xref: /openbmc/linux/fs/btrfs/super.c (revision db181ce0)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65 
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68 
69 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
70 
71 static const char *btrfs_decode_error(int errno)
72 {
73 	char *errstr = "unknown";
74 
75 	switch (errno) {
76 	case -EIO:
77 		errstr = "IO failure";
78 		break;
79 	case -ENOMEM:
80 		errstr = "Out of memory";
81 		break;
82 	case -EROFS:
83 		errstr = "Readonly filesystem";
84 		break;
85 	case -EEXIST:
86 		errstr = "Object already exists";
87 		break;
88 	case -ENOSPC:
89 		errstr = "No space left";
90 		break;
91 	case -ENOENT:
92 		errstr = "No such entry";
93 		break;
94 	}
95 
96 	return errstr;
97 }
98 
99 static void save_error_info(struct btrfs_fs_info *fs_info)
100 {
101 	/*
102 	 * today we only save the error info into ram.  Long term we'll
103 	 * also send it down to the disk
104 	 */
105 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
106 }
107 
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111 	struct super_block *sb = fs_info->sb;
112 
113 	if (sb->s_flags & MS_RDONLY)
114 		return;
115 
116 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
117 		sb->s_flags |= MS_RDONLY;
118 		btrfs_info(fs_info, "forced readonly");
119 		/*
120 		 * Note that a running device replace operation is not
121 		 * canceled here although there is no way to update
122 		 * the progress. It would add the risk of a deadlock,
123 		 * therefore the canceling is ommited. The only penalty
124 		 * is that some I/O remains active until the procedure
125 		 * completes. The next time when the filesystem is
126 		 * mounted writeable again, the device replace
127 		 * operation continues.
128 		 */
129 	}
130 }
131 
132 #ifdef CONFIG_PRINTK
133 /*
134  * __btrfs_std_error decodes expected errors from the caller and
135  * invokes the approciate error response.
136  */
137 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
138 		       unsigned int line, int errno, const char *fmt, ...)
139 {
140 	struct super_block *sb = fs_info->sb;
141 	const char *errstr;
142 
143 	/*
144 	 * Special case: if the error is EROFS, and we're already
145 	 * under MS_RDONLY, then it is safe here.
146 	 */
147 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
148   		return;
149 
150 	errstr = btrfs_decode_error(errno);
151 	if (fmt) {
152 		struct va_format vaf;
153 		va_list args;
154 
155 		va_start(args, fmt);
156 		vaf.fmt = fmt;
157 		vaf.va = &args;
158 
159 		printk(KERN_CRIT
160 			"BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
161 			sb->s_id, function, line, errno, errstr, &vaf);
162 		va_end(args);
163 	} else {
164 		printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
165 			sb->s_id, function, line, errno, errstr);
166 	}
167 
168 	/* Don't go through full error handling during mount */
169 	save_error_info(fs_info);
170 	if (sb->s_flags & MS_BORN)
171 		btrfs_handle_error(fs_info);
172 }
173 
174 static const char * const logtypes[] = {
175 	"emergency",
176 	"alert",
177 	"critical",
178 	"error",
179 	"warning",
180 	"notice",
181 	"info",
182 	"debug",
183 };
184 
185 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
186 {
187 	struct super_block *sb = fs_info->sb;
188 	char lvl[4];
189 	struct va_format vaf;
190 	va_list args;
191 	const char *type = logtypes[4];
192 	int kern_level;
193 
194 	va_start(args, fmt);
195 
196 	kern_level = printk_get_level(fmt);
197 	if (kern_level) {
198 		size_t size = printk_skip_level(fmt) - fmt;
199 		memcpy(lvl, fmt,  size);
200 		lvl[size] = '\0';
201 		fmt += size;
202 		type = logtypes[kern_level - '0'];
203 	} else
204 		*lvl = '\0';
205 
206 	vaf.fmt = fmt;
207 	vaf.va = &args;
208 
209 	printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
210 
211 	va_end(args);
212 }
213 
214 #else
215 
216 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
217 		       unsigned int line, int errno, const char *fmt, ...)
218 {
219 	struct super_block *sb = fs_info->sb;
220 
221 	/*
222 	 * Special case: if the error is EROFS, and we're already
223 	 * under MS_RDONLY, then it is safe here.
224 	 */
225 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
226 		return;
227 
228 	/* Don't go through full error handling during mount */
229 	if (sb->s_flags & MS_BORN) {
230 		save_error_info(fs_info);
231 		btrfs_handle_error(fs_info);
232 	}
233 }
234 #endif
235 
236 /*
237  * We only mark the transaction aborted and then set the file system read-only.
238  * This will prevent new transactions from starting or trying to join this
239  * one.
240  *
241  * This means that error recovery at the call site is limited to freeing
242  * any local memory allocations and passing the error code up without
243  * further cleanup. The transaction should complete as it normally would
244  * in the call path but will return -EIO.
245  *
246  * We'll complete the cleanup in btrfs_end_transaction and
247  * btrfs_commit_transaction.
248  */
249 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
250 			       struct btrfs_root *root, const char *function,
251 			       unsigned int line, int errno)
252 {
253 	/*
254 	 * Report first abort since mount
255 	 */
256 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
257 				&root->fs_info->fs_state)) {
258 		WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
259 				errno);
260 	}
261 	trans->aborted = errno;
262 	/* Nothing used. The other threads that have joined this
263 	 * transaction may be able to continue. */
264 	if (!trans->blocks_used) {
265 		const char *errstr;
266 
267 		errstr = btrfs_decode_error(errno);
268 		btrfs_warn(root->fs_info,
269 		           "%s:%d: Aborting unused transaction(%s).",
270 		           function, line, errstr);
271 		return;
272 	}
273 	ACCESS_ONCE(trans->transaction->aborted) = errno;
274 	/* Wake up anybody who may be waiting on this transaction */
275 	wake_up(&root->fs_info->transaction_wait);
276 	wake_up(&root->fs_info->transaction_blocked_wait);
277 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
278 }
279 /*
280  * __btrfs_panic decodes unexpected, fatal errors from the caller,
281  * issues an alert, and either panics or BUGs, depending on mount options.
282  */
283 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
284 		   unsigned int line, int errno, const char *fmt, ...)
285 {
286 	char *s_id = "<unknown>";
287 	const char *errstr;
288 	struct va_format vaf = { .fmt = fmt };
289 	va_list args;
290 
291 	if (fs_info)
292 		s_id = fs_info->sb->s_id;
293 
294 	va_start(args, fmt);
295 	vaf.va = &args;
296 
297 	errstr = btrfs_decode_error(errno);
298 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
299 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
300 			s_id, function, line, &vaf, errno, errstr);
301 
302 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
303 		   function, line, &vaf, errno, errstr);
304 	va_end(args);
305 	/* Caller calls BUG() */
306 }
307 
308 static void btrfs_put_super(struct super_block *sb)
309 {
310 	(void)close_ctree(btrfs_sb(sb)->tree_root);
311 	/* FIXME: need to fix VFS to return error? */
312 	/* AV: return it _where_?  ->put_super() can be triggered by any number
313 	 * of async events, up to and including delivery of SIGKILL to the
314 	 * last process that kept it busy.  Or segfault in the aforementioned
315 	 * process...  Whom would you report that to?
