xref: /openbmc/linux/fs/btrfs/super.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "xattr.h"
50 #include "volumes.h"
51 #include "version.h"
52 #include "export.h"
53 #include "compression.h"
54 
55 static const struct super_operations btrfs_super_ops;
56 
57 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
58 				      char nbuf[16])
59 {
60 	char *errstr = NULL;
61 
62 	switch (errno) {
63 	case -EIO:
64 		errstr = "IO failure";
65 		break;
66 	case -ENOMEM:
67 		errstr = "Out of memory";
68 		break;
69 	case -EROFS:
70 		errstr = "Readonly filesystem";
71 		break;
72 	default:
73 		if (nbuf) {
74 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
75 				errstr = nbuf;
76 		}
77 		break;
78 	}
79 
80 	return errstr;
81 }
82 
83 static void __save_error_info(struct btrfs_fs_info *fs_info)
84 {
85 	/*
86 	 * today we only save the error info into ram.  Long term we'll
87 	 * also send it down to the disk
88 	 */
89 	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
90 }
91 
92 /* NOTE:
93  *	We move write_super stuff at umount in order to avoid deadlock
94  *	for umount hold all lock.
95  */
96 static void save_error_info(struct btrfs_fs_info *fs_info)
97 {
98 	__save_error_info(fs_info);
99 }
100 
101 /* btrfs handle error by forcing the filesystem readonly */
102 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
103 {
104 	struct super_block *sb = fs_info->sb;
105 
106 	if (sb->s_flags & MS_RDONLY)
107 		return;
108 
109 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
110 		sb->s_flags |= MS_RDONLY;
111 		printk(KERN_INFO "btrfs is forced readonly\n");
112 	}
113 }
114 
115 /*
116  * __btrfs_std_error decodes expected errors from the caller and
117  * invokes the approciate error response.
118  */
119 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
120 		     unsigned int line, int errno)
121 {
122 	struct super_block *sb = fs_info->sb;
123 	char nbuf[16];
124 	const char *errstr;
125 
126 	/*
127 	 * Special case: if the error is EROFS, and we're already
128 	 * under MS_RDONLY, then it is safe here.
129 	 */
130 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
131 		return;
132 
133 	errstr = btrfs_decode_error(fs_info, errno, nbuf);
134 	printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
135 		sb->s_id, function, line, errstr);
136 	save_error_info(fs_info);
137 
138 	btrfs_handle_error(fs_info);
139 }
140 
141 static void btrfs_put_super(struct super_block *sb)
142 {
143 	struct btrfs_root *root = btrfs_sb(sb);
144 	int ret;
145 
146 	ret = close_ctree(root);
147 	sb->s_fs_info = NULL;
148 
149 	(void)ret; /* FIXME: need to fix VFS to return error? */
150 }
151 
152 enum {
153 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
154 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
155 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
156 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
157 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
158 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, Opt_err,
159 };
160 
161 static match_table_t tokens = {
162 	{Opt_degraded, "degraded"},
163 	{Opt_subvol, "subvol=%s"},
164 	{Opt_subvolid, "subvolid=%d"},
165 	{Opt_device, "device=%s"},
166 	{Opt_nodatasum, "nodatasum"},
167 	{Opt_nodatacow, "nodatacow"},
168 	{Opt_nobarrier, "nobarrier"},
169 	{Opt_max_inline, "max_inline=%s"},
170 	{Opt_alloc_start, "alloc_start=%s"},
171 	{Opt_thread_pool, "thread_pool=%d"},
172 	{Opt_compress, "compress"},
173 	{Opt_compress_type, "compress=%s"},
174 	{Opt_compress_force, "compress-force"},
175 	{Opt_compress_force_type, "compress-force=%s"},
176 	{Opt_ssd, "ssd"},
177 	{Opt_ssd_spread, "ssd_spread"},
178 	{Opt_nossd, "nossd"},
179 	{Opt_noacl, "noacl"},
180 	{Opt_notreelog, "notreelog"},
181 	{Opt_flushoncommit, "flushoncommit"},
182 	{Opt_ratio, "metadata_ratio=%d"},
183 	{Opt_discard, "discard"},
184 	{Opt_space_cache, "space_cache"},
185 	{Opt_clear_cache, "clear_cache"},
186 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
187 	{Opt_err, NULL},
188 };
189 
190 /*
191  * Regular mount options parser.  Everything that is needed only when
192  * reading in a new superblock is parsed here.
