1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "hash.h" 52 #include "props.h" 53 #include "xattr.h" 54 #include "volumes.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 #include "dev-replace.h" 59 #include "free-space-cache.h" 60 #include "backref.h" 61 #include "tests/btrfs-tests.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/btrfs.h> 65 66 static const struct super_operations btrfs_super_ops; 67 static struct file_system_type btrfs_fs_type; 68 69 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 70 71 static const char *btrfs_decode_error(int errno) 72 { 73 char *errstr = "unknown"; 74 75 switch (errno) { 76 case -EIO: 77 errstr = "IO failure"; 78 break; 79 case -ENOMEM: 80 errstr = "Out of memory"; 81 break; 82 case -EROFS: 83 errstr = "Readonly filesystem"; 84 break; 85 case -EEXIST: 86 errstr = "Object already exists"; 87 break; 88 case -ENOSPC: 89 errstr = "No space left"; 90 break; 91 case -ENOENT: 92 errstr = "No such entry"; 93 break; 94 } 95 96 return errstr; 97 } 98 99 static void save_error_info(struct btrfs_fs_info *fs_info) 100 { 101 /* 102 * today we only save the error info into ram. Long term we'll 103 * also send it down to the disk 104 */ 105 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 106 } 107 108 /* btrfs handle error by forcing the filesystem readonly */ 109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 110 { 111 struct super_block *sb = fs_info->sb; 112 113 if (sb->s_flags & MS_RDONLY) 114 return; 115 116 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 117 sb->s_flags |= MS_RDONLY; 118 btrfs_info(fs_info, "forced readonly"); 119 /* 120 * Note that a running device replace operation is not 121 * canceled here although there is no way to update 122 * the progress. It would add the risk of a deadlock, 123 * therefore the canceling is ommited. The only penalty 124 * is that some I/O remains active until the procedure 125 * completes. The next time when the filesystem is 126 * mounted writeable again, the device replace 127 * operation continues. 128 */ 129 } 130 } 131 132 #ifdef CONFIG_PRINTK 133 /* 134 * __btrfs_std_error decodes expected errors from the caller and 135 * invokes the approciate error response. 136 */ 137 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 138 unsigned int line, int errno, const char *fmt, ...) 139 { 140 struct super_block *sb = fs_info->sb; 141 const char *errstr; 142 143 /* 144 * Special case: if the error is EROFS, and we're already 145 * under MS_RDONLY, then it is safe here. 146 */ 147 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 148 return; 149 150 errstr = btrfs_decode_error(errno); 151 if (fmt) { 152 struct va_format vaf; 153 va_list args; 154 155 va_start(args, fmt); 156 vaf.fmt = fmt; 157 vaf.va = &args; 158 159 printk(KERN_CRIT 160 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 161 sb->s_id, function, line, errno, errstr, &vaf); 162 va_end(args); 163 } else { 164 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 165 sb->s_id, function, line, errno, errstr); 166 } 167 168 /* Don't go through full error handling during mount */ 169 save_error_info(fs_info); 170 if (sb->s_flags & MS_BORN) 171 btrfs_handle_error(fs_info); 172 } 173 174 static const char * const logtypes[] = { 175 "emergency", 176 "alert", 177 "critical", 178 "error", 179 "warning", 180 "notice", 181 "info", 182 "debug", 183 }; 184 185 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 186 { 187 struct super_block *sb = fs_info->sb; 188 char lvl[4]; 189 struct va_format vaf; 190 va_list args; 191 const char *type = logtypes[4]; 192 int kern_level; 193 194 va_start(args, fmt); 195 196 kern_level = printk_get_level(fmt); 197 if (kern_level) { 198 size_t size = printk_skip_level(fmt) - fmt; 199 memcpy(lvl, fmt, size); 200 lvl[size] = '\0'; 201 fmt += size; 202 type = logtypes[kern_level - '0']; 203 } else 204 *lvl = '\0'; 205 206 vaf.fmt = fmt; 207 vaf.va = &args; 208 209 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); 210 211 va_end(args); 212 } 213 214 #else 215 216 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 217 unsigned int line, int errno, const char *fmt, ...) 