			info->sb->s_flags |= SB_POSIXACL;
740 			break;
741 #else
742 			btrfs_err(info, "support for ACL not compiled in!");
743 			ret = -EINVAL;
744 			goto out;
745 #endif
746 		case Opt_noacl:
747 			info->sb->s_flags &= ~SB_POSIXACL;
748 			break;
749 		case Opt_notreelog:
750 			btrfs_set_and_info(info, NOTREELOG,
751 					   "disabling tree log");
752 			break;
753 		case Opt_treelog:
754 			btrfs_clear_and_info(info, NOTREELOG,
755 					     "enabling tree log");
756 			break;
757 		case Opt_norecovery:
758 		case Opt_nologreplay:
759 			btrfs_warn(info,
760 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
761 			btrfs_set_and_info(info, NOLOGREPLAY,
762 					   "disabling log replay at mount time");
763 			break;
764 		case Opt_flushoncommit:
765 			btrfs_set_and_info(info, FLUSHONCOMMIT,
766 					   "turning on flush-on-commit");
767 			break;
768 		case Opt_noflushoncommit:
769 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
770 					     "turning off flush-on-commit");
771 			break;
772 		case Opt_ratio:
773 			ret = match_int(&args[0], &intarg);
774 			if (ret)
775 				goto out;
776 			info->metadata_ratio = intarg;
777 			btrfs_info(info, "metadata ratio %u",
778 				   info->metadata_ratio);
779 			break;
780 		case Opt_discard:
781 		case Opt_discard_mode:
782 			if (token == Opt_discard ||
783 			    strcmp(args[0].from, "sync") == 0) {
784 				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
785 				btrfs_set_and_info(info, DISCARD_SYNC,
786 						   "turning on sync discard");
787 			} else if (strcmp(args[0].from, "async") == 0) {
788 				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
789 				btrfs_set_and_info(info, DISCARD_ASYNC,
790 						   "turning on async discard");
791 			} else {
792 				ret = -EINVAL;
793 				goto out;
794 			}
795 			break;
796 		case Opt_nodiscard:
797 			btrfs_clear_and_info(info, DISCARD_SYNC,
798 					     "turning off discard");
799 			btrfs_clear_and_info(info, DISCARD_ASYNC,
800 					     "turning off async discard");
801 			break;
802 		case Opt_space_cache:
803 		case Opt_space_cache_version:
804 			if (token == Opt_space_cache ||
805 			    strcmp(args[0].from, "v1") == 0) {
806 				btrfs_clear_opt(info->mount_opt,
807 						FREE_SPACE_TREE);
808 				btrfs_set_and_info(info, SPACE_CACHE,
809 					   "enabling disk space caching");
810 			} else if (strcmp(args[0].from, "v2") == 0) {
811 				btrfs_clear_opt(info->mount_opt,
812 						SPACE_CACHE);
813 				btrfs_set_and_info(info, FREE_SPACE_TREE,
814 						   "enabling free space tree");
815 			} else {
816 				ret = -EINVAL;
817 				goto out;
818 			}
819 			break;
820 		case Opt_rescan_uuid_tree:
821 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
822 			break;
823 		case Opt_no_space_cache:
824 			if (btrfs_test_opt(info, SPACE_CACHE)) {
825 				btrfs_clear_and_info(info, SPACE_CACHE,
826 					     "disabling disk space caching");
827 			}
828 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
829 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
830 					     "disabling free space tree");
831 			}
832 			break;
833 		case Opt_inode_cache:
834 			btrfs_warn(info,
835 	"the 'inode_cache' option is deprecated and will have no effect from 5.11");
836 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
837 					   "enabling inode map caching");
838 			break;
839 		case Opt_noinode_cache:
840 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
841 					     "disabling inode map caching");
842 			break;
843 		case Opt_clear_cache:
844 			btrfs_set_and_info(info, CLEAR_CACHE,
845 					   "force clearing of disk cache");
846 			break;
847 		case Opt_user_subvol_rm_allowed:
848 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
849 			break;
850 		case Opt_enospc_debug:
851 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
852 			break;
853 		case Opt_noenospc_debug:
854 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
855 			break;
856 		case Opt_defrag:
857 			btrfs_set_and_info(info, AUTO_DEFRAG,
858 					   "enabling auto defrag");
859 			break;
860 		case Opt_nodefrag:
861 			btrfs_clear_and_info(info, AUTO_DEFRAG,
862 					     "disabling auto defrag");
863 			break;
864 		case Opt_recovery:
865 		case Opt_usebackuproot:
866 			btrfs_warn(info,
867 			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
868 				   token == Opt_recovery ? "recovery" :
869 				   "usebackuproot");
870 			btrfs_info(info,
871 				   "trying to use backup root at mount time");
872 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
873 			break;
874 		case Opt_skip_balance:
875 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
876 			break;
877 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
878 		case Opt_check_integrity_including_extent_data:
879 			btrfs_info(info,
880 				   "enabling check integrity including extent data");
881 			btrfs_set_opt(info->mount_opt,
882 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
883 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
884 			break;
885 		case Opt_check_integrity:
886 			btrfs_info(info, "enabling check integrity");
887 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
888 			break;
889 		case Opt_check_integrity_print_mask:
890 			ret = match_int(&args[0], &intarg);
891 			if (ret)
892 				goto out;
893 			info->check_integrity_print_mask = intarg;
894 			btrfs_info(info, "check_integrity_print_mask 0x%x",
895 				   info->check_integrity_print_mask);
896 			break;
897 #else
898 		case Opt_check_integrity_including_extent_data:
899 		case Opt_check_integrity:
900 		case Opt_check_integrity_print_mask:
901 			btrfs_err(info,
902 				  "support for check_integrity* not compiled in!");
903 			ret = -EINVAL;
904 			goto out;
905 #endif
906 		case Opt_fatal_errors:
907 			if (strcmp(args[0].from, "panic") == 0)
908 				btrfs_set_opt(info->mount_opt,
909 					      PANIC_ON_FATAL_ERROR);
910 			else if (strcmp(args[0].from, "bug") == 0)
911 				btrfs_clear_opt(info->mount_opt,
912 					      PANIC_ON_FATAL_ERROR);
913 			else {
914 				ret = -EINVAL;
915 				goto out;
916 			}
917 			break;
918 		case Opt_commit_interval:
919 			intarg = 0;
920 			ret = match_int(&args[0], &intarg);
921 			if (ret)
922 				goto out;
923 			if (intarg == 0) {
924 				btrfs_info(info,
925 					   "using default commit interval %us",
926 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
927 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
928 			} else if (intarg > 300) {
929 				btrfs_warn(info, "excessive commit interval %d",
930 					   intarg);
931 			}
932 			info->commit_interval = intarg;
933 			break;
934 		case Opt_rescue:
935 			ret = parse_rescue_options(info, args[0].from);
936 			if (ret < 0)
937 				goto out;
938 			break;
939 #ifdef CONFIG_BTRFS_DEBUG
940 		case Opt_fragment_all:
941 			btrfs_info(info, "fragmenting all space");
942 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
943 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
944 			break;
945 		case Opt_fragment_metadata:
946 			btrfs_info(info, "fragmenting metadata");
947 			btrfs_set_opt(info->mount_opt,
948 				      FRAGMENT_METADATA);
949 			break;
950 		case Opt_fragment_data:
951 			btrfs_info(info, "fragmenting data");
952 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
953 			break;
954 #endif
955 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
956 		case Opt_ref_verify:
957 			btrfs_info(info, "doing ref verification");
958 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
959 			break;
960 #endif
961 		case Opt_err:
962 			btrfs_err(info, "unrecognized mount option '%s'", p);
963 			ret = -EINVAL;
964 			goto out;
965 		default:
966 			break;
967 		}
968 	}
969 check:
970 	/*
971 	 * Extra check for current option against current flag
972 	 */
973 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
974 		btrfs_err(info,
975 			  "nologreplay must be used with ro mount option");
976 		ret = -EINVAL;
977 	}
978 out:
979 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
980 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
981 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
982 		btrfs_err(info, "cannot disable free space tree");
983 		ret = -EINVAL;
984 
985 	}
986 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
987 		btrfs_info(info, "disk space caching is enabled");
988 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
989 		btrfs_info(info, "using free space tree");
990 	return ret;
991 }
992 
993 /*
994  * Parse mount options that are required early in the mount process.
