xref: /openbmc/linux/fs/btrfs/super.c (revision e6dec923)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #include "qgroup.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66 
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69 
70 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71 
72 const char *btrfs_decode_error(int errno)
73 {
74 	char *errstr = "unknown";
75 
76 	switch (errno) {
77 	case -EIO:
78 		errstr = "IO failure";
79 		break;
80 	case -ENOMEM:
81 		errstr = "Out of memory";
82 		break;
83 	case -EROFS:
84 		errstr = "Readonly filesystem";
85 		break;
86 	case -EEXIST:
87 		errstr = "Object already exists";
88 		break;
89 	case -ENOSPC:
90 		errstr = "No space left";
91 		break;
92 	case -ENOENT:
93 		errstr = "No such entry";
94 		break;
95 	}
96 
97 	return errstr;
98 }
99 
100 /* btrfs handle error by forcing the filesystem readonly */
101 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
102 {
103 	struct super_block *sb = fs_info->sb;
104 
105 	if (sb->s_flags & MS_RDONLY)
106 		return;
107 
108 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
109 		sb->s_flags |= MS_RDONLY;
110 		btrfs_info(fs_info, "forced readonly");
111 		/*
112 		 * Note that a running device replace operation is not
113 		 * canceled here although there is no way to update
114 		 * the progress. It would add the risk of a deadlock,
115 		 * therefore the canceling is omitted. The only penalty
116 		 * is that some I/O remains active until the procedure
117 		 * completes. The next time when the filesystem is
118 		 * mounted writeable again, the device replace
119 		 * operation continues.
120 		 */
121 	}
122 }
123 
124 /*
125  * __btrfs_handle_fs_error decodes expected errors from the caller and
126  * invokes the approciate error response.
127  */
128 __cold
129 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
130 		       unsigned int line, int errno, const char *fmt, ...)
131 {
132 	struct super_block *sb = fs_info->sb;
133 #ifdef CONFIG_PRINTK
134 	const char *errstr;
135 #endif
136 
137 	/*
138 	 * Special case: if the error is EROFS, and we're already
139 	 * under MS_RDONLY, then it is safe here.
140 	 */
141 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
142   		return;
143 
144 #ifdef CONFIG_PRINTK
145 	errstr = btrfs_decode_error(errno);
146 	if (fmt) {
147 		struct va_format vaf;
148 		va_list args;
149 
150 		va_start(args, fmt);
151 		vaf.fmt = fmt;
152 		vaf.va = &args;
153 
154 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
155 			sb->s_id, function, line, errno, errstr, &vaf);
156 		va_end(args);
157 	} else {
158 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
159 			sb->s_id, function, line, errno, errstr);
160 	}
161 #endif
162 
163 	/*
164 	 * Today we only save the error info to memory.  Long term we'll
165 	 * also send it down to the disk
166 	 */
167 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
168 
169 	/* Don't go through full error handling during mount */
170 	if (sb->s_flags & MS_BORN)
171 		btrfs_handle_error(fs_info);
172 }
173 
174 #ifdef CONFIG_PRINTK
175 static const char * const logtypes[] = {
176 	"emergency",
177 	"alert",
178 	"critical",
179 	"error",
180 	"warning",
181 	"notice",
182 	"info",
183 	"debug",
184 };
185 
186 
187 /*
188  * Use one ratelimit state per log level so that a flood of less important
189  * messages doesn't cause more important ones to be dropped.
190  */
191 static struct ratelimit_state printk_limits[] = {
192 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
193 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
194 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
195 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
196 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
197 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
198 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
199 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
200 };
201 
202 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
203 {
204 	struct super_block *sb = fs_info->sb;
205 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
206 	struct va_format vaf;
207 	va_list args;
208 	int kern_level;
209 	const char *type = logtypes[4];
210 	struct ratelimit_state *ratelimit = &printk_limits[4];
211 
212 	va_start(args, fmt);
213 
214 	while ((kern_level = printk_get_level(fmt)) != 0) {
215 		size_t size = printk_skip_level(fmt) - fmt;
216 
217 		if (kern_level >= '0' && kern_level <= '7') {
218 			memcpy(lvl, fmt,  size);
219 			lvl[size] = '\0';
220 			type = logtypes[kern_level - '0'];
221 			ratelimit = &printk_limits[kern_level - '0'];
222 		}
223 		fmt += size;
224 	}
225 
226 	vaf.fmt = fmt;
227 	vaf.va = &args;
228 
229 	if (__ratelimit(ratelimit))
230 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
231 
232 	va_end(args);
233 }
234 #endif
235 
236 /*
237  * We only mark the transaction aborted and then set the file system read-only.
238  * This will prevent new transactions from starting or trying to join this
239  * one.
240  *
241  * This means that error recovery at the call site is limited to freeing
242  * any local memory allocations and passing the error code up without
243  * further cleanup. The transaction should complete as it normally would
244  * in the call path but will return -EIO.
245  *
246  * We'll complete the cleanup in btrfs_end_transaction and
247  * btrfs_commit_transaction.
248  */
249 __cold
250 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
251 			       const char *function,
252 			       unsigned int line, int errno)
253 {
254 	struct btrfs_fs_info *fs_info = trans->fs_info;
255 
256 	trans->aborted = errno;
257 	/* Nothing used. The other threads that have joined this
258 	 * transaction may be able to continue. */
259 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
260 		const char *errstr;
261 
262 		errstr = btrfs_decode_error(errno);
263 		btrfs_warn(fs_info,
264 		           "%s:%d: Aborting unused transaction(%s).",
265 		           function, line, errstr);
266 		return;
267 	}
268 	WRITE_ONCE(trans->transaction->aborted, errno);
269 	/* Wake up anybody who may be waiting on this transaction */
270 	wake_up(&fs_info->transaction_wait);
271 	wake_up(&fs_info->transaction_blocked_wait);
272 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
273 }
274 /*
275  * __btrfs_panic decodes unexpected, fatal errors from the caller,
276  * issues an alert, and either panics or BUGs, depending on mount options.
277  */
278 __cold
279 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
280 		   unsigned int line, int errno, const char *fmt, ...)
281 {
282 	char *s_id = "<unknown>";
283 	const char *errstr;
284 	struct va_format vaf = { .fmt = fmt };
285 	va_list args;
286 
287 	if (fs_info)
288 		s_id = fs_info->sb->s_id;
289 
290 	va_start(args, fmt);
291 	vaf.va = &args;
292 
293 	errstr = btrfs_decode_error(errno);
294 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
295 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
296 			s_id, function, line, &vaf, errno, errstr);
297 
298 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
299 		   function, line, &vaf, errno, errstr);
300 	va_end(args);
301 	/* Caller calls BUG() */
302 }
303 
304 static void btrfs_put_super(struct super_block *sb)
305 {
306 	close_ctree(btrfs_sb(sb));
307 }
308 
309 enum {
310 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
311 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
312 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
313 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
314 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
315 	Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
316 	Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
317 	Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
318 	Opt_skip_balance, Opt_check_integrity,
319 	Opt_check_integrity_including_extent_data,
320 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
321 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
322 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
323 	Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
324 	Opt_nologreplay, Opt_norecovery,
325 #ifdef CONFIG_BTRFS_DEBUG
326 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
327 #endif
328 	Opt_err,
329 };
330 
331 static const match_table_t tokens = {
332 	{Opt_degraded, "degraded"},
333 	{Opt_subvol, "subvol=%s"},
334 	{Opt_subvolid, "subvolid=%s"},
335 	{Opt_device, "device=%s"},
336 	{Opt_nodatasum, "nodatasum"},
337 	{Opt_datasum, "datasum"},
338 	{Opt_nodatacow, "nodatacow"},
339 	{Opt_datacow, "datacow"},
340 	{Opt_nobarrier, "nobarrier"},
341 	{Opt_barrier, "barrier"},
342 	{Opt_max_inline, "max_inline=%s"},
343 	{Opt_alloc_start, "alloc_start=%s"},
344 	{Opt_thread_pool, "thread_pool=%d"},
345 	{Opt_compress, "compress"},
346 	{Opt_compress_type, "compress=%s"},
347 	{Opt_compress_force, "compress-force"},
348 	{Opt_compress_force_type, "compress-force=%s"},
349 	{Opt_ssd, "ssd"},
350 	{Opt_ssd_spread, "ssd_spread"},
351 	{Opt_nossd, "nossd"},
352 	{Opt_acl, "acl"},
353 	{Opt_noacl, "noacl"},
354 	{Opt_notreelog, "notreelog"},
355 	{Opt_treelog, "treelog"},
356 	{Opt_nologreplay, "nologreplay"},
357 	{Opt_norecovery, "norecovery"},
358 	{Opt_flushoncommit, "flushoncommit"},
359 	{Opt_noflushoncommit, "noflushoncommit"},
360 	{Opt_ratio, "metadata_ratio=%d"},
361 	{Opt_discard, "discard"},
362 	{Opt_nodiscard, "nodiscard"},
363 	{Opt_space_cache, "space_cache"},
364 	{Opt_space_cache_version, "space_cache=%s"},
365 	{Opt_clear_cache, "clear_cache"},
366 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
367 	{Opt_enospc_debug, "enospc_debug"},
368 	{Opt_noenospc_debug, "noenospc_debug"},
369 	{Opt_subvolrootid, "subvolrootid=%d"},
370 	{Opt_defrag, "autodefrag"},
371 	{Opt_nodefrag, "noautodefrag"},
372 	{Opt_inode_cache, "inode_cache"},
373 	{Opt_noinode_cache, "noinode_cache"},
374 	{Opt_no_space_cache, "nospace_cache"},
375 	{Opt_recovery, "recovery"}, /* deprecated */
376 	{Opt_usebackuproot, "usebackuproot"},
377 	{Opt_skip_balance, "skip_balance"},
378 	{Opt_check_integrity, "check_int"},
379 	{Opt_check_integrity_including_extent_data, "check_int_data"},
380 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
381 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
382 	{Opt_fatal_errors, "fatal_errors=%s"},
383 	{Opt_commit_interval, "commit=%d"},
384 #ifdef CONFIG_BTRFS_DEBUG
385 	{Opt_fragment_data, "fragment=data"},
386 	{Opt_fragment_metadata, "fragment=metadata"},
387 	{Opt_fragment_all, "fragment=all"},
388 #endif
389 	{Opt_err, NULL},
390 };
391 
392 /*
393  * Regular mount options parser.  Everything that is needed only when
394  * reading in a new superblock is parsed here.