193  */
194 int btrfs_parse_options(struct btrfs_root *root, char *options)
195 {
196 	struct btrfs_fs_info *info = root->fs_info;
197 	substring_t args[MAX_OPT_ARGS];
198 	char *p, *num, *orig;
199 	int intarg;
200 	int ret = 0;
201 	char *compress_type;
202 	bool compress_force = false;
203 
204 	if (!options)
205 		return 0;
206 
207 	/*
208 	 * strsep changes the string, duplicate it because parse_options
209 	 * gets called twice
210 	 */
211 	options = kstrdup(options, GFP_NOFS);
212 	if (!options)
213 		return -ENOMEM;
214 
215 	orig = options;
216 
217 	while ((p = strsep(&options, ",")) != NULL) {
218 		int token;
219 		if (!*p)
220 			continue;
221 
222 		token = match_token(p, tokens, args);
223 		switch (token) {
224 		case Opt_degraded:
225 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
226 			btrfs_set_opt(info->mount_opt, DEGRADED);
227 			break;
228 		case Opt_subvol:
229 		case Opt_subvolid:
230 		case Opt_device:
231 			/*
232 			 * These are parsed by btrfs_parse_early_options
233 			 * and can be happily ignored here.
234 			 */
235 			break;
236 		case Opt_nodatasum:
237 			printk(KERN_INFO "btrfs: setting nodatasum\n");
238 			btrfs_set_opt(info->mount_opt, NODATASUM);
239 			break;
240 		case Opt_nodatacow:
241 			printk(KERN_INFO "btrfs: setting nodatacow\n");
242 			btrfs_set_opt(info->mount_opt, NODATACOW);
243 			btrfs_set_opt(info->mount_opt, NODATASUM);
244 			break;
245 		case Opt_compress_force:
246 		case Opt_compress_force_type:
247 			compress_force = true;
248 		case Opt_compress:
249 		case Opt_compress_type:
250 			if (token == Opt_compress ||
251 			    token == Opt_compress_force ||
252 			    strcmp(args[0].from, "zlib") == 0) {
253 				compress_type = "zlib";
254 				info->compress_type = BTRFS_COMPRESS_ZLIB;
255 			} else if (strcmp(args[0].from, "lzo") == 0) {
256 				compress_type = "lzo";
257 				info->compress_type = BTRFS_COMPRESS_LZO;
258 			} else {
259 				ret = -EINVAL;
260 				goto out;
261 			}
262 
263 			btrfs_set_opt(info->mount_opt, COMPRESS);
264 			if (compress_force) {
265 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
266 				pr_info("btrfs: force %s compression\n",
267 					compress_type);
268 			} else
269 				pr_info("btrfs: use %s compression\n",
270 					compress_type);
271 			break;
272 		case Opt_ssd:
273 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
274 			btrfs_set_opt(info->mount_opt, SSD);
275 			break;
276 		case Opt_ssd_spread:
277 			printk(KERN_INFO "btrfs: use spread ssd "
278 			       "allocation scheme\n");
279 			btrfs_set_opt(info->mount_opt, SSD);
280 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
281 			break;
282 		case Opt_nossd:
283 			printk(KERN_INFO "btrfs: not using ssd allocation "
284 			       "scheme\n");
285 			btrfs_set_opt(info->mount_opt, NOSSD);
286 			btrfs_clear_opt(info->mount_opt, SSD);
287 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
288 			break;
289 		case Opt_nobarrier:
290 			printk(KERN_INFO "btrfs: turning off barriers\n");
291 			btrfs_set_opt(info->mount_opt, NOBARRIER);
292 			break;
293 		case Opt_thread_pool:
294 			intarg = 0;
295 			match_int(&args[0], &intarg);
296 			if (intarg) {
297 				info->thread_pool_size = intarg;
298 				printk(KERN_INFO "btrfs: thread pool %d\n",
299 				       info->thread_pool_size);
300 			}
301 			break;
302 		case Opt_max_inline:
303 			num = match_strdup(&args[0]);
304 			if (num) {
305 				info->max_inline = memparse(num, NULL);
306 				kfree(num);
307 
308 				if (info->max_inline) {
309 					info->max_inline = max_t(u64,
310 						info->max_inline,
311 						root->sectorsize);
312 				}
313 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
314 					(unsigned long long)info->max_inline);
315 			}
316 			break;
317 		case Opt_alloc_start:
318 			num = match_strdup(&args[0]);
319 			if (num) {
320 				info->alloc_start = memparse(num, NULL);
321 				kfree(num);
322 				printk(KERN_INFO
323 					"btrfs: allocations start at %llu\n",
324 					(unsigned long long)info->alloc_start);
325 			}
326 			break;
327 		case Opt_noacl:
328 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
329 			break;
330 		case Opt_notreelog:
331 			printk(KERN_INFO "btrfs: disabling tree log\n");
332 			btrfs_set_opt(info->mount_opt, NOTREELOG);
333 			break;
334 		case Opt_flushoncommit:
335 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
336 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
337 			break;
338 		case Opt_ratio:
339 			intarg = 0;
340 			match_int(&args[0], &intarg);
341 			if (intarg) {
342 				info->metadata_ratio = intarg;
343 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
344 				       info->metadata_ratio);
345 			}
346 			break;
347 		case Opt_discard:
348 			btrfs_set_opt(info->mount_opt, DISCARD);
349 			break;
350 		case Opt_space_cache:
351 			printk(KERN_INFO "btrfs: enabling disk space caching\n");
352 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
353 			break;
354 		case Opt_clear_cache:
355 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
356 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
357 			break;
358 		case Opt_user_subvol_rm_allowed:
359 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
360 			break;
361 		case Opt_err:
362 			printk(KERN_INFO "btrfs: unrecognized mount option "
363 			       "'%s'\n", p);
364 			ret = -EINVAL;
365 			goto out;
366 		default:
367 			break;
368 		}
369 	}
370 out:
371 	kfree(orig);
372 	return ret;
373 }
374 
375 /*
376  * Parse mount options that are required early in the mount process.