995  *
996  * All other options will be parsed on much later in the mount process and
997  * only when we need to allocate a new super block.
998  */
999 static int btrfs_parse_device_options(const char *options, fmode_t flags,
1000 				      void *holder)
1001 {
1002 	substring_t args[MAX_OPT_ARGS];
1003 	char *device_name, *opts, *orig, *p;
1004 	struct btrfs_device *device = NULL;
1005 	int error = 0;
1006 
1007 	lockdep_assert_held(&uuid_mutex);
1008 
1009 	if (!options)
1010 		return 0;
1011 
1012 	/*
1013 	 * strsep changes the string, duplicate it because btrfs_parse_options
1014 	 * gets called later
1015 	 */
1016 	opts = kstrdup(options, GFP_KERNEL);
1017 	if (!opts)
1018 		return -ENOMEM;
1019 	orig = opts;
1020 
1021 	while ((p = strsep(&opts, ",")) != NULL) {
1022 		int token;
1023 
1024 		if (!*p)
1025 			continue;
1026 
1027 		token = match_token(p, tokens, args);
1028 		if (token == Opt_device) {
1029 			device_name = match_strdup(&args[0]);
1030 			if (!device_name) {
1031 				error = -ENOMEM;
1032 				goto out;
1033 			}
1034 			device = btrfs_scan_one_device(device_name, flags,
1035 					holder);
1036 			kfree(device_name);
1037 			if (IS_ERR(device)) {
1038 				error = PTR_ERR(device);
1039 				goto out;
1040 			}
1041 		}
1042 	}
1043 
1044 out:
1045 	kfree(orig);
1046 	return error;
1047 }
1048 
1049 /*
1050  * Parse mount options that are related to subvolume id
1051  *
1052  * The value is later passed to mount_subvol()
1053  */
1054 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1055 		u64 *subvol_objectid)
1056 {
1057 	substring_t args[MAX_OPT_ARGS];
1058 	char *opts, *orig, *p;
1059 	int error = 0;
1060 	u64 subvolid;
1061 
1062 	if (!options)
1063 		return 0;
1064 
1065 	/*
1066 	 * strsep changes the string, duplicate it because
1067 	 * btrfs_parse_device_options gets called later
1068 	 */
1069 	opts = kstrdup(options, GFP_KERNEL);
1070 	if (!opts)
1071 		return -ENOMEM;
1072 	orig = opts;
1073 
1074 	while ((p = strsep(&opts, ",")) != NULL) {
1075 		int token;
1076 		if (!*p)
1077 			continue;
1078 
1079 		token = match_token(p, tokens, args);
1080 		switch (token) {
1081 		case Opt_subvol:
1082 			kfree(*subvol_name);
1083 			*subvol_name = match_strdup(&args[0]);
1084 			if (!*subvol_name) {
1085 				error = -ENOMEM;
1086 				goto out;
1087 			}
1088 			break;
1089 		case Opt_subvolid:
1090 			error = match_u64(&args[0], &subvolid);
1091 			if (error)
1092 				goto out;
1093 
1094 			/* we want the original fs_tree */
1095 			if (subvolid == 0)
1096 				subvolid = BTRFS_FS_TREE_OBJECTID;
1097 
1098 			*subvol_objectid = subvolid;
1099 			break;
1100 		default:
1101 			break;
1102 		}
1103 	}
1104 
1105 out:
1106 	kfree(orig);
1107 	return error;
1108 }
1109 
1110 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1111 					  u64 subvol_objectid)
1112 {
1113 	struct btrfs_root *root = fs_info->tree_root;
1114 	struct btrfs_root *fs_root = NULL;
1115 	struct btrfs_root_ref *root_ref;
1116 	struct btrfs_inode_ref *inode_ref;
1117 	struct btrfs_key key;
1118 	struct btrfs_path *path = NULL;
1119 	char *name = NULL, *ptr;
1120 	u64 dirid;
1121 	int len;
1122 	int ret;
1123 
1124 	path = btrfs_alloc_path();
1125 	if (!path) {
1126 		ret = -ENOMEM;
1127 		goto err;
1128 	}
1129 	path->leave_spinning = 1;
1130 
1131 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1132 	if (!name) {
1133 		ret = -ENOMEM;
1134 		goto err;
1135 	}
1136 	ptr = name + PATH_MAX - 1;
1137 	ptr[0] = '\0';
1138 
1139 	/*
1140 	 * Walk up the subvolume trees in the tree of tree roots by root
1141 	 * backrefs until we hit the top-level subvolume.
1142 	 */
1143 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1144 		key.objectid = subvol_objectid;
1145 		key.type = BTRFS_ROOT_BACKREF_KEY;
1146 		key.offset = (u64)-1;
1147 
1148 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1149 		if (ret < 0) {
1150 			goto err;
1151 		} else if (ret > 0) {
1152 			ret = btrfs_previous_item(root, path, subvol_objectid,
1153 						  BTRFS_ROOT_BACKREF_KEY);
1154 			if (ret < 0) {
1155 				goto err;
1156 			} else if (ret > 0) {
1157 				ret = -ENOENT;
1158 				goto err;
1159 			}
1160 		}
1161 
1162 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1163 		subvol_objectid = key.offset;
1164 
1165 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1166 					  struct btrfs_root_ref);
1167 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1168 		ptr -= len + 1;
1169 		if (ptr < name) {
1170 			ret = -ENAMETOOLONG;
1171 			goto err;
1172 		}
1173 		read_extent_buffer(path->nodes[0], ptr + 1,
1174 				   (unsigned long)(root_ref + 1), len);
1175 		ptr[0] = '/';
1176 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1177 		btrfs_release_path(path);
1178 
1179 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1180 		if (IS_ERR(fs_root)) {
1181 			ret = PTR_ERR(fs_root);
1182 			fs_root = NULL;
1183 			goto err;
1184 		}
1185 
1186 		/*
1187 		 * Walk up the filesystem tree by inode refs until we hit the
1188 		 * root directory.