395  * XXX JDM: This needs to be cleaned up for remount.
396  */
397 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
398 			unsigned long new_flags)
399 {
400 	substring_t args[MAX_OPT_ARGS];
401 	char *p, *num, *orig = NULL;
402 	u64 cache_gen;
403 	int intarg;
404 	int ret = 0;
405 	char *compress_type;
406 	bool compress_force = false;
407 	enum btrfs_compression_type saved_compress_type;
408 	bool saved_compress_force;
409 	int no_compress = 0;
410 
411 	cache_gen = btrfs_super_cache_generation(info->super_copy);
412 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
413 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
414 	else if (cache_gen)
415 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
416 
417 	/*
418 	 * Even the options are empty, we still need to do extra check
419 	 * against new flags
420 	 */
421 	if (!options)
422 		goto check;
423 
424 	/*
425 	 * strsep changes the string, duplicate it because parse_options
426 	 * gets called twice
427 	 */
428 	options = kstrdup(options, GFP_NOFS);
429 	if (!options)
430 		return -ENOMEM;
431 
432 	orig = options;
433 
434 	while ((p = strsep(&options, ",")) != NULL) {
435 		int token;
436 		if (!*p)
437 			continue;
438 
439 		token = match_token(p, tokens, args);
440 		switch (token) {
441 		case Opt_degraded:
442 			btrfs_info(info, "allowing degraded mounts");
443 			btrfs_set_opt(info->mount_opt, DEGRADED);
444 			break;
445 		case Opt_subvol:
446 		case Opt_subvolid:
447 		case Opt_subvolrootid:
448 		case Opt_device:
449 			/*
450 			 * These are parsed by btrfs_parse_early_options
451 			 * and can be happily ignored here.
452 			 */
453 			break;
454 		case Opt_nodatasum:
455 			btrfs_set_and_info(info, NODATASUM,
456 					   "setting nodatasum");
457 			break;
458 		case Opt_datasum:
459 			if (btrfs_test_opt(info, NODATASUM)) {
460 				if (btrfs_test_opt(info, NODATACOW))
461 					btrfs_info(info,
462 						   "setting datasum, datacow enabled");
463 				else
464 					btrfs_info(info, "setting datasum");
465 			}
466 			btrfs_clear_opt(info->mount_opt, NODATACOW);
467 			btrfs_clear_opt(info->mount_opt, NODATASUM);
468 			break;
469 		case Opt_nodatacow:
470 			if (!btrfs_test_opt(info, NODATACOW)) {
471 				if (!btrfs_test_opt(info, COMPRESS) ||
472 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
473 					btrfs_info(info,
474 						   "setting nodatacow, compression disabled");
475 				} else {
476 					btrfs_info(info, "setting nodatacow");
477 				}
478 			}
479 			btrfs_clear_opt(info->mount_opt, COMPRESS);
480 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
481 			btrfs_set_opt(info->mount_opt, NODATACOW);
482 			btrfs_set_opt(info->mount_opt, NODATASUM);
483 			break;
484 		case Opt_datacow:
485 			btrfs_clear_and_info(info, NODATACOW,
486 					     "setting datacow");
487 			break;
488 		case Opt_compress_force:
489 		case Opt_compress_force_type:
490 			compress_force = true;
491 			/* Fallthrough */
492 		case Opt_compress:
493 		case Opt_compress_type:
494 			saved_compress_type = btrfs_test_opt(info,
495 							     COMPRESS) ?
496 				info->compress_type : BTRFS_COMPRESS_NONE;
497 			saved_compress_force =
498 				btrfs_test_opt(info, FORCE_COMPRESS);
499 			if (token == Opt_compress ||
500 			    token == Opt_compress_force ||
501 			    strcmp(args[0].from, "zlib") == 0) {
502 				compress_type = "zlib";
503 				info->compress_type = BTRFS_COMPRESS_ZLIB;
504 				btrfs_set_opt(info->mount_opt, COMPRESS);
505 				btrfs_clear_opt(info->mount_opt, NODATACOW);
506 				btrfs_clear_opt(info->mount_opt, NODATASUM);
507 				no_compress = 0;
508 			} else if (strcmp(args[0].from, "lzo") == 0) {
509 				compress_type = "lzo";
510 				info->compress_type = BTRFS_COMPRESS_LZO;
511 				btrfs_set_opt(info->mount_opt, COMPRESS);
512 				btrfs_clear_opt(info->mount_opt, NODATACOW);
513 				btrfs_clear_opt(info->mount_opt, NODATASUM);
514 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
515 				no_compress = 0;
516 			} else if (strncmp(args[0].from, "no", 2) == 0) {
517 				compress_type = "no";
518 				btrfs_clear_opt(info->mount_opt, COMPRESS);
519 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
520 				compress_force = false;
521 				no_compress++;
522 			} else {
523 				ret = -EINVAL;
524 				goto out;
525 			}
526 
527 			if (compress_force) {
528 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
529 			} else {
530 				/*
531 				 * If we remount from compress-force=xxx to
532 				 * compress=xxx, we need clear FORCE_COMPRESS
533 				 * flag, otherwise, there is no way for users
534 				 * to disable forcible compression separately.
535 				 */
536 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
537 			}
538 			if ((btrfs_test_opt(info, COMPRESS) &&
539 			     (info->compress_type != saved_compress_type ||
540 			      compress_force != saved_compress_force)) ||
541 			    (!btrfs_test_opt(info, COMPRESS) &&
542 			     no_compress == 1)) {
543 				btrfs_info(info, "%s %s compression",
544 					   (compress_force) ? "force" : "use",
545 					   compress_type);
546 			}
547 			compress_force = false;
548 			break;
549 		case Opt_ssd:
550 			btrfs_set_and_info(info, SSD,
551 					   "use ssd allocation scheme");
552 			btrfs_clear_opt(info->mount_opt, NOSSD);
553 			break;
554 		case Opt_ssd_spread:
555 			btrfs_set_and_info(info, SSD_SPREAD,
556 					   "use spread ssd allocation scheme");
557 			btrfs_set_opt(info->mount_opt, SSD);
558 			btrfs_clear_opt(info->mount_opt, NOSSD);
559 			break;
560 		case Opt_nossd:
561 			btrfs_set_and_info(info, NOSSD,
562 					     "not using ssd allocation scheme");
563 			btrfs_clear_opt(info->mount_opt, SSD);
564 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
565 			break;
566 		case Opt_barrier:
567 			btrfs_clear_and_info(info, NOBARRIER,
568 					     "turning on barriers");
569 			break;
570 		case Opt_nobarrier:
571 			btrfs_set_and_info(info, NOBARRIER,
572 					   "turning off barriers");
573 			break;
574 		case Opt_thread_pool:
575 			ret = match_int(&args[0], &intarg);
576 			if (ret) {
577 				goto out;
578 			} else if (intarg > 0) {
579 				info->thread_pool_size = intarg;
580 			} else {
581 				ret = -EINVAL;
582 				goto out;
583 			}
584 			break;
585 		case Opt_max_inline:
586 			num = match_strdup(&args[0]);
587 			if (num) {
588 				info->max_inline = memparse(num, NULL);
589 				kfree(num);
590 
591 				if (info->max_inline) {
592 					info->max_inline = min_t(u64,
593 						info->max_inline,
594 						info->sectorsize);
595 				}
596 				btrfs_info(info, "max_inline at %llu",
597 					   info->max_inline);
598 			} else {
599 				ret = -ENOMEM;
600 				goto out;
601 			}
602 			break;
603 		case Opt_alloc_start:
604 			btrfs_info(info,
605 				"option alloc_start is obsolete, ignored");
606 			break;
607 		case Opt_acl:
608 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
609 			info->sb->s_flags |= MS_POSIXACL;
610 			break;
611 #else
612 			btrfs_err(info, "support for ACL not compiled in!");
613 			ret = -EINVAL;
614 			goto out;
615 #endif
616 		case Opt_noacl:
617 			info->sb->s_flags &= ~MS_POSIXACL;
618 			break;
619 		case Opt_notreelog:
620 			btrfs_set_and_info(info, NOTREELOG,
621 					   "disabling tree log");
622 			break;
623 		case Opt_treelog:
624 			btrfs_clear_and_info(info, NOTREELOG,
625 					     "enabling tree log");
626 			break;
627 		case Opt_norecovery:
628 		case Opt_nologreplay:
629 			btrfs_set_and_info(info, NOLOGREPLAY,
630 					   "disabling log replay at mount time");
631 			break;
632 		case Opt_flushoncommit:
633 			btrfs_set_and_info(info, FLUSHONCOMMIT,
634 					   "turning on flush-on-commit");
635 			break;
636 		case Opt_noflushoncommit:
637 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
638 					     "turning off flush-on-commit");
639 			break;
640 		case Opt_ratio:
641 			ret = match_int(&args[0], &intarg);
642 			if (ret) {
643 				goto out;
644 			} else if (intarg >= 0) {
645 				info->metadata_ratio = intarg;
646 				btrfs_info(info, "metadata ratio %d",
647 					   info->metadata_ratio);
648 			} else {
649 				ret = -EINVAL;
650 				goto out;
651 			}
652 			break;
653 		case Opt_discard:
654 			btrfs_set_and_info(info, DISCARD,
655 					   "turning on discard");
656 			break;
657 		case Opt_nodiscard:
658 			btrfs_clear_and_info(info, DISCARD,
659 					     "turning off discard");
660 			break;
661 		case Opt_space_cache:
662 		case Opt_space_cache_version:
663 			if (token == Opt_space_cache ||
664 			    strcmp(args[0].from, "v1") == 0) {
665 				btrfs_clear_opt(info->mount_opt,
666 						FREE_SPACE_TREE);
667 				btrfs_set_and_info(info, SPACE_CACHE,
668 					   "enabling disk space caching");
