xref: /openbmc/linux/fs/btrfs/super.c (revision e149ca29)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "tests/btrfs-tests.h"
48 #include "block-group.h"
49 #include "discard.h"
50 
51 #include "qgroup.h"
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/btrfs.h>
54 
55 static const struct super_operations btrfs_super_ops;
56 
57 /*
58  * Types for mounting the default subvolume and a subvolume explicitly
59  * requested by subvol=/path. That way the callchain is straightforward and we
60  * don't have to play tricks with the mount options and recursive calls to
61  * btrfs_mount.
62  *
63  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
64  */
65 static struct file_system_type btrfs_fs_type;
66 static struct file_system_type btrfs_root_fs_type;
67 
68 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
69 
70 const char * __attribute_const__ btrfs_decode_error(int errno)
71 {
72 	char *errstr = "unknown";
73 
74 	switch (errno) {
75 	case -EIO:
76 		errstr = "IO failure";
77 		break;
78 	case -ENOMEM:
79 		errstr = "Out of memory";
80 		break;
81 	case -EROFS:
82 		errstr = "Readonly filesystem";
83 		break;
84 	case -EEXIST:
85 		errstr = "Object already exists";
86 		break;
87 	case -ENOSPC:
88 		errstr = "No space left";
89 		break;
90 	case -ENOENT:
91 		errstr = "No such entry";
92 		break;
93 	}
94 
95 	return errstr;
96 }
97 
98 /*
99  * __btrfs_handle_fs_error decodes expected errors from the caller and
100  * invokes the appropriate error response.
101  */
102 __cold
103 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
104 		       unsigned int line, int errno, const char *fmt, ...)
105 {
106 	struct super_block *sb = fs_info->sb;
107 #ifdef CONFIG_PRINTK
108 	const char *errstr;
109 #endif
110 
111 	/*
112 	 * Special case: if the error is EROFS, and we're already
113 	 * under SB_RDONLY, then it is safe here.
114 	 */
115 	if (errno == -EROFS && sb_rdonly(sb))
116   		return;
117 
118 #ifdef CONFIG_PRINTK
119 	errstr = btrfs_decode_error(errno);
120 	if (fmt) {
121 		struct va_format vaf;
122 		va_list args;
123 
124 		va_start(args, fmt);
125 		vaf.fmt = fmt;
126 		vaf.va = &args;
127 
128 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
129 			sb->s_id, function, line, errno, errstr, &vaf);
130 		va_end(args);
131 	} else {
132 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
133 			sb->s_id, function, line, errno, errstr);
134 	}
135 #endif
136 
137 	/*
138 	 * Today we only save the error info to memory.  Long term we'll
139 	 * also send it down to the disk
140 	 */
141 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
142 
143 	/* Don't go through full error handling during mount */
144 	if (!(sb->s_flags & SB_BORN))
145 		return;
146 
147 	if (sb_rdonly(sb))
148 		return;
149 
150 	btrfs_discard_stop(fs_info);
151 
152 	/* btrfs handle error by forcing the filesystem readonly */
153 	sb->s_flags |= SB_RDONLY;
154 	btrfs_info(fs_info, "forced readonly");
155 	/*
156 	 * Note that a running device replace operation is not canceled here
157 	 * although there is no way to update the progress. It would add the
158 	 * risk of a deadlock, therefore the canceling is omitted. The only
159 	 * penalty is that some I/O remains active until the procedure
160 	 * completes. The next time when the filesystem is mounted writable
161 	 * again, the device replace operation continues.
162 	 */
163 }
164 
165 #ifdef CONFIG_PRINTK
166 static const char * const logtypes[] = {
167 	"emergency",
168 	"alert",
169 	"critical",
170 	"error",
171 	"warning",
172 	"notice",
173 	"info",
174 	"debug",
175 };
176 
177 
178 /*
179  * Use one ratelimit state per log level so that a flood of less important
180  * messages doesn't cause more important ones to be dropped.
181  */
182 static struct ratelimit_state printk_limits[] = {
183 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
184 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
185 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
186 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
187 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
188 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
189 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
190 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
191 };
192 
193 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
194 {
195 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
196 	struct va_format vaf;
197 	va_list args;
198 	int kern_level;
199 	const char *type = logtypes[4];
200 	struct ratelimit_state *ratelimit = &printk_limits[4];
201 
202 	va_start(args, fmt);
203 
204 	while ((kern_level = printk_get_level(fmt)) != 0) {
205 		size_t size = printk_skip_level(fmt) - fmt;
206 
207 		if (kern_level >= '0' && kern_level <= '7') {
208 			memcpy(lvl, fmt,  size);
209 			lvl[size] = '\0';
210 			type = logtypes[kern_level - '0'];
211 			ratelimit = &printk_limits[kern_level - '0'];
212 		}
213 		fmt += size;
214 	}
215 
216 	vaf.fmt = fmt;
217 	vaf.va = &args;
218 
219 	if (__ratelimit(ratelimit))
220 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
221 			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
222 
223 	va_end(args);
224 }
225 #endif
226 
227 /*
228  * We only mark the transaction aborted and then set the file system read-only.
229  * This will prevent new transactions from starting or trying to join this
230  * one.
231  *
232  * This means that error recovery at the call site is limited to freeing
233  * any local memory allocations and passing the error code up without
234  * further cleanup. The transaction should complete as it normally would
235  * in the call path but will return -EIO.
236  *
237  * We'll complete the cleanup in btrfs_end_transaction and
238  * btrfs_commit_transaction.
239  */
240 __cold
241 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
242 			       const char *function,
243 			       unsigned int line, int errno)
244 {
245 	struct btrfs_fs_info *fs_info = trans->fs_info;
246 
247 	WRITE_ONCE(trans->aborted, errno);
248 	/* Nothing used. The other threads that have joined this
249 	 * transaction may be able to continue. */
250 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
251 		const char *errstr;
252 
253 		errstr = btrfs_decode_error(errno);
254 		btrfs_warn(fs_info,
255 		           "%s:%d: Aborting unused transaction(%s).",
256 		           function, line, errstr);
257 		return;
258 	}
259 	WRITE_ONCE(trans->transaction->aborted, errno);
260 	/* Wake up anybody who may be waiting on this transaction */
261 	wake_up(&fs_info->transaction_wait);
262 	wake_up(&fs_info->transaction_blocked_wait);
263 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
264 }
265 /*
266  * __btrfs_panic decodes unexpected, fatal errors from the caller,
267  * issues an alert, and either panics or BUGs, depending on mount options.
268  */
269 __cold
270 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
271 		   unsigned int line, int errno, const char *fmt, ...)
272 {
273 	char *s_id = "<unknown>";
274 	const char *errstr;
275 	struct va_format vaf = { .fmt = fmt };
276 	va_list args;
277 
278 	if (fs_info)
279 		s_id = fs_info->sb->s_id;
280 
281 	va_start(args, fmt);
282 	vaf.va = &args;
283 
284 	errstr = btrfs_decode_error(errno);
285 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
286 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
287 			s_id, function, line, &vaf, errno, errstr);
288 
289 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
290 		   function, line, &vaf, errno, errstr);
291 	va_end(args);
292 	/* Caller calls BUG() */
293 }
294 
295 static void btrfs_put_super(struct super_block *sb)
296 {
297 	close_ctree(btrfs_sb(sb));
298 }
299 
300 enum {
301 	Opt_acl, Opt_noacl,
302 	Opt_clear_cache,
303 	Opt_commit_interval,
304 	Opt_compress,
305 	Opt_compress_force,
306 	Opt_compress_force_type,
307 	Opt_compress_type,
308 	Opt_degraded,
309 	Opt_device,
310 	Opt_fatal_errors,
311 	Opt_flushoncommit, Opt_noflushoncommit,
312 	Opt_inode_cache, Opt_noinode_cache,
313 	Opt_max_inline,
314 	Opt_barrier, Opt_nobarrier,
315 	Opt_datacow, Opt_nodatacow,
316 	Opt_datasum, Opt_nodatasum,
317 	Opt_defrag, Opt_nodefrag,
318 	Opt_discard, Opt_nodiscard,
319 	Opt_discard_mode,
320 	Opt_nologreplay,
321 	Opt_norecovery,
322 	Opt_ratio,
323 	Opt_rescan_uuid_tree,
324 	Opt_skip_balance,
325 	Opt_space_cache, Opt_no_space_cache,
326 	Opt_space_cache_version,
327 	Opt_ssd, Opt_nossd,
328 	Opt_ssd_spread, Opt_nossd_spread,
329 	Opt_subvol,
330 	Opt_subvol_empty,
331 	Opt_subvolid,
332 	Opt_thread_pool,
333 	Opt_treelog, Opt_notreelog,
334 	Opt_usebackuproot,
335 	Opt_user_subvol_rm_allowed,
336 
337 	/* Deprecated options */
338 	Opt_alloc_start,
339 	Opt_recovery,
340 	Opt_subvolrootid,
341 
342 	/* Debugging options */
343 	Opt_check_integrity,
344 	Opt_check_integrity_including_extent_data,
345 	Opt_check_integrity_print_mask,
346 	Opt_enospc_debug, Opt_noenospc_debug,
347 #ifdef CONFIG_BTRFS_DEBUG
348 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
349 #endif
350 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
351 	Opt_ref_verify,
352 #endif
353 	Opt_err,
354 };
355 
356 static const match_table_t tokens = {
357 	{Opt_acl, "acl"},
358 	{Opt_noacl, "noacl"},
359 	{Opt_clear_cache, "clear_cache"},
360 	{Opt_commit_interval, "commit=%u"},
361 	{Opt_compress, "compress"},
362 	{Opt_compress_type, "compress=%s"},
363 	{Opt_compress_force, "compress-force"},
364 	{Opt_compress_force_type, "compress-force=%s"},
365 	{Opt_degraded, "degraded"},
366 	{Opt_device, "device=%s"},
367 	{Opt_fatal_errors, "fatal_errors=%s"},
368 	{Opt_flushoncommit, "flushoncommit"},
369 	{Opt_noflushoncommit, "noflushoncommit"},
370 	{Opt_inode_cache, "inode_cache"},
371 	{Opt_noinode_cache, "noinode_cache"},
372 	{Opt_max_inline, "max_inline=%s"},
373 	{Opt_barrier, "barrier"},
374 	{Opt_nobarrier, "nobarrier"},
375 	{Opt_datacow, "datacow"},
376 	{Opt_nodatacow, "nodatacow"},
377 	{Opt_datasum, "datasum"},
378 	{Opt_nodatasum, "nodatasum"},
379 	{Opt_defrag, "autodefrag"},
380 	{Opt_nodefrag, "noautodefrag"},
381 	{Opt_discard, "discard"},
382 	{Opt_discard_mode, "discard=%s"},
383 	{Opt_nodiscard, "nodiscard"},
384 	{Opt_nologreplay, "nologreplay"},
385 	{Opt_norecovery, "norecovery"},
386 	{Opt_ratio, "metadata_ratio=%u"},
387 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
388 	{Opt_skip_balance, "skip_balance"},
389 	{Opt_space_cache, "space_cache"},
390 	{Opt_no_space_cache, "nospace_cache"},
391 	{Opt_space_cache_version, "space_cache=%s"},
392 	{Opt_ssd, "ssd"},
393 	{Opt_nossd, "nossd"},
394 	{Opt_ssd_spread, "ssd_spread"},
395 	{Opt_nossd_spread, "nossd_spread"},
396 	{Opt_subvol, "subvol=%s"},
397 	{Opt_subvol_empty, "subvol="},
398 	{Opt_subvolid, "subvolid=%s"},
399 	{Opt_thread_pool, "thread_pool=%u"},
400 	{Opt_treelog, "treelog"},
401 	{Opt_notreelog, "notreelog"},
402 	{Opt_usebackuproot, "usebackuproot"},
403 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
404 
405 	/* Deprecated options */
406 	{Opt_alloc_start, "alloc_start=%s"},
407 	{Opt_recovery, "recovery"},
408 	{Opt_subvolrootid, "subvolrootid=%d"},
409 
410 	/* Debugging options */
411 	{Opt_check_integrity, "check_int"},
412 	{Opt_check_integrity_including_extent_data, "check_int_data"},
413 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
414 	{Opt_enospc_debug, "enospc_debug"},
415 	{Opt_noenospc_debug, "noenospc_debug"},
416 #ifdef CONFIG_BTRFS_DEBUG
417 	{Opt_fragment_data, "fragment=data"},
418 	{Opt_fragment_metadata, "fragment=metadata"},
419 	{Opt_fragment_all, "fragment=all"},
420 #endif
421 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
422 	{Opt_ref_verify, "ref_verify"},
423 #endif
424 	{Opt_err, NULL},
425 };
426 
427 /*
428  * Regular mount options parser.  Everything that is needed only when
429  * reading in a new superblock is parsed here.