1189 		 */
1190 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1191 			key.objectid = dirid;
1192 			key.type = BTRFS_INODE_REF_KEY;
1193 			key.offset = (u64)-1;
1194 
1195 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1196 			if (ret < 0) {
1197 				goto err;
1198 			} else if (ret > 0) {
1199 				ret = btrfs_previous_item(fs_root, path, dirid,
1200 							  BTRFS_INODE_REF_KEY);
1201 				if (ret < 0) {
1202 					goto err;
1203 				} else if (ret > 0) {
1204 					ret = -ENOENT;
1205 					goto err;
1206 				}
1207 			}
1208 
1209 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1210 			dirid = key.offset;
1211 
1212 			inode_ref = btrfs_item_ptr(path->nodes[0],
1213 						   path->slots[0],
1214 						   struct btrfs_inode_ref);
1215 			len = btrfs_inode_ref_name_len(path->nodes[0],
1216 						       inode_ref);
1217 			ptr -= len + 1;
1218 			if (ptr < name) {
1219 				ret = -ENAMETOOLONG;
1220 				goto err;
1221 			}
1222 			read_extent_buffer(path->nodes[0], ptr + 1,
1223 					   (unsigned long)(inode_ref + 1), len);
1224 			ptr[0] = '/';
1225 			btrfs_release_path(path);
1226 		}
1227 		btrfs_put_root(fs_root);
1228 		fs_root = NULL;
1229 	}
1230 
1231 	btrfs_free_path(path);
1232 	if (ptr == name + PATH_MAX - 1) {
1233 		name[0] = '/';
1234 		name[1] = '\0';
1235 	} else {
1236 		memmove(name, ptr, name + PATH_MAX - ptr);
1237 	}
1238 	return name;
1239 
1240 err:
1241 	btrfs_put_root(fs_root);
1242 	btrfs_free_path(path);
1243 	kfree(name);
1244 	return ERR_PTR(ret);
1245 }
1246 
1247 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1248 {
1249 	struct btrfs_root *root = fs_info->tree_root;
1250 	struct btrfs_dir_item *di;
1251 	struct btrfs_path *path;
1252 	struct btrfs_key location;
1253 	u64 dir_id;
1254 
1255 	path = btrfs_alloc_path();
1256 	if (!path)
1257 		return -ENOMEM;
1258 	path->leave_spinning = 1;
1259 
1260 	/*
1261 	 * Find the "default" dir item which points to the root item that we
1262 	 * will mount by default if we haven't been given a specific subvolume
1263 	 * to mount.
1264 	 */
1265 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1266 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1267 	if (IS_ERR(di)) {
1268 		btrfs_free_path(path);
1269 		return PTR_ERR(di);
1270 	}
1271 	if (!di) {
1272 		/*
1273 		 * Ok the default dir item isn't there.  This is weird since
1274 		 * it's always been there, but don't freak out, just try and
1275 		 * mount the top-level subvolume.
1276 		 */
1277 		btrfs_free_path(path);
1278 		*objectid = BTRFS_FS_TREE_OBJECTID;
1279 		return 0;
1280 	}
1281 
1282 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1283 	btrfs_free_path(path);
1284 	*objectid = location.objectid;
1285 	return 0;
1286 }
1287 
1288 static int btrfs_fill_super(struct super_block *sb,
1289 			    struct btrfs_fs_devices *fs_devices,
1290 			    void *data)
1291 {
1292 	struct inode *inode;
1293 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1294 	int err;
1295 
1296 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1297 	sb->s_magic = BTRFS_SUPER_MAGIC;
1298 	sb->s_op = &btrfs_super_ops;
1299 	sb->s_d_op = &btrfs_dentry_operations;
1300 	sb->s_export_op = &btrfs_export_ops;
1301 	sb->s_xattr = btrfs_xattr_handlers;
1302 	sb->s_time_gran = 1;
1303 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1304 	sb->s_flags |= SB_POSIXACL;
1305 #endif
1306 	sb->s_flags |= SB_I_VERSION;
1307 	sb->s_iflags |= SB_I_CGROUPWB;
1308 
1309 	err = super_setup_bdi(sb);
1310 	if (err) {
1311 		btrfs_err(fs_info, "super_setup_bdi failed");
1312 		return err;
1313 	}
1314 
1315 	err = open_ctree(sb, fs_devices, (char *)data);
1316 	if (err) {
1317 		btrfs_err(fs_info, "open_ctree failed");
1318 		return err;
1319 	}
1320 
1321 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1322 	if (IS_ERR(inode)) {
1323 		err = PTR_ERR(inode);
1324 		goto fail_close;
1325 	}
1326 
1327 	sb->s_root = d_make_root(inode);
1328 	if (!sb->s_root) {
1329 		err = -ENOMEM;
1330 		goto fail_close;
1331 	}
1332 
1333 	cleancache_init_fs(sb);
1334 	sb->s_flags |= SB_ACTIVE;
1335 	return 0;
1336 
1337 fail_close:
1338 	close_ctree(fs_info);
1339 	return err;
1340 }
1341 
1342 int btrfs_sync_fs(struct super_block *sb, int wait)
1343 {
1344 	struct btrfs_trans_handle *trans;
1345 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1346 	struct btrfs_root *root = fs_info->tree_root;
1347 
1348 	trace_btrfs_sync_fs(fs_info, wait);
1349 
1350 	if (!wait) {
1351 		filemap_flush(fs_info->btree_inode->i_mapping);
1352 		return 0;
1353 	}
1354 
1355 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1356 
1357 	trans = btrfs_attach_transaction_barrier(root);
1358 	if (IS_ERR(trans)) {
1359 		/* no transaction, don't bother */
1360 		if (PTR_ERR(trans) == -ENOENT) {
1361 			/*
1362 			 * Exit unless we have some pending changes
1363 			 * that need to go through commit
1364 			 */
1365 			if (fs_info->pending_changes == 0)
1366 				return 0;
1367 			/*
1368 			 * A non-blocking test if the fs is frozen. We must not
1369 			 * start a new transaction here otherwise a deadlock
1370 			 * happens. The pending operations are delayed to the
1371 			 * next commit after thawing.
1372 			 */
1373 			if (sb_start_write_trylock(sb))
1374 				sb_end_write(sb);
1375 			else
1376 				return 0;
1377 			trans = btrfs_start_transaction(root, 0);
1378 		}
1379 		if (IS_ERR(trans))
1380 			return PTR_ERR(trans);
1381 	}
1382 	return btrfs_commit_transaction(trans);
1383 }
1384 
1385 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1386 {
1387 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1388 	const char *compress_type;
1389 	const char *subvol_name;
1390 
1391 	if (btrfs_test_opt(info, DEGRADED))
1392 		seq_puts(seq, ",degraded");
1393 	if (btrfs_test_opt(info, NODATASUM))
1394 		seq_puts(seq, ",nodatasum");
1395 	if (btrfs_test_opt(info, NODATACOW))
1396 		seq_puts(seq, ",nodatacow");
1397 	if (btrfs_test_opt(info, NOBARRIER))
1398 		seq_puts(seq, ",nobarrier");
1399 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1400 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1401 	if (info->thread_pool_size !=  min_t(unsigned long,
1402 					     num_online_cpus() + 2, 8))
1403 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1404 	if (btrfs_test_opt(info, COMPRESS)) {
1405 		compress_type = btrfs_compress_type2str(info->compress_type);
1406 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1407 			seq_printf(seq, ",compress-force=%s", compress_type);
1408 		else
1409 			seq_printf(seq, ",compress=%s", compress_type);
1410 		if (info->compress_level)
1411 			seq_printf(seq, ":%d", info->compress_level);
1412 	}
1413 	if (btrfs_test_opt(info, NOSSD))
1414 		seq_puts(seq, ",nossd");
1415 	if (btrfs_test_opt(info, SSD_SPREAD))
1416 		seq_puts(seq, ",ssd_spread");
1417 	else if (btrfs_test_opt(info, SSD))
1418 		seq_puts(seq, ",ssd");
1419 	if (btrfs_test_opt(info, NOTREELOG))
1420 		seq_puts(seq, ",notreelog");
1421 	if (btrfs_test_opt(info, NOLOGREPLAY))
1422 		seq_puts(seq, ",rescue=nologreplay");
1423 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1424 		seq_puts(seq, ",flushoncommit");
1425 	if (btrfs_test_opt(info, DISCARD_SYNC))
1426 		seq_puts(seq, ",discard");
1427 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1428 		seq_puts(seq, ",discard=async");
1429 	if (!(info->sb->s_flags & SB_POSIXACL))
1430 		seq_puts(seq, ",noacl");
1431 	if (btrfs_test_opt(info, SPACE_CACHE))
1432 		seq_puts(seq, ",space_cache");
1433 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1434 		seq_puts(seq, ",space_cache=v2");
1435 	else
1436 		seq_puts(seq, ",nospace_cache");
1437 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1438 		seq_puts(seq, ",rescan_uuid_tree");
1439 	if (btrfs_test_opt(info, CLEAR_CACHE))
1440 		seq_puts(seq, ",clear_cache");
1441 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1442 		seq_puts(seq, ",user_subvol_rm_allowed");