218 { 219 struct super_block *sb = fs_info->sb; 220 221 /* 222 * Special case: if the error is EROFS, and we're already 223 * under MS_RDONLY, then it is safe here. 224 */ 225 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 226 return; 227 228 /* Don't go through full error handling during mount */ 229 if (sb->s_flags & MS_BORN) { 230 save_error_info(fs_info); 231 btrfs_handle_error(fs_info); 232 } 233 } 234 #endif 235 236 /* 237 * We only mark the transaction aborted and then set the file system read-only. 238 * This will prevent new transactions from starting or trying to join this 239 * one. 240 * 241 * This means that error recovery at the call site is limited to freeing 242 * any local memory allocations and passing the error code up without 243 * further cleanup. The transaction should complete as it normally would 244 * in the call path but will return -EIO. 245 * 246 * We'll complete the cleanup in btrfs_end_transaction and 247 * btrfs_commit_transaction. 248 */ 249 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 250 struct btrfs_root *root, const char *function, 251 unsigned int line, int errno) 252 { 253 /* 254 * Report first abort since mount 255 */ 256 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, 257 &root->fs_info->fs_state)) { 258 WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n", 259 errno); 260 } 261 trans->aborted = errno; 262 /* Nothing used. The other threads that have joined this 263 * transaction may be able to continue. */ 264 if (!trans->blocks_used) { 265 const char *errstr; 266 267 errstr = btrfs_decode_error(errno); 268 btrfs_warn(root->fs_info, 269 "%s:%d: Aborting unused transaction(%s).", 270 function, line, errstr); 271 return; 272 } 273 ACCESS_ONCE(trans->transaction->aborted) = errno; 274 /* Wake up anybody who may be waiting on this transaction */ 275 wake_up(&root->fs_info->transaction_wait); 276 wake_up(&root->fs_info->transaction_blocked_wait); 277 __btrfs_std_error(root->fs_info, function, line, errno, NULL); 278 } 279 /* 280 * __btrfs_panic decodes unexpected, fatal errors from the caller, 281 * issues an alert, and either panics or BUGs, depending on mount options. 282 */ 283 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 284 unsigned int line, int errno, const char *fmt, ...) 285 { 286 char *s_id = "<unknown>"; 287 const char *errstr; 288 struct va_format vaf = { .fmt = fmt }; 289 va_list args; 290 291 if (fs_info) 292 s_id = fs_info->sb->s_id; 293 294 va_start(args, fmt); 295 vaf.va = &args; 296 297 errstr = btrfs_decode_error(errno); 298 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) 299 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 300 s_id, function, line, &vaf, errno, errstr); 301 302 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 303 function, line, &vaf, errno, errstr); 304 va_end(args); 305 /* Caller calls BUG() */ 306 } 307 308 static void btrfs_put_super(struct super_block *sb) 309 { 310 (void)close_ctree(btrfs_sb(sb)->tree_root); 311 /* FIXME: need to fix VFS to return error? */ 312 /* AV: return it _where_? ->put_super() can be triggered by any number 313 * of async events, up to and including