669 			} else if (strcmp(args[0].from, "v2") == 0) {
670 				btrfs_clear_opt(info->mount_opt,
671 						SPACE_CACHE);
672 				btrfs_set_and_info(info, FREE_SPACE_TREE,
673 						   "enabling free space tree");
674 			} else {
675 				ret = -EINVAL;
676 				goto out;
677 			}
678 			break;
679 		case Opt_rescan_uuid_tree:
680 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
681 			break;
682 		case Opt_no_space_cache:
683 			if (btrfs_test_opt(info, SPACE_CACHE)) {
684 				btrfs_clear_and_info(info, SPACE_CACHE,
685 					     "disabling disk space caching");
686 			}
687 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
688 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
689 					     "disabling free space tree");
690 			}
691 			break;
692 		case Opt_inode_cache:
693 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
694 					   "enabling inode map caching");
695 			break;
696 		case Opt_noinode_cache:
697 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
698 					     "disabling inode map caching");
699 			break;
700 		case Opt_clear_cache:
701 			btrfs_set_and_info(info, CLEAR_CACHE,
702 					   "force clearing of disk cache");
703 			break;
704 		case Opt_user_subvol_rm_allowed:
705 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
706 			break;
707 		case Opt_enospc_debug:
708 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
709 			break;
710 		case Opt_noenospc_debug:
711 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
712 			break;
713 		case Opt_defrag:
714 			btrfs_set_and_info(info, AUTO_DEFRAG,
715 					   "enabling auto defrag");
716 			break;
717 		case Opt_nodefrag:
718 			btrfs_clear_and_info(info, AUTO_DEFRAG,
719 					     "disabling auto defrag");
720 			break;
721 		case Opt_recovery:
722 			btrfs_warn(info,
723 				   "'recovery' is deprecated, use 'usebackuproot' instead");
724 		case Opt_usebackuproot:
725 			btrfs_info(info,
726 				   "trying to use backup root at mount time");
727 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
728 			break;
729 		case Opt_skip_balance:
730 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
731 			break;
732 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
733 		case Opt_check_integrity_including_extent_data:
734 			btrfs_info(info,
735 				   "enabling check integrity including extent data");
736 			btrfs_set_opt(info->mount_opt,
737 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
738 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
739 			break;
740 		case Opt_check_integrity:
741 			btrfs_info(info, "enabling check integrity");
742 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
743 			break;
744 		case Opt_check_integrity_print_mask:
745 			ret = match_int(&args[0], &intarg);
746 			if (ret) {
747 				goto out;
748 			} else if (intarg >= 0) {
749 				info->check_integrity_print_mask = intarg;
750 				btrfs_info(info,
751 					   "check_integrity_print_mask 0x%x",
752 					   info->check_integrity_print_mask);
753 			} else {
754 				ret = -EINVAL;
755 				goto out;
756 			}
757 			break;
758 #else
759 		case Opt_check_integrity_including_extent_data:
760 		case Opt_check_integrity:
761 		case Opt_check_integrity_print_mask:
762 			btrfs_err(info,
763 				  "support for check_integrity* not compiled in!");
764 			ret = -EINVAL;
765 			goto out;
766 #endif
767 		case Opt_fatal_errors:
768 			if (strcmp(args[0].from, "panic") == 0)
769 				btrfs_set_opt(info->mount_opt,
770 					      PANIC_ON_FATAL_ERROR);
771 			else if (strcmp(args[0].from, "bug") == 0)
772 				btrfs_clear_opt(info->mount_opt,
773 					      PANIC_ON_FATAL_ERROR);
774 			else {
775 				ret = -EINVAL;
776 				goto out;
777 			}
778 			break;
779 		case Opt_commit_interval:
780 			intarg = 0;
781 			ret = match_int(&args[0], &intarg);
782 			if (ret < 0) {
783 				btrfs_err(info, "invalid commit interval");
784 				ret = -EINVAL;
785 				goto out;
786 			}
787 			if (intarg > 0) {
788 				if (intarg > 300) {
789 					btrfs_warn(info,
790 						"excessive commit interval %d",
791 						intarg);
792 				}
793 				info->commit_interval = intarg;
794 			} else {
795 				btrfs_info(info,
796 					   "using default commit interval %ds",
797 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
798 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
799 			}
800 			break;
801 #ifdef CONFIG_BTRFS_DEBUG
802 		case Opt_fragment_all:
803 			btrfs_info(info, "fragmenting all space");
804 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
805 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
806 			break;
807 		case Opt_fragment_metadata:
808 			btrfs_info(info, "fragmenting metadata");
809 			btrfs_set_opt(info->mount_opt,
810 				      FRAGMENT_METADATA);
811 			break;
812 		case Opt_fragment_data:
813 			btrfs_info(info, "fragmenting data");
814 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
815 			break;
816 #endif
817 		case Opt_err:
818 			btrfs_info(info, "unrecognized mount option '%s'", p);
819 			ret = -EINVAL;
820 			goto out;
821 		default:
822 			break;
823 		}
824 	}
825 check:
826 	/*
827 	 * Extra check for current option against current flag
828 	 */
829 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) {
830 		btrfs_err(info,
831 			  "nologreplay must be used with ro mount option");
832 		ret = -EINVAL;
833 	}
834 out:
835 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
836 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
837 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
838 		btrfs_err(info, "cannot disable free space tree");
839 		ret = -EINVAL;
840 
841 	}
842 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
843 		btrfs_info(info, "disk space caching is enabled");
844 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
845 		btrfs_info(info, "using free space tree");
846 	kfree(orig);
847 	return ret;
848 }
849 
850 /*
851  * Parse mount options that are required early in the mount process.
852  *
853  * All other options will be parsed on much later in the mount process and
854  * only when we need to allocate a new super block.
855  */
856 static int btrfs_parse_early_options(const char *options, fmode_t flags,
857 		void *holder, char **subvol_name, u64 *subvol_objectid,
858 		struct btrfs_fs_devices **fs_devices)
859 {
860 	substring_t args[MAX_OPT_ARGS];
861 	char *device_name, *opts, *orig, *p;
862 	char *num = NULL;
863 	int error = 0;
864 
865 	if (!options)
866 		return 0;
867 
868 	/*
869 	 * strsep changes the string, duplicate it because parse_options
870 	 * gets called twice
871 	 */
872 	opts = kstrdup(options, GFP_KERNEL);
873 	if (!opts)
874 		return -ENOMEM;
875 	orig = opts;
876 
877 	while ((p = strsep(&opts, ",")) != NULL) {
878 		int token;
879 		if (!*p)
880 			continue;
881 
882 		token = match_token(p, tokens, args);
883 		switch (token) {
884 		case Opt_subvol:
885 			kfree(*subvol_name);
886 			*subvol_name = match_strdup(&args[0]);
887 			if (!*subvol_name) {
888 				error = -ENOMEM;
889 				goto out;
890 			}
891 			break;
892 		case Opt_subvolid:
893 			num = match_strdup(&args[0]);
894 			if (num) {
895 				*subvol_objectid = memparse(num, NULL);
896 				kfree(num);
897 				/* we want the original fs_tree */
898 				if (!*subvol_objectid)
899 					*subvol_objectid =
900 						BTRFS_FS_TREE_OBJECTID;
901 			} else {
902 				error = -EINVAL;
903 				goto out;
904 			}
905 			break;
906 		case Opt_subvolrootid:
907 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
908 			break;
909 		case Opt_device:
910 			device_name = match_strdup(&args[0]);
911 			if (!device_name) {
912 				error = -ENOMEM;
913 				goto out;
914 			}
915 			error = btrfs_scan_one_device(device_name,
916 					flags, holder, fs_devices);
917 			kfree(device_name);
918 			if (error)
919 				goto out;
920 			break;
921 		default:
922 			break;
923 		}
924 	}
925 
926 out:
927 	kfree(orig);
928 	return error;
929 }
930 
931 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
932 					   u64 subvol_objectid)
933 {
934 	struct btrfs_root *root = fs_info->tree_root;
935 	struct btrfs_root *fs_root;
936 	struct btrfs_root_ref *root_ref;
937 	struct btrfs_inode_ref *inode_ref;
938 	struct btrfs_key key;
939 	struct btrfs_path *path = NULL;
940 	char *name = NULL, *ptr;
941 	u64 dirid;
942 	int len;
943 	int ret;
944 
945 	path = btrfs_alloc_path();
946 	if (!path) {
947 		ret = -ENOMEM;
948 		goto err;
949 	}
950 	path->leave_spinning = 1;
951 
952 	name = kmalloc(PATH_MAX, GFP_NOFS);
953 	if (!name) {
954 		ret = -ENOMEM;
955 		goto err;
956 	}
957 	ptr = name + PATH_MAX - 1;
958 	ptr[0] = '\0';
959 
960 	/*
961 	 * Walk up the subvolume trees in the tree of tree roots by root
962 	 * backrefs until we hit the top-level subvolume.
