1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include "compat.h" 43 #include "ctree.h" 44 #include "disk-io.h" 45 #include "transaction.h" 46 #include "btrfs_inode.h" 47 #include "ioctl.h" 48 #include "print-tree.h" 49 #include "xattr.h" 50 #include "volumes.h" 51 #include "version.h" 52 #include "export.h" 53 #include "compression.h" 54 55 static const struct super_operations btrfs_super_ops; 56 57 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno, 58 char nbuf[16]) 59 { 60 char *errstr = NULL; 61 62 switch (errno) { 63 case -EIO: 64 errstr = "IO failure"; 65 break; 66 case -ENOMEM: 67 errstr = "Out of memory"; 68 break; 69 case -EROFS: 70 errstr = "Readonly filesystem"; 71 break; 72 default: 73 if (nbuf) { 74 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 75 errstr = nbuf; 76 } 77 break; 78 } 79 80 return errstr; 81 } 82 83 static void __save_error_info(struct btrfs_fs_info *fs_info) 84 { 85 /* 86 * today we only save the error info into ram. Long term we'll 87 * also send it down to the disk 88 */ 89 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR; 90 } 91 92 /* NOTE: 93 * We move write_super stuff at umount in order to avoid deadlock 94 * for umount hold all lock. 95 */ 96 static void save_error_info(struct btrfs_fs_info *fs_info) 97 { 98 __save_error_info(fs_info); 99 } 100 101 /* btrfs handle error by forcing the filesystem readonly */ 102 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 103 { 104 struct super_block *sb = fs_info->sb; 105 106 if (sb->s_flags & MS_RDONLY) 107 return; 108 109 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 110 sb->s_flags |= MS_RDONLY; 111 printk(KERN_INFO "btrfs is forced readonly\n"); 112 } 113 } 114 115 /* 116 * __btrfs_std_error decodes expected errors from the caller and 117 * invokes the approciate error response. 118 */ 119 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 120 unsigned int line, int errno) 121 { 122 struct super_block *sb = fs_info->sb; 123 char nbuf[16]; 124 const char *errstr; 125 126 /* 127 * Special case: if the error is EROFS, and we're already 128 * under MS_RDONLY, then it is safe here. 129 */ 130 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 131 return; 132 133 errstr = btrfs_decode_error(fs_info, errno, nbuf); 134 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n", 135 sb->s_id, function, line, errstr); 136 save_error_info(fs_info); 137 138 btrfs_handle_error(fs_info); 139 } 140 141 static void btrfs_put_super(struct super_block *sb) 142 { 143 struct btrfs_root *root = btrfs_sb(sb); 144 int ret; 145 146 ret = close_ctree(root); 147 sb->s_fs_info = NULL; 148 149 (void)ret; /* FIXME: need to fix VFS to return error? */ 150 } 151 152 enum { 153 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 154 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 155 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 156 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 157 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 158 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, Opt_err, 159 }; 160 161 static match_table_t tokens = { 162 {Opt_degraded, "degraded"}, 163 {Opt_subvol, "subvol=%s"}, 164 {Opt_subvolid, "subvolid=%d"}, 165 {Opt_device, "device=%s"}, 166 {Opt_nodatasum, "nodatasum"}, 167 {Opt_nodatacow, "nodatacow"}, 168 {Opt_nobarrier, "nobarrier"}, 169 {Opt_max_inline, "max_inline=%s"}, 170 {Opt_alloc_start, "alloc_start=%s"}, 171 {Opt_thread_pool, "thread_pool=%d"}, 172 {Opt_compress, "compress"}, 173 {Opt_compress_type, "compress=%s"}, 174 {Opt_compress_force, "compress-force"}, 175 {Opt_compress_force_type, "compress-force=%s"}, 176 {Opt_ssd, "ssd"}, 177 {Opt_ssd_spread, "ssd_spread"}, 178 {Opt_nossd, "nossd"}, 179 {Opt_noacl, "noacl"}, 180 {Opt_notreelog, "notreelog"}, 181 {Opt_flushoncommit, "flushoncommit"}, 182 {Opt_ratio, "metadata_ratio=%d"}, 183 {Opt_discard, "discard"}, 184 {Opt_space_cache, "space_cache"}, 185 {Opt_clear_cache, "clear_cache"}, 