1443 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1444 		seq_puts(seq, ",enospc_debug");
1445 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1446 		seq_puts(seq, ",autodefrag");
1447 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1448 		seq_puts(seq, ",inode_cache");
1449 	if (btrfs_test_opt(info, SKIP_BALANCE))
1450 		seq_puts(seq, ",skip_balance");
1451 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1452 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1453 		seq_puts(seq, ",check_int_data");
1454 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1455 		seq_puts(seq, ",check_int");
1456 	if (info->check_integrity_print_mask)
1457 		seq_printf(seq, ",check_int_print_mask=%d",
1458 				info->check_integrity_print_mask);
1459 #endif
1460 	if (info->metadata_ratio)
1461 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1462 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1463 		seq_puts(seq, ",fatal_errors=panic");
1464 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1465 		seq_printf(seq, ",commit=%u", info->commit_interval);
1466 #ifdef CONFIG_BTRFS_DEBUG
1467 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1468 		seq_puts(seq, ",fragment=data");
1469 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1470 		seq_puts(seq, ",fragment=metadata");
1471 #endif
1472 	if (btrfs_test_opt(info, REF_VERIFY))
1473 		seq_puts(seq, ",ref_verify");
1474 	seq_printf(seq, ",subvolid=%llu",
1475 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1476 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1477 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1478 	if (!IS_ERR(subvol_name)) {
1479 		seq_puts(seq, ",subvol=");
1480 		seq_escape(seq, subvol_name, " \t\n\\");
1481 		kfree(subvol_name);
1482 	}
1483 	return 0;
1484 }
1485 
1486 static int btrfs_test_super(struct super_block *s, void *data)
1487 {
1488 	struct btrfs_fs_info *p = data;
1489 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1490 
1491 	return fs_info->fs_devices == p->fs_devices;
1492 }
1493 
1494 static int btrfs_set_super(struct super_block *s, void *data)
1495 {
1496 	int err = set_anon_super(s, data);
1497 	if (!err)
1498 		s->s_fs_info = data;
1499 	return err;
1500 }
1501 
1502 /*
1503  * subvolumes are identified by ino 256
1504  */
1505 static inline int is_subvolume_inode(struct inode *inode)
1506 {
1507 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1508 		return 1;
1509 	return 0;
1510 }
1511 
1512 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1513 				   struct vfsmount *mnt)
1514 {
1515 	struct dentry *root;
1516 	int ret;
1517 
1518 	if (!subvol_name) {
1519 		if (!subvol_objectid) {
1520 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1521 							  &subvol_objectid);
1522 			if (ret) {
1523 				root = ERR_PTR(ret);
1524 				goto out;
1525 			}
1526 		}
1527 		subvol_name = btrfs_get_subvol_name_from_objectid(
1528 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1529 		if (IS_ERR(subvol_name)) {
1530 			root = ERR_CAST(subvol_name);
1531 			subvol_name = NULL;
1532 			goto out;
1533 		}
1534 
1535 	}
1536 
1537 	root = mount_subtree(mnt, subvol_name);
1538 	/* mount_subtree() drops our reference on the vfsmount. */
1539 	mnt = NULL;
1540 
1541 	if (!IS_ERR(root)) {
1542 		struct super_block *s = root->d_sb;
1543 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1544 		struct inode *root_inode = d_inode(root);
1545 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1546 
1547 		ret = 0;
1548 		if (!is_subvolume_inode(root_inode)) {
1549 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1550 			       subvol_name);
1551 			ret = -EINVAL;
1552 		}
1553 		if (subvol_objectid && root_objectid != subvol_objectid) {
1554 			/*
1555 			 * This will also catch a race condition where a
1556 			 * subvolume which was passed by ID is renamed and
1557 			 * another subvolume is renamed over the old location.
1558 			 */
1559 			btrfs_err(fs_info,
1560 				  "subvol '%s' does not match subvolid %llu",
1561 				  subvol_name, subvol_objectid);
1562 			ret = -EINVAL;
1563 		}
1564 		if (ret) {
1565 			dput(root);
1566 			root = ERR_PTR(ret);
1567 			deactivate_locked_super(s);
1568 		}
1569 	}
1570 
1571 out:
1572 	mntput(mnt);
1573 	kfree(subvol_name);
1574 	return root;
1575 }
1576 
1577 /*
1578  * Find a superblock for the given device / mount point.
1579  *
1580  * Note: This is based on mount_bdev from fs/super.c with a few additions
1581  *       for multiple device setup.  Make sure to keep it in sync.
1582  */
1583 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1584 		int flags, const char *device_name, void *data)
1585 {
1586 	struct block_device *bdev = NULL;
1587 	struct super_block *s;
1588 	struct btrfs_device *device = NULL;
1589 	struct btrfs_fs_devices *fs_devices = NULL;
1590 	struct btrfs_fs_info *fs_info = NULL;
1591 	void *new_sec_opts = NULL;
1592 	fmode_t mode = FMODE_READ;
1593 	int error = 0;
1594 
1595 	if (!(flags & SB_RDONLY))
1596 		mode |= FMODE_WRITE;
1597 
1598 	if (data) {
1599 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1600 		if (error)
1601 			return ERR_PTR(error);
1602 	}
1603 
1604 	/*
1605 	 * Setup a dummy root and fs_info for test/set super.  This is because
1606 	 * we don't actually fill this stuff out until open_ctree, but we need
1607 	 * then open_ctree will properly initialize the file system specific
1608 	 * settings later.  btrfs_init_fs_info initializes the static elements
1609 	 * of the fs_info (locks and such) to make cleanup easier if we find a
1610 	 * superblock with our given fs_devices later on at sget() time.
1611 	 */
1612 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1613 	if (!fs_info) {
1614 		error = -ENOMEM;
1615 		goto error_sec_opts;
1616 	}
1617 	btrfs_init_fs_info(fs_info);
1618 
1619 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1620 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1621 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1622 		error = -ENOMEM;
1623 		goto error_fs_info;
1624 	}
1625 
1626 	mutex_lock(&uuid_mutex);
1627 	error = btrfs_parse_device_options(data, mode, fs_type);
1628 	if (error) {
1629 		mutex_unlock(&uuid_mutex);
1630 		goto error_fs_info;
1631 	}
1632 
1633 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1634 	if (IS_ERR(device)) {
1635 		mutex_unlock(&uuid_mutex);
1636 		error = PTR_ERR(device);
1637 		goto error_fs_info;
1638 	}
1639 
1640 	fs_devices = device->fs_devices;
1641 	fs_info->fs_devices = fs_devices;
1642 
1643 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1644 	mutex_unlock(&uuid_mutex);
1645 	if (error)
1646 		goto error_fs_info;
1647 
1648 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1649 		error = -EACCES;
1650 		goto error_close_devices;
1651 	}
1652 
1653 	bdev = fs_devices->latest_bdev;
1654 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1655 		 fs_info);
1656 	if (IS_ERR(s)) {
1657 		error = PTR_ERR(s);
1658 		goto error_close_devices;
1659 	}
1660 
1661 	if (s->s_root) {
1662 		btrfs_close_devices(fs_devices);
1663 		btrfs_free_fs_info(fs_info);
1664 		if ((flags ^ s->s_flags) & SB_RDONLY)
1665 			error = -EBUSY;
1666 	} else {
1667 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1668 		btrfs_sb(s)->bdev_holder = fs_type;
1669 		if (!strstr(crc32c_impl(), "generic"))
1670 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1671 		error = btrfs_fill_super(s, fs_devices, data);
1672 	}
1673 	if (!error)
1674 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1675 	security_free_mnt_opts(&new_sec_opts);
1676 	if (error) {
1677 		deactivate_locked_super(s);
1678 		return ERR_PTR(error);
1679 	}
1680 
1681 	return dget(s->s_root);
1682 
1683 error_close_devices:
1684 	btrfs_close_devices(fs_devices);
1685 error_fs_info:
1686 	btrfs_free_fs_info(fs_info);
1687 error_sec_opts:
1688 	security_free_mnt_opts(&new_sec_opts);
1689 	return ERR_PTR(error);
1690 }
1691 
1692 /*
1693  * Mount function which is called by VFS layer.