430  * XXX JDM: This needs to be cleaned up for remount.
431  */
432 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
433 			unsigned long new_flags)
434 {
435 	substring_t args[MAX_OPT_ARGS];
436 	char *p, *num;
437 	u64 cache_gen;
438 	int intarg;
439 	int ret = 0;
440 	char *compress_type;
441 	bool compress_force = false;
442 	enum btrfs_compression_type saved_compress_type;
443 	bool saved_compress_force;
444 	int no_compress = 0;
445 
446 	cache_gen = btrfs_super_cache_generation(info->super_copy);
447 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
448 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
449 	else if (cache_gen)
450 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
451 
452 	/*
453 	 * Even the options are empty, we still need to do extra check
454 	 * against new flags
455 	 */
456 	if (!options)
457 		goto check;
458 
459 	while ((p = strsep(&options, ",")) != NULL) {
460 		int token;
461 		if (!*p)
462 			continue;
463 
464 		token = match_token(p, tokens, args);
465 		switch (token) {
466 		case Opt_degraded:
467 			btrfs_info(info, "allowing degraded mounts");
468 			btrfs_set_opt(info->mount_opt, DEGRADED);
469 			break;
470 		case Opt_subvol:
471 		case Opt_subvol_empty:
472 		case Opt_subvolid:
473 		case Opt_subvolrootid:
474 		case Opt_device:
475 			/*
476 			 * These are parsed by btrfs_parse_subvol_options or
477 			 * btrfs_parse_device_options and can be ignored here.
478 			 */
479 			break;
480 		case Opt_nodatasum:
481 			btrfs_set_and_info(info, NODATASUM,
482 					   "setting nodatasum");
483 			break;
484 		case Opt_datasum:
485 			if (btrfs_test_opt(info, NODATASUM)) {
486 				if (btrfs_test_opt(info, NODATACOW))
487 					btrfs_info(info,
488 						   "setting datasum, datacow enabled");
489 				else
490 					btrfs_info(info, "setting datasum");
491 			}
492 			btrfs_clear_opt(info->mount_opt, NODATACOW);
493 			btrfs_clear_opt(info->mount_opt, NODATASUM);
494 			break;
495 		case Opt_nodatacow:
496 			if (!btrfs_test_opt(info, NODATACOW)) {
497 				if (!btrfs_test_opt(info, COMPRESS) ||
498 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
499 					btrfs_info(info,
500 						   "setting nodatacow, compression disabled");
501 				} else {
502 					btrfs_info(info, "setting nodatacow");
503 				}
504 			}
505 			btrfs_clear_opt(info->mount_opt, COMPRESS);
506 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
507 			btrfs_set_opt(info->mount_opt, NODATACOW);
508 			btrfs_set_opt(info->mount_opt, NODATASUM);
509 			break;
510 		case Opt_datacow:
511 			btrfs_clear_and_info(info, NODATACOW,
512 					     "setting datacow");
513 			break;
514 		case Opt_compress_force:
515 		case Opt_compress_force_type:
516 			compress_force = true;
517 			/* Fallthrough */
518 		case Opt_compress:
519 		case Opt_compress_type:
520 			saved_compress_type = btrfs_test_opt(info,
521 							     COMPRESS) ?
522 				info->compress_type : BTRFS_COMPRESS_NONE;
523 			saved_compress_force =
524 				btrfs_test_opt(info, FORCE_COMPRESS);
525 			if (token == Opt_compress ||
526 			    token == Opt_compress_force ||
527 			    strncmp(args[0].from, "zlib", 4) == 0) {
528 				compress_type = "zlib";
529 
530 				info->compress_type = BTRFS_COMPRESS_ZLIB;
531 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
532 				/*
533 				 * args[0] contains uninitialized data since
534 				 * for these tokens we don't expect any
535 				 * parameter.
536 				 */
537 				if (token != Opt_compress &&
538 				    token != Opt_compress_force)
539 					info->compress_level =
540 					  btrfs_compress_str2level(
541 							BTRFS_COMPRESS_ZLIB,
542 							args[0].from + 4);
543 				btrfs_set_opt(info->mount_opt, COMPRESS);
544 				btrfs_clear_opt(info->mount_opt, NODATACOW);
545 				btrfs_clear_opt(info->mount_opt, NODATASUM);
546 				no_compress = 0;
547 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
548 				compress_type = "lzo";
549 				info->compress_type = BTRFS_COMPRESS_LZO;
550 				btrfs_set_opt(info->mount_opt, COMPRESS);
551 				btrfs_clear_opt(info->mount_opt, NODATACOW);
552 				btrfs_clear_opt(info->mount_opt, NODATASUM);
553 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
554 				no_compress = 0;
555 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
556 				compress_type = "zstd";
557 				info->compress_type = BTRFS_COMPRESS_ZSTD;
558 				info->compress_level =
559 					btrfs_compress_str2level(
560 							 BTRFS_COMPRESS_ZSTD,
561 							 args[0].from + 4);
562 				btrfs_set_opt(info->mount_opt, COMPRESS);
563 				btrfs_clear_opt(info->mount_opt, NODATACOW);
564 				btrfs_clear_opt(info->mount_opt, NODATASUM);
565 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
566 				no_compress = 0;
567 			} else if (strncmp(args[0].from, "no", 2) == 0) {
568 				compress_type = "no";
569 				btrfs_clear_opt(info->mount_opt, COMPRESS);
570 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
571 				compress_force = false;
572 				no_compress++;
573 			} else {
574 				ret = -EINVAL;
575 				goto out;
576 			}
577 
578 			if (compress_force) {
579 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
580 			} else {
581 				/*
582 				 * If we remount from compress-force=xxx to
583 				 * compress=xxx, we need clear FORCE_COMPRESS
584 				 * flag, otherwise, there is no way for users
585 				 * to disable forcible compression separately.