963 	 */
964 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
965 		key.objectid = subvol_objectid;
966 		key.type = BTRFS_ROOT_BACKREF_KEY;
967 		key.offset = (u64)-1;
968 
969 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
970 		if (ret < 0) {
971 			goto err;
972 		} else if (ret > 0) {
973 			ret = btrfs_previous_item(root, path, subvol_objectid,
974 						  BTRFS_ROOT_BACKREF_KEY);
975 			if (ret < 0) {
976 				goto err;
977 			} else if (ret > 0) {
978 				ret = -ENOENT;
979 				goto err;
980 			}
981 		}
982 
983 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
984 		subvol_objectid = key.offset;
985 
986 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
987 					  struct btrfs_root_ref);
988 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
989 		ptr -= len + 1;
990 		if (ptr < name) {
991 			ret = -ENAMETOOLONG;
992 			goto err;
993 		}
994 		read_extent_buffer(path->nodes[0], ptr + 1,
995 				   (unsigned long)(root_ref + 1), len);
996 		ptr[0] = '/';
997 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
998 		btrfs_release_path(path);
999 
1000 		key.objectid = subvol_objectid;
1001 		key.type = BTRFS_ROOT_ITEM_KEY;
1002 		key.offset = (u64)-1;
1003 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1004 		if (IS_ERR(fs_root)) {
1005 			ret = PTR_ERR(fs_root);
1006 			goto err;
1007 		}
1008 
1009 		/*
1010 		 * Walk up the filesystem tree by inode refs until we hit the
1011 		 * root directory.
1012 		 */
1013 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1014 			key.objectid = dirid;
1015 			key.type = BTRFS_INODE_REF_KEY;
1016 			key.offset = (u64)-1;
1017 
1018 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1019 			if (ret < 0) {
1020 				goto err;
1021 			} else if (ret > 0) {
1022 				ret = btrfs_previous_item(fs_root, path, dirid,
1023 							  BTRFS_INODE_REF_KEY);
1024 				if (ret < 0) {
1025 					goto err;
1026 				} else if (ret > 0) {
1027 					ret = -ENOENT;
1028 					goto err;
1029 				}
1030 			}
1031 
1032 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1033 			dirid = key.offset;
1034 
1035 			inode_ref = btrfs_item_ptr(path->nodes[0],
1036 						   path->slots[0],
1037 						   struct btrfs_inode_ref);
1038 			len = btrfs_inode_ref_name_len(path->nodes[0],
1039 						       inode_ref);
1040 			ptr -= len + 1;
1041 			if (ptr < name) {
1042 				ret = -ENAMETOOLONG;
1043 				goto err;
1044 			}
1045 			read_extent_buffer(path->nodes[0], ptr + 1,
1046 					   (unsigned long)(inode_ref + 1), len);
1047 			ptr[0] = '/';
1048 			btrfs_release_path(path);
1049 		}
1050 	}
1051 
1052 	btrfs_free_path(path);
1053 	if (ptr == name + PATH_MAX - 1) {
1054 		name[0] = '/';
1055 		name[1] = '\0';
1056 	} else {
1057 		memmove(name, ptr, name + PATH_MAX - ptr);
1058 	}
1059 	return name;
1060 
1061 err:
1062 	btrfs_free_path(path);
1063 	kfree(name);
1064 	return ERR_PTR(ret);
1065 }
1066 
1067 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1068 {
1069 	struct btrfs_root *root = fs_info->tree_root;
1070 	struct btrfs_dir_item *di;
1071 	struct btrfs_path *path;
1072 	struct btrfs_key location;
1073 	u64 dir_id;
1074 
1075 	path = btrfs_alloc_path();
1076 	if (!path)
1077 		return -ENOMEM;
1078 	path->leave_spinning = 1;
1079 
1080 	/*
1081 	 * Find the "default" dir item which points to the root item that we
1082 	 * will mount by default if we haven't been given a specific subvolume
1083 	 * to mount.
1084 	 */
1085 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1086 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1087 	if (IS_ERR(di)) {
1088 		btrfs_free_path(path);
1089 		return PTR_ERR(di);
1090 	}
1091 	if (!di) {
1092 		/*
1093 		 * Ok the default dir item isn't there.  This is weird since
1094 		 * it's always been there, but don't freak out, just try and
1095 		 * mount the top-level subvolume.
1096 		 */
1097 		btrfs_free_path(path);
1098 		*objectid = BTRFS_FS_TREE_OBJECTID;
1099 		return 0;
1100 	}
1101 
1102 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1103 	btrfs_free_path(path);
1104 	*objectid = location.objectid;
1105 	return 0;
1106 }
1107 
1108 static int btrfs_fill_super(struct super_block *sb,
1109 			    struct btrfs_fs_devices *fs_devices,
1110 			    void *data)
1111 {
1112 	struct inode *inode;
1113 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1114 	struct btrfs_key key;
1115 	int err;
1116 
1117 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1118 	sb->s_magic = BTRFS_SUPER_MAGIC;
1119 	sb->s_op = &btrfs_super_ops;
1120 	sb->s_d_op = &btrfs_dentry_operations;
1121 	sb->s_export_op = &btrfs_export_ops;
1122 	sb->s_xattr = btrfs_xattr_handlers;
1123 	sb->s_time_gran = 1;
1124 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1125 	sb->s_flags |= MS_POSIXACL;
1126 #endif
1127 	sb->s_flags |= MS_I_VERSION;
1128 	sb->s_iflags |= SB_I_CGROUPWB;
1129 
1130 	err = super_setup_bdi(sb);
1131 	if (err) {
1132 		btrfs_err(fs_info, "super_setup_bdi failed");
1133 		return err;
1134 	}
1135 
1136 	err = open_ctree(sb, fs_devices, (char *)data);
1137 	if (err) {
1138 		btrfs_err(fs_info, "open_ctree failed");
1139 		return err;
1140 	}
1141 
1142 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1143 	key.type = BTRFS_INODE_ITEM_KEY;
1144 	key.offset = 0;
1145 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1146 	if (IS_ERR(inode)) {
1147 		err = PTR_ERR(inode);
1148 		goto fail_close;
1149 	}
1150 
1151 	sb->s_root = d_make_root(inode);
1152 	if (!sb->s_root) {
1153 		err = -ENOMEM;
1154 		goto fail_close;
1155 	}
1156 
1157 	cleancache_init_fs(sb);
1158 	sb->s_flags |= MS_ACTIVE;
1159 	return 0;
1160 
1161 fail_close:
1162 	close_ctree(fs_info);
1163 	return err;
1164 }
1165 
1166 int btrfs_sync_fs(struct super_block *sb, int wait)
1167 {
1168 	struct btrfs_trans_handle *trans;
1169 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1170 	struct btrfs_root *root = fs_info->tree_root;
1171 
1172 	trace_btrfs_sync_fs(fs_info, wait);
1173 
1174 	if (!wait) {
1175 		filemap_flush(fs_info->btree_inode->i_mapping);
1176 		return 0;
1177 	}
1178 
1179 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1180 
1181 	trans = btrfs_attach_transaction_barrier(root);
1182 	if (IS_ERR(trans)) {
1183 		/* no transaction, don't bother */
1184 		if (PTR_ERR(trans) == -ENOENT) {
1185 			/*
1186 			 * Exit unless we have some pending changes
1187 			 * that need to go through commit
1188 			 */
1189 			if (fs_info->pending_changes == 0)
1190 				return 0;
1191 			/*
1192 			 * A non-blocking test if the fs is frozen. We must not
1193 			 * start a new transaction here otherwise a deadlock
1194 			 * happens. The pending operations are delayed to the
1195 			 * next commit after thawing.