delivery of SIGKILL to the 314 * last process that kept it busy. Or segfault in the aforementioned 315 * process... Whom would you report that to? 316 */ 317 } 318 319 enum { 320 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 321 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 322 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 323 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 324 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 325 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, 326 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache, 327 Opt_no_space_cache, Opt_recovery, Opt_skip_balance, 328 Opt_check_integrity, Opt_check_integrity_including_extent_data, 329 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, 330 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard, 331 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow, 332 Opt_datasum, Opt_treelog, Opt_noinode_cache, 333 Opt_err, 334 }; 335 336 static match_table_t tokens = { 337 {Opt_degraded, "degraded"}, 338 {Opt_subvol, "subvol=%s"}, 339 {Opt_subvolid, "subvolid=%s"}, 340 {Opt_device, "device=%s"}, 341 {Opt_nodatasum, "nodatasum"}, 342 {Opt_datasum, "datasum"}, 343 {Opt_nodatacow, "nodatacow"}, 344 {Opt_datacow, "datacow"}, 345 {Opt_nobarrier, "nobarrier"}, 346 {Opt_barrier, "barrier"}, 347 {Opt_max_inline, "max_inline=%s"}, 348 {Opt_alloc_start, "alloc_start=%s"}, 349 {Opt_thread_pool, "thread_pool=%d"}, 350 {Opt_compress, "compress"}, 351 {Opt_compress_type, "compress=%s"}, 352 {Opt_compress_force, "compress-force"}, 353 {Opt_compress_force_type, "compress-force=%s"}, 354 {Opt_ssd, "ssd"}, 355 {Opt_ssd_spread, "ssd_spread"}, 356 {Opt_nossd, "nossd"}, 357 {Opt_acl, "acl"}, 358 {Opt_noacl, "noacl"}, 359 {Opt_notreelog, "notreelog"}, 360 {Opt_treelog, "treelog"}, 361 {Opt_flushoncommit, "flushoncommit"}, 362 {Opt_noflushoncommit, "noflushoncommit"}, 363 {Opt_ratio, "metadata_ratio=%d"}, 364 {Opt_discard, "discard"}, 365 {Opt_nodiscard, "nodiscard"}, 366 {Opt_space_cache, "space_cache"}, 367 {Opt_clear_cache, "clear_cache"}, 368 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 369 {Opt_enospc_debug, "enospc_debug"}, 370 {Opt_noenospc_debug, "noenospc_debug"}, 371 {Opt_subvolrootid, "subvolrootid=%d"}, 372 {Opt_defrag, "autodefrag"}, 373 {Opt_nodefrag, "noautodefrag"}, 374 {Opt_inode_cache, "inode_cache"}, 375 {Opt_noinode_cache, "noinode_cache"}, 376 {Opt_no_space_cache, "nospace_cache"}, 377 {Opt_recovery, "recovery"}, 378 {Opt_skip_balance, "skip_balance"}, 379 {Opt_check_integrity, "check_int"}, 380 {Opt_check_integrity_including_extent_data, "check_int_data"}, 381 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 382 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 383 {Opt_fatal_errors, "fatal_errors=%s"}, 384 {Opt_commit_interval, "commit=%d"}, 385 {Opt_err, NULL}, 386 }; 387 388 /* 389 * Regular mount options parser. Everything that is needed only when 390 * reading in a new superblock is parsed here. 391 * XXX JDM: This needs to be cleaned up for remount. 392 */ 393 int btrfs_parse_options(struct btrfs_root *root, char *options) 394 { 395 struct btrfs_fs_info *info = root->fs_info; 396 substring_t args[MAX_OPT_ARGS]; 397 char *p, *num, *orig = NULL; 398 u64 cache_gen; 399 int intarg; 400 int ret = 0; 401 char *compress_type; 402 bool compress_force = false; 403 bool compress = false; 404 405 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 406 if (cache_gen) 407 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 408 409 if (!options) 410 goto out; 411 412 /* 413 * strsep changes the string, duplicate it because parse_options 414 * gets called twice 415 */ 416 options = kstrdup(options, GFP_NOFS); 417 if (!options) 418 return -ENOMEM; 419 420 orig = options; 421 422 while ((p = strsep(&options, ",")) != NULL) { 423 int token; 424 if (!