316 	 */
317 }
318 
319 enum {
320 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
321 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
322 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
323 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
324 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
325 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
326 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
327 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
328 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
329 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
330 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
331 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
332 	Opt_datasum, Opt_treelog, Opt_noinode_cache,
333 	Opt_err,
334 };
335 
336 static match_table_t tokens = {
337 	{Opt_degraded, "degraded"},
338 	{Opt_subvol, "subvol=%s"},
339 	{Opt_subvolid, "subvolid=%s"},
340 	{Opt_device, "device=%s"},
341 	{Opt_nodatasum, "nodatasum"},
342 	{Opt_datasum, "datasum"},
343 	{Opt_nodatacow, "nodatacow"},
344 	{Opt_datacow, "datacow"},
345 	{Opt_nobarrier, "nobarrier"},
346 	{Opt_barrier, "barrier"},
347 	{Opt_max_inline, "max_inline=%s"},
348 	{Opt_alloc_start, "alloc_start=%s"},
349 	{Opt_thread_pool, "thread_pool=%d"},
350 	{Opt_compress, "compress"},
351 	{Opt_compress_type, "compress=%s"},
352 	{Opt_compress_force, "compress-force"},
353 	{Opt_compress_force_type, "compress-force=%s"},
354 	{Opt_ssd, "ssd"},
355 	{Opt_ssd_spread, "ssd_spread"},
356 	{Opt_nossd, "nossd"},
357 	{Opt_acl, "acl"},
358 	{Opt_noacl, "noacl"},
359 	{Opt_notreelog, "notreelog"},
360 	{Opt_treelog, "treelog"},
361 	{Opt_flushoncommit, "flushoncommit"},
362 	{Opt_noflushoncommit, "noflushoncommit"},
363 	{Opt_ratio, "metadata_ratio=%d"},
364 	{Opt_discard, "discard"},
365 	{Opt_nodiscard, "nodiscard"},
366 	{Opt_space_cache, "space_cache"},
367 	{Opt_clear_cache, "clear_cache"},
368 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
369 	{Opt_enospc_debug, "enospc_debug"},
370 	{Opt_noenospc_debug, "noenospc_debug"},
371 	{Opt_subvolrootid, "subvolrootid=%d"},
372 	{Opt_defrag, "autodefrag"},
373 	{Opt_nodefrag, "noautodefrag"},
374 	{Opt_inode_cache, "inode_cache"},
375 	{Opt_noinode_cache, "noinode_cache"},
376 	{Opt_no_space_cache, "nospace_cache"},
377 	{Opt_recovery, "recovery"},
378 	{Opt_skip_balance, "skip_balance"},
379 	{Opt_check_integrity, "check_int"},
380 	{Opt_check_integrity_including_extent_data, "check_int_data"},
381 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
382 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
383 	{Opt_fatal_errors, "fatal_errors=%s"},
384 	{Opt_commit_interval, "commit=%d"},
385 	{Opt_err, NULL},
386 };
387 
388 /*
389  * Regular mount options parser.  Everything that is needed only when
390  * reading in a new superblock is parsed here.
391  * XXX JDM: This needs to be cleaned up for remount.
392  */
393 int btrfs_parse_options(struct btrfs_root *root, char *options)
394 {
395 	struct btrfs_fs_info *info = root->fs_info;
396 	substring_t args[MAX_OPT_ARGS];
397 	char *p, *num, *orig = NULL;
398 	u64 cache_gen;
399 	int intarg;
400 	int ret = 0;
401 	char *compress_type;
402 	bool compress_force = false;
403 	bool compress = false;
404 
405 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
406 	if (cache_gen)
407 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
408 
409 	if (!options)
410 		goto out;
411 
412 	/*
413 	 * strsep changes the string, duplicate it because parse_options
414 	 * gets called twice
415 	 */
416 	options = kstrdup(options, GFP_NOFS);
417 	if (!options)
418 		return -ENOMEM;
419 
420 	orig = options;
421 
422 	while ((p = strsep(&options, ",")) != NULL) {
423 		int token;
424 		if (!*p)
425 			continue;
426 
427 		token = match_token(p, tokens, args);
428 		switch (token) {
429 		case Opt_degraded:
430 			btrfs_info(root->fs_info, "allowing degraded mounts");
431 			btrfs_set_opt(info->mount_opt, DEGRADED);
432 			break;
433 		case Opt_subvol:
434 		case Opt_subvolid:
435 		case Opt_subvolrootid:
436 		case Opt_device:
437 			/*
438 			 * These are parsed by btrfs_parse_early_options
439 			 * and can be happily ignored here.
440 			 */
441 			break;
442 		case Opt_nodatasum:
443 			btrfs_set_and_info(root, NODATASUM,
444 					   "setting nodatasum");
445 			break;
446 		case Opt_datasum:
447 			if (btrfs_test_opt(root, NODATASUM)) {
448 				if (btrfs_test_opt(root, NODATACOW))
449 					btrfs_info(root->fs_info, "setting datasum, datacow enabled");
450 				else
451 					btrfs_info(root->fs_info, "setting datasum");
452 			}
453 			btrfs_clear_opt(info->mount_opt, NODATACOW);
454 			btrfs_clear_opt(info->mount_opt, NODATASUM);
455 			break;
456 		case Opt_nodatacow:
457 			if (!btrfs_test_opt(root, NODATACOW)) {
458 				if (!btrfs_test_opt(root, COMPRESS) ||
459 				    !btrfs_test_opt(root, FORCE_COMPRESS)) {
460 					btrfs_info(root->fs_info,
461 						   "setting nodatacow, compression disabled");
462 				} else {
463 					btrfs_info(root->fs_info, "setting nodatacow");
464 				}
465 			}
466 			btrfs_clear_opt(info->mount_opt, COMPRESS);
467 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
468 			btrfs_set_opt(info->mount_opt, NODATACOW);
469 			btrfs_set_opt(info->mount_opt, NODATASUM);
470 			break;
471 		case Opt_datacow:
472 			btrfs_clear_and_info(root, NODATACOW,
473 					     "setting datacow");
474 			break;
475 		case Opt_compress_force:
476 		case Opt_compress_force_type:
477 			compress_force = true;
478 			/* Fallthrough */
479 		case Opt_compress:
480 		case Opt_compress_type:
481 			compress = true;
482 			if (token == Opt_compress ||
483 			    token == Opt_compress_force ||
484 			    strcmp(args[0].from, "zlib") == 0) {
485 				compress_type = "zlib";
486 				info->compress_type = BTRFS_COMPRESS_ZLIB;
487 				btrfs_set_opt(info->mount_opt, COMPRESS);
488 				btrfs_clear_opt(info->mount_opt, NODATACOW);
489 				btrfs_clear_opt(info->mount_opt, NODATASUM);
490 			} else if (strcmp(args[0].from, "lzo") == 0) {
491 				compress_type = "lzo";
492 				info->compress_type = BTRFS_COMPRESS_LZO;
493 				btrfs_set_opt(info->mount_opt, COMPRESS);
494 				btrfs_clear_opt(info->mount_opt, NODATACOW);
495 				btrfs_clear_opt(info->mount_opt, NODATASUM);
496 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
497 			} else if (strncmp(args[0].from, "no", 2) == 0) {
498 				compress_type = "no";
499 				btrfs_clear_opt(info->mount_opt, COMPRESS);
500 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
501 				compress_force = false;
502 			} else {
503 				ret = -EINVAL;
504 				goto out;
505 			}
506 
507 			if (compress_force) {
508 				btrfs_set_and_info(root, FORCE_COMPRESS,
509 						   "force %s compression",
510 						   compress_type);
511 			} else if (compress) {
512 				if (!btrfs_test_opt(root, COMPRESS))
513 					btrfs_info(root->fs_info,
514 						   "btrfs: use %s compression",
515 						   compress_type);
516 			}
517 			break;
518 		case Opt_ssd:
519 			btrfs_set_and_info(root, SSD,
520 					   "use ssd allocation scheme");
521 			break;
522 		case Opt_ssd_spread:
523 			btrfs_set_and_info(root, SSD_SPREAD,
524 					   "use spread ssd allocation scheme");
525 			btrfs_set_opt(info->mount_opt, SSD);
526 			break;
527 		case Opt_nossd:
528 			btrfs_set_and_info(root, NOSSD,
529 					     "not using ssd allocation scheme");
530 			btrfs_clear_opt(info->mount_opt, SSD);
531 			break;
532 		case Opt_barrier:
533 			btrfs_clear_and_info(root, NOBARRIER,
534 					     "turning on barriers");
535 			break;
536 		case Opt_nobarrier:
537 			btrfs_set_and_info(root, NOBARRIER,
538 					   "turning off barriers");
539 			break;
540 		case Opt_thread_pool:
541 			ret = match_int(&args[0], &intarg);
542 			if (ret) {
543 				goto out;
544 			} else if (intarg > 0) {
545 				info->thread_pool_size = intarg;
546 			} else {
547 				ret = -EINVAL;
548 				goto out;
549 			}
550 			break;
551 		case Opt_max_inline:
552 			num = match_strdup(&args[0]);
553 			if (num) {
554 				info->max_inline = memparse(num, NULL);
555 				kfree(num);
556 
557 				if (info->max_inline) {
558 					info->max_inline = min_t(u64,
559 						info->max_inline,
560 						root->sectorsize);
561 				}
562 				btrfs_info(root->fs_info, "max_inline at %llu",
563 					info->max_inline);
564 			} else {
565 				ret = -ENOMEM;
566 				goto out;
567 			}
568 			break;
569 		case Opt_alloc_start:
570 			num = match_strdup(&args[0]);
571 			if (num) {
572 				mutex_lock(&info->chunk_mutex);
573 				info->alloc_start = memparse(num, NULL);
574 				mutex_unlock(&info->chunk_mutex);
575 				kfree(num);
576 				btrfs_info(root->fs_info, "allocations start at %llu",
577 					info->alloc_start);
578 			} else {
579 				ret = -ENOMEM;
580 				goto out;
581 			}
582 			break;
583 		case Opt_acl:
584 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
585 			root->fs_info->sb->s_flags |= MS_POSIXACL;
586 			break;
587 #else
588 			btrfs_err(root->fs_info,
589 				"support for ACL not compiled in!");
590 			ret = -EINVAL;
591 			goto out;
592 #endif
593 		case Opt_noacl:
594 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
595 			break;
596 		case Opt_notreelog:
597 			btrfs_set_and_info(root, NOTREELOG,
598 					   "disabling tree log");
599 			break;
600 		case Opt_treelog:
601 			btrfs_clear_and_info(root, NOTREELOG,
602 					     "enabling tree log");
603 			break;
604 		case Opt_flushoncommit:
605 			btrfs_set_and_info(root, FLUSHONCOMMIT,
606 					   "turning on flush-on-commit");
607 			break;
608 		case Opt_noflushoncommit:
609 			btrfs_clear_and_info(root, FLUSHONCOMMIT,
610 					     "turning off flush-on-commit");
611 			break;
612 		case Opt_ratio:
613 			ret = match_int(&args[0], &intarg);
614 			if (ret) {
615 				goto out;
616 			} else if (intarg >= 0) {
617 				info->metadata_ratio = intarg;
618 				btrfs_info(root->fs_info, "metadata ratio %d",
619 				       info->metadata_ratio);
620 			} else {
621 				ret = -EINVAL;
622 				goto out;
623 			}
624 			break;
625 		case Opt_discard:
626 			btrfs_set_and_info(root, DISCARD,
627 					   "turning on discard");
628 			break;
629 		case Opt_nodiscard:
630 			btrfs_clear_and_info(root, DISCARD,
631 					     "turning off discard");
632 			break;
633 		case Opt_space_cache:
634 			btrfs_set_and_info(root, SPACE_CACHE,
635 					   "enabling disk space caching");
636 			break;
637 		case Opt_rescan_uuid_tree:
638 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
639 			break;
640 		case Opt_no_space_cache:
641 			btrfs_clear_and_info(root, SPACE_CACHE,
642 					     "disabling disk space caching");
643 			break;
644 		case Opt_inode_cache:
645 			btrfs_set_and_info(root, CHANGE_INODE_CACHE,
646 					   "enabling inode map caching");
647 			break;
648 		case Opt_noinode_cache:
649 			btrfs_clear_and_info(root, CHANGE_INODE_CACHE,
650 					     "disabling inode map caching");
651 			break;
652 		case Opt_clear_cache:
653 			btrfs_set_and_info(root, CLEAR_CACHE,
654 					   "force clearing of disk cache");
655 			break;
656 		case Opt_user_subvol_rm_allowed:
657 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
658 			break;
659 		case Opt_enospc_debug:
660 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
661 			break;
662 		case Opt_noenospc_debug:
663 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
664 			break;
665 		case Opt_defrag:
666 			btrfs_set_and_info(root, AUTO_DEFRAG,
667 					   "enabling auto defrag");
668 			break;
669 		case Opt_nodefrag:
670 			btrfs_clear_and_info(root, AUTO_DEFRAG,
671 					     "disabling auto defrag");
672 			break;
673 		case Opt_recovery:
674 			btrfs_info(root->fs_info, "enabling auto recovery");
675 			btrfs_set_opt(info->mount_opt, RECOVERY);
676 			break;
677 		case Opt_skip_balance:
678 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
679 			break;
680 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
681 		case Opt_check_integrity_including_extent_data:
682 			btrfs_info(root->fs_info,
683 				   "enabling check integrity including extent data");
684 			btrfs_set_opt(info->mount_opt,
685 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
686 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
687 			break;
688 		case Opt_check_integrity:
689 			btrfs_info(root->fs_info, "enabling check integrity");
690 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
691 			break;
692 		case Opt_check_integrity_print_mask:
693 			ret = match_int(&args[0], &intarg);
694 			if (ret) {
695 				goto out;
696 			} else if (intarg >= 0) {
697 				info->check_integrity_print_mask = intarg;
698 				btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
699 				       info->check_integrity_print_mask);
700 			} else {
701 				ret = -EINVAL;
702 				goto out;
703 			}
704 			break;
705 #else
706 		case Opt_check_integrity_including_extent_data:
707 		case Opt_check_integrity:
708 		case Opt_check_integrity_print_mask:
709 			btrfs_err(root->fs_info,
710 				"support for check_integrity* not compiled in!");
711 			ret = -EINVAL;
712 			goto out;
713 #endif
714 		case Opt_fatal_errors:
715 			if (strcmp(args[0].from, "panic") == 0)
716 				btrfs_set_opt(info->mount_opt,
717 					      PANIC_ON_FATAL_ERROR);
718 			else if (strcmp(args[0].from, "bug") == 0)
719 				btrfs_clear_opt(info->mount_opt,
720 					      PANIC_ON_FATAL_ERROR);
721 			else {
722 				ret = -EINVAL;
723 				goto out;
724 			}
725 			break;
726 		case Opt_commit_interval:
727 			intarg = 0;
728 			ret = match_int(&args[0], &intarg);
729 			if (ret < 0) {
730 				btrfs_err(root->fs_info, "invalid commit interval");
731 				ret = -EINVAL;
732 				goto out;
733 			}
734 			if (intarg > 0) {
735 				if (intarg > 300) {
736 					btrfs_warn(root->fs_info, "excessive commit interval %d",
737 							intarg);
738 				}
739 				info->commit_interval = intarg;
740 			} else {
741 				btrfs_info(root->fs_info, "using default commit interval %ds",
742 				    BTRFS_DEFAULT_COMMIT_INTERVAL);
743 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
744 			}
745 			break;
746 		case Opt_err:
747 			btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
748 			ret = -EINVAL;
749 			goto out;
750 		default:
751 			break;
752 		}
753 	}
754 out:
755 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
756 		btrfs_info(root->fs_info, "disk space caching is enabled");
757 	kfree(orig);
758 	return ret;
759 }
760 
761 /*
762  * Parse mount options that are required early in the mount process.
763  *
764  * All other options will be parsed on much later in the mount process and
765  * only when we need to allocate a new super block.