377  *
378  * All other options will be parsed on much later in the mount process and
379  * only when we need to allocate a new super block.
380  */
381 static int btrfs_parse_early_options(const char *options, fmode_t flags,
382 		void *holder, char **subvol_name, u64 *subvol_objectid,
383 		struct btrfs_fs_devices **fs_devices)
384 {
385 	substring_t args[MAX_OPT_ARGS];
386 	char *opts, *orig, *p;
387 	int error = 0;
388 	int intarg;
389 
390 	if (!options)
391 		goto out;
392 
393 	/*
394 	 * strsep changes the string, duplicate it because parse_options
395 	 * gets called twice
396 	 */
397 	opts = kstrdup(options, GFP_KERNEL);
398 	if (!opts)
399 		return -ENOMEM;
400 	orig = opts;
401 
402 	while ((p = strsep(&opts, ",")) != NULL) {
403 		int token;
404 		if (!*p)
405 			continue;
406 
407 		token = match_token(p, tokens, args);
408 		switch (token) {
409 		case Opt_subvol:
410 			*subvol_name = match_strdup(&args[0]);
411 			break;
412 		case Opt_subvolid:
413 			intarg = 0;
414 			error = match_int(&args[0], &intarg);
415 			if (!error) {
416 				/* we want the original fs_tree */
417 				if (!intarg)
418 					*subvol_objectid =
419 						BTRFS_FS_TREE_OBJECTID;
420 				else
421 					*subvol_objectid = intarg;
422 			}
423 			break;
424 		case Opt_device:
425 			error = btrfs_scan_one_device(match_strdup(&args[0]),
426 					flags, holder, fs_devices);
427 			if (error)
428 				goto out_free_opts;
429 			break;
430 		default:
431 			break;
432 		}
433 	}
434 
435  out_free_opts:
436 	kfree(orig);
437  out:
438 	/*
439 	 * If no subvolume name is specified we use the default one.  Allocate
440 	 * a copy of the string "." here so that code later in the
441 	 * mount path doesn't care if it's the default volume or another one.
442 	 */
443 	if (!*subvol_name) {
444 		*subvol_name = kstrdup(".", GFP_KERNEL);
445 		if (!*subvol_name)
446 			return -ENOMEM;
447 	}
448 	return error;
449 }
450 
451 static struct dentry *get_default_root(struct super_block *sb,
452 				       u64 subvol_objectid)
453 {
454 	struct btrfs_root *root = sb->s_fs_info;
455 	struct btrfs_root *new_root;
456 	struct btrfs_dir_item *di;
457 	struct btrfs_path *path;
458 	struct btrfs_key location;
459 	struct inode *inode;
460 	struct dentry *dentry;
461 	u64 dir_id;
462 	int new = 0;
463 
464 	/*
465 	 * We have a specific subvol we want to mount, just setup location and
466 	 * go look up the root.
467 	 */
468 	if (subvol_objectid) {
469 		location.objectid = subvol_objectid;
470 		location.type = BTRFS_ROOT_ITEM_KEY;
471 		location.offset = (u64)-1;
472 		goto find_root;
473 	}
474 
475 	path = btrfs_alloc_path();
476 	if (!path)
477 		return ERR_PTR(-ENOMEM);
478 	path->leave_spinning = 1;
479 
480 	/*
481 	 * Find the "default" dir item which points to the root item that we
482 	 * will mount by default if we haven't been given a specific subvolume
483 	 * to mount.
484 	 */
485 	dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
486 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
487 	if (IS_ERR(di))
488 		return ERR_CAST(di);
489 	if (!di) {
490 		/*
491 		 * Ok the default dir item isn't there.  This is weird since
492 		 * it's always been there, but don't freak out, just try and
493 		 * mount to root most subvolume.