1694  *
1695  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1696  * which needs vfsmount* of device's root (/).  This means device's root has to
1697  * be mounted internally in any case.
1698  *
1699  * Operation flow:
1700  *   1. Parse subvol id related options for later use in mount_subvol().
1701  *
1702  *   2. Mount device's root (/) by calling vfs_kern_mount().
1703  *
1704  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1705  *      first place. In order to avoid calling btrfs_mount() again, we use
1706  *      different file_system_type which is not registered to VFS by
1707  *      register_filesystem() (btrfs_root_fs_type). As a result,
1708  *      btrfs_mount_root() is called. The return value will be used by
1709  *      mount_subtree() in mount_subvol().
1710  *
1711  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1712  *      "btrfs subvolume set-default", mount_subvol() is called always.
1713  */
1714 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1715 		const char *device_name, void *data)
1716 {
1717 	struct vfsmount *mnt_root;
1718 	struct dentry *root;
1719 	char *subvol_name = NULL;
1720 	u64 subvol_objectid = 0;
1721 	int error = 0;
1722 
1723 	error = btrfs_parse_subvol_options(data, &subvol_name,
1724 					&subvol_objectid);
1725 	if (error) {
1726 		kfree(subvol_name);
1727 		return ERR_PTR(error);
1728 	}
1729 
1730 	/* mount device's root (/) */
1731 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1732 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1733 		if (flags & SB_RDONLY) {
1734 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1735 				flags & ~SB_RDONLY, device_name, data);
1736 		} else {
1737 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1738 				flags | SB_RDONLY, device_name, data);
1739 			if (IS_ERR(mnt_root)) {
1740 				root = ERR_CAST(mnt_root);
1741 				kfree(subvol_name);
1742 				goto out;
1743 			}
1744 
1745 			down_write(&mnt_root->mnt_sb->s_umount);
1746 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1747 			up_write(&mnt_root->mnt_sb->s_umount);
1748 			if (error < 0) {
1749 				root = ERR_PTR(error);
1750 				mntput(mnt_root);
1751 				kfree(subvol_name);
1752 				goto out;
1753 			}
1754 		}
1755 	}
1756 	if (IS_ERR(mnt_root)) {
1757 		root = ERR_CAST(mnt_root);
1758 		kfree(subvol_name);
1759 		goto out;
1760 	}
1761 
1762 	/* mount_subvol() will free subvol_name and mnt_root */
1763 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1764 
1765 out:
1766 	return root;
1767 }
1768 
1769 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1770 				     u32 new_pool_size, u32 old_pool_size)
1771 {
1772 	if (new_pool_size == old_pool_size)
1773 		return;
1774 
1775 	fs_info->thread_pool_size = new_pool_size;
1776 
1777 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1778 	       old_pool_size, new_pool_size);
1779 
1780 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1781 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1782 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1783 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1784 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1785 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1786 				new_pool_size);
1787 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1788 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1789 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1790 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1791 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1792 				new_pool_size);
1793 }
1794 
1795 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1796 				       unsigned long old_opts, int flags)
1797 {
1798 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1799 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1800 	     (flags & SB_RDONLY))) {
1801 		/* wait for any defraggers to finish */
1802 		wait_event(fs_info->transaction_wait,
1803 			   (atomic_read(&fs_info->defrag_running) == 0));
1804 		if (flags & SB_RDONLY)
1805 			sync_filesystem(fs_info->sb);
1806 	}
1807 }
1808 
1809 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1810 					 unsigned long old_opts)
1811 {
1812 	/*
1813 	 * We need to cleanup all defragable inodes if the autodefragment is
1814 	 * close or the filesystem is read only.
1815 	 */
1816 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1817 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1818 		btrfs_cleanup_defrag_inodes(fs_info);
1819 	}
1820 
1821 	/* If we toggled discard async */
1822 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1823 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1824 		btrfs_discard_resume(fs_info);
1825 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1826 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1827 		btrfs_discard_cleanup(fs_info);
1828 }
1829 
1830 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1831 {
1832 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1833 	struct btrfs_root *root = fs_info->tree_root;
1834 	unsigned old_flags = sb->s_flags;
1835 	unsigned long old_opts = fs_info->mount_opt;
1836 	unsigned long old_compress_type = fs_info->compress_type;
1837 	u64 old_max_inline = fs_info->max_inline;
1838 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1839 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1840 	int ret;
1841 
1842 	sync_filesystem(sb);
1843 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1844 
1845 	if (data) {
1846 		void *new_sec_opts = NULL;
1847 
1848 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1849 		if (!ret)
1850 			ret = security_sb_remount(sb, new_sec_opts);
1851 		security_free_mnt_opts(&new_sec_opts);
1852 		if (ret)
1853 			goto restore;
1854 	}
1855 
1856 	ret = btrfs_parse_options(fs_info, data, *flags);
1857 	if (ret)
1858 		goto restore;
1859 
1860 	btrfs_remount_begin(fs_info, old_opts, *flags);
1861 	btrfs_resize_thread_pool(fs_info,
1862 		fs_info->thread_pool_size, old_thread_pool_size);
1863 
1864 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1865 		goto out;
1866 
1867 	if (*flags & SB_RDONLY) {
1868 		/*
1869 		 * this also happens on 'umount -rf' or on shutdown, when
1870 		 * the filesystem is busy.
1871 		 */
1872 		cancel_work_sync(&fs_info->async_reclaim_work);
1873 
1874 		btrfs_discard_cleanup(fs_info);
1875 
1876 		/* wait for the uuid_scan task to finish */
1877 		down(&fs_info->uuid_tree_rescan_sem);
1878 		/* avoid complains from lockdep et al. */
1879 		up(&fs_info->uuid_tree_rescan_sem);
1880 
1881 		sb->s_flags |= SB_RDONLY;
1882 
1883 		/*
1884 		 * Setting SB_RDONLY will put the cleaner thread to
1885 		 * sleep at the next loop if it's already active.
1886 		 * If it's already asleep, we'll leave unused block
1887 		 * groups on disk until we're mounted read-write again
1888 		 * unless we clean them up here.