186 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 187 {Opt_err, NULL}, 188 }; 189 190 /* 191 * Regular mount options parser. Everything that is needed only when 192 * reading in a new superblock is parsed here. 193 */ 194 int btrfs_parse_options(struct btrfs_root *root, char *options) 195 { 196 struct btrfs_fs_info *info = root->fs_info; 197 substring_t args[MAX_OPT_ARGS]; 198 char *p, *num, *orig; 199 int intarg; 200 int ret = 0; 201 char *compress_type; 202 bool compress_force = false; 203 204 if (!options) 205 return 0; 206 207 /* 208 * strsep changes the string, duplicate it because parse_options 209 * gets called twice 210 */ 211 options = kstrdup(options, GFP_NOFS); 212 if (!options) 213 return -ENOMEM; 214 215 orig = options; 216 217 while ((p = strsep(&options, ",")) != NULL) { 218 int token; 219 if (!*p) 220 continue; 221 222 token = match_token(p, tokens, args); 223 switch (token) { 224 case Opt_degraded: 225 printk(KERN_INFO "btrfs: allowing degraded mounts\n"); 226 btrfs_set_opt(info->mount_opt, DEGRADED); 227 break; 228 case Opt_subvol: 229 case Opt_subvolid: 230 case Opt_device: 231 /* 232 * These are parsed by btrfs_parse_early_options 233 * and can be happily ignored here. 234 */ 235 break; 236 case Opt_nodatasum: 237 printk(KERN_INFO "btrfs: setting nodatasum\n"); 238 btrfs_set_opt(info->mount_opt, NODATASUM); 239 break; 240 case Opt_nodatacow: 241 printk(KERN_INFO "btrfs: setting nodatacow\n"); 242 btrfs_set_opt(info->mount_opt, NODATACOW); 243 btrfs_set_opt(info->mount_opt, NODATASUM); 244 break; 245 case Opt_compress_force: 246 case Opt_compress_force_type: 247 compress_force = true; 248 case Opt_compress: 249 case Opt_compress_type: 250 if (token == Opt_compress || 251 token == Opt_compress_force || 252 strcmp(args[0].from, "zlib") == 0) { 253 compress_type = "zlib"; 254 info->compress_type = BTRFS_COMPRESS_ZLIB; 255 } else if (strcmp(args[0].from, "lzo") == 0) { 256 compress_type = "lzo"; 257 info->compress_type = BTRFS_COMPRESS_LZO; 258 } else { 259 ret = -EINVAL; 260 goto out; 261 } 262 263 btrfs_set_opt(info->mount_opt, COMPRESS); 264 if (compress_force) { 265 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 266 pr_info("btrfs: force %s compression\n", 267 compress_type); 268 } else 269 pr_info("btrfs: use %s compression\n", 270 compress_type); 271 break; 272 case Opt_ssd: 273 printk(KERN_INFO "btrfs: use ssd allocation scheme\n"); 274 btrfs_set_opt(info->mount_opt, SSD); 275 break; 276 case Opt_ssd_spread: 277 printk(KERN_INFO "btrfs: use spread ssd " 278 "allocation scheme\n"); 279 btrfs_set_opt(info->mount_opt, SSD); 280 btrfs_set_opt(info->mount_opt, SSD_SPREAD); 281 break; 282 case Opt_nossd: 283 printk(KERN_INFO "btrfs: not using ssd allocation " 284 "scheme\n"); 285 btrfs_set_opt(info->mount_opt, NOSSD); 286 btrfs_clear_opt(info->mount_opt, SSD); 287 btrfs_clear_opt(info->mount_opt, SSD_SPREAD); 288 break; 289 case Opt_nobarrier: 290 printk(KERN_INFO "btrfs: turning off barriers\n"); 291 btrfs_set_opt(info->mount_opt, NOBARRIER); 292 break; 293 case Opt_thread_pool: 294 intarg = 0; 295 match_int(&args[0], &intarg); 296 if (intarg) { 297 info->thread_pool_size = intarg; 298 printk(KERN_INFO "btrfs: thread pool %d\n", 299 info->thread_pool_size); 300 } 301 break; 302 case Opt_max_inline: 303 num = match_strdup(&args[0]); 304 if (num) { 305 info->max_inline = memparse(num, NULL); 306 kfree(num); 307 308 if (info->max_inline) { 309 info->max_inline = max_t(u64, 310 info->max_inline, 311 root->sectorsize); 312 } 313 printk(KERN_INFO "btrfs: max_inline at %llu\n", 314 (unsigned long long)info->max_inline); 315 } 316 break; 317 case Opt_alloc_start: 318 num = match_strdup(&args[0]); 319 if (num) { 320 info->alloc_start = memparse(num, NULL); 321 kfree(num); 322 printk(KERN_INFO 323 "btrfs: allocations start at %llu\n", 324 (unsigned long long)info->alloc_start); 325 } 326 break; 327 case Opt_noacl: 328 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 