766  */
767 static int btrfs_parse_early_options(const char *options, fmode_t flags,
768 		void *holder, char **subvol_name, u64 *subvol_objectid,
769 		struct btrfs_fs_devices **fs_devices)
770 {
771 	substring_t args[MAX_OPT_ARGS];
772 	char *device_name, *opts, *orig, *p;
773 	char *num = NULL;
774 	int error = 0;
775 
776 	if (!options)
777 		return 0;
778 
779 	/*
780 	 * strsep changes the string, duplicate it because parse_options
781 	 * gets called twice
782 	 */
783 	opts = kstrdup(options, GFP_KERNEL);
784 	if (!opts)
785 		return -ENOMEM;
786 	orig = opts;
787 
788 	while ((p = strsep(&opts, ",")) != NULL) {
789 		int token;
790 		if (!*p)
791 			continue;
792 
793 		token = match_token(p, tokens, args);
794 		switch (token) {
795 		case Opt_subvol:
796 			kfree(*subvol_name);
797 			*subvol_name = match_strdup(&args[0]);
798 			if (!*subvol_name) {
799 				error = -ENOMEM;
800 				goto out;
801 			}
802 			break;
803 		case Opt_subvolid:
804 			num = match_strdup(&args[0]);
805 			if (num) {
806 				*subvol_objectid = memparse(num, NULL);
807 				kfree(num);
808 				/* we want the original fs_tree */
809 				if (!*subvol_objectid)
810 					*subvol_objectid =
811 						BTRFS_FS_TREE_OBJECTID;
812 			} else {
813 				error = -EINVAL;
814 				goto out;
815 			}
816 			break;
817 		case Opt_subvolrootid:
818 			printk(KERN_WARNING
819 				"BTRFS: 'subvolrootid' mount option is deprecated and has "
820 				"no effect\n");
821 			break;
822 		case Opt_device:
823 			device_name = match_strdup(&args[0]);
824 			if (!device_name) {
825 				error = -ENOMEM;
826 				goto out;
827 			}
828 			error = btrfs_scan_one_device(device_name,
829 					flags, holder, fs_devices);
830 			kfree(device_name);
831 			if (error)
832 				goto out;
833 			break;
834 		default:
835 			break;
836 		}
837 	}
838 
839 out:
840 	kfree(orig);
841 	return error;
842 }
843 
844 static struct dentry *get_default_root(struct super_block *sb,
845 				       u64 subvol_objectid)
846 {
847 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
848 	struct btrfs_root *root = fs_info->tree_root;
849 	struct btrfs_root *new_root;
850 	struct btrfs_dir_item *di;
851 	struct btrfs_path *path;
852 	struct btrfs_key location;
853 	struct inode *inode;
854 	struct dentry *dentry;
855 	u64 dir_id;
856 	int new = 0;
857 
858 	/*
859 	 * We have a specific subvol we want to mount, just setup location and
860 	 * go look up the root.
861 	 */
862 	if (subvol_objectid) {
863 		location.objectid = subvol_objectid;
864 		location.type = BTRFS_ROOT_ITEM_KEY;
865 		location.offset = (u64)-1;
866 		goto find_root;
867 	}
868 
869 	path = btrfs_alloc_path();
870 	if (!path)
871 		return ERR_PTR(-ENOMEM);
872 	path->leave_spinning = 1;
873 
874 	/*
875 	 * Find the "default" dir item which points to the root item that we
876 	 * will mount by default if we haven't been given a specific subvolume
877 	 * to mount.
878 	 */
879 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
880 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
881 	if (IS_ERR(di)) {
882 		btrfs_free_path(path);
883 		return ERR_CAST(di);
884 	}
885 	if (!di) {
886 		/*
887 		 * Ok the default dir item isn't there.  This is weird since
888 		 * it's always been there, but don't freak out, just try and
889 		 * mount to root most subvolume.
890 		 */
891 		btrfs_free_path(path);
892 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
893 		new_root = fs_info->fs_root;
894 		goto setup_root;
895 	}
896 
897 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
898 	btrfs_free_path(path);
899 
900 find_root:
901 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
902 	if (IS_ERR(new_root))
903 		return ERR_CAST(new_root);
904 
905 	dir_id = btrfs_root_dirid(&new_root->root_item);
906 setup_root:
907 	location.objectid = dir_id;
908 	location.type = BTRFS_INODE_ITEM_KEY;
909 	location.offset = 0;
910 
911 	inode = btrfs_iget(sb, &location, new_root, &new);
912 	if (IS_ERR(inode))
913 		return ERR_CAST(inode);
914 
915 	/*
916 	 * If we're just mounting the root most subvol put the inode and return
917 	 * a reference to the dentry.  We will have already gotten a reference
918 	 * to the inode in btrfs_fill_super so we're good to go.
919 	 */
920 	if (!new && sb->s_root->d_inode == inode) {
921 		iput(inode);
922 		return dget(sb->s_root);
923 	}
924 
925 	dentry = d_obtain_alias(inode);
926 	if (!IS_ERR(dentry)) {
927 		spin_lock(&dentry->d_lock);
928 		dentry->d_flags &= ~DCACHE_DISCONNECTED;
929 		spin_unlock(&dentry->d_lock);
930 	}
931 	return dentry;
932 }
933 
934 static int btrfs_fill_super(struct super_block *sb,
935 			    struct btrfs_fs_devices *fs_devices,
936 			    void *data, int silent)
937 {
938 	struct inode *inode;
939 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
940 	struct btrfs_key key;
941 	int err;
942 
943 	sb->s_maxbytes = MAX_LFS_FILESIZE;
944 	sb->s_magic = BTRFS_SUPER_MAGIC;
945 	sb->s_op = &btrfs_super_ops;
946 	sb->s_d_op = &btrfs_dentry_operations;
947 	sb->s_export_op = &btrfs_export_ops;
948 	sb->s_xattr = btrfs_xattr_handlers;
949 	sb->s_time_gran = 1;
950 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
951 	sb->s_flags |= MS_POSIXACL;
952 #endif
953 	sb->s_flags |= MS_I_VERSION;
954 	err = open_ctree(sb, fs_devices, (char *)data);
955 	if (err) {
956 		printk(KERN_ERR "BTRFS: open_ctree failed\n");
957 		return err;
958 	}
959 
960 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
961 	key.type = BTRFS_INODE_ITEM_KEY;
962 	key.offset = 0;
963 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
964 	if (IS_ERR(inode)) {
965 		err = PTR_ERR(inode);
966 		goto fail_close;
967 	}
968 
969 	sb->s_root = d_make_root(inode);
970 	if (!sb->s_root) {
971 		err = -ENOMEM;
972 		goto fail_close;
973 	}
974 
975 	save_mount_options(sb, data);
976 	cleancache_init_fs(sb);
977 	sb->s_flags |= MS_ACTIVE;
978 	return 0;
979 
980 fail_close:
981 	close_ctree(fs_info->tree_root);
982 	return err;
983 }
984 
985 int btrfs_sync_fs(struct super_block *sb, int wait)
986 {
987 	struct btrfs_trans_handle *trans;
988 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
989 	struct btrfs_root *root = fs_info->tree_root;
990 
991 	trace_btrfs_sync_fs(wait);
992 
993 	if (!wait) {
994 		filemap_flush(fs_info->btree_inode->i_mapping);
995 		return 0;
996 	}
997 
998 	btrfs_wait_ordered_roots(fs_info, -1);
999 
1000 	trans = btrfs_attach_transaction_barrier(root);
1001 	if (IS_ERR(trans)) {
1002 		/* no transaction, don't bother */
1003 		if (PTR_ERR(trans) == -ENOENT)
1004 			return 0;
1005 		return PTR_ERR(trans);
1006 	}
1007 	return btrfs_commit_transaction(trans, root);
1008 }
1009 
1010 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1011 {
1012 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1013 	struct btrfs_root *root = info->tree_root;
1014 	char *compress_type;
1015 
1016 	if (btrfs_test_opt(root, DEGRADED))
1017 		seq_puts(seq, ",degraded");
1018 	if (btrfs_test_opt(root, NODATASUM))
1019 		seq_puts(seq, ",nodatasum");
1020 	if (btrfs_test_opt(root, NODATACOW))
1021 		seq_puts(seq, ",nodatacow");
1022 	if (btrfs_test_opt(root, NOBARRIER))
1023 		seq_puts(seq, ",nobarrier");
1024 	if (info->max_inline != 8192 * 1024)
1025 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1026 	if (info->alloc_start != 0)
1027 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1028 	if (info->thread_pool_size !=  min_t(unsigned long,
1029 					     num_online_cpus() + 2, 8))
1030 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1031 	if (btrfs_test_opt(root, COMPRESS)) {