586 				 */
587 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
588 			}
589 			if ((btrfs_test_opt(info, COMPRESS) &&
590 			     (info->compress_type != saved_compress_type ||
591 			      compress_force != saved_compress_force)) ||
592 			    (!btrfs_test_opt(info, COMPRESS) &&
593 			     no_compress == 1)) {
594 				btrfs_info(info, "%s %s compression, level %d",
595 					   (compress_force) ? "force" : "use",
596 					   compress_type, info->compress_level);
597 			}
598 			compress_force = false;
599 			break;
600 		case Opt_ssd:
601 			btrfs_set_and_info(info, SSD,
602 					   "enabling ssd optimizations");
603 			btrfs_clear_opt(info->mount_opt, NOSSD);
604 			break;
605 		case Opt_ssd_spread:
606 			btrfs_set_and_info(info, SSD,
607 					   "enabling ssd optimizations");
608 			btrfs_set_and_info(info, SSD_SPREAD,
609 					   "using spread ssd allocation scheme");
610 			btrfs_clear_opt(info->mount_opt, NOSSD);
611 			break;
612 		case Opt_nossd:
613 			btrfs_set_opt(info->mount_opt, NOSSD);
614 			btrfs_clear_and_info(info, SSD,
615 					     "not using ssd optimizations");
616 			/* Fallthrough */
617 		case Opt_nossd_spread:
618 			btrfs_clear_and_info(info, SSD_SPREAD,
619 					     "not using spread ssd allocation scheme");
620 			break;
621 		case Opt_barrier:
622 			btrfs_clear_and_info(info, NOBARRIER,
623 					     "turning on barriers");
624 			break;
625 		case Opt_nobarrier:
626 			btrfs_set_and_info(info, NOBARRIER,
627 					   "turning off barriers");
628 			break;
629 		case Opt_thread_pool:
630 			ret = match_int(&args[0], &intarg);
631 			if (ret) {
632 				goto out;
633 			} else if (intarg == 0) {
634 				ret = -EINVAL;
635 				goto out;
636 			}
637 			info->thread_pool_size = intarg;
638 			break;
639 		case Opt_max_inline:
640 			num = match_strdup(&args[0]);
641 			if (num) {
642 				info->max_inline = memparse(num, NULL);
643 				kfree(num);
644 
645 				if (info->max_inline) {
646 					info->max_inline = min_t(u64,
647 						info->max_inline,
648 						info->sectorsize);
649 				}
650 				btrfs_info(info, "max_inline at %llu",
651 					   info->max_inline);
652 			} else {
653 				ret = -ENOMEM;
654 				goto out;
655 			}
656 			break;
657 		case Opt_alloc_start:
658 			btrfs_info(info,
659 				"option alloc_start is obsolete, ignored");
660 			break;
661 		case Opt_acl:
662 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
663 			info->sb->s_flags |= SB_POSIXACL;
664 			break;
665 #else
666 			btrfs_err(info, "support for ACL not compiled in!");
667 			ret = -EINVAL;
668 			goto out;
669 #endif
670 		case Opt_noacl:
671 			info->sb->s_flags &= ~SB_POSIXACL;
672 			break;
673 		case Opt_notreelog:
674 			btrfs_set_and_info(info, NOTREELOG,
675 					   "disabling tree log");
676 			break;
677 		case Opt_treelog:
678 			btrfs_clear_and_info(info, NOTREELOG,
679 					     "enabling tree log");
680 			break;
681 		case Opt_norecovery:
682 		case Opt_nologreplay:
683 			btrfs_set_and_info(info, NOLOGREPLAY,
684 					   "disabling log replay at mount time");
685 			break;
686 		case Opt_flushoncommit:
687 			btrfs_set_and_info(info, FLUSHONCOMMIT,
688 					   "turning on flush-on-commit");
689 			break;
690 		case Opt_noflushoncommit:
691 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
692 					     "turning off flush-on-commit");
693 			break;
694 		case Opt_ratio:
695 			ret = match_int(&args[0], &intarg);
696 			if (ret)
697 				goto out;
698 			info->metadata_ratio = intarg;
699 			btrfs_info(info, "metadata ratio %u",
700 				   info->metadata_ratio);
701 			break;
702 		case Opt_discard:
703 		case Opt_discard_mode:
704 			if (token == Opt_discard ||
705 			    strcmp(args[0].from, "sync") == 0) {
706 				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
707 				btrfs_set_and_info(info, DISCARD_SYNC,
708 						   "turning on sync discard");
709 			} else if (strcmp(args[0].from, "async") == 0) {
710 				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
711 				btrfs_set_and_info(info, DISCARD_ASYNC,
712 						   "turning on async discard");
713 			} else {
714 				ret = -EINVAL;
715 				goto out;
716 			}
717 			break;
718 		case Opt_nodiscard:
719 			btrfs_clear_and_info(info, DISCARD_SYNC,
720 					     "turning off discard");
721 			btrfs_clear_and_info(info, DISCARD_ASYNC,
722 					     "turning off async discard");
723 			break;
724 		case Opt_space_cache:
725 		case Opt_space_cache_version:
726 			if (token == Opt_space_cache ||
727 			    strcmp(args[0].from, "v1") == 0) {
728 				btrfs_clear_opt(info->mount_opt,
729 						FREE_SPACE_TREE);
730 				btrfs_set_and_info(info, SPACE_CACHE,
731 					   "enabling disk space caching");
732 			} else if (strcmp(args[0].from, "v2") == 0) {
733 				btrfs_clear_opt(info->mount_opt,
734 						SPACE_CACHE);
735 				btrfs_set_and_info(info, FREE_SPACE_TREE,
736 						   "enabling free space tree");
737 			} else {
738 				ret = -EINVAL;
739 				goto out;
740 			}
741 			break;
742 		case Opt_rescan_uuid_tree:
743 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
744 			break;
745 		case Opt_no_space_cache:
746 			if (btrfs_test_opt(info, SPACE_CACHE)) {
747 				btrfs_clear_and_info(info, SPACE_CACHE,
748 					     "disabling disk space caching");
749 			}
750 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
751 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
752 					     "disabling free space tree");
753 			}
754 			break;
755 		case Opt_inode_cache:
756 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
757 					   "enabling inode map caching");
758 			break;
759 		case Opt_noinode_cache:
760 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
761 					     "disabling inode map caching");
762 			break;
763 		case Opt_clear_cache:
764 			btrfs_set_and_info(info, CLEAR_CACHE,
765 					   "force clearing of disk cache");
766 			break;
767 		case Opt_user_subvol_rm_allowed:
768 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
769 			break;
770 		case Opt_enospc_debug:
771 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
772 			break;
773 		case Opt_noenospc_debug:
774 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
775 			break;
776 		case Opt_defrag:
777 			btrfs_set_and_info(info, AUTO_DEFRAG,
778 					   "enabling auto defrag");
779 			break;
780 		case Opt_nodefrag:
781 			btrfs_clear_and_info(info, AUTO_DEFRAG,
782 					     "disabling auto defrag");
783 			break;
784 		case Opt_recovery:
785 			btrfs_warn(info,
786 				   "'recovery' is deprecated, use 'usebackuproot' instead");
787 			/* fall through */
788 		case Opt_usebackuproot:
789 			btrfs_info(info,
790 				   "trying to use backup root at mount time");
791 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
792 			break;
793 		case Opt_skip_balance:
794 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
795 			break;
796 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
797 		case Opt_check_integrity_including_extent_data:
798 			btrfs_info(info,
799 				   "enabling check integrity including extent data");
800 			btrfs_set_opt(info->mount_opt,
801 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
802 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
803 			break;
804 		case Opt_check_integrity:
805 			btrfs_info(info, "enabling check integrity");
806 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
807 			break;
808 		case Opt_check_integrity_print_mask:
809 			ret = match_int(&args[0], &intarg);
810 			if (ret)
811 				goto out;
812 			info->check_integrity_print_mask = intarg;
813 			btrfs_info(info, "check_integrity_print_mask 0x%x",
814 				   info->check_integrity_print_mask);
815 			break;
816 #else
817 		case Opt_check_integrity_including_extent_data:
818 		case Opt_check_integrity:
819 		case Opt_check_integrity_print_mask:
820 			btrfs_err(info,
821 				  "support for check_integrity* not compiled in!");
822 			ret = -EINVAL;
823 			goto out;
824 #endif
825 		case Opt_fatal_errors:
826 			if (strcmp(args[0].from, "panic") == 0)
827 				btrfs_set_opt(info->mount_opt,
828 					      PANIC_ON_FATAL_ERROR);
829 			else if (strcmp(args[0].from, "bug") == 0)
830 				btrfs_clear_opt(info->mount_opt,
831 					      PANIC_ON_FATAL_ERROR);
832 			else {
833 				ret = -EINVAL;
834 				goto out;
835 			}
836 			break;
837 		case Opt_commit_interval:
838 			intarg = 0;
839 			ret = match_int(&args[0], &intarg);
840 			if (ret)
841 				goto out;
842 			if (intarg == 0) {
843 				btrfs_info(info,
844 					   "using default commit interval %us",
845 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
846 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
847 			} else if (intarg > 300) {
848 				btrfs_warn(info, "excessive commit interval %d",
849 					   intarg);
850 			}
851 			info->commit_interval = intarg;
852 			break;
853 #ifdef CONFIG_BTRFS_DEBUG
854 		case Opt_fragment_all:
855 			btrfs_info(info, "fragmenting all space");
856 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
857 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
858 			break;
859 		case Opt_fragment_metadata:
860 			btrfs_info(info, "fragmenting metadata");
861 			btrfs_set_opt(info->mount_opt,
862 				      FRAGMENT_METADATA);
863 			break;
864 		case Opt_fragment_data:
865 			btrfs_info(info, "fragmenting data");
866 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
867 			break;
868 #endif
869 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
870 		case Opt_ref_verify:
871 			btrfs_info(info, "doing ref verification");
872 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
873 			break;
874 #endif
875 		case Opt_err:
876 			btrfs_err(info, "unrecognized mount option '%s'", p);
877 			ret = -EINVAL;
878 			goto out;
879 		default:
880 			break;
881 		}
882 	}
883 check:
884 	/*
885 	 * Extra check for current option against current flag
886 	 */
887 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
888 		btrfs_err(info,
889 			  "nologreplay must be used with ro mount option");
890 		ret = -EINVAL;
891 	}
892 out:
893 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
894 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
895 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
896 		btrfs_err(info, "cannot disable free space tree");
897 		ret = -EINVAL;
898 
899 	}
900 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
901 		btrfs_info(info, "disk space caching is enabled");
902 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
903 		btrfs_info(info, "using free space tree");
904 	return ret;
905 }
906 
907 /*
908  * Parse mount options that are required early in the mount process.
909  *
910  * All other options will be parsed on much later in the mount process and
911  * only when we need to allocate a new super block.