1889 		 */
1890 		btrfs_delete_unused_bgs(fs_info);
1891 
1892 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1893 		btrfs_scrub_cancel(fs_info);
1894 		btrfs_pause_balance(fs_info);
1895 
1896 		ret = btrfs_commit_super(fs_info);
1897 		if (ret)
1898 			goto restore;
1899 	} else {
1900 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1901 			btrfs_err(fs_info,
1902 				"Remounting read-write after error is not allowed");
1903 			ret = -EINVAL;
1904 			goto restore;
1905 		}
1906 		if (fs_info->fs_devices->rw_devices == 0) {
1907 			ret = -EACCES;
1908 			goto restore;
1909 		}
1910 
1911 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1912 			btrfs_warn(fs_info,
1913 		"too many missing devices, writable remount is not allowed");
1914 			ret = -EACCES;
1915 			goto restore;
1916 		}
1917 
1918 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1919 			btrfs_warn(fs_info,
1920 		"mount required to replay tree-log, cannot remount read-write");
1921 			ret = -EINVAL;
1922 			goto restore;
1923 		}
1924 
1925 		ret = btrfs_cleanup_fs_roots(fs_info);
1926 		if (ret)
1927 			goto restore;
1928 
1929 		/* recover relocation */
1930 		mutex_lock(&fs_info->cleaner_mutex);
1931 		ret = btrfs_recover_relocation(root);
1932 		mutex_unlock(&fs_info->cleaner_mutex);
1933 		if (ret)
1934 			goto restore;
1935 
1936 		ret = btrfs_resume_balance_async(fs_info);
1937 		if (ret)
1938 			goto restore;
1939 
1940 		ret = btrfs_resume_dev_replace_async(fs_info);
1941 		if (ret) {
1942 			btrfs_warn(fs_info, "failed to resume dev_replace");
1943 			goto restore;
1944 		}
1945 
1946 		btrfs_qgroup_rescan_resume(fs_info);
1947 
1948 		if (!fs_info->uuid_root) {
1949 			btrfs_info(fs_info, "creating UUID tree");
1950 			ret = btrfs_create_uuid_tree(fs_info);
1951 			if (ret) {
1952 				btrfs_warn(fs_info,
1953 					   "failed to create the UUID tree %d",
1954 					   ret);
1955 				goto restore;
1956 			}
1957 		}
1958 		sb->s_flags &= ~SB_RDONLY;
1959 
1960 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1961 	}
1962 out:
1963 	/*
1964 	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
1965 	 * since the absence of the flag means it can be toggled off by remount.
1966 	 */
1967 	*flags |= SB_I_VERSION;
1968 
1969 	wake_up_process(fs_info->transaction_kthread);
1970 	btrfs_remount_cleanup(fs_info, old_opts);
1971 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1972 
1973 	return 0;
1974 
1975 restore:
1976 	/* We've hit an error - don't reset SB_RDONLY */
1977 	if (sb_rdonly(sb))
1978 		old_flags |= SB_RDONLY;
1979 	sb->s_flags = old_flags;
1980 	fs_info->mount_opt = old_opts;
1981 	fs_info->compress_type = old_compress_type;
1982 	fs_info->max_inline = old_max_inline;
1983 	btrfs_resize_thread_pool(fs_info,
1984 		old_thread_pool_size, fs_info->thread_pool_size);
1985 	fs_info->metadata_ratio = old_metadata_ratio;
1986 	btrfs_remount_cleanup(fs_info, old_opts);
1987 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1988 
1989 	return ret;
1990 }
1991 
1992 /* Used to sort the devices by max_avail(descending sort) */
1993 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1994 				       const void *dev_info2)
1995 {
1996 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1997 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1998 		return -1;
1999 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2000 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
2001 		return 1;
2002 	else
2003 	return 0;
2004 }
2005 
2006 /*
2007  * sort the devices by max_avail, in which max free extent size of each device
2008  * is stored.(Descending Sort)
2009  */
2010 static inline void btrfs_descending_sort_devices(
2011 					struct btrfs_device_info *devices,
2012 					size_t nr_devices)
2013 {
2014 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2015 	     btrfs_cmp_device_free_bytes, NULL);
2016 }
2017 
2018 /*
2019  * The helper to calc the free space on the devices that can be used to store
2020  * file data.
2021  */
2022 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2023 					      u64 *free_bytes)
2024 {
2025 	struct btrfs_device_info *devices_info;
2026 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2027 	struct btrfs_device *device;
2028 	u64 type;
2029 	u64 avail_space;
2030 	u64 min_stripe_size;
2031 	int num_stripes = 1;
2032 	int i = 0, nr_devices;
2033 	const struct btrfs_raid_attr *rattr;
2034 
2035 	/*
2036 	 * We aren't under the device list lock, so this is racy-ish, but good
2037 	 * enough for our purposes.
2038 	 */
2039 	nr_devices = fs_info->fs_devices->open_devices;
2040 	if (!nr_devices) {
2041 		smp_mb();
2042 		nr_devices = fs_info->fs_devices->open_devices;
2043 		ASSERT(nr_devices);
2044 		if (!nr_devices) {
2045 			*free_bytes = 0;
2046 			return 0;
2047 		}
2048 	}
2049 
2050 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2051 			       GFP_KERNEL);
2052 	if (!devices_info)
2053 		return -ENOMEM;
2054 
2055 	/* calc min stripe number for data space allocation */
2056 	type = btrfs_data_alloc_profile(fs_info);
2057 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2058 
2059 	if (type & BTRFS_BLOCK_GROUP_RAID0)
2060 		num_stripes = nr_devices;
2061 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
2062 		num_stripes = 2;
2063 	else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
2064 		num_stripes = 3;
2065 	else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
2066 		num_stripes = 4;
2067 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2068 		num_stripes = 4;
2069 
2070 	/* Adjust for more than 1 stripe per device */
2071 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
2072 
2073 	rcu_read_lock();
2074 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2075 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2076 						&device->dev_state) ||
2077 		    !device->bdev ||
2078 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2079 			continue;
2080 
2081 		if (i >= nr_devices)
2082 			break;
2083 
2084 		avail_space = device->total_bytes - device->bytes_used;
2085 
2086 		/* align with stripe_len */
2087 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2088 
2089 		/*
2090 		 * In order to avoid overwriting the superblock on the drive,
2091 		 * btrfs starts at an offset of at least 1MB when doing chunk
2092 		 * allocation.
2093 		 *
2094 		 * This ensures we have at least min_stripe_size free space
2095 		 * after excluding 1MB.
2096 		 */
2097 		if (avail_space <= SZ_1M + min_stripe_size)
2098 			continue;
2099 
2100 		avail_space -= SZ_1M;
2101 
2102 		devices_info[i].dev = device;
2103 		devices_info[i].max_avail = avail_space;
2104 
2105 		i++;
2106 	}
2107 	rcu_read_unlock();
2108 
2109 	nr_devices = i;
2110 
2111 	btrfs_descending_sort_devices(devices_info, nr_devices);
2112 
2113 	i = nr_devices - 1;
2114 	avail_space = 0;
2115 	while (nr_devices >= rattr->devs_min) {
2116 		num_stripes = min(num_stripes, nr_devices);
2117 
2118 		if (devices_info[i].max_avail >= min_stripe_size) {
2119 			int j;
2120 			u64 alloc_size;
2121 
2122 			avail_space += devices_info[i].max_avail * num_stripes;
2123 			alloc_size = devices_info[i].max_avail;
2124 			for (j = i + 1 - num_stripes; j <= i; j++)
2125 				devices_info[j].max_avail -= alloc_size;
2126 		}
2127 		i--;
2128 		nr_devices--;
2129 	}
2130 
2131 	kfree(devices_info);
2132 	*free_bytes = avail_space;
2133 	return 0;
2134 }
2135 
2136 /*
2137  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2138  *
2139  * If there's a redundant raid level at DATA block groups, use the respective
2140  * multiplier to scale the sizes.