329 break; 330 case Opt_notreelog: 331 printk(KERN_INFO "btrfs: disabling tree log\n"); 332 btrfs_set_opt(info->mount_opt, NOTREELOG); 333 break; 334 case Opt_flushoncommit: 335 printk(KERN_INFO "btrfs: turning on flush-on-commit\n"); 336 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT); 337 break; 338 case Opt_ratio: 339 intarg = 0; 340 match_int(&args[0], &intarg); 341 if (intarg) { 342 info->metadata_ratio = intarg; 343 printk(KERN_INFO "btrfs: metadata ratio %d\n", 344 info->metadata_ratio); 345 } 346 break; 347 case Opt_discard: 348 btrfs_set_opt(info->mount_opt, DISCARD); 349 break; 350 case Opt_space_cache: 351 printk(KERN_INFO "btrfs: enabling disk space caching\n"); 352 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 353 break; 354 case Opt_clear_cache: 355 printk(KERN_INFO "btrfs: force clearing of disk cache\n"); 356 btrfs_set_opt(info->mount_opt, CLEAR_CACHE); 357 break; 358 case Opt_user_subvol_rm_allowed: 359 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 360 break; 361 case Opt_err: 362 printk(KERN_INFO "btrfs: unrecognized mount option " 363 "'%s'\n", p); 364 ret = -EINVAL; 365 goto out; 366 default: 367 break; 368 } 369 } 370 out: 371 kfree(orig); 372 return ret; 373 } 374 375 /* 376 * Parse mount options that are required early in the mount process. 377 * 378 * All other options will be parsed on much later in the mount process and 379 * only when we need to allocate a new super block. 380 */ 381 static int btrfs_parse_early_options(const char *options, fmode_t flags, 382 void *holder, char **subvol_name, u64 *subvol_objectid, 383 struct btrfs_fs_devices **fs_devices) 384 { 385 substring_t args[MAX_OPT_ARGS]; 386 char *opts, *orig, *p; 387 int error = 0; 388 int intarg; 389 390 if (!options) 391 goto out; 392 393 /* 394 * strsep changes the string, duplicate it because parse_options 395 * gets called twice 396 */ 397 opts = kstrdup(options, GFP_KERNEL); 398 if (!opts) 399 return -ENOMEM; 400 orig = opts; 401 402 while ((p = strsep(&opts, ",")) != NULL) { 403 int token; 404 if (!*p) 405 continue; 406 407 token = match_token(p, tokens, args); 408 switch (token) { 409 case Opt_subvol: 410 *subvol_name = match_strdup(&args[0]); 411 break; 412 case Opt_subvolid: 413 intarg = 0; 414 error = match_int(&args[0], &intarg); 415 if (!error) { 416 /* we want the original fs_tree */ 417 if (!intarg) 418 *subvol_objectid = 419 BTRFS_FS_TREE_OBJECTID; 420 else 421 *subvol_objectid = intarg; 422 } 423 break; 424 case Opt_device: 425 error = btrfs_scan_one_device(match_strdup(&args[0]), 426 flags, holder, fs_devices); 427 if (error) 428 goto out_free_opts; 429 break; 430 default: 431 break; 432 } 433 } 434 435 out_free_opts: 436 kfree(orig); 437 out: 438 /* 439 * If no subvolume name is specified we use the default one. Allocate 440 * a copy of the string "." here so that code later in the 441 * mount path doesn't care if it's the default volume or another one. 442 */ 443 if (!*subvol_name) { 444 *subvol_name = kstrdup(".", GFP_KERNEL); 445 if (!*subvol_name) 446 return -ENOMEM; 447 } 448 return error; 449 } 450 451 static struct dentry *get_default_root(struct super_block *sb, 452 u64 subvol_objectid) 453 { 454 struct btrfs_root *root = sb->s_fs_info; 455 struct btrfs_root *new_root; 456 struct btrfs_dir_item *di; 457 struct btrfs_path *path; 458 struct btrfs_key location; 459 struct inode *inode; 460 struct dentry *dentry; 461 u64 dir_id; 462 int new = 0; 463 464 /* 465 * We have a specific subvol we want to mount, just setup location and 466 * go look up the root. 467 */ 468 if (subvol_objectid) { 469 location.objectid = subvol_objectid; 470 location.type = BTRFS_ROOT_ITEM_KEY; 471 location.offset = (u64)-1; 472 goto find_root; 473 } 474 475 path = btrfs_alloc_path(); 476 if (!path) 477 return ERR_PTR(-ENOMEM); 478 path->leave_spinning = 1; 479 480 /* 481 * Find the "default" dir item which points to the root item that we 482 * will mount by default if we haven't been given a specific subvolume 483 * to mount. 