912  */
913 static int btrfs_parse_device_options(const char *options, fmode_t flags,
914 				      void *holder)
915 {
916 	substring_t args[MAX_OPT_ARGS];
917 	char *device_name, *opts, *orig, *p;
918 	struct btrfs_device *device = NULL;
919 	int error = 0;
920 
921 	lockdep_assert_held(&uuid_mutex);
922 
923 	if (!options)
924 		return 0;
925 
926 	/*
927 	 * strsep changes the string, duplicate it because btrfs_parse_options
928 	 * gets called later
929 	 */
930 	opts = kstrdup(options, GFP_KERNEL);
931 	if (!opts)
932 		return -ENOMEM;
933 	orig = opts;
934 
935 	while ((p = strsep(&opts, ",")) != NULL) {
936 		int token;
937 
938 		if (!*p)
939 			continue;
940 
941 		token = match_token(p, tokens, args);
942 		if (token == Opt_device) {
943 			device_name = match_strdup(&args[0]);
944 			if (!device_name) {
945 				error = -ENOMEM;
946 				goto out;
947 			}
948 			device = btrfs_scan_one_device(device_name, flags,
949 					holder);
950 			kfree(device_name);
951 			if (IS_ERR(device)) {
952 				error = PTR_ERR(device);
953 				goto out;
954 			}
955 		}
956 	}
957 
958 out:
959 	kfree(orig);
960 	return error;
961 }
962 
963 /*
964  * Parse mount options that are related to subvolume id
965  *
966  * The value is later passed to mount_subvol()
967  */
968 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
969 		u64 *subvol_objectid)
970 {
971 	substring_t args[MAX_OPT_ARGS];
972 	char *opts, *orig, *p;
973 	int error = 0;
974 	u64 subvolid;
975 
976 	if (!options)
977 		return 0;
978 
979 	/*
980 	 * strsep changes the string, duplicate it because
981 	 * btrfs_parse_device_options gets called later
982 	 */
983 	opts = kstrdup(options, GFP_KERNEL);
984 	if (!opts)
985 		return -ENOMEM;
986 	orig = opts;
987 
988 	while ((p = strsep(&opts, ",")) != NULL) {
989 		int token;
990 		if (!*p)
991 			continue;
992 
993 		token = match_token(p, tokens, args);
994 		switch (token) {
995 		case Opt_subvol:
996 			kfree(*subvol_name);
997 			*subvol_name = match_strdup(&args[0]);
998 			if (!*subvol_name) {
999 				error = -ENOMEM;
1000 				goto out;
1001 			}
1002 			break;
1003 		case Opt_subvolid:
1004 			error = match_u64(&args[0], &subvolid);
1005 			if (error)
1006 				goto out;
1007 
1008 			/* we want the original fs_tree */
1009 			if (subvolid == 0)
1010 				subvolid = BTRFS_FS_TREE_OBJECTID;
1011 
1012 			*subvol_objectid = subvolid;
1013 			break;
1014 		case Opt_subvolrootid:
1015 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
1016 			break;
1017 		default:
1018 			break;
1019 		}
1020 	}
1021 
1022 out:
1023 	kfree(orig);
1024 	return error;
1025 }
1026 
1027 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1028 					  u64 subvol_objectid)
1029 {
1030 	struct btrfs_root *root = fs_info->tree_root;
1031 	struct btrfs_root *fs_root = NULL;
1032 	struct btrfs_root_ref *root_ref;
1033 	struct btrfs_inode_ref *inode_ref;
1034 	struct btrfs_key key;
1035 	struct btrfs_path *path = NULL;
1036 	char *name = NULL, *ptr;
1037 	u64 dirid;
1038 	int len;
1039 	int ret;
1040 
1041 	path = btrfs_alloc_path();
1042 	if (!path) {
1043 		ret = -ENOMEM;
1044 		goto err;
1045 	}
1046 	path->leave_spinning = 1;
1047 
1048 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1049 	if (!name) {
1050 		ret = -ENOMEM;
1051 		goto err;
1052 	}
1053 	ptr = name + PATH_MAX - 1;
1054 	ptr[0] = '\0';
1055 
1056 	/*
1057 	 * Walk up the subvolume trees in the tree of tree roots by root
1058 	 * backrefs until we hit the top-level subvolume.
1059 	 */
1060 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1061 		key.objectid = subvol_objectid;
1062 		key.type = BTRFS_ROOT_BACKREF_KEY;
1063 		key.offset = (u64)-1;
1064 
1065 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1066 		if (ret < 0) {
1067 			goto err;
1068 		} else if (ret > 0) {
1069 			ret = btrfs_previous_item(root, path, subvol_objectid,
1070 						  BTRFS_ROOT_BACKREF_KEY);
1071 			if (ret < 0) {
1072 				goto err;
1073 			} else if (ret > 0) {
1074 				ret = -ENOENT;
1075 				goto err;
1076 			}
1077 		}
1078 
1079 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1080 		subvol_objectid = key.offset;
1081 
1082 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1083 					  struct btrfs_root_ref);
1084 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1085 		ptr -= len + 1;
1086 		if (ptr < name) {
1087 			ret = -ENAMETOOLONG;
1088 			goto err;
1089 		}
1090 		read_extent_buffer(path->nodes[0], ptr + 1,
1091 				   (unsigned long)(root_ref + 1), len);
1092 		ptr[0] = '/';
1093 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1094 		btrfs_release_path(path);
1095 
1096 		key.objectid = subvol_objectid;
1097 		key.type = BTRFS_ROOT_ITEM_KEY;
1098 		key.offset = (u64)-1;
1099 		fs_root = btrfs_get_fs_root(fs_info, &key, true);
1100 		if (IS_ERR(fs_root)) {
1101 			ret = PTR_ERR(fs_root);
1102 			fs_root = NULL;
1103 			goto err;
1104 		}
1105 
1106 		/*
1107 		 * Walk up the filesystem tree by inode refs until we hit the
1108 		 * root directory.
1109 		 */
1110 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1111 			key.objectid = dirid;
1112 			key.type = BTRFS_INODE_REF_KEY;
1113 			key.offset = (u64)-1;
1114 
1115 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1116 			if (ret < 0) {
1117 				goto err;
1118 			} else if (ret > 0) {
1119 				ret = btrfs_previous_item(fs_root, path, dirid,
1120 							  BTRFS_INODE_REF_KEY);
1121 				if (ret < 0) {
1122 					goto err;
1123 				} else if (ret > 0) {
1124 					ret = -ENOENT;
1125 					goto err;
1126 				}
1127 			}
1128 
1129 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1130 			dirid = key.offset;
1131 
1132 			inode_ref = btrfs_item_ptr(path->nodes[0],
1133 						   path->slots[0],
1134 						   struct btrfs_inode_ref);
1135 			len = btrfs_inode_ref_name_len(path->nodes[0],
1136 						       inode_ref);
1137 			ptr -= len + 1;
1138 			if (ptr < name) {
1139 				ret = -ENAMETOOLONG;
1140 				goto err;
1141 			}
1142 			read_extent_buffer(path->nodes[0], ptr + 1,
1143 					   (unsigned long)(inode_ref + 1), len);
1144 			ptr[0] = '/';
1145 			btrfs_release_path(path);
1146 		}
1147 		btrfs_put_root(fs_root);
1148 		fs_root = NULL;
1149 	}
1150 
1151 	btrfs_free_path(path);
1152 	if (ptr == name + PATH_MAX - 1) {
1153 		name[0] = '/';
1154 		name[1] = '\0';
1155 	} else {
1156 		memmove(name, ptr, name + PATH_MAX - ptr);
1157 	}
1158 	return name;
1159 
1160 err:
1161 	btrfs_put_root(fs_root);
1162 	btrfs_free_path(path);
1163 	kfree(name);
1164 	return ERR_PTR(ret);
1165 }
1166 
1167 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1168 {
1169 	struct btrfs_root *root = fs_info->tree_root;
1170 	struct btrfs_dir_item *di;
1171 	struct btrfs_path *path;
1172 	struct btrfs_key location;
1173 	u64 dir_id;
1174 
1175 	path = btrfs_alloc_path();
1176 	if (!path)
1177 		return -ENOMEM;
1178 	path->leave_spinning = 1;
1179 
1180 	/*
1181 	 * Find the "default" dir item which points to the root item that we
1182 	 * will mount by default if we haven't been given a specific subvolume
1183 	 * to mount.
1184 	 */
1185 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1186 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1187 	if (IS_ERR(di)) {
1188 		btrfs_free_path(path);
1189 		return PTR_ERR(di);
1190 	}
1191 	if (!di) {
1192 		/*
1193 		 * Ok the default dir item isn't there.  This is weird since
1194 		 * it's always been there, but don't freak out, just try and
1195 		 * mount the top-level subvolume.
1196 		 */
1197 		btrfs_free_path(path);
1198 		*objectid = BTRFS_FS_TREE_OBJECTID;
1199 		return 0;
1200 	}
1201 
1202 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1203 	btrfs_free_path(path);
1204 	*objectid = location.objectid;
1205 	return 0;
1206 }
1207 
1208 static int btrfs_fill_super(struct super_block *sb,
1209 			    struct btrfs_fs_devices *fs_devices,
1210 			    void *data)
1211 {
1212 	struct inode *inode;
1213 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1214 	struct btrfs_key key;
1215 	int err;
1216 
1217 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1218 	sb->s_magic = BTRFS_SUPER_MAGIC;
1219 	sb->s_op = &btrfs_super_ops;
1220 	sb->s_d_op = &btrfs_dentry_operations;
1221 	sb->s_export_op = &btrfs_export_ops;
1222 	sb->s_xattr = btrfs_xattr_handlers;
1223 	sb->s_time_gran = 1;
1224 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1225 	sb->s_flags |= SB_POSIXACL;
1226 #endif
1227 	sb->s_flags |= SB_I_VERSION;
1228 	sb->s_iflags |= SB_I_CGROUPWB;
1229 
1230 	err = super_setup_bdi(sb);
1231 	if (err) {
1232 		btrfs_err(fs_info, "super_setup_bdi failed");
1233 		return err;
1234 	}
1235 
1236 	err = open_ctree(sb, fs_devices, (char *)data);
1237 	if (err) {
1238 		btrfs_err(fs_info, "open_ctree failed");
1239 		return err;
1240 	}
1241 
1242 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1243 	key.type = BTRFS_INODE_ITEM_KEY;
1244 	key.offset = 0;
1245 	inode = btrfs_iget(sb, &key, fs_info->fs_root);
1246 	if (IS_ERR(inode)) {
1247 		err = PTR_ERR(inode);
1248 		goto fail_close;
1249 	}
1250 
1251 	sb->s_root = d_make_root(inode);
1252 	if (!sb->s_root) {
1253 		err = -ENOMEM;
1254 		goto fail_close;
1255 	}
1256 
1257 	cleancache_init_fs(sb);
1258 	sb->s_flags |= SB_ACTIVE;
1259 	return 0;
1260 
1261 fail_close:
1262 	close_ctree(fs_info);
1263 	return err;
1264 }
1265 
1266 int btrfs_sync_fs(struct super_block *sb, int wait)
1267 {
1268 	struct btrfs_trans_handle *trans;
1269 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1270 	struct btrfs_root *root = fs_info->tree_root;
1271 
1272 	trace_btrfs_sync_fs(fs_info, wait);
1273 
1274 	if (!wait) {
1275 		filemap_flush(fs_info->btree_inode->i_mapping);
1276 		return 0;
1277 	}
1278 
1279 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1280 
1281 	trans = btrfs_attach_transaction_barrier(root);
1282 	if (IS_ERR(trans)) {
1283 		/* no transaction, don't bother */
1284 		if (PTR_ERR(trans) == -ENOENT) {
1285 			/*
1286 			 * Exit unless we have some pending changes
1287 			 * that need to go through commit
1288 			 */
1289 			if (fs_info->pending_changes == 0)
1290 				return 0;
1291 			/*
1292 			 * A non-blocking test if the fs is frozen. We must not
1293 			 * start a new transaction here otherwise a deadlock
1294 			 * happens. The pending operations are delayed to the
1295 			 * next commit after thawing.