2141  *
2142  * Unused device space usage is based on simulating the chunk allocator
2143  * algorithm that respects the device sizes and order of allocations.  This is
2144  * a close approximation of the actual use but there are other factors that may
2145  * change the result (like a new metadata chunk).
2146  *
2147  * If metadata is exhausted, f_bavail will be 0.
2148  */
2149 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2150 {
2151 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2152 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2153 	struct btrfs_space_info *found;
2154 	u64 total_used = 0;
2155 	u64 total_free_data = 0;
2156 	u64 total_free_meta = 0;
2157 	int bits = dentry->d_sb->s_blocksize_bits;
2158 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2159 	unsigned factor = 1;
2160 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2161 	int ret;
2162 	u64 thresh = 0;
2163 	int mixed = 0;
2164 
2165 	rcu_read_lock();
2166 	list_for_each_entry_rcu(found, &fs_info->space_info, list) {
2167 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2168 			int i;
2169 
2170 			total_free_data += found->disk_total - found->disk_used;
2171 			total_free_data -=
2172 				btrfs_account_ro_block_groups_free_space(found);
2173 
2174 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2175 				if (!list_empty(&found->block_groups[i]))
2176 					factor = btrfs_bg_type_to_factor(
2177 						btrfs_raid_array[i].bg_flag);
2178 			}
2179 		}
2180 
2181 		/*
2182 		 * Metadata in mixed block goup profiles are accounted in data
2183 		 */
2184 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2185 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2186 				mixed = 1;
2187 			else
2188 				total_free_meta += found->disk_total -
2189 					found->disk_used;
2190 		}
2191 
2192 		total_used += found->disk_used;
2193 	}
2194 
2195 	rcu_read_unlock();
2196 
2197 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2198 	buf->f_blocks >>= bits;
2199 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2200 
2201 	/* Account global block reserve as used, it's in logical size already */
2202 	spin_lock(&block_rsv->lock);
2203 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2204 	if (buf->f_bfree >= block_rsv->size >> bits)
2205 		buf->f_bfree -= block_rsv->size >> bits;
2206 	else
2207 		buf->f_bfree = 0;
2208 	spin_unlock(&block_rsv->lock);
2209 
2210 	buf->f_bavail = div_u64(total_free_data, factor);
2211 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2212 	if (ret)
2213 		return ret;
2214 	buf->f_bavail += div_u64(total_free_data, factor);
2215 	buf->f_bavail = buf->f_bavail >> bits;
2216 
2217 	/*
2218 	 * We calculate the remaining metadata space minus global reserve. If
2219 	 * this is (supposedly) smaller than zero, there's no space. But this
2220 	 * does not hold in practice, the exhausted state happens where's still
2221 	 * some positive delta. So we apply some guesswork and compare the
2222 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2223 	 *
2224 	 * We probably cannot calculate the exact threshold value because this
2225 	 * depends on the internal reservations requested by various
2226 	 * operations, so some operations that consume a few metadata will
2227 	 * succeed even if the Avail is zero. But this is better than the other
2228 	 * way around.
2229 	 */
2230 	thresh = SZ_4M;
2231 
2232 	/*
2233 	 * We only want to claim there's no available space if we can no longer
2234 	 * allocate chunks for our metadata profile and our global reserve will
2235 	 * not fit in the free metadata space.  If we aren't ->full then we
2236 	 * still can allocate chunks and thus are fine using the currently
2237 	 * calculated f_bavail.
2238 	 */
2239 	if (!mixed && block_rsv->space_info->full &&
2240 	    total_free_meta - thresh < block_rsv->size)
2241 		buf->f_bavail = 0;
2242 
2243 	buf->f_type = BTRFS_SUPER_MAGIC;
2244 	buf->f_bsize = dentry->d_sb->s_blocksize;
2245 	buf->f_namelen = BTRFS_NAME_LEN;
2246 
2247 	/* We treat it as constant endianness (it doesn't matter _which_)
2248 	   because we want the fsid to come out the same whether mounted
2249 	   on a big-endian or little-endian host */
2250 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2251 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2252 	/* Mask in the root object ID too, to disambiguate subvols */
2253 	buf->f_fsid.val[0] ^=
2254 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2255 	buf->f_fsid.val[1] ^=
2256 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2257 
2258 	return 0;
2259 }
2260 
2261 static void btrfs_kill_super(struct super_block *sb)
2262 {
2263 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2264 	kill_anon_super(sb);
2265 	btrfs_free_fs_info(fs_info);
2266 }
2267 
2268 static struct file_system_type btrfs_fs_type = {
2269 	.owner		= THIS_MODULE,
2270 	.name		= "btrfs",
2271 	.mount		= btrfs_mount,
2272 	.kill_sb	= btrfs_kill_super,
2273 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2274 };
2275 
2276 static struct file_system_type btrfs_root_fs_type = {
2277 	.owner		= THIS_MODULE,
2278 	.name		= "btrfs",
2279 	.mount		= btrfs_mount_root,
2280 	.kill_sb	= btrfs_kill_super,
2281 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2282 };
2283 
2284 MODULE_ALIAS_FS("btrfs");
2285 
2286 static int btrfs_control_open(struct inode *inode, struct file *file)
2287 {
2288 	/*
2289 	 * The control file's private_data is used to hold the
2290 	 * transaction when it is started and is used to keep
2291 	 * track of whether a transaction is already in progress.
2292 	 */
2293 	file->private_data = NULL;
2294 	return 0;
2295 }
2296 
2297 /*
2298  * Used by /dev/btrfs-control for devices ioctls.
2299  */
2300 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2301 				unsigned long arg)
2302 {
2303 	struct btrfs_ioctl_vol_args *vol;
2304 	struct btrfs_device *device = NULL;
2305 	int ret = -ENOTTY;
2306 
2307 	if (!capable(CAP_SYS_ADMIN))
2308 		return -EPERM;
2309 
2310 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2311 	if (IS_ERR(vol))
2312 		return PTR_ERR(vol);
2313 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2314 
2315 	switch (cmd) {
2316 	case BTRFS_IOC_SCAN_DEV:
2317 		mutex_lock(&uuid_mutex);
2318 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2319 					       &btrfs_root_fs_type);
2320 		ret = PTR_ERR_OR_ZERO(device);
2321 		mutex_unlock(&uuid_mutex);
2322 		break;
2323 	case BTRFS_IOC_FORGET_DEV:
2324 		ret = btrfs_forget_devices(vol->name);
2325 		break;
2326 	case BTRFS_IOC_DEVICES_READY:
2327 		mutex_lock(&uuid_mutex);
2328 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2329 					       &btrfs_root_fs_type);
2330 		if (IS_ERR(device)) {
2331 			mutex_unlock(&uuid_mutex);
2332 			ret = PTR_ERR(device);
2333 			break;
2334 		}
2335 		ret = !(device->fs_devices->num_devices ==
2336 			device->fs_devices->total_devices);
2337 		mutex_unlock(&uuid_mutex);
2338 		break;
2339 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2340 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2341 		break;
2342 	}
2343 
2344 	kfree(vol);
2345 	return ret;
2346 }
2347 
2348 static int btrfs_freeze(struct super_block *sb)
2349 {
2350 	struct btrfs_trans_handle *trans;
2351 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2352 	struct btrfs_root *root = fs_info->tree_root;
2353 
2354 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2355 	/*
2356 	 * We don't need a barrier here, we'll wait for any transaction that
2357 	 * could be in progress on other threads (and do delayed iputs that
2358 	 * we want to avoid on a frozen filesystem), or do the commit
2359 	 * ourselves.