494 		 */
495 		btrfs_free_path(path);
496 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
497 		new_root = root->fs_info->fs_root;
498 		goto setup_root;
499 	}
500 
501 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
502 	btrfs_free_path(path);
503 
504 find_root:
505 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
506 	if (IS_ERR(new_root))
507 		return ERR_CAST(new_root);
508 
509 	if (btrfs_root_refs(&new_root->root_item) == 0)
510 		return ERR_PTR(-ENOENT);
511 
512 	dir_id = btrfs_root_dirid(&new_root->root_item);
513 setup_root:
514 	location.objectid = dir_id;
515 	location.type = BTRFS_INODE_ITEM_KEY;
516 	location.offset = 0;
517 
518 	inode = btrfs_iget(sb, &location, new_root, &new);
519 	if (IS_ERR(inode))
520 		return ERR_CAST(inode);
521 
522 	/*
523 	 * If we're just mounting the root most subvol put the inode and return
524 	 * a reference to the dentry.  We will have already gotten a reference
525 	 * to the inode in btrfs_fill_super so we're good to go.
526 	 */
527 	if (!new && sb->s_root->d_inode == inode) {
528 		iput(inode);
529 		return dget(sb->s_root);
530 	}
531 
532 	if (new) {
533 		const struct qstr name = { .name = "/", .len = 1 };
534 
535 		/*
536 		 * New inode, we need to make the dentry a sibling of s_root so
537 		 * everything gets cleaned up properly on unmount.
538 		 */
539 		dentry = d_alloc(sb->s_root, &name);
540 		if (!dentry) {
541 			iput(inode);
542 			return ERR_PTR(-ENOMEM);
543 		}
544 		d_splice_alias(inode, dentry);
545 	} else {
546 		/*
547 		 * We found the inode in cache, just find a dentry for it and
548 		 * put the reference to the inode we just got.
549 		 */
550 		dentry = d_find_alias(inode);
551 		iput(inode);
552 	}
553 
554 	return dentry;
555 }
556 
557 static int btrfs_fill_super(struct super_block *sb,
558 			    struct btrfs_fs_devices *fs_devices,
559 			    void *data, int silent)
560 {
561 	struct inode *inode;
562 	struct dentry *root_dentry;
563 	struct btrfs_root *tree_root;
564 	struct btrfs_key key;
565 	int err;
566 
567 	sb->s_maxbytes = MAX_LFS_FILESIZE;
568 	sb->s_magic = BTRFS_SUPER_MAGIC;
569 	sb->s_op = &btrfs_super_ops;
570 	sb->s_d_op = &btrfs_dentry_operations;
571 	sb->s_export_op = &btrfs_export_ops;
572 	sb->s_xattr = btrfs_xattr_handlers;
573 	sb->s_time_gran = 1;
574 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
575 	sb->s_flags |= MS_POSIXACL;
576 #endif
577 
578 	tree_root = open_ctree(sb, fs_devices, (char *)data);
579 
580 	if (IS_ERR(tree_root)) {
581 		printk("btrfs: open_ctree failed\n");
582 		return PTR_ERR(tree_root);
583 	}
584 	sb->s_fs_info = tree_root;
585 
586 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
587 	key.type = BTRFS_INODE_ITEM_KEY;
588 	key.offset = 0;
589 	inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
590 	if (IS_ERR(inode)) {
591 		err = PTR_ERR(inode);
592 		goto fail_close;
593 	}
594 
595 	root_dentry = d_alloc_root(inode);
596 	if (!root_dentry) {
597 		iput(inode);
598 		err = -ENOMEM;
599 		goto fail_close;
600 	}
601 
602 	sb->s_root = root_dentry;
603 
604 	save_mount_options(sb, data);
605 	return 0;
606 
607 fail_close:
608 	close_ctree(tree_root);
609 	return err;
610 }
611 
612 int btrfs_sync_fs(struct super_block *sb, int wait)
613 {
614 	struct btrfs_trans_handle *trans;
615 	struct btrfs_root *root = btrfs_sb(sb);
616 	int ret;
617 
618 	if (!wait) {
619 		filemap_flush(root->fs_info->btree_inode->i_mapping);
620 		return 0;
621 	}
622 
623 	btrfs_start_delalloc_inodes(root, 0);
624 	btrfs_wait_ordered_extents(root, 0, 0);
625 
626 	trans = btrfs_start_transaction(root, 0);
627 	if (IS_ERR(trans))
628 		return PTR_ERR(trans);
629 	ret = btrfs_commit_transaction(trans, root);