1032 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1033 			compress_type = "zlib";
1034 		else
1035 			compress_type = "lzo";
1036 		if (btrfs_test_opt(root, FORCE_COMPRESS))
1037 			seq_printf(seq, ",compress-force=%s", compress_type);
1038 		else
1039 			seq_printf(seq, ",compress=%s", compress_type);
1040 	}
1041 	if (btrfs_test_opt(root, NOSSD))
1042 		seq_puts(seq, ",nossd");
1043 	if (btrfs_test_opt(root, SSD_SPREAD))
1044 		seq_puts(seq, ",ssd_spread");
1045 	else if (btrfs_test_opt(root, SSD))
1046 		seq_puts(seq, ",ssd");
1047 	if (btrfs_test_opt(root, NOTREELOG))
1048 		seq_puts(seq, ",notreelog");
1049 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
1050 		seq_puts(seq, ",flushoncommit");
1051 	if (btrfs_test_opt(root, DISCARD))
1052 		seq_puts(seq, ",discard");
1053 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1054 		seq_puts(seq, ",noacl");
1055 	if (btrfs_test_opt(root, SPACE_CACHE))
1056 		seq_puts(seq, ",space_cache");
1057 	else
1058 		seq_puts(seq, ",nospace_cache");
1059 	if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1060 		seq_puts(seq, ",rescan_uuid_tree");
1061 	if (btrfs_test_opt(root, CLEAR_CACHE))
1062 		seq_puts(seq, ",clear_cache");
1063 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1064 		seq_puts(seq, ",user_subvol_rm_allowed");
1065 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
1066 		seq_puts(seq, ",enospc_debug");
1067 	if (btrfs_test_opt(root, AUTO_DEFRAG))
1068 		seq_puts(seq, ",autodefrag");
1069 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
1070 		seq_puts(seq, ",inode_cache");
1071 	if (btrfs_test_opt(root, SKIP_BALANCE))
1072 		seq_puts(seq, ",skip_balance");
1073 	if (btrfs_test_opt(root, RECOVERY))
1074 		seq_puts(seq, ",recovery");
1075 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1076 	if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1077 		seq_puts(seq, ",check_int_data");
1078 	else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1079 		seq_puts(seq, ",check_int");
1080 	if (info->check_integrity_print_mask)
1081 		seq_printf(seq, ",check_int_print_mask=%d",
1082 				info->check_integrity_print_mask);
1083 #endif
1084 	if (info->metadata_ratio)
1085 		seq_printf(seq, ",metadata_ratio=%d",
1086 				info->metadata_ratio);
1087 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1088 		seq_puts(seq, ",fatal_errors=panic");
1089 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1090 		seq_printf(seq, ",commit=%d", info->commit_interval);
1091 	return 0;
1092 }
1093 
1094 static int btrfs_test_super(struct super_block *s, void *data)
1095 {
1096 	struct btrfs_fs_info *p = data;
1097 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1098 
1099 	return fs_info->fs_devices == p->fs_devices;
1100 }
1101 
1102 static int btrfs_set_super(struct super_block *s, void *data)
1103 {
1104 	int err = set_anon_super(s, data);
1105 	if (!err)
1106 		s->s_fs_info = data;
1107 	return err;
1108 }
1109 
1110 /*
1111  * subvolumes are identified by ino 256
1112  */
1113 static inline int is_subvolume_inode(struct inode *inode)
1114 {
1115 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1116 		return 1;
1117 	return 0;
1118 }
1119 
1120 /*
1121  * This will strip out the subvol=%s argument for an argument string and add
1122  * subvolid=0 to make sure we get the actual tree root for path walking to the
1123  * subvol we want.
1124  */
1125 static char *setup_root_args(char *args)
1126 {
1127 	unsigned len = strlen(args) + 2 + 1;
1128 	char *src, *dst, *buf;
1129 
1130 	/*
1131 	 * We need the same args as before, but with this substitution:
1132 	 * s!subvol=[^,]+!subvolid=0!
1133 	 *
1134 	 * Since the replacement string is up to 2 bytes longer than the
1135 	 * original, allocate strlen(args) + 2 + 1 bytes.
1136 	 */
1137 
1138 	src = strstr(args, "subvol=");
1139 	/* This shouldn't happen, but just in case.. */
1140 	if (!src)
1141 		return NULL;
1142 
1143 	buf = dst = kmalloc(len, GFP_NOFS);
1144 	if (!buf)
1145 		return NULL;
1146 
1147 	/*
1148 	 * If the subvol= arg is not at the start of the string,
1149 	 * copy whatever precedes it into buf.
1150 	 */
1151 	if (src != args) {
1152 		*src++ = '\0';
1153 		strcpy(buf, args);
1154 		dst += strlen(args);
1155 	}
1156 
1157 	strcpy(dst, "subvolid=0");
1158 	dst += strlen("subvolid=0");
1159 
1160 	/*
1161 	 * If there is a "," after the original subvol=... string,
1162 	 * copy that suffix into our buffer.  Otherwise, we're done.
1163 	 */
1164 	src = strchr(src, ',');
1165 	if (src)
1166 		strcpy(dst, src);
1167 
1168 	return buf;
1169 }
1170 
1171 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1172 				   const char *device_name, char *data)
1173 {
1174 	struct dentry *root;
1175 	struct vfsmount *mnt;
1176 	char *newargs;
1177 
1178 	newargs = setup_root_args(data);
1179 	if (!newargs)
1180 		return ERR_PTR(-ENOMEM);
1181 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1182 			     newargs);
1183 
1184 	if (PTR_RET(mnt) == -EBUSY) {
1185 		if (flags & MS_RDONLY) {
1186 			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name,
1187 					     newargs);
1188 		} else {
1189 			int r;
1190 			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name,
1191 					     newargs);
1192 			if (IS_ERR(mnt)) {
1193 				kfree(newargs);
1194 				return ERR_CAST(mnt);
1195 			}
1196 
1197 			r = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1198 			if (r < 0) {
1199 				/* FIXME: release vfsmount mnt ??*/
1200 				kfree(newargs);
1201 				return ERR_PTR(r);
1202 			}
1203 		}
1204 	}
1205 
1206 	kfree(newargs);
1207 
1208 	if (IS_ERR(mnt))
1209 		return ERR_CAST(mnt);
1210 
1211 	root = mount_subtree(mnt, subvol_name);
1212 
1213 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1214 		struct super_block *s = root->d_sb;
1215 		dput(root);
1216 		root = ERR_PTR(-EINVAL);
1217 		deactivate_locked_super(s);
1218 		printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1219 				subvol_name);
1220 	}
1221 
1222 	return root;
1223 }
1224 
1225 /*
1226  * Find a superblock for the given device / mount point.
1227  *
1228  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1229  *	  for multiple device setup.  Make sure to keep it in sync.
1230  */
1231 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1232 		const char *device_name, void *data)
1233 {
1234 	struct block_device *bdev = NULL;
1235 	struct super_block *s;
1236 	struct dentry *root;
1237 	struct btrfs_fs_devices *fs_devices = NULL;
1238 	struct btrfs_fs_info *fs_info = NULL;
1239 	fmode_t mode = FMODE_READ;
1240 	char *subvol_name = NULL;
1241 	u64 subvol_objectid = 0;
1242 	int error = 0;
1243 
1244 	if (!(flags & MS_RDONLY))
1245 		mode |= FMODE_WRITE;
1246 
1247 	error = btrfs_parse_early_options(data, mode, fs_type,
1248 					  &subvol_name, &subvol_objectid,
1249 					  &fs_devices);
1250 	if (error) {
1251 		kfree(subvol_name);
1252 		return ERR_PTR(error);
1253 	}
1254 
1255 	if (subvol_name) {
1256 		root = mount_subvol(subvol_name, flags, device_name, data);
1257 		kfree(subvol_name);
1258 		return root;
1259 	}
1260 
1261 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1262 	if (error)
1263 		return ERR_PTR(error);
1264 
1265 	/*
1266 	 * Setup a dummy root and fs_info for test/set super.  This is because
1267 	 * we don't actually fill this stuff out until open_ctree, but we need
1268 	 * it for searching for existing supers, so this lets us do that and
1269 	 * then open_ctree will properly initialize everything later.