484 */ 485 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy); 486 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 487 if (IS_ERR(di)) 488 return ERR_CAST(di); 489 if (!di) { 490 /* 491 * Ok the default dir item isn't there. This is weird since 492 * it's always been there, but don't freak out, just try and 493 * mount to root most subvolume. 494 */ 495 btrfs_free_path(path); 496 dir_id = BTRFS_FIRST_FREE_OBJECTID; 497 new_root = root->fs_info->fs_root; 498 goto setup_root; 499 } 500 501 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 502 btrfs_free_path(path); 503 504 find_root: 505 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 506 if (IS_ERR(new_root)) 507 return ERR_CAST(new_root); 508 509 if (btrfs_root_refs(&new_root->root_item) == 0) 510 return ERR_PTR(-ENOENT); 511 512 dir_id = btrfs_root_dirid(&new_root->root_item); 513 setup_root: 514 location.objectid = dir_id; 515 location.type = BTRFS_INODE_ITEM_KEY; 516 location.offset = 0; 517 518 inode = btrfs_iget(sb, &location, new_root, &new); 519 if (IS_ERR(inode)) 520 return ERR_CAST(inode); 521 522 /* 523 * If we're just mounting the root most subvol put the inode and return 524 * a reference to the dentry. We will have already gotten a reference 525 * to the inode in btrfs_fill_super so we're good to go. 526 */ 527 if (!new && sb->s_root->d_inode == inode) { 528 iput(inode); 529 return dget(sb->s_root); 530 } 531 532 if (new) { 533 const struct qstr name = { .name = "/", .len = 1 }; 534 535 /* 536 * New inode, we need to make the dentry a sibling of s_root so 537 * everything gets cleaned up properly on unmount. 538 */ 539 dentry = d_alloc(sb->s_root, &name); 540 if (!dentry) { 541 iput(inode); 542 return ERR_PTR(-ENOMEM); 543 } 544 d_splice_alias(inode, dentry); 545 } else { 546 /* 547 * We found the inode in cache, just find a dentry for it and 548 * put the reference to the inode we just got. 549 */ 550 dentry = d_find_alias(inode); 551 iput(inode); 552 } 553 554 return dentry; 555 } 556 557 static int btrfs_fill_super(struct super_block *sb, 558 struct btrfs_fs_devices *fs_devices, 559 void *data, int silent) 560 { 561 struct inode *inode; 562 struct dentry *root_dentry; 563 struct btrfs_root *tree_root; 564 struct btrfs_key key; 565 int err; 566 567 sb->s_maxbytes = MAX_LFS_FILESIZE; 568 sb->s_magic = BTRFS_SUPER_MAGIC; 569 sb->s_op = &btrfs_super_ops; 570 sb->s_d_op = &btrfs_dentry_operations; 571 sb->s_export_op = &btrfs_export_ops; 572 sb->s_xattr = btrfs_xattr_handlers; 573 sb->s_time_gran = 1; 574 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 575 sb->s_flags |= MS_POSIXACL; 576 #endif 577 578 tree_root = open_ctree(sb, fs_devices, (char *)data); 579 580 if (IS_ERR(tree_root)) { 581 printk("btrfs: open_ctree failed\n"); 582 return PTR_ERR(tree_root); 583 } 584 sb->s_fs_info = tree_root; 585 586 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 587 key.type = BTRFS_INODE_ITEM_KEY; 588 key.offset = 0; 589 inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL); 590 if (IS_ERR(inode)) { 591 err = PTR_ERR(inode); 592 goto fail_close; 593 } 594 595 root_dentry = d_alloc_root(inode); 596 if (!root_dentry) { 597 iput(inode); 598 err = -ENOMEM; 599 goto fail_close; 600 } 601 602 sb->s_root = root_dentry; 603 604 save_mount_options(sb, data); 605 return 0; 606 607 fail_close: 608 close_ctree(tree_root); 609 return err; 610 } 611 612 int btrfs_sync_fs(struct super_block *sb, int wait) 613 { 614 struct btrfs_trans_handle *trans; 615 struct btrfs_root *root = btrfs_sb(sb); 616 int ret; 617 618 if (!wait) { 619 filemap_flush(root->fs_info->btree_inode->i_mapping); 620 return 0; 621 } 622 623 btrfs_start_delalloc_inodes(root, 0); 624 btrfs_wait_ordered_extents(root, 0, 0); 625 626 trans = btrfs_start_transaction(root, 0); 627 if (IS_ERR(trans)) 628 return PTR_ERR(trans); 629 ret = btrfs_commit_transaction(trans, root); 630 return ret; 631 } 632 633 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs) 634 { 635 struct btrfs_root *root = btrfs_sb(vfs->mnt_sb); 636 struct btrfs_fs_info *info = root->fs_info; 637 638 if (btrfs_test_opt(root, DEGRADED)) 639 seq_puts(seq, ",degraded"); 640 if (btrfs_test_opt(root, NODATASUM)) 641 seq_puts(seq, ",nodatasum"); 642 if (btrfs_test_opt(root, NODATACOW)) 643 seq_puts(seq, ",nodatacow"); 644 if (btrfs_test_opt(root, NOBARRIER)) 645 seq_puts(seq, ",nobarrier"); 646 if (info->max_inline != 8192 * 1024) 647 seq_printf(seq, ",max_inline=%llu", 648 (unsigned long long)info->max_inline); 649 if (info->alloc_start != 0) 650 seq_printf(seq, ",alloc_start=%llu", 651 (unsigned long long)info->alloc_start); 652 if (info->thread_pool_size != min_t(unsigned long, 653 num_online_cpus() + 2, 8)) 654 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 655 if (btrfs_test_opt(root, COMPRESS)) 656 seq_puts(seq, ",compress"); 657 if (btrfs_test_opt(root, NOSSD)) 658 seq_puts(seq, ",nossd"); 659 if (btrfs_test_opt(root, SSD_SPREAD)) 660 seq_puts(seq, ",ssd_spread"); 661 else if (btrfs_test_opt(root, SSD)) 662 seq_puts(seq, ",ssd"); 663 if (btrfs_test_opt(root, NOTREELOG)) 664 seq_puts(seq, ",notreelog"); 665 if (btrfs_test_opt(root, FLUSHONCOMMIT)) 666 seq_puts(seq, ",flushoncommit"); 667 if (btrfs_test_opt(root, DISCARD)) 668 seq_puts(seq, ",discard"); 669 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 670 seq_puts(seq, ",noacl"); 671 return 0; 672 } 673 674 static int btrfs_test_super(struct super_block *s, void *data) 675 { 676 struct btrfs_root *test_root = data; 677 struct btrfs_root *root = btrfs_sb(s); 678 679 /* 680 * If this super block is going away, return false as it 681 * can't match as an existing super block. 682 */ 683 if (!atomic_read(&s->s_active)) 684 return 0; 685 return root->fs_info->fs_devices == test_root->fs_info->fs_devices; 686 } 687 688 static int btrfs_set_super(struct super_block *s, void *data) 689 { 690 s->s_fs_info = data; 691 692 return set_anon_super(s, data); 693 } 694 695 696 /* 697 * Find a superblock for the given device / mount point. 698 * 699 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 700 * for multiple device setup. Make sure to keep it in sync. 701 */ 702 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 703 const char *dev_name, void *data) 704 { 705 struct block_device *bdev = NULL; 706 struct super_block *s; 707 struct dentry *root; 708 struct btrfs_fs_devices *fs_devices = NULL; 709 struct btrfs_root *tree_root = NULL; 710 struct btrfs_fs_info *fs_info = NULL; 711 fmode_t mode = FMODE_READ; 712 char *subvol_name = NULL; 713 u64 subvol_objectid = 0; 714 int error = 0; 715 716 if (!(flags & MS_RDONLY)) 717 mode |= FMODE_WRITE; 718 719 error = btrfs_parse_early_options(data, mode, fs_type, 720 &subvol_name, &subvol_objectid, 721 &fs_devices); 722 if (error) 723 return ERR_PTR(error); 724 725 error = btrfs_scan_one_device(dev_name, mode, fs_type, &fs_devices); 726 if (error) 727 goto error_free_subvol_name; 728 729 error = btrfs_open_devices(fs_devices, mode, fs_type); 730 if (error) 731 goto error_free_subvol_name; 732 733 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 734 error = -EACCES; 735 goto error_close_devices; 736 } 737 738 /* 739 * Setup a dummy root and fs_info for test/set super. This is because 740 * we don't actually fill this stuff out until open_ctree, but we need 741 * it for searching for existing supers, so this lets us do that and 742 * then open_ctree will properly initialize everything later. 