630 	return ret;
631 }
632 
633 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
634 {
635 	struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
636 	struct btrfs_fs_info *info = root->fs_info;
637 
638 	if (btrfs_test_opt(root, DEGRADED))
639 		seq_puts(seq, ",degraded");
640 	if (btrfs_test_opt(root, NODATASUM))
641 		seq_puts(seq, ",nodatasum");
642 	if (btrfs_test_opt(root, NODATACOW))
643 		seq_puts(seq, ",nodatacow");
644 	if (btrfs_test_opt(root, NOBARRIER))
645 		seq_puts(seq, ",nobarrier");
646 	if (info->max_inline != 8192 * 1024)
647 		seq_printf(seq, ",max_inline=%llu",
648 			   (unsigned long long)info->max_inline);
649 	if (info->alloc_start != 0)
650 		seq_printf(seq, ",alloc_start=%llu",
651 			   (unsigned long long)info->alloc_start);
652 	if (info->thread_pool_size !=  min_t(unsigned long,
653 					     num_online_cpus() + 2, 8))
654 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
655 	if (btrfs_test_opt(root, COMPRESS))
656 		seq_puts(seq, ",compress");
657 	if (btrfs_test_opt(root, NOSSD))
658 		seq_puts(seq, ",nossd");
659 	if (btrfs_test_opt(root, SSD_SPREAD))
660 		seq_puts(seq, ",ssd_spread");
661 	else if (btrfs_test_opt(root, SSD))
662 		seq_puts(seq, ",ssd");
663 	if (btrfs_test_opt(root, NOTREELOG))
664 		seq_puts(seq, ",notreelog");
665 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
666 		seq_puts(seq, ",flushoncommit");
667 	if (btrfs_test_opt(root, DISCARD))
668 		seq_puts(seq, ",discard");
669 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
670 		seq_puts(seq, ",noacl");
671 	return 0;
672 }
673 
674 static int btrfs_test_super(struct super_block *s, void *data)
675 {
676 	struct btrfs_root *test_root = data;
677 	struct btrfs_root *root = btrfs_sb(s);
678 
679 	/*
680 	 * If this super block is going away, return false as it
681 	 * can't match as an existing super block.
682 	 */
683 	if (!atomic_read(&s->s_active))
684 		return 0;
685 	return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
686 }
687 
688 static int btrfs_set_super(struct super_block *s, void *data)
689 {
690 	s->s_fs_info = data;
691 
692 	return set_anon_super(s, data);
693 }
694 
695 
696 /*
697  * Find a superblock for the given device / mount point.
698  *
699  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
700  *	  for multiple device setup.  Make sure to keep it in sync.
701  */
702 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
703 		const char *dev_name, void *data)
704 {
705 	struct block_device *bdev = NULL;
706 	struct super_block *s;
707 	struct dentry *root;
708 	struct btrfs_fs_devices *fs_devices = NULL;
709 	struct btrfs_root *tree_root = NULL;
710 	struct btrfs_fs_info *fs_info = NULL;
711 	fmode_t mode = FMODE_READ;
712 	char *subvol_name = NULL;
713 	u64 subvol_objectid = 0;
714 	int error = 0;
715 
716 	if (!(flags & MS_RDONLY))
717 		mode |= FMODE_WRITE;
718 
719 	error = btrfs_parse_early_options(data, mode, fs_type,
720 					  &subvol_name, &subvol_objectid,
721 					  &fs_devices);
722 	if (error)
723 		return ERR_PTR(error);
724 
725 	error = btrfs_scan_one_device(dev_name, mode, fs_type, &fs_devices);
726 	if (error)
727 		goto error_free_subvol_name;
728 
729 	error = btrfs_open_devices(fs_devices, mode, fs_type);
730 	if (error)
731 		goto error_free_subvol_name;
732 
733 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
734 		error = -EACCES;
735 		goto error_close_devices;
736 	}
737 
738 	/*
739 	 * Setup a dummy root and fs_info for test/set super.  This is because
740 	 * we don't actually fill this stuff out until open_ctree, but we need
741 	 * it for searching for existing supers, so this lets us do that and
742 	 * then open_ctree will properly initialize everything later.