*p) 425 continue; 426 427 token = match_token(p, tokens, args); 428 switch (token) { 429 case Opt_degraded: 430 btrfs_info(root->fs_info, "allowing degraded mounts"); 431 btrfs_set_opt(info->mount_opt, DEGRADED); 432 break; 433 case Opt_subvol: 434 case Opt_subvolid: 435 case Opt_subvolrootid: 436 case Opt_device: 437 /* 438 * These are parsed by btrfs_parse_early_options 439 * and can be happily ignored here. 440 */ 441 break; 442 case Opt_nodatasum: 443 btrfs_set_and_info(root, NODATASUM, 444 "setting nodatasum"); 445 break; 446 case Opt_datasum: 447 if (btrfs_test_opt(root, NODATASUM)) { 448 if (btrfs_test_opt(root, NODATACOW)) 449 btrfs_info(root->fs_info, "setting datasum, datacow enabled"); 450 else 451 btrfs_info(root->fs_info, "setting datasum"); 452 } 453 btrfs_clear_opt(info->mount_opt, NODATACOW); 454 btrfs_clear_opt(info->mount_opt, NODATASUM); 455 break; 456 case Opt_nodatacow: 457 if (!btrfs_test_opt(root, NODATACOW)) { 458 if (!btrfs_test_opt(root, COMPRESS) || 459 !btrfs_test_opt(root, FORCE_COMPRESS)) { 460 btrfs_info(root->fs_info, 461 "setting nodatacow, compression disabled"); 462 } else { 463 btrfs_info(root->fs_info, "setting nodatacow"); 464 } 465 } 466 btrfs_clear_opt(info->mount_opt, COMPRESS); 467 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 468 btrfs_set_opt(info->mount_opt, NODATACOW); 469 btrfs_set_opt(info->mount_opt, NODATASUM); 470 break; 471 case Opt_datacow: 472 btrfs_clear_and_info(root, NODATACOW, 473 "setting datacow"); 474 break; 475 case Opt_compress_force: 476 case Opt_compress_force_type: 477 compress_force = true; 478 /* Fallthrough */ 479 case Opt_compress: 480 case Opt_compress_type: 481 compress = true; 482 if (token == Opt_compress || 483 token == Opt_compress_force || 484 strcmp(args[0].from, "zlib") == 0) { 485 compress_type = "zlib"; 486 info->compress_type = BTRFS_COMPRESS_ZLIB; 487 btrfs_set_opt(info->mount_opt, COMPRESS); 488 btrfs_clear_opt(info->mount_opt, NODATACOW); 489 btrfs_clear_opt(info->mount_opt, NODATASUM); 490 } else if (strcmp(args[0].from, "lzo") == 0) { 491 compress_type = "lzo"; 492 info->compress_type = BTRFS_COMPRESS_LZO; 493 btrfs_set_opt(info->mount_opt, COMPRESS); 494 btrfs_clear_opt(info->mount_opt, NODATACOW); 495 btrfs_clear_opt(info->mount_opt, NODATASUM); 496 btrfs_set_fs_incompat(info, COMPRESS_LZO); 497 } else if (strncmp(args[0].from, "no", 2) == 0) { 498 compress_type = "no"; 499 btrfs_clear_opt(info->mount_opt, COMPRESS); 500 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 501 compress_force = false; 502 } else { 503 ret = -EINVAL; 504 goto out; 505 } 506 507 if (compress_force) { 508 btrfs_set_and_info(root, FORCE_COMPRESS, 509 "force %s compression", 510 compress_type); 511 } else if (compress) { 512 if (!btrfs_test_opt(root, COMPRESS)) 513 btrfs_info(root->fs_info, 514 "btrfs: use %s compression", 515 compress_type); 516 } 517 break; 518 case Opt_ssd: 519 btrfs_set_and_info(root, SSD, 520 "use ssd allocation scheme"); 521 break; 522 case Opt_ssd_spread: 523 btrfs_set_and_info(root, SSD_SPREAD, 524 "use spread ssd allocation scheme"); 525 btrfs_set_opt(info->mount_opt, SSD); 526 break; 527 case Opt_nossd: 528 btrfs_set_and_info(root, NOSSD, 529 "not using ssd allocation scheme"); 530 btrfs_clear_opt(info->mount_opt, SSD); 531 break; 532 case Opt_barrier: 533 btrfs_clear_and_info(root, NOBARRIER, 534 "turning on barriers"); 535 break; 536 case Opt_nobarrier: 537 btrfs_set_and_info(root, NOBARRIER, 538 "turning