1196 			 */
1197 			if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1198 				__sb_end_write(sb, SB_FREEZE_WRITE);
1199 			else
1200 				return 0;
1201 			trans = btrfs_start_transaction(root, 0);
1202 		}
1203 		if (IS_ERR(trans))
1204 			return PTR_ERR(trans);
1205 	}
1206 	return btrfs_commit_transaction(trans);
1207 }
1208 
1209 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1210 {
1211 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1212 	char *compress_type;
1213 
1214 	if (btrfs_test_opt(info, DEGRADED))
1215 		seq_puts(seq, ",degraded");
1216 	if (btrfs_test_opt(info, NODATASUM))
1217 		seq_puts(seq, ",nodatasum");
1218 	if (btrfs_test_opt(info, NODATACOW))
1219 		seq_puts(seq, ",nodatacow");
1220 	if (btrfs_test_opt(info, NOBARRIER))
1221 		seq_puts(seq, ",nobarrier");
1222 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1223 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1224 	if (info->thread_pool_size !=  min_t(unsigned long,
1225 					     num_online_cpus() + 2, 8))
1226 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1227 	if (btrfs_test_opt(info, COMPRESS)) {
1228 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1229 			compress_type = "zlib";
1230 		else
1231 			compress_type = "lzo";
1232 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1233 			seq_printf(seq, ",compress-force=%s", compress_type);
1234 		else
1235 			seq_printf(seq, ",compress=%s", compress_type);
1236 	}
1237 	if (btrfs_test_opt(info, NOSSD))
1238 		seq_puts(seq, ",nossd");
1239 	if (btrfs_test_opt(info, SSD_SPREAD))
1240 		seq_puts(seq, ",ssd_spread");
1241 	else if (btrfs_test_opt(info, SSD))
1242 		seq_puts(seq, ",ssd");
1243 	if (btrfs_test_opt(info, NOTREELOG))
1244 		seq_puts(seq, ",notreelog");
1245 	if (btrfs_test_opt(info, NOLOGREPLAY))
1246 		seq_puts(seq, ",nologreplay");
1247 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1248 		seq_puts(seq, ",flushoncommit");
1249 	if (btrfs_test_opt(info, DISCARD))
1250 		seq_puts(seq, ",discard");
1251 	if (!(info->sb->s_flags & MS_POSIXACL))
1252 		seq_puts(seq, ",noacl");
1253 	if (btrfs_test_opt(info, SPACE_CACHE))
1254 		seq_puts(seq, ",space_cache");
1255 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1256 		seq_puts(seq, ",space_cache=v2");
1257 	else
1258 		seq_puts(seq, ",nospace_cache");
1259 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1260 		seq_puts(seq, ",rescan_uuid_tree");
1261 	if (btrfs_test_opt(info, CLEAR_CACHE))
1262 		seq_puts(seq, ",clear_cache");
1263 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1264 		seq_puts(seq, ",user_subvol_rm_allowed");
1265 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1266 		seq_puts(seq, ",enospc_debug");
1267 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1268 		seq_puts(seq, ",autodefrag");
1269 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1270 		seq_puts(seq, ",inode_cache");
1271 	if (btrfs_test_opt(info, SKIP_BALANCE))
1272 		seq_puts(seq, ",skip_balance");
1273 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1274 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1275 		seq_puts(seq, ",check_int_data");
1276 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1277 		seq_puts(seq, ",check_int");
1278 	if (info->check_integrity_print_mask)
1279 		seq_printf(seq, ",check_int_print_mask=%d",
1280 				info->check_integrity_print_mask);
1281 #endif
1282 	if (info->metadata_ratio)
1283 		seq_printf(seq, ",metadata_ratio=%d",
1284 				info->metadata_ratio);
1285 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1286 		seq_puts(seq, ",fatal_errors=panic");
1287 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1288 		seq_printf(seq, ",commit=%d", info->commit_interval);
1289 #ifdef CONFIG_BTRFS_DEBUG
1290 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1291 		seq_puts(seq, ",fragment=data");
1292 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1293 		seq_puts(seq, ",fragment=metadata");
1294 #endif
1295 	seq_printf(seq, ",subvolid=%llu",
1296 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1297 	seq_puts(seq, ",subvol=");
1298 	seq_dentry(seq, dentry, " \t\n\\");
1299 	return 0;
1300 }
1301 
1302 static int btrfs_test_super(struct super_block *s, void *data)
1303 {
1304 	struct btrfs_fs_info *p = data;
1305 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1306 
1307 	return fs_info->fs_devices == p->fs_devices;
1308 }
1309 
1310 static int btrfs_set_super(struct super_block *s, void *data)
1311 {
1312 	int err = set_anon_super(s, data);
1313 	if (!err)
1314 		s->s_fs_info = data;
1315 	return err;
1316 }
1317 
1318 /*
1319  * subvolumes are identified by ino 256
1320  */
1321 static inline int is_subvolume_inode(struct inode *inode)
1322 {
1323 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1324 		return 1;
1325 	return 0;
1326 }
1327 
1328 /*
1329  * This will add subvolid=0 to the argument string while removing any subvol=
1330  * and subvolid= arguments to make sure we get the top-level root for path
1331  * walking to the subvol we want.
1332  */
1333 static char *setup_root_args(char *args)
1334 {
1335 	char *buf, *dst, *sep;
1336 
1337 	if (!args)
1338 		return kstrdup("subvolid=0", GFP_NOFS);
1339 
1340 	/* The worst case is that we add ",subvolid=0" to the end. */
1341 	buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS);
1342 	if (!buf)
1343 		return NULL;
1344 
1345 	while (1) {
1346 		sep = strchrnul(args, ',');
1347 		if (!strstarts(args, "subvol=") &&
1348 		    !strstarts(args, "subvolid=")) {
1349 			memcpy(dst, args, sep - args);
1350 			dst += sep - args;
1351 			*dst++ = ',';
1352 		}
1353 		if (*sep)
1354 			args = sep + 1;
1355 		else
1356 			break;
1357 	}
1358 	strcpy(dst, "subvolid=0");
1359 
1360 	return buf;
1361 }
1362 
1363 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1364 				   int flags, const char *device_name,
1365 				   char *data)
1366 {
1367 	struct dentry *root;
1368 	struct vfsmount *mnt = NULL;
1369 	char *newargs;
1370 	int ret;
1371 
1372 	newargs = setup_root_args(data);
1373 	if (!newargs) {
1374 		root = ERR_PTR(-ENOMEM);
1375 		goto out;
1376 	}
1377 
1378 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1379 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1380 		if (flags & MS_RDONLY) {
1381 			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1382 					     device_name, newargs);
1383 		} else {
1384 			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1385 					     device_name, newargs);
1386 			if (IS_ERR(mnt)) {
1387 				root = ERR_CAST(mnt);
1388 				mnt = NULL;
1389 				goto out;
1390 			}
1391 
1392 			down_write(&mnt->mnt_sb->s_umount);
1393 			ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1394 			up_write(&mnt->mnt_sb->s_umount);
1395 			if (ret < 0) {
1396 				root = ERR_PTR(ret);
1397 				goto out;
1398 			}
1399 		}
1400 	}
1401 	if (IS_ERR(mnt)) {
1402 		root = ERR_CAST(mnt);
1403 		mnt = NULL;
1404 		goto out;
1405 	}
1406 
1407 	if (!subvol_name) {
1408 		if (!subvol_objectid) {
1409 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1410 							  &subvol_objectid);
1411 			if (ret) {
1412 				root = ERR_PTR(ret);
1413 				goto out;
1414 			}
1415 		}
1416 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1417 							    subvol_objectid);
1418 		if (IS_ERR(subvol_name)) {
1419 			root = ERR_CAST(subvol_name);
1420 			subvol_name = NULL;
1421 			goto out;
1422 		}
1423 
1424 	}
1425 
1426 	root = mount_subtree(mnt, subvol_name);
1427 	/* mount_subtree() drops our reference on the vfsmount. */
1428 	mnt = NULL;
1429 
1430 	if (!IS_ERR(root)) {
1431 		struct super_block *s = root->d_sb;
1432 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1433 		struct inode *root_inode = d_inode(root);
1434 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1435 
1436 		ret = 0;
1437 		if (!is_subvolume_inode(root_inode)) {
1438 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1439 			       subvol_name);
1440 			ret = -EINVAL;
1441 		}
1442 		if (subvol_objectid && root_objectid != subvol_objectid) {
1443 			/*
1444 			 * This will also catch a race condition where a
1445 			 * subvolume which was passed by ID is renamed and
1446 			 * another subvolume is renamed over the old location.
1447 			 */
1448 			btrfs_err(fs_info,
1449 				  "subvol '%s' does not match subvolid %llu",
1450 				  subvol_name, subvol_objectid);
1451 			ret = -EINVAL;
1452 		}
1453 		if (ret) {
1454 			dput(root);
1455 			root = ERR_PTR(ret);
1456 			deactivate_locked_super(s);
1457 		}
1458 	}
1459 
1460 out:
1461 	mntput(mnt);
1462 	kfree(newargs);
1463 	kfree(subvol_name);
1464 	return root;
1465 }
1466 
1467 static int parse_security_options(char *orig_opts,
1468 				  struct security_mnt_opts *sec_opts)
1469 {
1470 	char *secdata = NULL;
1471 	int ret = 0;
1472 
1473 	secdata = alloc_secdata();
1474 	if (!secdata)
1475 		return -ENOMEM;
1476 	ret = security_sb_copy_data(orig_opts, secdata);
1477 	if (ret) {
1478 		free_secdata(secdata);
1479 		return ret;
1480 	}
1481 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1482 	free_secdata(secdata);
1483 	return ret;
1484 }
1485 
1486 static int setup_security_options(struct btrfs_fs_info *fs_info,
1487 				  struct super_block *sb,
1488 				  struct security_mnt_opts *sec_opts)
1489 {
1490 	int ret = 0;
1491 
1492 	/*
1493 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1494 	 * is valid.
1495 	 */
1496 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1497 	if (ret)
1498 		return ret;
1499 
1500 #ifdef CONFIG_SECURITY
1501 	if (!fs_info->security_opts.num_mnt_opts) {
1502 		/* first time security setup, copy sec_opts to fs_info */
1503 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1504 	} else {
1505 		/*
1506 		 * Since SELinux (the only one supporting security_mnt_opts)
1507 		 * does NOT support changing context during remount/mount of
1508 		 * the same sb, this must be the same or part of the same
1509 		 * security options, just free it.
1510 		 */
1511 		security_free_mnt_opts(sec_opts);
1512 	}
1513 #endif
1514 	return ret;
1515 }
1516 
1517 /*
1518  * Find a superblock for the given device / mount point.
1519  *
1520  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1521  *	  for multiple device setup.  Make sure to keep it in sync.