743 */ 744 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 745 tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS); 746 if (!fs_info || !tree_root) { 747 error = -ENOMEM; 748 goto error_close_devices; 749 } 750 fs_info->tree_root = tree_root; 751 fs_info->fs_devices = fs_devices; 752 tree_root->fs_info = fs_info; 753 754 bdev = fs_devices->latest_bdev; 755 s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root); 756 if (IS_ERR(s)) 757 goto error_s; 758 759 if (s->s_root) { 760 if ((flags ^ s->s_flags) & MS_RDONLY) { 761 deactivate_locked_super(s); 762 error = -EBUSY; 763 goto error_close_devices; 764 } 765 766 btrfs_close_devices(fs_devices); 767 kfree(fs_info); 768 kfree(tree_root); 769 } else { 770 char b[BDEVNAME_SIZE]; 771 772 s->s_flags = flags; 773 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 774 error = btrfs_fill_super(s, fs_devices, data, 775 flags & MS_SILENT ? 1 : 0); 776 if (error) { 777 deactivate_locked_super(s); 778 goto error_free_subvol_name; 779 } 780 781 btrfs_sb(s)->fs_info->bdev_holder = fs_type; 782 s->s_flags |= MS_ACTIVE; 783 } 784 785 root = get_default_root(s, subvol_objectid); 786 if (IS_ERR(root)) { 787 error = PTR_ERR(root); 788 deactivate_locked_super(s); 789 goto error_free_subvol_name; 790 } 791 /* if they gave us a subvolume name bind mount into that */ 792 if (strcmp(subvol_name, ".")) { 793 struct dentry *new_root; 794 mutex_lock(&root->d_inode->i_mutex); 795 new_root = lookup_one_len(subvol_name, root, 796 strlen(subvol_name)); 797 mutex_unlock(&root->d_inode->i_mutex); 798 799 if (IS_ERR(new_root)) { 800 dput(root); 801 deactivate_locked_super(s); 802 error = PTR_ERR(new_root); 803 goto error_free_subvol_name; 804 } 805 if (!new_root->d_inode) { 806 dput(root); 807 dput(new_root); 808 deactivate_locked_super(s); 809 error = -ENXIO; 810 goto error_free_subvol_name; 811 } 812 dput(root); 813 root = new_root; 814 } 815 816 kfree(subvol_name); 817 return root; 818 819 error_s: 820 error = PTR_ERR(s); 821 error_close_devices: 822 btrfs_close_devices(fs_devices); 823 kfree(fs_info); 824 kfree(tree_root); 825 error_free_subvol_name: 826 kfree(subvol_name); 827 return ERR_PTR(error); 828 } 829 830 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 831 { 832 struct btrfs_root *root = btrfs_sb(sb); 833 int ret; 834 835 ret = btrfs_parse_options(root, data); 836 if (ret) 837 return -EINVAL; 838 839 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 840 return 0; 841 842 if (*flags & MS_RDONLY) { 843 sb->s_flags |= MS_RDONLY; 844 845 ret = btrfs_commit_super(root); 846 WARN_ON(ret); 847 } else { 848 if (root->fs_info->fs_devices->rw_devices == 0) 849 return -EACCES; 850 851 if (btrfs_super_log_root(&root->fs_info->super_copy) != 0) 852 return -EINVAL; 853 854 ret = btrfs_cleanup_fs_roots(root->fs_info); 855 WARN_ON(ret); 856 857 /* recover relocation */ 858 ret = btrfs_recover_relocation(root); 859 WARN_ON(ret); 860 861 sb->s_flags &= ~MS_RDONLY; 862 } 863 864 return 0; 865 } 866 867 /* 868 * The helper to calc the free space on the devices that can be used to store 869 * file data. 870 */ 871 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 872 { 873 struct btrfs_fs_info *fs_info = root->fs_info; 874 struct btrfs_device_info *devices_info; 875 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 876 struct btrfs_device *device; 877 u64 skip_space; 878 u64 type; 879 u64 avail_space; 880 u64 used_space; 881 u64 min_stripe_size; 882 int min_stripes = 1; 883 int i = 0, nr_devices; 884 int ret; 885 886 nr_devices = fs_info->fs_devices->rw_devices; 887 BUG_ON(!nr_devices); 888 889 devices_info = kmalloc(sizeof(*devices_info) * nr_devices, 890 GFP_NOFS); 891 if (!devices_info) 892 return -ENOMEM; 893 894 /* calc min stripe number for data space alloction */ 895 type = btrfs_get_alloc_profile(root, 1); 896 if (type & BTRFS_BLOCK_GROUP_RAID0) 897 min_stripes = 2; 898 else if (type & BTRFS_BLOCK_GROUP_RAID1) 899 min_stripes = 2; 900 else if (type & BTRFS_BLOCK_GROUP_RAID10) 901 min_stripes = 4; 902 903 if (type & BTRFS_BLOCK_GROUP_DUP) 904 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 905 else 906 min_stripe_size = BTRFS_STRIPE_LEN; 907 908 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 909 if (!device->in_fs_metadata) 910 continue; 911 912 avail_space = device->total_bytes - device->bytes_used; 913 914 /* align with stripe_len */ 915 do_div(avail_space, BTRFS_STRIPE_LEN); 916 avail_space *= BTRFS_STRIPE_LEN; 917 918 /* 919 * In order to avoid overwritting the superblock on the drive, 920 * btrfs starts at an offset of at least 1MB when doing chunk 921 * allocation. 