off barriers"); 539 break; 540 case Opt_thread_pool: 541 ret = match_int(&args[0], &intarg); 542 if (ret) { 543 goto out; 544 } else if (intarg > 0) { 545 info->thread_pool_size = intarg; 546 } else { 547 ret = -EINVAL; 548 goto out; 549 } 550 break; 551 case Opt_max_inline: 552 num = match_strdup(&args[0]); 553 if (num) { 554 info->max_inline = memparse(num, NULL); 555 kfree(num); 556 557 if (info->max_inline) { 558 info->max_inline = min_t(u64, 559 info->max_inline, 560 root->sectorsize); 561 } 562 btrfs_info(root->fs_info, "max_inline at %llu", 563 info->max_inline); 564 } else { 565 ret = -ENOMEM; 566 goto out; 567 } 568 break; 569 case Opt_alloc_start: 570 num = match_strdup(&args[0]); 571 if (num) { 572 mutex_lock(&info->chunk_mutex); 573 info->alloc_start = memparse(num, NULL); 574 mutex_unlock(&info->chunk_mutex); 575 kfree(num); 576 btrfs_info(root->fs_info, "allocations start at %llu", 577 info->alloc_start); 578 } else { 579 ret = -ENOMEM; 580 goto out; 581 } 582 break; 583 case Opt_acl: 584 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 585 root->fs_info->sb->s_flags |= MS_POSIXACL; 586 break; 587 #else 588 btrfs_err(root->fs_info, 589 "support for ACL not compiled in!"); 590 ret = -EINVAL; 591 goto out; 592 #endif 593 case Opt_noacl: 594 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 595 break; 596 case Opt_notreelog: 597 btrfs_set_and_info(root, NOTREELOG, 598 "disabling tree log"); 599 break; 600 case Opt_treelog: 601 btrfs_clear_and_info(root, NOTREELOG, 602 "enabling tree log"); 603 break; 604 case Opt_flushoncommit: 605 btrfs_set_and_info(root, FLUSHONCOMMIT, 606 "turning on flush-on-commit"); 607 break; 608 case Opt_noflushoncommit: 609 btrfs_clear_and_info(root, FLUSHONCOMMIT, 610 "turning off flush-on-commit"); 611 break; 612 case Opt_ratio: 613 ret = match_int(&args[0], &intarg); 614 if (ret) { 615 goto out; 616 } else if (intarg >= 0) { 617 info->metadata_ratio = intarg; 618 btrfs_info(root->fs_info, "metadata ratio %d", 619 info->metadata_ratio); 620 } else { 621 ret = -EINVAL; 622 goto out; 623 } 624 break; 625 case Opt_discard: 626 btrfs_set_and_info(root, DISCARD, 627 "turning on discard"); 628 break; 629 case Opt_nodiscard: 630 btrfs_clear_and_info(root, DISCARD, 631 "turning off discard"); 632 break; 633 case Opt_space_cache: 634 btrfs_set_and_info(root, SPACE_CACHE, 635 "enabling disk space caching"); 636 break; 637 case Opt_rescan_uuid_tree: 638 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 639 break; 640 case Opt_no_space_cache: 641 btrfs_clear_and_info(root, SPACE_CACHE, 642 "disabling disk space caching"); 643 break; 644 case Opt_inode_cache: 645 btrfs_set_and_info(root, CHANGE_INODE_CACHE, 646 "enabling inode map caching"); 647 break; 648 case Opt_noinode_cache: 649 btrfs_clear_and_info(root, CHANGE_INODE_CACHE, 650 "disabling inode map caching"); 651 break; 652 case Opt_clear_cache: 653 btrfs_set_and_info(root, CLEAR_CACHE, 654 "force clearing of disk cache"); 655 break; 656 case Opt_user_subvol_rm_allowed: 657 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 658 break; 659 case Opt_enospc_debug: 660 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 661 break; 662 case Opt_noenospc_debug: 663 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 664 break; 665 case Opt_defrag: 666 btrfs_set_and_info(root, AUTO_DEFRAG, 667 "enabling auto defrag"); 668 break; 669 case Opt_nodefrag: 670 btrfs_clear_and_info(root, AUTO_DEFRAG, 671 "disabling auto defrag"); 672 break; 673 case Opt_recovery: 674 btrfs_info(root->fs_info, "enabling auto recovery"); 675 btrfs_set_opt(info->mount_opt, RECOVERY); 676 break; 677 case Opt_skip_balance: 