1522  */
1523 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1524 		const char *device_name, void *data)
1525 {
1526 	struct block_device *bdev = NULL;
1527 	struct super_block *s;
1528 	struct btrfs_fs_devices *fs_devices = NULL;
1529 	struct btrfs_fs_info *fs_info = NULL;
1530 	struct security_mnt_opts new_sec_opts;
1531 	fmode_t mode = FMODE_READ;
1532 	char *subvol_name = NULL;
1533 	u64 subvol_objectid = 0;
1534 	int error = 0;
1535 
1536 	if (!(flags & MS_RDONLY))
1537 		mode |= FMODE_WRITE;
1538 
1539 	error = btrfs_parse_early_options(data, mode, fs_type,
1540 					  &subvol_name, &subvol_objectid,
1541 					  &fs_devices);
1542 	if (error) {
1543 		kfree(subvol_name);
1544 		return ERR_PTR(error);
1545 	}
1546 
1547 	if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1548 		/* mount_subvol() will free subvol_name. */
1549 		return mount_subvol(subvol_name, subvol_objectid, flags,
1550 				    device_name, data);
1551 	}
1552 
1553 	security_init_mnt_opts(&new_sec_opts);
1554 	if (data) {
1555 		error = parse_security_options(data, &new_sec_opts);
1556 		if (error)
1557 			return ERR_PTR(error);
1558 	}
1559 
1560 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1561 	if (error)
1562 		goto error_sec_opts;
1563 
1564 	/*
1565 	 * Setup a dummy root and fs_info for test/set super.  This is because
1566 	 * we don't actually fill this stuff out until open_ctree, but we need
1567 	 * it for searching for existing supers, so this lets us do that and
1568 	 * then open_ctree will properly initialize everything later.
1569 	 */
1570 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1571 	if (!fs_info) {
1572 		error = -ENOMEM;
1573 		goto error_sec_opts;
1574 	}
1575 
1576 	fs_info->fs_devices = fs_devices;
1577 
1578 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1579 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1580 	security_init_mnt_opts(&fs_info->security_opts);
1581 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1582 		error = -ENOMEM;
1583 		goto error_fs_info;
1584 	}
1585 
1586 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1587 	if (error)
1588 		goto error_fs_info;
1589 
1590 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1591 		error = -EACCES;
1592 		goto error_close_devices;
1593 	}
1594 
1595 	bdev = fs_devices->latest_bdev;
1596 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1597 		 fs_info);
1598 	if (IS_ERR(s)) {
1599 		error = PTR_ERR(s);
1600 		goto error_close_devices;
1601 	}
1602 
1603 	if (s->s_root) {
1604 		btrfs_close_devices(fs_devices);
1605 		free_fs_info(fs_info);
1606 		if ((flags ^ s->s_flags) & MS_RDONLY)
1607 			error = -EBUSY;
1608 	} else {
1609 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1610 		btrfs_sb(s)->bdev_holder = fs_type;
1611 		error = btrfs_fill_super(s, fs_devices, data);
1612 	}
1613 	if (error) {
1614 		deactivate_locked_super(s);
1615 		goto error_sec_opts;
1616 	}
1617 
1618 	fs_info = btrfs_sb(s);
1619 	error = setup_security_options(fs_info, s, &new_sec_opts);
1620 	if (error) {
1621 		deactivate_locked_super(s);
1622 		goto error_sec_opts;
1623 	}
1624 
1625 	return dget(s->s_root);
1626 
1627 error_close_devices:
1628 	btrfs_close_devices(fs_devices);
1629 error_fs_info:
1630 	free_fs_info(fs_info);
1631 error_sec_opts:
1632 	security_free_mnt_opts(&new_sec_opts);
1633 	return ERR_PTR(error);
1634 }
1635 
1636 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1637 				     int new_pool_size, int old_pool_size)
1638 {
1639 	if (new_pool_size == old_pool_size)
1640 		return;
1641 
1642 	fs_info->thread_pool_size = new_pool_size;
1643 
1644 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1645 	       old_pool_size, new_pool_size);
1646 
1647 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1648 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1649 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1650 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1651 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1652 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1653 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1654 				new_pool_size);
1655 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1656 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1657 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1658 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1659 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1660 				new_pool_size);
1661 }
1662 
1663 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1664 {
1665 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1666 }
1667 
1668 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1669 				       unsigned long old_opts, int flags)
1670 {
1671 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1672 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1673 	     (flags & MS_RDONLY))) {
1674 		/* wait for any defraggers to finish */
1675 		wait_event(fs_info->transaction_wait,
1676 			   (atomic_read(&fs_info->defrag_running) == 0));
1677 		if (flags & MS_RDONLY)
1678 			sync_filesystem(fs_info->sb);
1679 	}
1680 }
1681 
1682 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1683 					 unsigned long old_opts)
1684 {
1685 	/*
1686 	 * We need to cleanup all defragable inodes if the autodefragment is
1687 	 * close or the filesystem is read only.
1688 	 */
1689 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1690 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1691 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1692 		btrfs_cleanup_defrag_inodes(fs_info);
1693 	}
1694 
1695 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1696 }
1697 
1698 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1699 {
1700 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1701 	struct btrfs_root *root = fs_info->tree_root;
1702 	unsigned old_flags = sb->s_flags;
1703 	unsigned long old_opts = fs_info->mount_opt;
1704 	unsigned long old_compress_type = fs_info->compress_type;
1705 	u64 old_max_inline = fs_info->max_inline;
1706 	int old_thread_pool_size = fs_info->thread_pool_size;
1707 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1708 	int ret;
1709 
1710 	sync_filesystem(sb);
1711 	btrfs_remount_prepare(fs_info);
1712 
1713 	if (data) {
1714 		struct security_mnt_opts new_sec_opts;
1715 
1716 		security_init_mnt_opts(&new_sec_opts);
1717 		ret = parse_security_options(data, &new_sec_opts);
1718 		if (ret)
1719 			goto restore;
1720 		ret = setup_security_options(fs_info, sb,
1721 					     &new_sec_opts);
1722 		if (ret) {
1723 			security_free_mnt_opts(&new_sec_opts);
1724 			goto restore;
1725 		}
1726 	}
1727 
1728 	ret = btrfs_parse_options(fs_info, data, *flags);
1729 	if (ret) {
1730 		ret = -EINVAL;
1731 		goto restore;
1732 	}
1733 
1734 	btrfs_remount_begin(fs_info, old_opts, *flags);
1735 	btrfs_resize_thread_pool(fs_info,
1736 		fs_info->thread_pool_size, old_thread_pool_size);
1737 
1738 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1739 		goto out;
1740 
1741 	if (*flags & MS_RDONLY) {
1742 		/*
1743 		 * this also happens on 'umount -rf' or on shutdown, when
1744 		 * the filesystem is busy.
1745 		 */
1746 		cancel_work_sync(&fs_info->async_reclaim_work);
1747 
1748 		/* wait for the uuid_scan task to finish */
1749 		down(&fs_info->uuid_tree_rescan_sem);
1750 		/* avoid complains from lockdep et al. */
1751 		up(&fs_info->uuid_tree_rescan_sem);
1752 
1753 		sb->s_flags |= MS_RDONLY;
1754 
1755 		/*
1756 		 * Setting MS_RDONLY will put the cleaner thread to
1757 		 * sleep at the next loop if it's already active.
1758 		 * If it's already asleep, we'll leave unused block
1759 		 * groups on disk until we're mounted read-write again
1760 		 * unless we clean them up here.
1761 		 */
1762 		btrfs_delete_unused_bgs(fs_info);
1763 
1764 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1765 		btrfs_scrub_cancel(fs_info);
1766 		btrfs_pause_balance(fs_info);
1767 
1768 		ret = btrfs_commit_super(fs_info);
1769 		if (ret)
1770 			goto restore;
1771 	} else {
1772 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1773 			btrfs_err(fs_info,
1774 				"Remounting read-write after error is not allowed");
1775 			ret = -EINVAL;
1776 			goto restore;
1777 		}
1778 		if (fs_info->fs_devices->rw_devices == 0) {
1779 			ret = -EACCES;
1780 			goto restore;
1781 		}
1782 
1783 		if (fs_info->fs_devices->missing_devices >
1784 		     fs_info->num_tolerated_disk_barrier_failures) {
1785 			btrfs_warn(fs_info,
1786 				"too many missing devices, writeable remount is not allowed");
1787 			ret = -EACCES;
1788 			goto restore;
1789 		}
1790 
1791 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1792 			ret = -EINVAL;
1793 			goto restore;
1794 		}
1795 
1796 		ret = btrfs_cleanup_fs_roots(fs_info);
1797 		if (ret)
1798 			goto restore;
1799 
1800 		/* recover relocation */
1801 		mutex_lock(&fs_info->cleaner_mutex);
1802 		ret = btrfs_recover_relocation(root);
1803 		mutex_unlock(&fs_info->cleaner_mutex);
1804 		if (ret)
1805 			goto restore;
1806 
1807 		ret = btrfs_resume_balance_async(fs_info);
1808 		if (ret)
1809 			goto restore;
1810 
1811 		ret = btrfs_resume_dev_replace_async(fs_info);
1812 		if (ret) {
1813 			btrfs_warn(fs_info, "failed to resume dev_replace");
1814 			goto restore;
1815 		}
1816 
1817 		if (!fs_info->uuid_root) {
1818 			btrfs_info(fs_info, "creating UUID tree");
1819 			ret = btrfs_create_uuid_tree(fs_info);
1820 			if (ret) {
1821 				btrfs_warn(fs_info,
1822 					   "failed to create the UUID tree %d",
1823 					   ret);
1824 				goto restore;
1825 			}
1826 		}
1827 		sb->s_flags &= ~MS_RDONLY;
1828 
1829 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1830 	}
1831 out:
1832 	wake_up_process(fs_info->transaction_kthread);
1833 	btrfs_remount_cleanup(fs_info, old_opts);
1834 	return 0;
1835 
1836 restore:
1837 	/* We've hit an error - don't reset MS_RDONLY */
1838 	if (sb->s_flags & MS_RDONLY)
1839 		old_flags |= MS_RDONLY;
1840 	sb->s_flags = old_flags;
1841 	fs_info->mount_opt = old_opts;
1842 	fs_info->compress_type = old_compress_type;
1843 	fs_info->max_inline = old_max_inline;
1844 	btrfs_resize_thread_pool(fs_info,
1845 		old_thread_pool_size, fs_info->thread_pool_size);
1846 	fs_info->metadata_ratio = old_metadata_ratio;
1847 	btrfs_remount_cleanup(fs_info, old_opts);
1848 	return ret;
1849 }
1850 
1851 /* Used to sort the devices by max_avail(descending sort) */
1852 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1853 				       const void *dev_info2)
1854 {
1855 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1856 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1857 		return -1;
1858 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1859 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1860 		return 1;
1861 	else
1862 	return 0;
1863 }
1864 
1865 /*
1866  * sort the devices by max_avail, in which max free extent size of each device
1867  * is stored.(Descending Sort)
1868  */
1869 static inline void btrfs_descending_sort_devices(
1870 					struct btrfs_device_info *devices,
1871 					size_t nr_devices)
1872 {
1873 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1874 	     btrfs_cmp_device_free_bytes, NULL);
1875 }
1876 
1877 /*
1878  * The helper to calc the free space on the devices that can be used to store
1879  * file data.