743 	 */
744 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
745 	tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
746 	if (!fs_info || !tree_root) {
747 		error = -ENOMEM;
748 		goto error_close_devices;
749 	}
750 	fs_info->tree_root = tree_root;
751 	fs_info->fs_devices = fs_devices;
752 	tree_root->fs_info = fs_info;
753 
754 	bdev = fs_devices->latest_bdev;
755 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
756 	if (IS_ERR(s))
757 		goto error_s;
758 
759 	if (s->s_root) {
760 		if ((flags ^ s->s_flags) & MS_RDONLY) {
761 			deactivate_locked_super(s);
762 			error = -EBUSY;
763 			goto error_close_devices;
764 		}
765 
766 		btrfs_close_devices(fs_devices);
767 		kfree(fs_info);
768 		kfree(tree_root);
769 	} else {
770 		char b[BDEVNAME_SIZE];
771 
772 		s->s_flags = flags;
773 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
774 		error = btrfs_fill_super(s, fs_devices, data,
775 					 flags & MS_SILENT ? 1 : 0);
776 		if (error) {
777 			deactivate_locked_super(s);
778 			goto error_free_subvol_name;
779 		}
780 
781 		btrfs_sb(s)->fs_info->bdev_holder = fs_type;
782 		s->s_flags |= MS_ACTIVE;
783 	}
784 
785 	root = get_default_root(s, subvol_objectid);
786 	if (IS_ERR(root)) {
787 		error = PTR_ERR(root);
788 		deactivate_locked_super(s);
789 		goto error_free_subvol_name;
790 	}
791 	/* if they gave us a subvolume name bind mount into that */
792 	if (strcmp(subvol_name, ".")) {
793 		struct dentry *new_root;
794 		mutex_lock(&root->d_inode->i_mutex);
795 		new_root = lookup_one_len(subvol_name, root,
796 				      strlen(subvol_name));
797 		mutex_unlock(&root->d_inode->i_mutex);
798 
799 		if (IS_ERR(new_root)) {
800 			dput(root);
801 			deactivate_locked_super(s);
802 			error = PTR_ERR(new_root);
803 			goto error_free_subvol_name;
804 		}
805 		if (!new_root->d_inode) {
806 			dput(root);
807 			dput(new_root);
808 			deactivate_locked_super(s);
809 			error = -ENXIO;
810 			goto error_free_subvol_name;
811 		}
812 		dput(root);
813 		root = new_root;
814 	}
815 
816 	kfree(subvol_name);
817 	return root;
818 
819 error_s:
820 	error = PTR_ERR(s);
821 error_close_devices:
822 	btrfs_close_devices(fs_devices);
823 	kfree(fs_info);
824 	kfree(tree_root);
825 error_free_subvol_name:
826 	kfree(subvol_name);
827 	return ERR_PTR(error);
828 }
829 
830 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
831 {
832 	struct btrfs_root *root = btrfs_sb(sb);
833 	int ret;
834 
835 	ret = btrfs_parse_options(root, data);
836 	if (ret)
837 		return -EINVAL;
838 
839 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
840 		return 0;
841 
842 	if (*flags & MS_RDONLY) {
843 		sb->s_flags |= MS_RDONLY;
844 
845 		ret =  btrfs_commit_super(root);
846 		WARN_ON(ret);
847 	} else {
848 		if (root->fs_info->fs_devices->rw_devices == 0)
849 			return -EACCES;
850 
851 		if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
852 			return -EINVAL;
853 
854 		ret = btrfs_cleanup_fs_roots(root->fs_info);
855 		WARN_ON(ret);
856 
857 		/* recover relocation */
858 		ret = btrfs_recover_relocation(root);
859 		WARN_ON(ret);
860 
861 		sb->s_flags &= ~MS_RDONLY;
862 	}
863 
864 	return 0;
865 }
866 
867 /*
868  * The helper to calc the free space on the devices that can be used to store
869  * file data.
870  */
871 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
872 {
873 	struct btrfs_fs_info *fs_info = root->fs_info;
874 	struct btrfs_device_info *devices_info;
875 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
876 	struct btrfs_device *device;
877 	u64 skip_space;
878 	u64 type;
879 	u64 avail_space;
880 	u64 used_space;
881 	u64 min_stripe_size;
882 	int min_stripes = 1;
883 	int i = 0, nr_devices;
884 	int ret;
885 
886 	nr_devices = fs_info->fs_devices->rw_devices;
887 	BUG_ON(!nr_devices);
888 
889 	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
890 			       GFP_NOFS);
891 	if (!devices_info)
892 		return -ENOMEM;
893 
894 	/* calc min stripe number for data space alloction */
895 	type = btrfs_get_alloc_profile(root, 1);
896 	if (type & BTRFS_BLOCK_GROUP_RAID0)
897 		min_stripes = 2;
898 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
899 		min_stripes = 2;
900 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
901 		min_stripes = 4;
902 
903 	if (type & BTRFS_BLOCK_GROUP_DUP)
904 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
905 	else
906 		min_stripe_size = BTRFS_STRIPE_LEN;
907 
908 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
909 		if (!device->in_fs_metadata)
910 			continue;
911 
912 		avail_space = device->total_bytes - device->bytes_used;
913 
914 		/* align with stripe_len */
915 		do_div(avail_space, BTRFS_STRIPE_LEN);
916 		avail_space *= BTRFS_STRIPE_LEN;
917 
918 		/*
919 		 * In order to avoid overwritting the superblock on the drive,
920 		 * btrfs starts at an offset of at least 1MB when doing chunk
921 		 * allocation.