1296 			 */
1297 			if (sb_start_write_trylock(sb))
1298 				sb_end_write(sb);
1299 			else
1300 				return 0;
1301 			trans = btrfs_start_transaction(root, 0);
1302 		}
1303 		if (IS_ERR(trans))
1304 			return PTR_ERR(trans);
1305 	}
1306 	return btrfs_commit_transaction(trans);
1307 }
1308 
1309 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1310 {
1311 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1312 	const char *compress_type;
1313 
1314 	if (btrfs_test_opt(info, DEGRADED))
1315 		seq_puts(seq, ",degraded");
1316 	if (btrfs_test_opt(info, NODATASUM))
1317 		seq_puts(seq, ",nodatasum");
1318 	if (btrfs_test_opt(info, NODATACOW))
1319 		seq_puts(seq, ",nodatacow");
1320 	if (btrfs_test_opt(info, NOBARRIER))
1321 		seq_puts(seq, ",nobarrier");
1322 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1323 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1324 	if (info->thread_pool_size !=  min_t(unsigned long,
1325 					     num_online_cpus() + 2, 8))
1326 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1327 	if (btrfs_test_opt(info, COMPRESS)) {
1328 		compress_type = btrfs_compress_type2str(info->compress_type);
1329 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1330 			seq_printf(seq, ",compress-force=%s", compress_type);
1331 		else
1332 			seq_printf(seq, ",compress=%s", compress_type);
1333 		if (info->compress_level)
1334 			seq_printf(seq, ":%d", info->compress_level);
1335 	}
1336 	if (btrfs_test_opt(info, NOSSD))
1337 		seq_puts(seq, ",nossd");
1338 	if (btrfs_test_opt(info, SSD_SPREAD))
1339 		seq_puts(seq, ",ssd_spread");
1340 	else if (btrfs_test_opt(info, SSD))
1341 		seq_puts(seq, ",ssd");
1342 	if (btrfs_test_opt(info, NOTREELOG))
1343 		seq_puts(seq, ",notreelog");
1344 	if (btrfs_test_opt(info, NOLOGREPLAY))
1345 		seq_puts(seq, ",nologreplay");
1346 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1347 		seq_puts(seq, ",flushoncommit");
1348 	if (btrfs_test_opt(info, DISCARD_SYNC))
1349 		seq_puts(seq, ",discard");
1350 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1351 		seq_puts(seq, ",discard=async");
1352 	if (!(info->sb->s_flags & SB_POSIXACL))
1353 		seq_puts(seq, ",noacl");
1354 	if (btrfs_test_opt(info, SPACE_CACHE))
1355 		seq_puts(seq, ",space_cache");
1356 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1357 		seq_puts(seq, ",space_cache=v2");
1358 	else
1359 		seq_puts(seq, ",nospace_cache");
1360 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1361 		seq_puts(seq, ",rescan_uuid_tree");
1362 	if (btrfs_test_opt(info, CLEAR_CACHE))
1363 		seq_puts(seq, ",clear_cache");
1364 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1365 		seq_puts(seq, ",user_subvol_rm_allowed");
1366 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1367 		seq_puts(seq, ",enospc_debug");
1368 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1369 		seq_puts(seq, ",autodefrag");
1370 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1371 		seq_puts(seq, ",inode_cache");
1372 	if (btrfs_test_opt(info, SKIP_BALANCE))
1373 		seq_puts(seq, ",skip_balance");
1374 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1375 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1376 		seq_puts(seq, ",check_int_data");
1377 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1378 		seq_puts(seq, ",check_int");
1379 	if (info->check_integrity_print_mask)
1380 		seq_printf(seq, ",check_int_print_mask=%d",
1381 				info->check_integrity_print_mask);
1382 #endif
1383 	if (info->metadata_ratio)
1384 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1385 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1386 		seq_puts(seq, ",fatal_errors=panic");
1387 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1388 		seq_printf(seq, ",commit=%u", info->commit_interval);
1389 #ifdef CONFIG_BTRFS_DEBUG
1390 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1391 		seq_puts(seq, ",fragment=data");
1392 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1393 		seq_puts(seq, ",fragment=metadata");
1394 #endif
1395 	if (btrfs_test_opt(info, REF_VERIFY))
1396 		seq_puts(seq, ",ref_verify");
1397 	seq_printf(seq, ",subvolid=%llu",
1398 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1399 	seq_puts(seq, ",subvol=");
1400 	seq_dentry(seq, dentry, " \t\n\\");
1401 	return 0;
1402 }
1403 
1404 static int btrfs_test_super(struct super_block *s, void *data)
1405 {
1406 	struct btrfs_fs_info *p = data;
1407 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1408 
1409 	return fs_info->fs_devices == p->fs_devices;
1410 }
1411 
1412 static int btrfs_set_super(struct super_block *s, void *data)
1413 {
1414 	int err = set_anon_super(s, data);
1415 	if (!err)
1416 		s->s_fs_info = data;
1417 	return err;
1418 }
1419 
1420 /*
1421  * subvolumes are identified by ino 256
1422  */
1423 static inline int is_subvolume_inode(struct inode *inode)
1424 {
1425 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1426 		return 1;
1427 	return 0;
1428 }
1429 
1430 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1431 				   struct vfsmount *mnt)
1432 {
1433 	struct dentry *root;
1434 	int ret;
1435 
1436 	if (!subvol_name) {
1437 		if (!subvol_objectid) {
1438 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1439 							  &subvol_objectid);
1440 			if (ret) {
1441 				root = ERR_PTR(ret);
1442 				goto out;
1443 			}
1444 		}
1445 		subvol_name = btrfs_get_subvol_name_from_objectid(
1446 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1447 		if (IS_ERR(subvol_name)) {
1448 			root = ERR_CAST(subvol_name);
1449 			subvol_name = NULL;
1450 			goto out;
1451 		}
1452 
1453 	}
1454 
1455 	root = mount_subtree(mnt, subvol_name);
1456 	/* mount_subtree() drops our reference on the vfsmount. */
1457 	mnt = NULL;
1458 
1459 	if (!IS_ERR(root)) {
1460 		struct super_block *s = root->d_sb;
1461 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1462 		struct inode *root_inode = d_inode(root);
1463 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1464 
1465 		ret = 0;
1466 		if (!is_subvolume_inode(root_inode)) {
1467 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1468 			       subvol_name);
1469 			ret = -EINVAL;
1470 		}
1471 		if (subvol_objectid && root_objectid != subvol_objectid) {
1472 			/*
1473 			 * This will also catch a race condition where a
1474 			 * subvolume which was passed by ID is renamed and
1475 			 * another subvolume is renamed over the old location.
1476 			 */
1477 			btrfs_err(fs_info,
1478 				  "subvol '%s' does not match subvolid %llu",
1479 				  subvol_name, subvol_objectid);
1480 			ret = -EINVAL;
1481 		}
1482 		if (ret) {
1483 			dput(root);
1484 			root = ERR_PTR(ret);
1485 			deactivate_locked_super(s);
1486 		}
1487 	}
1488 
1489 out:
1490 	mntput(mnt);
1491 	kfree(subvol_name);
1492 	return root;
1493 }
1494 
1495 /*
1496  * Find a superblock for the given device / mount point.
1497  *
1498  * Note: This is based on mount_bdev from fs/super.c with a few additions
1499  *       for multiple device setup.  Make sure to keep it in sync.
1500  */
1501 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1502 		int flags, const char *device_name, void *data)
1503 {
1504 	struct block_device *bdev = NULL;
1505 	struct super_block *s;
1506 	struct btrfs_device *device = NULL;
1507 	struct btrfs_fs_devices *fs_devices = NULL;
1508 	struct btrfs_fs_info *fs_info = NULL;
1509 	void *new_sec_opts = NULL;
1510 	fmode_t mode = FMODE_READ;
1511 	int error = 0;
1512 
1513 	if (!(flags & SB_RDONLY))
1514 		mode |= FMODE_WRITE;
1515 
1516 	if (data) {
1517 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1518 		if (error)
1519 			return ERR_PTR(error);
1520 	}
1521 
1522 	/*
1523 	 * Setup a dummy root and fs_info for test/set super.  This is because
1524 	 * we don't actually fill this stuff out until open_ctree, but we need
1525 	 * then open_ctree will properly initialize the file system specific
1526 	 * settings later.  btrfs_init_fs_info initializes the static elements
1527 	 * of the fs_info (locks and such) to make cleanup easier if we find a
1528 	 * superblock with our given fs_devices later on at sget() time.