1880  */
1881 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1882 				       u64 *free_bytes)
1883 {
1884 	struct btrfs_device_info *devices_info;
1885 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1886 	struct btrfs_device *device;
1887 	u64 skip_space;
1888 	u64 type;
1889 	u64 avail_space;
1890 	u64 min_stripe_size;
1891 	int min_stripes = 1, num_stripes = 1;
1892 	int i = 0, nr_devices;
1893 
1894 	/*
1895 	 * We aren't under the device list lock, so this is racy-ish, but good
1896 	 * enough for our purposes.
1897 	 */
1898 	nr_devices = fs_info->fs_devices->open_devices;
1899 	if (!nr_devices) {
1900 		smp_mb();
1901 		nr_devices = fs_info->fs_devices->open_devices;
1902 		ASSERT(nr_devices);
1903 		if (!nr_devices) {
1904 			*free_bytes = 0;
1905 			return 0;
1906 		}
1907 	}
1908 
1909 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1910 			       GFP_KERNEL);
1911 	if (!devices_info)
1912 		return -ENOMEM;
1913 
1914 	/* calc min stripe number for data space allocation */
1915 	type = btrfs_data_alloc_profile(fs_info);
1916 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1917 		min_stripes = 2;
1918 		num_stripes = nr_devices;
1919 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1920 		min_stripes = 2;
1921 		num_stripes = 2;
1922 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1923 		min_stripes = 4;
1924 		num_stripes = 4;
1925 	}
1926 
1927 	if (type & BTRFS_BLOCK_GROUP_DUP)
1928 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1929 	else
1930 		min_stripe_size = BTRFS_STRIPE_LEN;
1931 
1932 	rcu_read_lock();
1933 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1934 		if (!device->in_fs_metadata || !device->bdev ||
1935 		    device->is_tgtdev_for_dev_replace)
1936 			continue;
1937 
1938 		if (i >= nr_devices)
1939 			break;
1940 
1941 		avail_space = device->total_bytes - device->bytes_used;
1942 
1943 		/* align with stripe_len */
1944 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1945 		avail_space *= BTRFS_STRIPE_LEN;
1946 
1947 		/*
1948 		 * In order to avoid overwriting the superblock on the drive,
1949 		 * btrfs starts at an offset of at least 1MB when doing chunk
1950 		 * allocation.
1951 		 */
1952 		skip_space = SZ_1M;
1953 
1954 		/*
1955 		 * we can use the free space in [0, skip_space - 1], subtract
1956 		 * it from the total.
1957 		 */
1958 		if (avail_space && avail_space >= skip_space)
1959 			avail_space -= skip_space;
1960 		else
1961 			avail_space = 0;
1962 
1963 		if (avail_space < min_stripe_size)
1964 			continue;
1965 
1966 		devices_info[i].dev = device;
1967 		devices_info[i].max_avail = avail_space;
1968 
1969 		i++;
1970 	}
1971 	rcu_read_unlock();
1972 
1973 	nr_devices = i;
1974 
1975 	btrfs_descending_sort_devices(devices_info, nr_devices);
1976 
1977 	i = nr_devices - 1;
1978 	avail_space = 0;
1979 	while (nr_devices >= min_stripes) {
1980 		if (num_stripes > nr_devices)
1981 			num_stripes = nr_devices;
1982 
1983 		if (devices_info[i].max_avail >= min_stripe_size) {
1984 			int j;
1985 			u64 alloc_size;
1986 
1987 			avail_space += devices_info[i].max_avail * num_stripes;
1988 			alloc_size = devices_info[i].max_avail;
1989 			for (j = i + 1 - num_stripes; j <= i; j++)
1990 				devices_info[j].max_avail -= alloc_size;
1991 		}
1992 		i--;
1993 		nr_devices--;
1994 	}
1995 
1996 	kfree(devices_info);
1997 	*free_bytes = avail_space;
1998 	return 0;
1999 }
2000 
2001 /*
2002  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2003  *
2004  * If there's a redundant raid level at DATA block groups, use the respective
2005  * multiplier to scale the sizes.
2006  *
2007  * Unused device space usage is based on simulating the chunk allocator
2008  * algorithm that respects the device sizes and order of allocations.  This is
2009  * a close approximation of the actual use but there are other factors that may
2010  * change the result (like a new metadata chunk).
2011  *
2012  * If metadata is exhausted, f_bavail will be 0.
2013  */
2014 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2015 {
2016 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2017 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2018 	struct list_head *head = &fs_info->space_info;
2019 	struct btrfs_space_info *found;
2020 	u64 total_used = 0;
2021 	u64 total_free_data = 0;
2022 	u64 total_free_meta = 0;
2023 	int bits = dentry->d_sb->s_blocksize_bits;
2024 	__be32 *fsid = (__be32 *)fs_info->fsid;
2025 	unsigned factor = 1;
2026 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2027 	int ret;
2028 	u64 thresh = 0;
2029 	int mixed = 0;
2030 
2031 	rcu_read_lock();
2032 	list_for_each_entry_rcu(found, head, list) {
2033 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2034 			int i;
2035 
2036 			total_free_data += found->disk_total - found->disk_used;
2037 			total_free_data -=
2038 				btrfs_account_ro_block_groups_free_space(found);
2039 
2040 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2041 				if (!list_empty(&found->block_groups[i])) {
2042 					switch (i) {
2043 					case BTRFS_RAID_DUP:
2044 					case BTRFS_RAID_RAID1:
2045 					case BTRFS_RAID_RAID10:
2046 						factor = 2;
2047 					}
2048 				}
2049 			}
2050 		}
2051 
2052 		/*
2053 		 * Metadata in mixed block goup profiles are accounted in data
2054 		 */
2055 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2056 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2057 				mixed = 1;
2058 			else
2059 				total_free_meta += found->disk_total -
2060 					found->disk_used;
2061 		}
2062 
2063 		total_used += found->disk_used;
2064 	}
2065 
2066 	rcu_read_unlock();
2067 
2068 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2069 	buf->f_blocks >>= bits;
2070 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2071 
2072 	/* Account global block reserve as used, it's in logical size already */
2073 	spin_lock(&block_rsv->lock);
2074 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2075 	if (buf->f_bfree >= block_rsv->size >> bits)
2076 		buf->f_bfree -= block_rsv->size >> bits;
2077 	else
2078 		buf->f_bfree = 0;
2079 	spin_unlock(&block_rsv->lock);
2080 
2081 	buf->f_bavail = div_u64(total_free_data, factor);
2082 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2083 	if (ret)
2084 		return ret;
2085 	buf->f_bavail += div_u64(total_free_data, factor);
2086 	buf->f_bavail = buf->f_bavail >> bits;
2087 
2088 	/*
2089 	 * We calculate the remaining metadata space minus global reserve. If
2090 	 * this is (supposedly) smaller than zero, there's no space. But this
2091 	 * does not hold in practice, the exhausted state happens where's still
2092 	 * some positive delta. So we apply some guesswork and compare the
2093 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2094 	 *
2095 	 * We probably cannot calculate the exact threshold value because this
2096 	 * depends on the internal reservations requested by various
2097 	 * operations, so some operations that consume a few metadata will
2098 	 * succeed even if the Avail is zero. But this is better than the other
2099 	 * way around.
2100 	 */
2101 	thresh = 4 * 1024 * 1024;
2102 
2103 	if (!mixed && total_free_meta - thresh < block_rsv->size)
2104 		buf->f_bavail = 0;
2105 
2106 	buf->f_type = BTRFS_SUPER_MAGIC;
2107 	buf->f_bsize = dentry->d_sb->s_blocksize;
2108 	buf->f_namelen = BTRFS_NAME_LEN;
2109 
2110 	/* We treat it as constant endianness (it doesn't matter _which_)
2111 	   because we want the fsid to come out the same whether mounted
2112 	   on a big-endian or little-endian host */
2113 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2114 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2115 	/* Mask in the root object ID too, to disambiguate subvols */
2116 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2117 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2118 
2119 	return 0;
2120 }
2121 
2122 static void btrfs_kill_super(struct super_block *sb)
2123 {
2124 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2125 	kill_anon_super(sb);
2126 	free_fs_info(fs_info);
2127 }
2128 
2129 static struct file_system_type btrfs_fs_type = {
2130 	.owner		= THIS_MODULE,
2131 	.name		= "btrfs",
2132 	.mount		= btrfs_mount,
2133 	.kill_sb	= btrfs_kill_super,
2134 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2135 };
2136 MODULE_ALIAS_FS("btrfs");
2137 
2138 static int btrfs_control_open(struct inode *inode, struct file *file)
2139 {
2140 	/*
2141 	 * The control file's private_data is used to hold the
2142 	 * transaction when it is started and is used to keep
2143 	 * track of whether a transaction is already in progress.