678 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 679 break; 680 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 681 case Opt_check_integrity_including_extent_data: 682 btrfs_info(root->fs_info, 683 "enabling check integrity including extent data"); 684 btrfs_set_opt(info->mount_opt, 685 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 686 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 687 break; 688 case Opt_check_integrity: 689 btrfs_info(root->fs_info, "enabling check integrity"); 690 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 691 break; 692 case Opt_check_integrity_print_mask: 693 ret = match_int(&args[0], &intarg); 694 if (ret) { 695 goto out; 696 } else if (intarg >= 0) { 697 info->check_integrity_print_mask = intarg; 698 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x", 699 info->check_integrity_print_mask); 700 } else { 701 ret = -EINVAL; 702 goto out; 703 } 704 break; 705 #else 706 case Opt_check_integrity_including_extent_data: 707 case Opt_check_integrity: 708 case Opt_check_integrity_print_mask: 709 btrfs_err(root->fs_info, 710 "support for check_integrity* not compiled in!"); 711 ret = -EINVAL; 712 goto out; 713 #endif 714 case Opt_fatal_errors: 715 if (strcmp(args[0].from, "panic") == 0) 716 btrfs_set_opt(info->mount_opt, 717 PANIC_ON_FATAL_ERROR); 718 else if (strcmp(args[0].from, "bug") == 0) 719 btrfs_clear_opt(info->mount_opt, 720 PANIC_ON_FATAL_ERROR); 721 else { 722 ret = -EINVAL; 723 goto out; 724 } 725 break; 726 case Opt_commit_interval: 727 intarg = 0; 728 ret = match_int(&args[0], &intarg); 729 if (ret < 0) { 730 btrfs_err(root->fs_info, "invalid commit interval"); 731 ret = -EINVAL; 732 goto out; 733 } 734 if (intarg > 0) { 735 if (intarg > 300) { 736 btrfs_warn(root->fs_info, "excessive commit interval %d", 737 intarg); 738 } 739 info->commit_interval = intarg; 740 } else { 741 btrfs_info(root->fs_info, "using default commit interval %ds", 742 BTRFS_DEFAULT_COMMIT_INTERVAL); 743 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 744 } 745 break; 746 case Opt_err: 747 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p); 748 ret = -EINVAL; 749 goto out; 750 default: 751 break; 752 } 753 } 754 out: 755 if (!ret && btrfs_test_opt(root, SPACE_CACHE)) 756 btrfs_info(root->fs_info, "disk space caching is enabled"); 757 kfree(orig); 758 return ret; 759 } 760 761 /* 762 * Parse mount options that are required early in the mount process. 763 * 764 * All other options will be parsed on much later in the mount process and 765 * only when we need to allocate a new super block. 766 */ 767 static int btrfs_parse_early_options(const char *options, fmode_t flags, 768 void *holder, char **subvol_name, u64 *subvol_objectid, 769 struct btrfs_fs_devices **fs_devices) 770 { 771 substring_t args[MAX_OPT_ARGS]; 772 char *device_name, *opts, *orig, *p; 773 char *num = NULL; 774 int error = 0; 775 776 if (!options) 777 return 0; 778 779 /* 780 * strsep changes the string, duplicate it because parse_options 781 * gets called twice 782 */ 783 opts = kstrdup(options, GFP_KERNEL); 784 if (!opts) 785 return -ENOMEM; 786 orig = opts; 787 788 while ((p = strsep(&opts, ",")) != NULL) { 789 int token; 790 if (!*p) 791 continue; 792 793 token = match_token(p, tokens, args); 794 switch (token) { 795 case Opt_subvol: 796 kfree(*subvol_name); 797 *subvol_name = match_strdup(&args[0]); 798 if (!*subvol_name) { 799 error = -ENOMEM; 800 goto out; 801 } 802 break; 803 case Opt_subvolid: 804 num = match_strdup(&args[0]); 805 if (num) { 806 *subvol_objectid = memparse(num, NULL); 807 kfree(num); 808 /* we want the original fs_tree */ 809 if (!