922 		 */
923 		skip_space = 1024 * 1024;
924 
925 		/* user can set the offset in fs_info->alloc_start. */
926 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
927 		    device->total_bytes)
928 			skip_space = max(fs_info->alloc_start, skip_space);
929 
930 		/*
931 		 * btrfs can not use the free space in [0, skip_space - 1],
932 		 * we must subtract it from the total. In order to implement
933 		 * it, we account the used space in this range first.
934 		 */
935 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
936 						     &used_space);
937 		if (ret) {
938 			kfree(devices_info);
939 			return ret;
940 		}
941 
942 		/* calc the free space in [0, skip_space - 1] */
943 		skip_space -= used_space;
944 
945 		/*
946 		 * we can use the free space in [0, skip_space - 1], subtract
947 		 * it from the total.
948 		 */
949 		if (avail_space && avail_space >= skip_space)
950 			avail_space -= skip_space;
951 		else
952 			avail_space = 0;
953 
954 		if (avail_space < min_stripe_size)
955 			continue;
956 
957 		devices_info[i].dev = device;
958 		devices_info[i].max_avail = avail_space;
959 
960 		i++;
961 	}
962 
963 	nr_devices = i;
964 
965 	btrfs_descending_sort_devices(devices_info, nr_devices);
966 
967 	i = nr_devices - 1;
968 	avail_space = 0;
969 	while (nr_devices >= min_stripes) {
970 		if (devices_info[i].max_avail >= min_stripe_size) {
971 			int j;
972 			u64 alloc_size;
973 
974 			avail_space += devices_info[i].max_avail * min_stripes;
975 			alloc_size = devices_info[i].max_avail;
976 			for (j = i + 1 - min_stripes; j <= i; j++)
977 				devices_info[j].max_avail -= alloc_size;
978 		}
979 		i--;
980 		nr_devices--;
981 	}
982 
983 	kfree(devices_info);
984 	*free_bytes = avail_space;
985 	return 0;
986 }
987 
988 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
989 {
990 	struct btrfs_root *root = btrfs_sb(dentry->d_sb);
991 	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
992 	struct list_head *head = &root->fs_info->space_info;
993 	struct btrfs_space_info *found;
994 	u64 total_used = 0;
995 	u64 total_free_data = 0;
996 	int bits = dentry->d_sb->s_blocksize_bits;
997 	__be32 *fsid = (__be32 *)root->fs_info->fsid;
998 	int ret;
999 
1000 	/* holding chunk_muext to avoid allocating new chunks */
1001 	mutex_lock(&root->fs_info->chunk_mutex);
1002 	rcu_read_lock();
1003 	list_for_each_entry_rcu(found, head, list) {
1004 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1005 			total_free_data += found->disk_total - found->disk_used;
1006 			total_free_data -=
1007 				btrfs_account_ro_block_groups_free_space(found);
1008 		}
1009 
1010 		total_used += found->disk_used;
1011 	}
1012 	rcu_read_unlock();
1013 
1014 	buf->f_namelen = BTRFS_NAME_LEN;
1015 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1016 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1017 	buf->f_bsize = dentry->d_sb->s_blocksize;
1018 	buf->f_type = BTRFS_SUPER_MAGIC;
1019 	buf->f_bavail = total_free_data;
1020 	ret = btrfs_calc_avail_data_space(root, &total_free_data);
1021 	if (ret) {
1022 		mutex_unlock(&root->fs_info->chunk_mutex);
1023 		return ret;
1024 	}
1025 	buf->f_bavail += total_free_data;
1026 	buf->f_bavail = buf->f_bavail >> bits;
1027 	mutex_unlock(&root->fs_info->chunk_mutex);
1028 
1029 	/* We treat it as constant endianness (it doesn't matter _which_)
1030 	   because we want the fsid to come out the same whether mounted
1031 	   on a big-endian or little-endian host */
1032 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1033 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1034 	/* Mask in the root object ID too, to disambiguate subvols */
1035 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1036 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1037 
1038 	return 0;
1039 }
1040 
1041 static struct file_system_type btrfs_fs_type = {
1042 	.owner		= THIS_MODULE,
1043 	.name		= "btrfs",
1044 	.mount		= btrfs_mount,
1045 	.kill_sb	= kill_anon_super,