1270 	 */
1271 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1272 	if (!fs_info)
1273 		return ERR_PTR(-ENOMEM);
1274 
1275 	fs_info->fs_devices = fs_devices;
1276 
1277 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1278 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1279 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1280 		error = -ENOMEM;
1281 		goto error_fs_info;
1282 	}
1283 
1284 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1285 	if (error)
1286 		goto error_fs_info;
1287 
1288 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1289 		error = -EACCES;
1290 		goto error_close_devices;
1291 	}
1292 
1293 	bdev = fs_devices->latest_bdev;
1294 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1295 		 fs_info);
1296 	if (IS_ERR(s)) {
1297 		error = PTR_ERR(s);
1298 		goto error_close_devices;
1299 	}
1300 
1301 	if (s->s_root) {
1302 		btrfs_close_devices(fs_devices);
1303 		free_fs_info(fs_info);
1304 		if ((flags ^ s->s_flags) & MS_RDONLY)
1305 			error = -EBUSY;
1306 	} else {
1307 		char b[BDEVNAME_SIZE];
1308 
1309 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1310 		btrfs_sb(s)->bdev_holder = fs_type;
1311 		error = btrfs_fill_super(s, fs_devices, data,
1312 					 flags & MS_SILENT ? 1 : 0);
1313 	}
1314 
1315 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1316 	if (IS_ERR(root))
1317 		deactivate_locked_super(s);
1318 
1319 	return root;
1320 
1321 error_close_devices:
1322 	btrfs_close_devices(fs_devices);
1323 error_fs_info:
1324 	free_fs_info(fs_info);
1325 	return ERR_PTR(error);
1326 }
1327 
1328 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1329 				     int new_pool_size, int old_pool_size)
1330 {
1331 	if (new_pool_size == old_pool_size)
1332 		return;
1333 
1334 	fs_info->thread_pool_size = new_pool_size;
1335 
1336 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1337 	       old_pool_size, new_pool_size);
1338 
1339 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1340 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1341 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1342 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1343 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1344 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1345 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1346 				new_pool_size);
1347 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1348 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1349 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1350 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1351 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1352 				new_pool_size);
1353 }
1354 
1355 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1356 {
1357 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1358 }
1359 
1360 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1361 				       unsigned long old_opts, int flags)
1362 {
1363 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1364 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1365 	     (flags & MS_RDONLY))) {
1366 		/* wait for any defraggers to finish */
1367 		wait_event(fs_info->transaction_wait,
1368 			   (atomic_read(&fs_info->defrag_running) == 0));
1369 		if (flags & MS_RDONLY)
1370 			sync_filesystem(fs_info->sb);
1371 	}
1372 }
1373 
1374 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1375 					 unsigned long old_opts)
1376 {
1377 	/*
1378 	 * We need cleanup all defragable inodes if the autodefragment is
1379 	 * close or the fs is R/O.
1380 	 */
1381 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1382 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1383 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1384 		btrfs_cleanup_defrag_inodes(fs_info);
1385 	}
1386 
1387 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1388 }
1389 
1390 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1391 {
1392 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1393 	struct btrfs_root *root = fs_info->tree_root;
1394 	unsigned old_flags = sb->s_flags;
1395 	unsigned long old_opts = fs_info->mount_opt;
1396 	unsigned long old_compress_type = fs_info->compress_type;
1397 	u64 old_max_inline = fs_info->max_inline;
1398 	u64 old_alloc_start = fs_info->alloc_start;
1399 	int old_thread_pool_size = fs_info->thread_pool_size;
1400 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1401 	int ret;
1402 
1403 	sync_filesystem(sb);
1404 	btrfs_remount_prepare(fs_info);
1405 
1406 	ret = btrfs_parse_options(root, data);
1407 	if (ret) {
1408 		ret = -EINVAL;
1409 		goto restore;
1410 	}
1411 
1412 	btrfs_remount_begin(fs_info, old_opts, *flags);
1413 	btrfs_resize_thread_pool(fs_info,
1414 		fs_info->thread_pool_size, old_thread_pool_size);
1415 
1416 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1417 		goto out;
1418 
1419 	if (*flags & MS_RDONLY) {
1420 		/*
1421 		 * this also happens on 'umount -rf' or on shutdown, when
1422 		 * the filesystem is busy.
1423 		 */
1424 		cancel_work_sync(&fs_info->async_reclaim_work);
1425 
1426 		/* wait for the uuid_scan task to finish */
1427 		down(&fs_info->uuid_tree_rescan_sem);
1428 		/* avoid complains from lockdep et al. */
1429 		up(&fs_info->uuid_tree_rescan_sem);
1430 
1431 		sb->s_flags |= MS_RDONLY;
1432 
1433 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1434 		btrfs_scrub_cancel(fs_info);
1435 		btrfs_pause_balance(fs_info);
1436 
1437 		ret = btrfs_commit_super(root);
1438 		if (ret)
1439 			goto restore;
1440 	} else {
1441 		if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1442 			btrfs_err(fs_info,
1443 				"Remounting read-write after error is not allowed");
1444 			ret = -EINVAL;
1445 			goto restore;
1446 		}
1447 		if (fs_info->fs_devices->rw_devices == 0) {
1448 			ret = -EACCES;
1449 			goto restore;
1450 		}
1451 
1452 		if (fs_info->fs_devices->missing_devices >
1453 		     fs_info->num_tolerated_disk_barrier_failures &&
1454 		    !(*flags & MS_RDONLY)) {
1455 			btrfs_warn(fs_info,
1456 				"too many missing devices, writeable remount is not allowed");
1457 			ret = -EACCES;
1458 			goto restore;
1459 		}
1460 
1461 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1462 			ret = -EINVAL;
1463 			goto restore;
1464 		}
1465 
1466 		ret = btrfs_cleanup_fs_roots(fs_info);
1467 		if (ret)
1468 			goto restore;
1469 
1470 		/* recover relocation */
1471 		mutex_lock(&fs_info->cleaner_mutex);
1472 		ret = btrfs_recover_relocation(root);
1473 		mutex_unlock(&fs_info->cleaner_mutex);
1474 		if (ret)
1475 			goto restore;
1476 
1477 		ret = btrfs_resume_balance_async(fs_info);
1478 		if (ret)
1479 			goto restore;
1480 
1481 		ret = btrfs_resume_dev_replace_async(fs_info);
1482 		if (ret) {
1483 			btrfs_warn(fs_info, "failed to resume dev_replace");
1484 			goto restore;
1485 		}
1486 
1487 		if (!fs_info->uuid_root) {
1488 			btrfs_info(fs_info, "creating UUID tree");
1489 			ret = btrfs_create_uuid_tree(fs_info);
1490 			if (ret) {
1491 				btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1492 				goto restore;
1493 			}
1494 		}
1495 		sb->s_flags &= ~MS_RDONLY;
1496 	}
1497 out:
1498 	wake_up_process(fs_info->transaction_kthread);
1499 	btrfs_remount_cleanup(fs_info, old_opts);
1500 	return 0;
1501 
1502 restore:
1503 	/* We've hit an error - don't reset MS_RDONLY */
1504 	if (sb->s_flags & MS_RDONLY)
1505 		old_flags |= MS_RDONLY;
1506 	sb->s_flags = old_flags;
1507 	fs_info->mount_opt = old_opts;
1508 	fs_info->compress_type = old_compress_type;
1509 	fs_info->max_inline = old_max_inline;
1510 	mutex_lock(&fs_info->chunk_mutex);
1511 	fs_info->alloc_start = old_alloc_start;
1512 	mutex_unlock(&fs_info->chunk_mutex);
1513 	btrfs_resize_thread_pool(fs_info,
1514 		old_thread_pool_size, fs_info->thread_pool_size);
1515 	fs_info->metadata_ratio = old_metadata_ratio;
1516 	btrfs_remount_cleanup(fs_info, old_opts);
1517 	return ret;
1518 }
1519 
1520 /* Used to sort the devices by max_avail(descending sort) */
1521 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1522 				       const void *dev_info2)
1523 {
1524 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1525 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1526 		return -1;
1527 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1528 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1529 		return 1;
1530 	else
1531 	return 0;
1532 }
1533 
1534 /*
1535  * sort the devices by max_avail, in which max free extent size of each device
1536  * is stored.(Descending Sort)
1537  */
1538 static inline void btrfs_descending_sort_devices(
1539 					struct btrfs_device_info *devices,
1540 					size_t nr_devices)
1541 {
1542 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1543 	     btrfs_cmp_device_free_bytes, NULL);
1544 }
1545 
1546 /*
1547  * The helper to calc the free space on the devices that can be used to store
1548  * file data.