922 */ 923 skip_space = 1024 * 1024; 924 925 /* user can set the offset in fs_info->alloc_start. */ 926 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <= 927 device->total_bytes) 928 skip_space = max(fs_info->alloc_start, skip_space); 929 930 /* 931 * btrfs can not use the free space in [0, skip_space - 1], 932 * we must subtract it from the total. In order to implement 933 * it, we account the used space in this range first. 934 */ 935 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1, 936 &used_space); 937 if (ret) { 938 kfree(devices_info); 939 return ret; 940 } 941 942 /* calc the free space in [0, skip_space - 1] */ 943 skip_space -= used_space; 944 945 /* 946 * we can use the free space in [0, skip_space - 1], subtract 947 * it from the total. 948 */ 949 if (avail_space && avail_space >= skip_space) 950 avail_space -= skip_space; 951 else 952 avail_space = 0; 953 954 if (avail_space < min_stripe_size) 955 continue; 956 957 devices_info[i].dev = device; 958 devices_info[i].max_avail = avail_space; 959 960 i++; 961 } 962 963 nr_devices = i; 964 965 btrfs_descending_sort_devices(devices_info, nr_devices); 966 967 i = nr_devices - 1; 968 avail_space = 0; 969 while (nr_devices >= min_stripes) { 970 if (devices_info[i].max_avail >= min_stripe_size) { 971 int j; 972 u64 alloc_size; 973 974 avail_space += devices_info[i].max_avail * min_stripes; 975 alloc_size = devices_info[i].max_avail; 976 for (j = i + 1 - min_stripes; j <= i; j++) 977 devices_info[j].max_avail -= alloc_size; 978 } 979 i--; 980 nr_devices--; 981 } 982 983 kfree(devices_info); 984 *free_bytes = avail_space; 985 return 0; 986 } 987 988 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 989 { 990 struct btrfs_root *root = btrfs_sb(dentry->d_sb); 991 struct btrfs_super_block *disk_super = &root->fs_info->super_copy; 992 struct list_head *head = &root->fs_info->space_info; 993 struct btrfs_space_info *found; 994 u64 total_used = 0; 995 u64 total_free_data = 0; 996 int bits = dentry->d_sb->s_blocksize_bits; 997 __be32 *fsid = (__be32 *)root->fs_info->fsid; 998 int ret; 999 1000 /* holding chunk_muext to avoid allocating new chunks */ 1001 mutex_lock(&root->fs_info->chunk_mutex); 1002 rcu_read_lock(); 1003 list_for_each_entry_rcu(found, head, list) { 1004 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1005 total_free_data += found->disk_total - found->disk_used; 1006 total_free_data -= 1007 btrfs_account_ro_block_groups_free_space(found); 1008 } 1009 1010 total_used += found->disk_used; 1011 } 1012 rcu_read_unlock(); 1013 1014 buf->f_namelen = BTRFS_NAME_LEN; 1015 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits; 1016 buf->f_bfree = buf->f_blocks - (total_used >> bits); 1017 buf->f_bsize = dentry->d_sb->s_blocksize; 1018 buf->f_type = BTRFS_SUPER_MAGIC; 1019 buf->f_bavail = total_free_data; 1020 ret = btrfs_calc_avail_data_space(root, &total_free_data); 1021 if (ret) { 1022 mutex_unlock(&root->fs_info->chunk_mutex); 1023 return ret; 1024 } 1025 buf->f_bavail += total_free_data; 1026 buf->f_bavail = buf->f_bavail >> bits; 1027 mutex_unlock(&root->fs_info->chunk_mutex); 1028 1029 /* We treat it as constant endianness (it doesn't matter _which_) 1030 because we want the fsid to come out the same whether mounted 1031 on a big-endian or little-endian host */ 1032 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1033 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1034 /* Mask in the root object ID too, to disambiguate subvols */ 1035 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32; 1036 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid; 1037 1038 return 0; 1039 } 1040 1041 static struct file_system_type btrfs_fs_type = { 1042 .owner = THIS_MODULE, 