1529 	 */
1530 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1531 	if (!fs_info) {
1532 		error = -ENOMEM;
1533 		goto error_sec_opts;
1534 	}
1535 	btrfs_init_fs_info(fs_info);
1536 
1537 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1538 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1539 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1540 		error = -ENOMEM;
1541 		goto error_fs_info;
1542 	}
1543 
1544 	mutex_lock(&uuid_mutex);
1545 	error = btrfs_parse_device_options(data, mode, fs_type);
1546 	if (error) {
1547 		mutex_unlock(&uuid_mutex);
1548 		goto error_fs_info;
1549 	}
1550 
1551 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1552 	if (IS_ERR(device)) {
1553 		mutex_unlock(&uuid_mutex);
1554 		error = PTR_ERR(device);
1555 		goto error_fs_info;
1556 	}
1557 
1558 	fs_devices = device->fs_devices;
1559 	fs_info->fs_devices = fs_devices;
1560 
1561 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1562 	mutex_unlock(&uuid_mutex);
1563 	if (error)
1564 		goto error_fs_info;
1565 
1566 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1567 		error = -EACCES;
1568 		goto error_close_devices;
1569 	}
1570 
1571 	bdev = fs_devices->latest_bdev;
1572 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1573 		 fs_info);
1574 	if (IS_ERR(s)) {
1575 		error = PTR_ERR(s);
1576 		goto error_close_devices;
1577 	}
1578 
1579 	if (s->s_root) {
1580 		btrfs_close_devices(fs_devices);
1581 		btrfs_free_fs_info(fs_info);
1582 		if ((flags ^ s->s_flags) & SB_RDONLY)
1583 			error = -EBUSY;
1584 	} else {
1585 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1586 		btrfs_sb(s)->bdev_holder = fs_type;
1587 		if (!strstr(crc32c_impl(), "generic"))
1588 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1589 		error = btrfs_fill_super(s, fs_devices, data);
1590 	}
1591 	if (!error)
1592 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1593 	security_free_mnt_opts(&new_sec_opts);
1594 	if (error) {
1595 		deactivate_locked_super(s);
1596 		return ERR_PTR(error);
1597 	}
1598 
1599 	return dget(s->s_root);
1600 
1601 error_close_devices:
1602 	btrfs_close_devices(fs_devices);
1603 error_fs_info:
1604 	btrfs_free_fs_info(fs_info);
1605 error_sec_opts:
1606 	security_free_mnt_opts(&new_sec_opts);
1607 	return ERR_PTR(error);
1608 }
1609 
1610 /*
1611  * Mount function which is called by VFS layer.
1612  *
1613  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1614  * which needs vfsmount* of device's root (/).  This means device's root has to
1615  * be mounted internally in any case.
1616  *
1617  * Operation flow:
1618  *   1. Parse subvol id related options for later use in mount_subvol().
1619  *
1620  *   2. Mount device's root (/) by calling vfs_kern_mount().
1621  *
1622  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1623  *      first place. In order to avoid calling btrfs_mount() again, we use
1624  *      different file_system_type which is not registered to VFS by
1625  *      register_filesystem() (btrfs_root_fs_type). As a result,
1626  *      btrfs_mount_root() is called. The return value will be used by
1627  *      mount_subtree() in mount_subvol().
1628  *
1629  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1630  *      "btrfs subvolume set-default", mount_subvol() is called always.
1631  */
1632 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1633 		const char *device_name, void *data)
1634 {
1635 	struct vfsmount *mnt_root;
1636 	struct dentry *root;
1637 	char *subvol_name = NULL;
1638 	u64 subvol_objectid = 0;
1639 	int error = 0;
1640 
1641 	error = btrfs_parse_subvol_options(data, &subvol_name,
1642 					&subvol_objectid);
1643 	if (error) {
1644 		kfree(subvol_name);
1645 		return ERR_PTR(error);
1646 	}
1647 
1648 	/* mount device's root (/) */
1649 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1650 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1651 		if (flags & SB_RDONLY) {
1652 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1653 				flags & ~SB_RDONLY, device_name, data);
1654 		} else {
1655 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1656 				flags | SB_RDONLY, device_name, data);
1657 			if (IS_ERR(mnt_root)) {
1658 				root = ERR_CAST(mnt_root);
1659 				kfree(subvol_name);
1660 				goto out;
1661 			}
1662 
1663 			down_write(&mnt_root->mnt_sb->s_umount);
1664 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1665 			up_write(&mnt_root->mnt_sb->s_umount);
1666 			if (error < 0) {
1667 				root = ERR_PTR(error);
1668 				mntput(mnt_root);
1669 				kfree(subvol_name);
1670 				goto out;
1671 			}
1672 		}
1673 	}
1674 	if (IS_ERR(mnt_root)) {
1675 		root = ERR_CAST(mnt_root);
1676 		kfree(subvol_name);
1677 		goto out;
1678 	}
1679 
1680 	/* mount_subvol() will free subvol_name and mnt_root */
1681 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1682 
1683 out:
1684 	return root;
1685 }
1686 
1687 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1688 				     u32 new_pool_size, u32 old_pool_size)
1689 {
1690 	if (new_pool_size == old_pool_size)
1691 		return;
1692 
1693 	fs_info->thread_pool_size = new_pool_size;
1694 
1695 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1696 	       old_pool_size, new_pool_size);
1697 
1698 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1699 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1700 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1701 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1702 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1703 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1704 				new_pool_size);
1705 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1706 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1707 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1708 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1709 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1710 				new_pool_size);
1711 }
1712 
1713 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1714 {
1715 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1716 }
1717 
1718 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1719 				       unsigned long old_opts, int flags)
1720 {
1721 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1722 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1723 	     (flags & SB_RDONLY))) {
1724 		/* wait for any defraggers to finish */
1725 		wait_event(fs_info->transaction_wait,
1726 			   (atomic_read(&fs_info->defrag_running) == 0));
1727 		if (flags & SB_RDONLY)
1728 			sync_filesystem(fs_info->sb);
1729 	}
1730 }
1731 
1732 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1733 					 unsigned long old_opts)
1734 {
1735 	/*
1736 	 * We need to cleanup all defragable inodes if the autodefragment is
1737 	 * close or the filesystem is read only.
1738 	 */
1739 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1740 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1741 		btrfs_cleanup_defrag_inodes(fs_info);
1742 	}
1743 
1744 	/* If we toggled discard async */
1745 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1746 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1747 		btrfs_discard_resume(fs_info);
1748 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1749 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1750 		btrfs_discard_cleanup(fs_info);
1751 
1752 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1753 }
1754 
1755 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1756 {
1757 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1758 	struct btrfs_root *root = fs_info->tree_root;
1759 	unsigned old_flags = sb->s_flags;
1760 	unsigned long old_opts = fs_info->mount_opt;
1761 	unsigned long old_compress_type = fs_info->compress_type;
1762 	u64 old_max_inline = fs_info->max_inline;
1763 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1764 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1765 	int ret;
1766 
1767 	sync_filesystem(sb);
1768 	btrfs_remount_prepare(fs_info);
1769 
1770 	if (data) {
1771 		void *new_sec_opts = NULL;
1772 
1773 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1774 		if (!ret)
1775 			ret = security_sb_remount(sb, new_sec_opts);
1776 		security_free_mnt_opts(&new_sec_opts);
1777 		if (ret)
1778 			goto restore;
1779 	}
1780 
1781 	ret = btrfs_parse_options(fs_info, data, *flags);
1782 	if (ret)
1783 		goto restore;
1784 
1785 	btrfs_remount_begin(fs_info, old_opts, *flags);
1786 	btrfs_resize_thread_pool(fs_info,
1787 		fs_info->thread_pool_size, old_thread_pool_size);
1788 
1789 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1790 		goto out;
1791 
1792 	if (*flags & SB_RDONLY) {
1793 		/*
1794 		 * this also happens on 'umount -rf' or on shutdown, when
1795 		 * the filesystem is busy.
1796 		 */
1797 		cancel_work_sync(&fs_info->async_reclaim_work);
1798 
1799 		btrfs_discard_cleanup(fs_info);
1800 
1801 		/* wait for the uuid_scan task to finish */
1802 		down(&fs_info->uuid_tree_rescan_sem);
1803 		/* avoid complains from lockdep et al. */
1804 		up(&fs_info->uuid_tree_rescan_sem);
1805 
1806 		sb->s_flags |= SB_RDONLY;
1807 
1808 		/*
1809 		 * Setting SB_RDONLY will put the cleaner thread to
1810 		 * sleep at the next loop if it's already active.
1811 		 * If it's already asleep, we'll leave unused block
1812 		 * groups on disk until we're mounted read-write again
1813 		 * unless we clean them up here.
1814 		 */
1815 		btrfs_delete_unused_bgs(fs_info);
1816 
1817 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1818 		btrfs_scrub_cancel(fs_info);
1819 		btrfs_pause_balance(fs_info);
1820 
1821 		ret = btrfs_commit_super(fs_info);
1822 		if (ret)
1823 			goto restore;
1824 	} else {
1825 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1826 			btrfs_err(fs_info,
1827 				"Remounting read-write after error is not allowed");
1828 			ret = -EINVAL;
1829 			goto restore;
1830 		}
1831 		if (fs_info->fs_devices->rw_devices == 0) {
1832 			ret = -EACCES;
1833 			goto restore;
1834 		}
1835 
1836 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1837 			btrfs_warn(fs_info,
1838 		"too many missing devices, writable remount is not allowed");
1839 			ret = -EACCES;
1840 			goto restore;
1841 		}
1842 
1843 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1844 			btrfs_warn(fs_info,
1845 		"mount required to replay tree-log, cannot remount read-write");
1846 			ret = -EINVAL;
1847 			goto restore;
1848 		}
1849 
1850 		ret = btrfs_cleanup_fs_roots(fs_info);
1851 		if (ret)
1852 			goto restore;
1853 
1854 		/* recover relocation */
1855 		mutex_lock(&fs_info->cleaner_mutex);
1856 		ret = btrfs_recover_relocation(root);
1857 		mutex_unlock(&fs_info->cleaner_mutex);
1858 		if (ret)
1859 			goto restore;
1860 
1861 		ret = btrfs_resume_balance_async(fs_info);
1862 		if (ret)
1863 			goto restore;
1864 
1865 		ret = btrfs_resume_dev_replace_async(fs_info);
1866 		if (ret) {
1867 			btrfs_warn(fs_info, "failed to resume dev_replace");
1868 			goto restore;
1869 		}
1870 
1871 		btrfs_qgroup_rescan_resume(fs_info);
1872 
1873 		if (!fs_info->uuid_root) {
1874 			btrfs_info(fs_info, "creating UUID tree");
1875 			ret = btrfs_create_uuid_tree(fs_info);
1876 			if (ret) {
1877 				btrfs_warn(fs_info,
1878 					   "failed to create the UUID tree %d",
1879 					   ret);
1880 				goto restore;
1881 			}
1882 		}
1883 		sb->s_flags &= ~SB_RDONLY;
1884 
1885 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1886 	}
1887 out:
1888 	wake_up_process(fs_info->transaction_kthread);
1889 	btrfs_remount_cleanup(fs_info, old_opts);
1890 	return 0;
1891 
1892 restore:
1893 	/* We've hit an error - don't reset SB_RDONLY */
1894 	if (sb_rdonly(sb))
1895 		old_flags |= SB_RDONLY;
1896 	sb->s_flags = old_flags;
1897 	fs_info->mount_opt = old_opts;
1898 	fs_info->compress_type = old_compress_type;
1899 	fs_info->max_inline = old_max_inline;
1900 	btrfs_resize_thread_pool(fs_info,
1901 		old_thread_pool_size, fs_info->thread_pool_size);
1902 	fs_info->metadata_ratio = old_metadata_ratio;
1903 	btrfs_remount_cleanup(fs_info, old_opts);
1904 	return ret;
1905 }
1906 
1907 /* Used to sort the devices by max_avail(descending sort) */
1908 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1909 				       const void *dev_info2)
1910 {
1911 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1912 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1913 		return -1;
1914 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1915 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1916 		return 1;
1917 	else
1918 	return 0;
1919 }
1920 
1921 /*
1922  * sort the devices by max_avail, in which max free extent size of each device
1923  * is stored.(Descending Sort)
1924  */
1925 static inline void btrfs_descending_sort_devices(
1926 					struct btrfs_device_info *devices,
1927 					size_t nr_devices)
1928 {
1929 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1930 	     btrfs_cmp_device_free_bytes, NULL);
1931 }
1932 
1933 /*
1934  * The helper to calc the free space on the devices that can be used to store
1935  * file data.