1549  */
1550 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1551 {
1552 	struct btrfs_fs_info *fs_info = root->fs_info;
1553 	struct btrfs_device_info *devices_info;
1554 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1555 	struct btrfs_device *device;
1556 	u64 skip_space;
1557 	u64 type;
1558 	u64 avail_space;
1559 	u64 used_space;
1560 	u64 min_stripe_size;
1561 	int min_stripes = 1, num_stripes = 1;
1562 	int i = 0, nr_devices;
1563 	int ret;
1564 
1565 	nr_devices = fs_info->fs_devices->open_devices;
1566 	BUG_ON(!nr_devices);
1567 
1568 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1569 			       GFP_NOFS);
1570 	if (!devices_info)
1571 		return -ENOMEM;
1572 
1573 	/* calc min stripe number for data space alloction */
1574 	type = btrfs_get_alloc_profile(root, 1);
1575 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1576 		min_stripes = 2;
1577 		num_stripes = nr_devices;
1578 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1579 		min_stripes = 2;
1580 		num_stripes = 2;
1581 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1582 		min_stripes = 4;
1583 		num_stripes = 4;
1584 	}
1585 
1586 	if (type & BTRFS_BLOCK_GROUP_DUP)
1587 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1588 	else
1589 		min_stripe_size = BTRFS_STRIPE_LEN;
1590 
1591 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1592 		if (!device->in_fs_metadata || !device->bdev ||
1593 		    device->is_tgtdev_for_dev_replace)
1594 			continue;
1595 
1596 		avail_space = device->total_bytes - device->bytes_used;
1597 
1598 		/* align with stripe_len */
1599 		do_div(avail_space, BTRFS_STRIPE_LEN);
1600 		avail_space *= BTRFS_STRIPE_LEN;
1601 
1602 		/*
1603 		 * In order to avoid overwritting the superblock on the drive,
1604 		 * btrfs starts at an offset of at least 1MB when doing chunk
1605 		 * allocation.
1606 		 */
1607 		skip_space = 1024 * 1024;
1608 
1609 		/* user can set the offset in fs_info->alloc_start. */
1610 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1611 		    device->total_bytes)
1612 			skip_space = max(fs_info->alloc_start, skip_space);
1613 
1614 		/*
1615 		 * btrfs can not use the free space in [0, skip_space - 1],
1616 		 * we must subtract it from the total. In order to implement
1617 		 * it, we account the used space in this range first.
1618 		 */
1619 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1620 						     &used_space);
1621 		if (ret) {
1622 			kfree(devices_info);
1623 			return ret;
1624 		}
1625 
1626 		/* calc the free space in [0, skip_space - 1] */
1627 		skip_space -= used_space;
1628 
1629 		/*
1630 		 * we can use the free space in [0, skip_space - 1], subtract
1631 		 * it from the total.
1632 		 */
1633 		if (avail_space && avail_space >= skip_space)
1634 			avail_space -= skip_space;
1635 		else
1636 			avail_space = 0;
1637 
1638 		if (avail_space < min_stripe_size)
1639 			continue;
1640 
1641 		devices_info[i].dev = device;
1642 		devices_info[i].max_avail = avail_space;
1643 
1644 		i++;
1645 	}
1646 
1647 	nr_devices = i;
1648 
1649 	btrfs_descending_sort_devices(devices_info, nr_devices);
1650 
1651 	i = nr_devices - 1;
1652 	avail_space = 0;
1653 	while (nr_devices >= min_stripes) {
1654 		if (num_stripes > nr_devices)
1655 			num_stripes = nr_devices;
1656 
1657 		if (devices_info[i].max_avail >= min_stripe_size) {
1658 			int j;
1659 			u64 alloc_size;
1660 
1661 			avail_space += devices_info[i].max_avail * num_stripes;
1662 			alloc_size = devices_info[i].max_avail;
1663 			for (j = i + 1 - num_stripes; j <= i; j++)
1664 				devices_info[j].max_avail -= alloc_size;
1665 		}
1666 		i--;
1667 		nr_devices--;
1668 	}
1669 
1670 	kfree(devices_info);
1671 	*free_bytes = avail_space;
1672 	return 0;
1673 }
1674 
1675 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1676 {
1677 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1678 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1679 	struct list_head *head = &fs_info->space_info;
1680 	struct btrfs_space_info *found;
1681 	u64 total_used = 0;
1682 	u64 total_free_data = 0;
1683 	int bits = dentry->d_sb->s_blocksize_bits;
1684 	__be32 *fsid = (__be32 *)fs_info->fsid;
1685 	int ret;
1686 
1687 	/* holding chunk_muext to avoid allocating new chunks */
1688 	mutex_lock(&fs_info->chunk_mutex);
1689 	rcu_read_lock();
1690 	list_for_each_entry_rcu(found, head, list) {
1691 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1692 			total_free_data += found->disk_total - found->disk_used;
1693 			total_free_data -=
1694 				btrfs_account_ro_block_groups_free_space(found);
1695 		}
1696 
1697 		total_used += found->disk_used;
1698 	}
1699 	rcu_read_unlock();
1700 
1701 	buf->f_namelen = BTRFS_NAME_LEN;
1702 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1703 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1704 	buf->f_bsize = dentry->d_sb->s_blocksize;
1705 	buf->f_type = BTRFS_SUPER_MAGIC;
1706 	buf->f_bavail = total_free_data;
1707 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1708 	if (ret) {
1709 		mutex_unlock(&fs_info->chunk_mutex);
1710 		return ret;
1711 	}
1712 	buf->f_bavail += total_free_data;
1713 	buf->f_bavail = buf->f_bavail >> bits;
1714 	mutex_unlock(&fs_info->chunk_mutex);
1715 
1716 	/* We treat it as constant endianness (it doesn't matter _which_)
1717 	   because we want the fsid to come out the same whether mounted
1718 	   on a big-endian or little-endian host */
1719 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1720 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1721 	/* Mask in the root object ID too, to disambiguate subvols */
1722 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1723 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1724 
1725 	return 0;
1726 }
1727 
1728 static void btrfs_kill_super(struct super_block *sb)
1729 {
1730 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1731 	kill_anon_super(sb);
1732 	free_fs_info(fs_info);
1733 }
1734 
1735 static struct file_system_type btrfs_fs_type = {
1736 	.owner		= THIS_MODULE,
1737 	.name		= "btrfs",
1738 	.mount		= btrfs_mount,
1739 	.kill_sb	= btrfs_kill_super,
1740 	.fs_flags	= FS_REQUIRES_DEV,
1741 };
1742 MODULE_ALIAS_FS("btrfs");
1743 
1744 /*
1745  * used by btrfsctl to scan devices when no FS is mounted
1746  */
1747 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1748 				unsigned long arg)
1749 {
1750 	struct btrfs_ioctl_vol_args *vol;
1751 	struct btrfs_fs_devices *fs_devices;
1752 	int ret = -ENOTTY;
1753 
1754 	if (!capable(CAP_SYS_ADMIN))
1755 		return -EPERM;
1756 
1757 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1758 	if (IS_ERR(vol))
1759 		return PTR_ERR(vol);
1760 
1761 	switch (cmd) {
1762 	case BTRFS_IOC_SCAN_DEV:
1763 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1764 					    &btrfs_fs_type, &fs_devices);
1765 		break;
1766 	case BTRFS_IOC_DEVICES_READY:
1767 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1768 					    &btrfs_fs_type, &fs_devices);
1769 		if (ret)
1770 			break;
1771 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
1772 		break;
1773 	}
1774 
1775 	kfree(vol);
1776 	return ret;
1777 }
1778 
1779 static int btrfs_freeze(struct super_block *sb)
1780 {
1781 	struct btrfs_trans_handle *trans;
1782 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1783 
1784 	trans = btrfs_attach_transaction_barrier(root);
1785 	if (IS_ERR(trans)) {
1786 		/* no transaction, don't bother */
1787 		if (PTR_ERR(trans) == -ENOENT)
1788 			return 0;
1789 		return PTR_ERR(trans);
1790 	}
1791 	return btrfs_commit_transaction(trans, root);
1792 }
1793 
1794 static int btrfs_unfreeze(struct super_block *sb)
1795 {
1796 	return 0;
1797 }
1798 
1799 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1800 {
1801 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1802 	struct btrfs_fs_devices *cur_devices;
1803 	struct btrfs_device *dev, *first_dev = NULL;
1804 	struct list_head *head;
1805 	struct rcu_string *name;
1806 
1807 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1808 	cur_devices = fs_info->fs_devices;
1809 	while (cur_devices) {
1810 		head = &cur_devices->devices;
1811 		list_for_each_entry(dev, head, dev_list) {
1812 			if (dev->missing)
1813 				continue;
1814 			if (!dev->name)
1815 				continue;
1816 			if (!first_dev || dev->devid < first_dev->devid)
1817 				first_dev = dev;
1818 		}
1819 		cur_devices = cur_devices->seed;
1820 	}
1821 
1822 	if (first_dev) {
1823 		rcu_read_lock();
1824 		name = rcu_dereference(first_dev->name);
1825 		seq_escape(m, name->str, " \t\n\\");
1826 		rcu_read_unlock();
1827 	} else {
1828 		WARN_ON(1);
1829 	}
1830 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1831 	return 0;
1832 }
1833 
1834 static const struct super_operations btrfs_super_ops = {
1835 	.drop_inode	= btrfs_drop_inode,
1836 	.evict_inode	= btrfs_evict_inode,
1837 	.put_super	= btrfs_put_super,
1838 	.sync_fs	= btrfs_sync_fs,
1839 	.show_options	= btrfs_show_options,
1840 	.show_devname	= btrfs_show_devname,
1841 	.write_inode	= btrfs_write_inode,
1842 	.alloc_inode	= btrfs_alloc_inode,
1843 	.destroy_inode	= btrfs_destroy_inode,
1844 	.statfs		= btrfs_statfs,
1845 	.remount_fs	= btrfs_remount,
1846 	.freeze_fs	= btrfs_freeze,
1847 	.unfreeze_fs	= btrfs_unfreeze,
1848 };
1849 
1850 static const struct file_operations btrfs_ctl_fops = {
1851 	.unlocked_ioctl	 = btrfs_control_ioctl,
1852 	.compat_ioctl = btrfs_control_ioctl,
1853 	.owner	 = THIS_MODULE,
1854 	.llseek = noop_llseek,
1855 };
1856 
1857 static struct miscdevice btrfs_misc = {
1858 	.minor		= BTRFS_MINOR,
1859 	.name		= "btrfs-control",
1860 	.fops		= &btrfs_ctl_fops
1861 };
1862 
1863 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1864 MODULE_ALIAS("devname:btrfs-control");
1865 
1866 static int btrfs_interface_init(void)
1867 {
1868 	return misc_register(&btrfs_misc);
1869 }
1870 
1871 static void btrfs_interface_exit(void)
1872 {
1873 	if (misc_deregister(&btrfs_misc) < 0)
1874 		printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
1875 }
1876 
1877 static void btrfs_print_info(void)
1878 {
1879 	printk(KERN_INFO "Btrfs loaded"
1880 #ifdef CONFIG_BTRFS_DEBUG
1881 			", debug=on"
1882 #endif
1883 #ifdef CONFIG_BTRFS_ASSERT
1884 			", assert=on"
1885 #endif
1886 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1887 			", integrity-checker=on"
1888 #endif
1889 			"\n");
1890 }
1891 
1892 static int btrfs_run_sanity_tests(void)
1893 {
1894 	int ret;
1895 
1896 	ret = btrfs_init_test_fs();
1897 	if (ret)
1898 		return ret;
1899 
1900 	ret = btrfs_test_free_space_cache();
1901 	if (ret)
1902 		goto out;
1903 	ret = btrfs_test_extent_buffer_operations();
1904 	if (ret)
1905 		goto out;
1906 	ret = btrfs_test_extent_io();
1907 	if (ret)
1908 		goto out;
1909 	ret = btrfs_test_inodes();
1910 	if (ret)
1911 		goto out;
1912 	ret = btrfs_test_qgroups();
1913 out:
1914 	btrfs_destroy_test_fs();
1915 	return ret;
1916 }
1917 
1918 static int __init init_btrfs_fs(void)
1919 {
1920 	int err;
1921 
1922 	err = btrfs_hash_init();
1923 	if (err)
1924 		return err;
1925 
1926 	btrfs_props_init();
1927 
1928 	err = btrfs_init_sysfs();
1929 	if (err)
1930 		goto free_hash;
1931 
1932 	btrfs_init_compress();
1933 
1934 	err = btrfs_init_cachep();
1935 	if (err)
1936 		goto free_compress;
1937 
1938 	err = extent_io_init();
1939 	if (err)
1940 		goto free_cachep;
1941 
1942 	err = extent_map_init();
1943 	if (err)
1944 		goto free_extent_io;
1945 
1946 	err = ordered_data_init();
1947 	if (err)
1948 		goto free_extent_map;
1949 
1950 	err = btrfs_delayed_inode_init();
1951 	if (err)
1952 		goto free_ordered_data;
1953 
1954 	err = btrfs_auto_defrag_init();
1955 	if (err)
1956 		goto free_delayed_inode;
1957 
1958 	err = btrfs_delayed_ref_init();
1959 	if (err)
1960 		goto free_auto_defrag;
1961 
1962 	err = btrfs_prelim_ref_init();
1963 	if (err)
1964 		goto free_prelim_ref;
1965 
1966 	err = btrfs_interface_init();
1967 	if (err)
1968 		goto free_delayed_ref;
1969 
1970 	btrfs_init_lockdep();
1971 
1972 	btrfs_print_info();
1973 
1974 	err = btrfs_run_sanity_tests();
1975 	if (err)
1976 		goto unregister_ioctl;
1977 
1978 	err = register_filesystem(&btrfs_fs_type);
1979 	if (err)
1980 		goto unregister_ioctl;
1981 
1982 	return 0;
1983 
1984 unregister_ioctl:
1985 	btrfs_interface_exit();
1986 free_prelim_ref:
1987 	btrfs_prelim_ref_exit();
1988 free_delayed_ref:
1989 	btrfs_delayed_ref_exit();
1990 free_auto_defrag:
1991 	btrfs_auto_defrag_exit();
1992 free_delayed_inode:
1993 	btrfs_delayed_inode_exit();
1994 free_ordered_data:
1995 	ordered_data_exit();
1996 free_extent_map:
1997 	extent_map_exit();
1998 free_extent_io:
1999 	extent_io_exit();
2000 free_cachep:
2001 	btrfs_destroy_cachep();
2002 free_compress:
2003 	btrfs_exit_compress();
2004 	btrfs_exit_sysfs();
2005 free_hash:
2006 	btrfs_hash_exit();
2007 	return err;
2008 }
2009 
2010 static void __exit exit_btrfs_fs(void)
2011 {
2012 	btrfs_destroy_cachep();
2013 	btrfs_delayed_ref_exit();
2014 	btrfs_auto_defrag_exit();
2015 	btrfs_delayed_inode_exit();
2016 	btrfs_prelim_ref_exit();
2017 	ordered_data_exit();
2018 	extent_map_exit();
2019 	extent_io_exit();
2020 	btrfs_interface_exit();
2021 	unregister_filesystem(&btrfs_fs_type);
2022 	btrfs_exit_sysfs();
2023 	btrfs_cleanup_fs_uuids();
2024 	btrfs_exit_compress();
2025 	btrfs_hash_exit();
2026 }
2027 
2028 late_initcall(init_btrfs_fs);
2029 module_exit(exit_btrfs_fs)
2030 
2031 MODULE_LICENSE("GPL");
2032