1043 .name = "btrfs", 1044 .mount = btrfs_mount, 1045 .kill_sb = kill_anon_super, 1046 .fs_flags = FS_REQUIRES_DEV, 1047 }; 1048 1049 /* 1050 * used by btrfsctl to scan devices when no FS is mounted 1051 */ 1052 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 1053 unsigned long arg) 1054 { 1055 struct btrfs_ioctl_vol_args *vol; 1056 struct btrfs_fs_devices *fs_devices; 1057 int ret = -ENOTTY; 1058 1059 if (!capable(CAP_SYS_ADMIN)) 1060 return -EPERM; 1061 1062 vol = memdup_user((void __user *)arg, sizeof(*vol)); 1063 if (IS_ERR(vol)) 1064 return PTR_ERR(vol); 1065 1066 switch (cmd) { 1067 case BTRFS_IOC_SCAN_DEV: 1068 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1069 &btrfs_fs_type, &fs_devices); 1070 break; 1071 } 1072 1073 kfree(vol); 1074 return ret; 1075 } 1076 1077 static int btrfs_freeze(struct super_block *sb) 1078 { 1079 struct btrfs_root *root = btrfs_sb(sb); 1080 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1081 mutex_lock(&root->fs_info->cleaner_mutex); 1082 return 0; 1083 } 1084 1085 static int btrfs_unfreeze(struct super_block *sb) 1086 { 1087 struct btrfs_root *root = btrfs_sb(sb); 1088 mutex_unlock(&root->fs_info->cleaner_mutex); 1089 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1090 return 0; 1091 } 1092 1093 static const struct super_operations btrfs_super_ops = { 1094 .drop_inode = btrfs_drop_inode, 1095 .evict_inode = btrfs_evict_inode, 1096 .put_super = btrfs_put_super, 1097 .sync_fs = btrfs_sync_fs, 1098 .show_options = btrfs_show_options, 1099 .write_inode = btrfs_write_inode, 1100 .dirty_inode = btrfs_dirty_inode, 1101 .alloc_inode = btrfs_alloc_inode, 1102 .destroy_inode = btrfs_destroy_inode, 1103 .statfs = btrfs_statfs, 1104 .remount_fs = btrfs_remount, 1105 .freeze_fs = btrfs_freeze, 1106 .unfreeze_fs = btrfs_unfreeze, 1107 }; 1108 1109 static const struct file_operations btrfs_ctl_fops = { 1110 .unlocked_ioctl = btrfs_control_ioctl, 1111 .compat_ioctl = btrfs_control_ioctl, 1112 .owner = THIS_MODULE, 1113 .llseek = noop_llseek, 1114 }; 1115 1116 static struct miscdevice btrfs_misc = { 1117 .minor = BTRFS_MINOR, 1118 .name = "btrfs-control", 1119 .fops = &btrfs_ctl_fops 1120 }; 1121 1122 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 1123 MODULE_ALIAS("devname:btrfs-control"); 1124 1125 static int btrfs_interface_init(void) 1126 { 1127 return misc_register(&btrfs_misc); 1128 } 1129 1130 static void btrfs_interface_exit(void) 1131 { 1132 if (misc_deregister(&btrfs_misc) < 0) 1133 printk(KERN_INFO "misc_deregister failed for control device"); 1134 } 1135 1136 static int __init init_btrfs_fs(void) 1137 { 1138 int err; 1139 1140 err = btrfs_init_sysfs(); 1141 if (err) 1142 return err; 1143 1144 err = btrfs_init_compress(); 1145 if (err) 1146 goto free_sysfs; 1147 1148 err = btrfs_init_cachep(); 1149 if (err) 1150 goto free_compress; 1151 1152 err = extent_io_init(); 1153 if (err) 1154 goto free_cachep; 1155 1156 err = extent_map_init(); 1157 if (err) 1158 goto free_extent_io; 1159 1160 err = btrfs_interface_init(); 1161 if (err) 1162 goto free_extent_map; 1163 1164 err = register_filesystem(&btrfs_fs_type); 1165 if (err) 1166 goto unregister_ioctl; 1167 1168 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION); 1169 return 0; 1170 1171 unregister_ioctl: 1172 btrfs_interface_exit(); 1173 free_extent_map: 1174 extent_map_exit(); 1175 free_extent_io: 1176 extent_io_exit(); 1177 free_cachep: 1178 btrfs_destroy_cachep(); 1179 free_compress: 1180 btrfs_exit_compress(); 1181 free_sysfs: 1182 btrfs_exit_sysfs(); 1183 return err; 1184 } 1185 1186 static void __exit exit_btrfs_fs(void) 1187 { 1188 btrfs_destroy_cachep(); 1189 extent_map_exit(); 1190 extent_io_exit(); 1191 btrfs_interface_exit(); 1192 unregister_filesystem(&btrfs_fs_type); 1193 btrfs_exit_sysfs(); 1194 btrfs_cleanup_fs_uuids(); 1195 btrfs_exit_compress(); 1196 } 1197 1198 module_init(init_btrfs_fs) 1199 module_exit(exit_btrfs_fs) 1200 1201 MODULE_LICENSE("GPL"); 1202