2144 	 */
2145 	file->private_data = NULL;
2146 	return 0;
2147 }
2148 
2149 /*
2150  * used by btrfsctl to scan devices when no FS is mounted
2151  */
2152 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2153 				unsigned long arg)
2154 {
2155 	struct btrfs_ioctl_vol_args *vol;
2156 	struct btrfs_fs_devices *fs_devices;
2157 	int ret = -ENOTTY;
2158 
2159 	if (!capable(CAP_SYS_ADMIN))
2160 		return -EPERM;
2161 
2162 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2163 	if (IS_ERR(vol))
2164 		return PTR_ERR(vol);
2165 
2166 	switch (cmd) {
2167 	case BTRFS_IOC_SCAN_DEV:
2168 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2169 					    &btrfs_fs_type, &fs_devices);
2170 		break;
2171 	case BTRFS_IOC_DEVICES_READY:
2172 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2173 					    &btrfs_fs_type, &fs_devices);
2174 		if (ret)
2175 			break;
2176 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
2177 		break;
2178 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2179 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2180 		break;
2181 	}
2182 
2183 	kfree(vol);
2184 	return ret;
2185 }
2186 
2187 static int btrfs_freeze(struct super_block *sb)
2188 {
2189 	struct btrfs_trans_handle *trans;
2190 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2191 	struct btrfs_root *root = fs_info->tree_root;
2192 
2193 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2194 	/*
2195 	 * We don't need a barrier here, we'll wait for any transaction that
2196 	 * could be in progress on other threads (and do delayed iputs that
2197 	 * we want to avoid on a frozen filesystem), or do the commit
2198 	 * ourselves.
2199 	 */
2200 	trans = btrfs_attach_transaction_barrier(root);
2201 	if (IS_ERR(trans)) {
2202 		/* no transaction, don't bother */
2203 		if (PTR_ERR(trans) == -ENOENT)
2204 			return 0;
2205 		return PTR_ERR(trans);
2206 	}
2207 	return btrfs_commit_transaction(trans);
2208 }
2209 
2210 static int btrfs_unfreeze(struct super_block *sb)
2211 {
2212 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2213 
2214 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2215 	return 0;
2216 }
2217 
2218 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2219 {
2220 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2221 	struct btrfs_fs_devices *cur_devices;
2222 	struct btrfs_device *dev, *first_dev = NULL;
2223 	struct list_head *head;
2224 	struct rcu_string *name;
2225 
2226 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2227 	cur_devices = fs_info->fs_devices;
2228 	while (cur_devices) {
2229 		head = &cur_devices->devices;
2230 		list_for_each_entry(dev, head, dev_list) {
2231 			if (dev->missing)
2232 				continue;
2233 			if (!dev->name)
2234 				continue;
2235 			if (!first_dev || dev->devid < first_dev->devid)
2236 				first_dev = dev;
2237 		}
2238 		cur_devices = cur_devices->seed;
2239 	}
2240 
2241 	if (first_dev) {
2242 		rcu_read_lock();
2243 		name = rcu_dereference(first_dev->name);
2244 		seq_escape(m, name->str, " \t\n\\");
2245 		rcu_read_unlock();
2246 	} else {
2247 		WARN_ON(1);
2248 	}
2249 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2250 	return 0;
2251 }
2252 
2253 static const struct super_operations btrfs_super_ops = {
2254 	.drop_inode	= btrfs_drop_inode,
2255 	.evict_inode	= btrfs_evict_inode,
2256 	.put_super	= btrfs_put_super,
2257 	.sync_fs	= btrfs_sync_fs,
2258 	.show_options	= btrfs_show_options,
2259 	.show_devname	= btrfs_show_devname,
2260 	.write_inode	= btrfs_write_inode,
2261 	.alloc_inode	= btrfs_alloc_inode,
2262 	.destroy_inode	= btrfs_destroy_inode,
2263 	.statfs		= btrfs_statfs,
2264 	.remount_fs	= btrfs_remount,
2265 	.freeze_fs	= btrfs_freeze,
2266 	.unfreeze_fs	= btrfs_unfreeze,
2267 };
2268 
2269 static const struct file_operations btrfs_ctl_fops = {
2270 	.open = btrfs_control_open,
2271 	.unlocked_ioctl	 = btrfs_control_ioctl,
2272 	.compat_ioctl = btrfs_control_ioctl,
2273 	.owner	 = THIS_MODULE,
2274 	.llseek = noop_llseek,
2275 };
2276 
2277 static struct miscdevice btrfs_misc = {
2278 	.minor		= BTRFS_MINOR,
2279 	.name		= "btrfs-control",
2280 	.fops		= &btrfs_ctl_fops
2281 };
2282 
2283 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2284 MODULE_ALIAS("devname:btrfs-control");
2285 
2286 static int btrfs_interface_init(void)
2287 {
2288 	return misc_register(&btrfs_misc);
2289 }
2290 
2291 static void btrfs_interface_exit(void)
2292 {
2293 	misc_deregister(&btrfs_misc);
2294 }
2295 
2296 static void btrfs_print_mod_info(void)
2297 {
2298 	pr_info("Btrfs loaded, crc32c=%s"
2299 #ifdef CONFIG_BTRFS_DEBUG
2300 			", debug=on"
2301 #endif
2302 #ifdef CONFIG_BTRFS_ASSERT
2303 			", assert=on"
2304 #endif
2305 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2306 			", integrity-checker=on"
2307 #endif
2308 			"\n",
2309 			btrfs_crc32c_impl());
2310 }
2311 
2312 static int __init init_btrfs_fs(void)
2313 {
2314 	int err;
2315 
2316 	err = btrfs_hash_init();
2317 	if (err)
2318 		return err;
2319 
2320 	btrfs_props_init();
2321 
2322 	err = btrfs_init_sysfs();
2323 	if (err)
2324 		goto free_hash;
2325 
2326 	btrfs_init_compress();
2327 
2328 	err = btrfs_init_cachep();
2329 	if (err)
2330 		goto free_compress;
2331 
2332 	err = extent_io_init();
2333 	if (err)
2334 		goto free_cachep;
2335 
2336 	err = extent_map_init();
2337 	if (err)
2338 		goto free_extent_io;
2339 
2340 	err = ordered_data_init();
2341 	if (err)
2342 		goto free_extent_map;
2343 
2344 	err = btrfs_delayed_inode_init();
2345 	if (err)
2346 		goto free_ordered_data;
2347 
2348 	err = btrfs_auto_defrag_init();
2349 	if (err)
2350 		goto free_delayed_inode;
2351 
2352 	err = btrfs_delayed_ref_init();
2353 	if (err)
2354 		goto free_auto_defrag;
2355 
2356 	err = btrfs_prelim_ref_init();
2357 	if (err)
2358 		goto free_delayed_ref;
2359 
2360 	err = btrfs_end_io_wq_init();
2361 	if (err)
2362 		goto free_prelim_ref;
2363 
2364 	err = btrfs_interface_init();
2365 	if (err)
2366 		goto free_end_io_wq;
2367 
2368 	btrfs_init_lockdep();
2369 
2370 	btrfs_print_mod_info();
2371 
2372 	err = btrfs_run_sanity_tests();
2373 	if (err)
2374 		goto unregister_ioctl;
2375 
2376 	err = register_filesystem(&btrfs_fs_type);
2377 	if (err)
2378 		goto unregister_ioctl;
2379 
2380 	return 0;
2381 
2382 unregister_ioctl:
2383 	btrfs_interface_exit();
2384 free_end_io_wq:
2385 	btrfs_end_io_wq_exit();
2386 free_prelim_ref:
2387 	btrfs_prelim_ref_exit();
2388 free_delayed_ref:
2389 	btrfs_delayed_ref_exit();
2390 free_auto_defrag:
2391 	btrfs_auto_defrag_exit();
2392 free_delayed_inode:
2393 	btrfs_delayed_inode_exit();
2394 free_ordered_data:
2395 	ordered_data_exit();
2396 free_extent_map:
2397 	extent_map_exit();
2398 free_extent_io:
2399 	extent_io_exit();
2400 free_cachep:
2401 	btrfs_destroy_cachep();
2402 free_compress:
2403 	btrfs_exit_compress();
2404 	btrfs_exit_sysfs();
2405 free_hash:
2406 	btrfs_hash_exit();
2407 	return err;
2408 }
2409 
2410 static void __exit exit_btrfs_fs(void)
2411 {
2412 	btrfs_destroy_cachep();
2413 	btrfs_delayed_ref_exit();
2414 	btrfs_auto_defrag_exit();
2415 	btrfs_delayed_inode_exit();
2416 	btrfs_prelim_ref_exit();
2417 	ordered_data_exit();
2418 	extent_map_exit();
2419 	extent_io_exit();
2420 	btrfs_interface_exit();
2421 	btrfs_end_io_wq_exit();
2422 	unregister_filesystem(&btrfs_fs_type);
2423 	btrfs_exit_sysfs();
2424 	btrfs_cleanup_fs_uuids();
2425 	btrfs_exit_compress();
2426 	btrfs_hash_exit();
2427 }
2428 
2429 late_initcall(init_btrfs_fs);
2430 module_exit(exit_btrfs_fs)
2431 
2432 MODULE_LICENSE("GPL");
2433