1046 	.fs_flags	= FS_REQUIRES_DEV,
1047 };
1048 
1049 /*
1050  * used by btrfsctl to scan devices when no FS is mounted
1051  */
1052 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1053 				unsigned long arg)
1054 {
1055 	struct btrfs_ioctl_vol_args *vol;
1056 	struct btrfs_fs_devices *fs_devices;
1057 	int ret = -ENOTTY;
1058 
1059 	if (!capable(CAP_SYS_ADMIN))
1060 		return -EPERM;
1061 
1062 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1063 	if (IS_ERR(vol))
1064 		return PTR_ERR(vol);
1065 
1066 	switch (cmd) {
1067 	case BTRFS_IOC_SCAN_DEV:
1068 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1069 					    &btrfs_fs_type, &fs_devices);
1070 		break;
1071 	}
1072 
1073 	kfree(vol);
1074 	return ret;
1075 }
1076 
1077 static int btrfs_freeze(struct super_block *sb)
1078 {
1079 	struct btrfs_root *root = btrfs_sb(sb);
1080 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
1081 	mutex_lock(&root->fs_info->cleaner_mutex);
1082 	return 0;
1083 }
1084 
1085 static int btrfs_unfreeze(struct super_block *sb)
1086 {
1087 	struct btrfs_root *root = btrfs_sb(sb);
1088 	mutex_unlock(&root->fs_info->cleaner_mutex);
1089 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1090 	return 0;
1091 }
1092 
1093 static const struct super_operations btrfs_super_ops = {
1094 	.drop_inode	= btrfs_drop_inode,
1095 	.evict_inode	= btrfs_evict_inode,
1096 	.put_super	= btrfs_put_super,
1097 	.sync_fs	= btrfs_sync_fs,
1098 	.show_options	= btrfs_show_options,
1099 	.write_inode	= btrfs_write_inode,
1100 	.dirty_inode	= btrfs_dirty_inode,
1101 	.alloc_inode	= btrfs_alloc_inode,
1102 	.destroy_inode	= btrfs_destroy_inode,
1103 	.statfs		= btrfs_statfs,
1104 	.remount_fs	= btrfs_remount,
1105 	.freeze_fs	= btrfs_freeze,
1106 	.unfreeze_fs	= btrfs_unfreeze,
1107 };
1108 
1109 static const struct file_operations btrfs_ctl_fops = {
1110 	.unlocked_ioctl	 = btrfs_control_ioctl,
1111 	.compat_ioctl = btrfs_control_ioctl,
1112 	.owner	 = THIS_MODULE,
1113 	.llseek = noop_llseek,
1114 };
1115 
1116 static struct miscdevice btrfs_misc = {
1117 	.minor		= BTRFS_MINOR,
1118 	.name		= "btrfs-control",
1119 	.fops		= &btrfs_ctl_fops
1120 };
1121 
1122 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1123 MODULE_ALIAS("devname:btrfs-control");
1124 
1125 static int btrfs_interface_init(void)
1126 {
1127 	return misc_register(&btrfs_misc);
1128 }
1129 
1130 static void btrfs_interface_exit(void)
1131 {
1132 	if (misc_deregister(&btrfs_misc) < 0)
1133 		printk(KERN_INFO "misc_deregister failed for control device");
1134 }
1135 
1136 static int __init init_btrfs_fs(void)
1137 {
1138 	int err;
1139 
1140 	err = btrfs_init_sysfs();
1141 	if (err)
1142 		return err;
1143 
1144 	err = btrfs_init_compress();
1145 	if (err)
1146 		goto free_sysfs;
1147 
1148 	err = btrfs_init_cachep();
1149 	if (err)
1150 		goto free_compress;
1151 
1152 	err = extent_io_init();
1153 	if (err)
1154 		goto free_cachep;
1155 
1156 	err = extent_map_init();
1157 	if (err)
1158 		goto free_extent_io;
1159 
1160 	err = btrfs_interface_init();
1161 	if (err)
1162 		goto free_extent_map;
1163 
1164 	err = register_filesystem(&btrfs_fs_type);
1165 	if (err)
1166 		goto unregister_ioctl;
1167 
1168 	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1169 	return 0;
1170 
1171 unregister_ioctl:
1172 	btrfs_interface_exit();
1173 free_extent_map:
1174 	extent_map_exit();
1175 free_extent_io:
1176 	extent_io_exit();
1177 free_cachep:
1178 	btrfs_destroy_cachep();
1179 free_compress:
1180 	btrfs_exit_compress();
1181 free_sysfs:
1182 	btrfs_exit_sysfs();
1183 	return err;
1184 }
1185 
1186 static void __exit exit_btrfs_fs(void)
1187 {
1188 	btrfs_destroy_cachep();
1189 	extent_map_exit();
1190 	extent_io_exit();
1191 	btrfs_interface_exit();
1192 	unregister_filesystem(&btrfs_fs_type);
1193 	btrfs_exit_sysfs();
1194 	btrfs_cleanup_fs_uuids();
1195 	btrfs_exit_compress();
1196 }
1197 
1198 module_init(init_btrfs_fs)
1199 module_exit(exit_btrfs_fs)
1200 
1201 MODULE_LICENSE("GPL");
1202