1936  */
1937 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1938 					      u64 *free_bytes)
1939 {
1940 	struct btrfs_device_info *devices_info;
1941 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1942 	struct btrfs_device *device;
1943 	u64 type;
1944 	u64 avail_space;
1945 	u64 min_stripe_size;
1946 	int num_stripes = 1;
1947 	int i = 0, nr_devices;
1948 	const struct btrfs_raid_attr *rattr;
1949 
1950 	/*
1951 	 * We aren't under the device list lock, so this is racy-ish, but good
1952 	 * enough for our purposes.
1953 	 */
1954 	nr_devices = fs_info->fs_devices->open_devices;
1955 	if (!nr_devices) {
1956 		smp_mb();
1957 		nr_devices = fs_info->fs_devices->open_devices;
1958 		ASSERT(nr_devices);
1959 		if (!nr_devices) {
1960 			*free_bytes = 0;
1961 			return 0;
1962 		}
1963 	}
1964 
1965 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1966 			       GFP_KERNEL);
1967 	if (!devices_info)
1968 		return -ENOMEM;
1969 
1970 	/* calc min stripe number for data space allocation */
1971 	type = btrfs_data_alloc_profile(fs_info);
1972 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1973 
1974 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1975 		num_stripes = nr_devices;
1976 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
1977 		num_stripes = 2;
1978 	else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
1979 		num_stripes = 3;
1980 	else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
1981 		num_stripes = 4;
1982 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1983 		num_stripes = 4;
1984 
1985 	/* Adjust for more than 1 stripe per device */
1986 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1987 
1988 	rcu_read_lock();
1989 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1990 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1991 						&device->dev_state) ||
1992 		    !device->bdev ||
1993 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1994 			continue;
1995 
1996 		if (i >= nr_devices)
1997 			break;
1998 
1999 		avail_space = device->total_bytes - device->bytes_used;
2000 
2001 		/* align with stripe_len */
2002 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2003 
2004 		/*
2005 		 * In order to avoid overwriting the superblock on the drive,
2006 		 * btrfs starts at an offset of at least 1MB when doing chunk
2007 		 * allocation.
2008 		 *
2009 		 * This ensures we have at least min_stripe_size free space
2010 		 * after excluding 1MB.
2011 		 */
2012 		if (avail_space <= SZ_1M + min_stripe_size)
2013 			continue;
2014 
2015 		avail_space -= SZ_1M;
2016 
2017 		devices_info[i].dev = device;
2018 		devices_info[i].max_avail = avail_space;
2019 
2020 		i++;
2021 	}
2022 	rcu_read_unlock();
2023 
2024 	nr_devices = i;
2025 
2026 	btrfs_descending_sort_devices(devices_info, nr_devices);
2027 
2028 	i = nr_devices - 1;
2029 	avail_space = 0;
2030 	while (nr_devices >= rattr->devs_min) {
2031 		num_stripes = min(num_stripes, nr_devices);
2032 
2033 		if (devices_info[i].max_avail >= min_stripe_size) {
2034 			int j;
2035 			u64 alloc_size;
2036 
2037 			avail_space += devices_info[i].max_avail * num_stripes;
2038 			alloc_size = devices_info[i].max_avail;
2039 			for (j = i + 1 - num_stripes; j <= i; j++)
2040 				devices_info[j].max_avail -= alloc_size;
2041 		}
2042 		i--;
2043 		nr_devices--;
2044 	}
2045 
2046 	kfree(devices_info);
2047 	*free_bytes = avail_space;
2048 	return 0;
2049 }
2050 
2051 /*
2052  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2053  *
2054  * If there's a redundant raid level at DATA block groups, use the respective
2055  * multiplier to scale the sizes.
2056  *
2057  * Unused device space usage is based on simulating the chunk allocator
2058  * algorithm that respects the device sizes and order of allocations.  This is
2059  * a close approximation of the actual use but there are other factors that may
2060  * change the result (like a new metadata chunk).
2061  *
2062  * If metadata is exhausted, f_bavail will be 0.
2063  */
2064 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2065 {
2066 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2067 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2068 	struct btrfs_space_info *found;
2069 	u64 total_used = 0;
2070 	u64 total_free_data = 0;
2071 	u64 total_free_meta = 0;
2072 	int bits = dentry->d_sb->s_blocksize_bits;
2073 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2074 	unsigned factor = 1;
2075 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2076 	int ret;
2077 	u64 thresh = 0;
2078 	int mixed = 0;
2079 
2080 	rcu_read_lock();
2081 	list_for_each_entry_rcu(found, &fs_info->space_info, list) {
2082 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2083 			int i;
2084 
2085 			total_free_data += found->disk_total - found->disk_used;
2086 			total_free_data -=
2087 				btrfs_account_ro_block_groups_free_space(found);
2088 
2089 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2090 				if (!list_empty(&found->block_groups[i]))
2091 					factor = btrfs_bg_type_to_factor(
2092 						btrfs_raid_array[i].bg_flag);
2093 			}
2094 		}
2095 
2096 		/*
2097 		 * Metadata in mixed block goup profiles are accounted in data
2098 		 */
2099 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2100 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2101 				mixed = 1;
2102 			else
2103 				total_free_meta += found->disk_total -
2104 					found->disk_used;
2105 		}
2106 
2107 		total_used += found->disk_used;
2108 	}
2109 
2110 	rcu_read_unlock();
2111 
2112 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2113 	buf->f_blocks >>= bits;
2114 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2115 
2116 	/* Account global block reserve as used, it's in logical size already */
2117 	spin_lock(&block_rsv->lock);
2118 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2119 	if (buf->f_bfree >= block_rsv->size >> bits)
2120 		buf->f_bfree -= block_rsv->size >> bits;
2121 	else
2122 		buf->f_bfree = 0;
2123 	spin_unlock(&block_rsv->lock);
2124 
2125 	buf->f_bavail = div_u64(total_free_data, factor);
2126 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2127 	if (ret)
2128 		return ret;
2129 	buf->f_bavail += div_u64(total_free_data, factor);
2130 	buf->f_bavail = buf->f_bavail >> bits;
2131 
2132 	/*
2133 	 * We calculate the remaining metadata space minus global reserve. If
2134 	 * this is (supposedly) smaller than zero, there's no space. But this
2135 	 * does not hold in practice, the exhausted state happens where's still
2136 	 * some positive delta. So we apply some guesswork and compare the
2137 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2138 	 *
2139 	 * We probably cannot calculate the exact threshold value because this
2140 	 * depends on the internal reservations requested by various
2141 	 * operations, so some operations that consume a few metadata will
2142 	 * succeed even if the Avail is zero. But this is better than the other
2143 	 * way around.
2144 	 */
2145 	thresh = SZ_4M;
2146 
2147 	/*
2148 	 * We only want to claim there's no available space if we can no longer
2149 	 * allocate chunks for our metadata profile and our global reserve will
2150 	 * not fit in the free metadata space.  If we aren't ->full then we
2151 	 * still can allocate chunks and thus are fine using the currently
2152 	 * calculated f_bavail.
2153 	 */
2154 	if (!mixed && block_rsv->space_info->full &&
2155 	    total_free_meta - thresh < block_rsv->size)
2156 		buf->f_bavail = 0;
2157 
2158 	buf->f_type = BTRFS_SUPER_MAGIC;
2159 	buf->f_bsize = dentry->d_sb->s_blocksize;
2160 	buf->f_namelen = BTRFS_NAME_LEN;
2161 
2162 	/* We treat it as constant endianness (it doesn't matter _which_)
2163 	   because we want the fsid to come out the same whether mounted
2164 	   on a big-endian or little-endian host */
2165 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2166 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2167 	/* Mask in the root object ID too, to disambiguate subvols */
2168 	buf->f_fsid.val[0] ^=
2169 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2170 	buf->f_fsid.val[1] ^=
2171 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2172 
2173 	return 0;
2174 }
2175 
2176 static void btrfs_kill_super(struct super_block *sb)
2177 {
2178 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2179 	kill_anon_super(sb);
2180 	btrfs_free_fs_info(fs_info);
2181 }
2182 
2183 static struct file_system_type btrfs_fs_type = {
2184 	.owner		= THIS_MODULE,
2185 	.name		= "btrfs",
2186 	.mount		= btrfs_mount,
2187 	.kill_sb	= btrfs_kill_super,
2188 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2189 };
2190 
2191 static struct file_system_type btrfs_root_fs_type = {
2192 	.owner		= THIS_MODULE,
2193 	.name		= "btrfs",
2194 	.mount		= btrfs_mount_root,
2195 	.kill_sb	= btrfs_kill_super,
2196 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2197 };
2198 
2199 MODULE_ALIAS_FS("btrfs");
2200 
2201 static int btrfs_control_open(struct inode *inode, struct file *file)
2202 {
2203 	/*
2204 	 * The control file's private_data is used to hold the
2205 	 * transaction when it is started and is used to keep
2206 	 * track of whether a transaction is already in progress.