2360 	 */
2361 	trans = btrfs_attach_transaction_barrier(root);
2362 	if (IS_ERR(trans)) {
2363 		/* no transaction, don't bother */
2364 		if (PTR_ERR(trans) == -ENOENT)
2365 			return 0;
2366 		return PTR_ERR(trans);
2367 	}
2368 	return btrfs_commit_transaction(trans);
2369 }
2370 
2371 static int btrfs_unfreeze(struct super_block *sb)
2372 {
2373 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2374 
2375 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2376 	return 0;
2377 }
2378 
2379 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2380 {
2381 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2382 	struct btrfs_device *dev, *first_dev = NULL;
2383 
2384 	/*
2385 	 * Lightweight locking of the devices. We should not need
2386 	 * device_list_mutex here as we only read the device data and the list
2387 	 * is protected by RCU.  Even if a device is deleted during the list
2388 	 * traversals, we'll get valid data, the freeing callback will wait at
2389 	 * least until the rcu_read_unlock.
2390 	 */
2391 	rcu_read_lock();
2392 	list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) {
2393 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2394 			continue;
2395 		if (!dev->name)
2396 			continue;
2397 		if (!first_dev || dev->devid < first_dev->devid)
2398 			first_dev = dev;
2399 	}
2400 
2401 	if (first_dev)
2402 		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2403 	else
2404 		WARN_ON(1);
2405 	rcu_read_unlock();
2406 	return 0;
2407 }
2408 
2409 static const struct super_operations btrfs_super_ops = {
2410 	.drop_inode	= btrfs_drop_inode,
2411 	.evict_inode	= btrfs_evict_inode,
2412 	.put_super	= btrfs_put_super,
2413 	.sync_fs	= btrfs_sync_fs,
2414 	.show_options	= btrfs_show_options,
2415 	.show_devname	= btrfs_show_devname,
2416 	.alloc_inode	= btrfs_alloc_inode,
2417 	.destroy_inode	= btrfs_destroy_inode,
2418 	.free_inode	= btrfs_free_inode,
2419 	.statfs		= btrfs_statfs,
2420 	.remount_fs	= btrfs_remount,
2421 	.freeze_fs	= btrfs_freeze,
2422 	.unfreeze_fs	= btrfs_unfreeze,
2423 };
2424 
2425 static const struct file_operations btrfs_ctl_fops = {
2426 	.open = btrfs_control_open,
2427 	.unlocked_ioctl	 = btrfs_control_ioctl,
2428 	.compat_ioctl = compat_ptr_ioctl,
2429 	.owner	 = THIS_MODULE,
2430 	.llseek = noop_llseek,
2431 };
2432 
2433 static struct miscdevice btrfs_misc = {
2434 	.minor		= BTRFS_MINOR,
2435 	.name		= "btrfs-control",
2436 	.fops		= &btrfs_ctl_fops
2437 };
2438 
2439 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2440 MODULE_ALIAS("devname:btrfs-control");
2441 
2442 static int __init btrfs_interface_init(void)
2443 {
2444 	return misc_register(&btrfs_misc);
2445 }
2446 
2447 static __cold void btrfs_interface_exit(void)
2448 {
2449 	misc_deregister(&btrfs_misc);
2450 }
2451 
2452 static void __init btrfs_print_mod_info(void)
2453 {
2454 	static const char options[] = ""
2455 #ifdef CONFIG_BTRFS_DEBUG
2456 			", debug=on"
2457 #endif
2458 #ifdef CONFIG_BTRFS_ASSERT
2459 			", assert=on"
2460 #endif
2461 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2462 			", integrity-checker=on"
2463 #endif
2464 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2465 			", ref-verify=on"
2466 #endif
2467 			;
2468 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2469 }
2470 
2471 static int __init init_btrfs_fs(void)
2472 {
2473 	int err;
2474 
2475 	btrfs_props_init();
2476 
2477 	err = btrfs_init_sysfs();
2478 	if (err)
2479 		return err;
2480 
2481 	btrfs_init_compress();
2482 
2483 	err = btrfs_init_cachep();
2484 	if (err)
2485 		goto free_compress;
2486 
2487 	err = extent_io_init();
2488 	if (err)
2489 		goto free_cachep;
2490 
2491 	err = extent_state_cache_init();
2492 	if (err)
2493 		goto free_extent_io;
2494 
2495 	err = extent_map_init();
2496 	if (err)
2497 		goto free_extent_state_cache;
2498 
2499 	err = ordered_data_init();
2500 	if (err)
2501 		goto free_extent_map;
2502 
2503 	err = btrfs_delayed_inode_init();
2504 	if (err)
2505 		goto free_ordered_data;
2506 
2507 	err = btrfs_auto_defrag_init();
2508 	if (err)
2509 		goto free_delayed_inode;
2510 
2511 	err = btrfs_delayed_ref_init();
2512 	if (err)
2513 		goto free_auto_defrag;
2514 
2515 	err = btrfs_prelim_ref_init();
2516 	if (err)
2517 		goto free_delayed_ref;
2518 
2519 	err = btrfs_end_io_wq_init();
2520 	if (err)
2521 		goto free_prelim_ref;
2522 
2523 	err = btrfs_interface_init();
2524 	if (err)
2525 		goto free_end_io_wq;
2526 
2527 	btrfs_init_lockdep();
2528 
2529 	btrfs_print_mod_info();
2530 
2531 	err = btrfs_run_sanity_tests();
2532 	if (err)
2533 		goto unregister_ioctl;
2534 
2535 	err = register_filesystem(&btrfs_fs_type);
2536 	if (err)
2537 		goto unregister_ioctl;
2538 
2539 	return 0;
2540 
2541 unregister_ioctl:
2542 	btrfs_interface_exit();
2543 free_end_io_wq:
2544 	btrfs_end_io_wq_exit();
2545 free_prelim_ref:
2546 	btrfs_prelim_ref_exit();
2547 free_delayed_ref:
2548 	btrfs_delayed_ref_exit();
2549 free_auto_defrag:
2550 	btrfs_auto_defrag_exit();
2551 free_delayed_inode:
2552 	btrfs_delayed_inode_exit();
2553 free_ordered_data:
2554 	ordered_data_exit();
2555 free_extent_map:
2556 	extent_map_exit();
2557 free_extent_state_cache:
2558 	extent_state_cache_exit();
2559 free_extent_io:
2560 	extent_io_exit();
2561 free_cachep:
2562 	btrfs_destroy_cachep();
2563 free_compress:
2564 	btrfs_exit_compress();
2565 	btrfs_exit_sysfs();
2566 
2567 	return err;
2568 }
2569 
2570 static void __exit exit_btrfs_fs(void)
2571 {
2572 	btrfs_destroy_cachep();
2573 	btrfs_delayed_ref_exit();
2574 	btrfs_auto_defrag_exit();
2575 	btrfs_delayed_inode_exit();
2576 	btrfs_prelim_ref_exit();
2577 	ordered_data_exit();
2578 	extent_map_exit();
2579 	extent_state_cache_exit();
2580 	extent_io_exit();
2581 	btrfs_interface_exit();
2582 	btrfs_end_io_wq_exit();
2583 	unregister_filesystem(&btrfs_fs_type);
2584 	btrfs_exit_sysfs();
2585 	btrfs_cleanup_fs_uuids();
2586 	btrfs_exit_compress();
2587 }
2588 
2589 late_initcall(init_btrfs_fs);
2590 module_exit(exit_btrfs_fs)
2591 
2592 MODULE_LICENSE("GPL");
2593 MODULE_SOFTDEP("pre: crc32c");
2594 MODULE_SOFTDEP("pre: xxhash64");
2595 MODULE_SOFTDEP("pre: sha256");
2596 MODULE_SOFTDEP("pre: blake2b-256");
2597