2207 	 */
2208 	file->private_data = NULL;
2209 	return 0;
2210 }
2211 
2212 /*
2213  * Used by /dev/btrfs-control for devices ioctls.
2214  */
2215 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2216 				unsigned long arg)
2217 {
2218 	struct btrfs_ioctl_vol_args *vol;
2219 	struct btrfs_device *device = NULL;
2220 	int ret = -ENOTTY;
2221 
2222 	if (!capable(CAP_SYS_ADMIN))
2223 		return -EPERM;
2224 
2225 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2226 	if (IS_ERR(vol))
2227 		return PTR_ERR(vol);
2228 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2229 
2230 	switch (cmd) {
2231 	case BTRFS_IOC_SCAN_DEV:
2232 		mutex_lock(&uuid_mutex);
2233 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2234 					       &btrfs_root_fs_type);
2235 		ret = PTR_ERR_OR_ZERO(device);
2236 		mutex_unlock(&uuid_mutex);
2237 		break;
2238 	case BTRFS_IOC_FORGET_DEV:
2239 		ret = btrfs_forget_devices(vol->name);
2240 		break;
2241 	case BTRFS_IOC_DEVICES_READY:
2242 		mutex_lock(&uuid_mutex);
2243 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2244 					       &btrfs_root_fs_type);
2245 		if (IS_ERR(device)) {
2246 			mutex_unlock(&uuid_mutex);
2247 			ret = PTR_ERR(device);
2248 			break;
2249 		}
2250 		ret = !(device->fs_devices->num_devices ==
2251 			device->fs_devices->total_devices);
2252 		mutex_unlock(&uuid_mutex);
2253 		break;
2254 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2255 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2256 		break;
2257 	}
2258 
2259 	kfree(vol);
2260 	return ret;
2261 }
2262 
2263 static int btrfs_freeze(struct super_block *sb)
2264 {
2265 	struct btrfs_trans_handle *trans;
2266 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2267 	struct btrfs_root *root = fs_info->tree_root;
2268 
2269 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2270 	/*
2271 	 * We don't need a barrier here, we'll wait for any transaction that
2272 	 * could be in progress on other threads (and do delayed iputs that
2273 	 * we want to avoid on a frozen filesystem), or do the commit
2274 	 * ourselves.
2275 	 */
2276 	trans = btrfs_attach_transaction_barrier(root);
2277 	if (IS_ERR(trans)) {
2278 		/* no transaction, don't bother */
2279 		if (PTR_ERR(trans) == -ENOENT)
2280 			return 0;
2281 		return PTR_ERR(trans);
2282 	}
2283 	return btrfs_commit_transaction(trans);
2284 }
2285 
2286 static int btrfs_unfreeze(struct super_block *sb)
2287 {
2288 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2289 
2290 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2291 	return 0;
2292 }
2293 
2294 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2295 {
2296 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2297 	struct btrfs_fs_devices *cur_devices;
2298 	struct btrfs_device *dev, *first_dev = NULL;
2299 	struct list_head *head;
2300 
2301 	/*
2302 	 * Lightweight locking of the devices. We should not need
2303 	 * device_list_mutex here as we only read the device data and the list
2304 	 * is protected by RCU.  Even if a device is deleted during the list
2305 	 * traversals, we'll get valid data, the freeing callback will wait at
2306 	 * least until the rcu_read_unlock.
2307 	 */
2308 	rcu_read_lock();
2309 	cur_devices = fs_info->fs_devices;
2310 	while (cur_devices) {
2311 		head = &cur_devices->devices;
2312 		list_for_each_entry_rcu(dev, head, dev_list) {
2313 			if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2314 				continue;
2315 			if (!dev->name)
2316 				continue;
2317 			if (!first_dev || dev->devid < first_dev->devid)
2318 				first_dev = dev;
2319 		}
2320 		cur_devices = cur_devices->seed;
2321 	}
2322 
2323 	if (first_dev)
2324 		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2325 	else
2326 		WARN_ON(1);
2327 	rcu_read_unlock();
2328 	return 0;
2329 }
2330 
2331 static const struct super_operations btrfs_super_ops = {
2332 	.drop_inode	= btrfs_drop_inode,
2333 	.evict_inode	= btrfs_evict_inode,
2334 	.put_super	= btrfs_put_super,
2335 	.sync_fs	= btrfs_sync_fs,
2336 	.show_options	= btrfs_show_options,
2337 	.show_devname	= btrfs_show_devname,
2338 	.alloc_inode	= btrfs_alloc_inode,
2339 	.destroy_inode	= btrfs_destroy_inode,
2340 	.free_inode	= btrfs_free_inode,
2341 	.statfs		= btrfs_statfs,
2342 	.remount_fs	= btrfs_remount,
2343 	.freeze_fs	= btrfs_freeze,
2344 	.unfreeze_fs	= btrfs_unfreeze,
2345 };
2346 
2347 static const struct file_operations btrfs_ctl_fops = {
2348 	.open = btrfs_control_open,
2349 	.unlocked_ioctl	 = btrfs_control_ioctl,
2350 	.compat_ioctl = compat_ptr_ioctl,
2351 	.owner	 = THIS_MODULE,
2352 	.llseek = noop_llseek,
2353 };
2354 
2355 static struct miscdevice btrfs_misc = {
2356 	.minor		= BTRFS_MINOR,
2357 	.name		= "btrfs-control",
2358 	.fops		= &btrfs_ctl_fops
2359 };
2360 
2361 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2362 MODULE_ALIAS("devname:btrfs-control");
2363 
2364 static int __init btrfs_interface_init(void)
2365 {
2366 	return misc_register(&btrfs_misc);
2367 }
2368 
2369 static __cold void btrfs_interface_exit(void)
2370 {
2371 	misc_deregister(&btrfs_misc);
2372 }
2373 
2374 static void __init btrfs_print_mod_info(void)
2375 {
2376 	static const char options[] = ""
2377 #ifdef CONFIG_BTRFS_DEBUG
2378 			", debug=on"
2379 #endif
2380 #ifdef CONFIG_BTRFS_ASSERT
2381 			", assert=on"
2382 #endif
2383 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2384 			", integrity-checker=on"
2385 #endif
2386 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2387 			", ref-verify=on"
2388 #endif
2389 			;
2390 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2391 }
2392 
2393 static int __init init_btrfs_fs(void)
2394 {
2395 	int err;
2396 
2397 	btrfs_props_init();
2398 
2399 	err = btrfs_init_sysfs();
2400 	if (err)
2401 		return err;
2402 
2403 	btrfs_init_compress();
2404 
2405 	err = btrfs_init_cachep();
2406 	if (err)
2407 		goto free_compress;
2408 
2409 	err = extent_io_init();
2410 	if (err)
2411 		goto free_cachep;
2412 
2413 	err = extent_state_cache_init();
2414 	if (err)
2415 		goto free_extent_io;
2416 
2417 	err = extent_map_init();
2418 	if (err)
2419 		goto free_extent_state_cache;
2420 
2421 	err = ordered_data_init();
2422 	if (err)
2423 		goto free_extent_map;
2424 
2425 	err = btrfs_delayed_inode_init();
2426 	if (err)
2427 		goto free_ordered_data;
2428 
2429 	err = btrfs_auto_defrag_init();
2430 	if (err)
2431 		goto free_delayed_inode;
2432 
2433 	err = btrfs_delayed_ref_init();
2434 	if (err)
2435 		goto free_auto_defrag;
2436 
2437 	err = btrfs_prelim_ref_init();
2438 	if (err)
2439 		goto free_delayed_ref;
2440 
2441 	err = btrfs_end_io_wq_init();
2442 	if (err)
2443 		goto free_prelim_ref;
2444 
2445 	err = btrfs_interface_init();
2446 	if (err)
2447 		goto free_end_io_wq;
2448 
2449 	btrfs_init_lockdep();
2450 
2451 	btrfs_print_mod_info();
2452 
2453 	err = btrfs_run_sanity_tests();
2454 	if (err)
2455 		goto unregister_ioctl;
2456 
2457 	err = register_filesystem(&btrfs_fs_type);
2458 	if (err)
2459 		goto unregister_ioctl;
2460 
2461 	return 0;
2462 
2463 unregister_ioctl:
2464 	btrfs_interface_exit();
2465 free_end_io_wq:
2466 	btrfs_end_io_wq_exit();
2467 free_prelim_ref:
2468 	btrfs_prelim_ref_exit();
2469 free_delayed_ref:
2470 	btrfs_delayed_ref_exit();
2471 free_auto_defrag:
2472 	btrfs_auto_defrag_exit();
2473 free_delayed_inode:
2474 	btrfs_delayed_inode_exit();
2475 free_ordered_data:
2476 	ordered_data_exit();
2477 free_extent_map:
2478 	extent_map_exit();
2479 free_extent_state_cache:
2480 	extent_state_cache_exit();
2481 free_extent_io:
2482 	extent_io_exit();
2483 free_cachep:
2484 	btrfs_destroy_cachep();
2485 free_compress:
2486 	btrfs_exit_compress();
2487 	btrfs_exit_sysfs();
2488 
2489 	return err;
2490 }
2491 
2492 static void __exit exit_btrfs_fs(void)
2493 {
2494 	btrfs_destroy_cachep();
2495 	btrfs_delayed_ref_exit();
2496 	btrfs_auto_defrag_exit();
2497 	btrfs_delayed_inode_exit();
2498 	btrfs_prelim_ref_exit();
2499 	ordered_data_exit();
2500 	extent_map_exit();
2501 	extent_state_cache_exit();
2502 	extent_io_exit();
2503 	btrfs_interface_exit();
2504 	btrfs_end_io_wq_exit();
2505 	unregister_filesystem(&btrfs_fs_type);
2506 	btrfs_exit_sysfs();
2507 	btrfs_cleanup_fs_uuids();
2508 	btrfs_exit_compress();
2509 }
2510 
2511 late_initcall(init_btrfs_fs);
2512 module_exit(exit_btrfs_fs)
2513 
2514 MODULE_LICENSE("GPL");
2515 MODULE_SOFTDEP("pre: crc32c");
2516 MODULE_SOFTDEP("pre: xxhash64");
2517 MODULE_SOFTDEP("pre: sha256");
2518 MODULE_SOFTDEP("pre: blake2b-256");
2519