*subvol_objectid) 810 *subvol_objectid = 811 BTRFS_FS_TREE_OBJECTID; 812 } else { 813 error = -EINVAL; 814 goto out; 815 } 816 break; 817 case Opt_subvolrootid: 818 printk(KERN_WARNING 819 "BTRFS: 'subvolrootid' mount option is deprecated and has " 820 "no effect\n"); 821 break; 822 case Opt_device: 823 device_name = match_strdup(&args[0]); 824 if (!device_name) { 825 error = -ENOMEM; 826 goto out; 827 } 828 error = btrfs_scan_one_device(device_name, 829 flags, holder, fs_devices); 830 kfree(device_name); 831 if (error) 832 goto out; 833 break; 834 default: 835 break; 836 } 837 } 838 839 out: 840 kfree(orig); 841 return error; 842 } 843 844 static struct dentry *get_default_root(struct super_block *sb, 845 u64 subvol_objectid) 846 { 847 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 848 struct btrfs_root *root = fs_info->tree_root; 849 struct btrfs_root *new_root; 850 struct btrfs_dir_item *di; 851 struct btrfs_path *path; 852 struct btrfs_key location; 853 struct inode *inode; 854 struct dentry *dentry; 855 u64 dir_id; 856 int new = 0; 857 858 /* 859 * We have a specific subvol we want to mount, just setup location and 860 * go look up the root. 861 */ 862 if (subvol_objectid) { 863 location.objectid = subvol_objectid; 864 location.type = BTRFS_ROOT_ITEM_KEY; 865 location.offset = (u64)-1; 866 goto find_root; 867 } 868 869 path = btrfs_alloc_path(); 870 if (!path) 871 return ERR_PTR(-ENOMEM); 872 path->leave_spinning = 1; 873 874 /* 875 * Find the "default" dir item which points to the root item that we 876 * will mount by default if we haven't been given a specific subvolume 877 * to mount. 878 */ 879 dir_id = btrfs_super_root_dir(fs_info->super_copy); 880 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 881 if (IS_ERR(di)) { 882 btrfs_free_path(path); 883 return ERR_CAST(di); 884 } 885 if (!di) { 886 /* 887 * Ok the default dir item isn't there. This is weird since 888 * it's always been there, but don't freak out, just try and 889 * mount to root most subvolume. 890 */ 891 btrfs_free_path(path); 892 dir_id = BTRFS_FIRST_FREE_OBJECTID; 893 new_root = fs_info->fs_root; 894 goto setup_root; 895 } 896 897 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 898 btrfs_free_path(path); 899 900 find_root: 901 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 902 if (IS_ERR(new_root)) 903 return ERR_CAST(new_root); 904 905 dir_id = btrfs_root_dirid(&new_root->root_item); 906 setup_root: 907 location.objectid = dir_id; 908 location.type = BTRFS_INODE_ITEM_KEY; 909 location.offset = 0; 910 911 inode = btrfs_iget(sb, &location, new_root, &new); 912 if (IS_ERR(inode)) 913 return ERR_CAST(inode); 914 915 /* 916 * If we're just mounting the root most subvol put the inode and return 917 * a reference to the dentry. We will have already gotten a reference 918 * to the inode in btrfs_fill_super so we're good to go. 919 */ 920 if (!new && sb->s_root->d_inode == inode) { 921 iput(inode); 922 return dget(sb->s_root); 923 } 924 925 dentry = d_obtain_alias(inode); 926 if (!IS_ERR(dentry)) { 927 spin_lock(&dentry->d_lock); 928 dentry->d_flags &= ~DCACHE_DISCONNECTED; 929 spin_unlock(&dentry->d_lock); 930 } 931 return dentry; 932 } 933 934 static int btrfs_fill_super(struct super_block *sb, 935 struct btrfs_fs_devices *fs_devices, 936 void *data, int silent) 937 { 938 struct inode *inode; 939 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 940 struct btrfs_key key; 941 int err; 942 943 sb->s_maxbytes = MAX_LFS_FILESIZE; 944 sb->s_magic = BTRFS_SUPER_MAGIC; 945 sb->s_op = &btrfs_super_ops; 946 sb->s_d_op = &btrfs_dentry_operations; 947 sb->s_export_op = &btrfs_export_ops; 948 sb->s_xattr = btrfs_xattr_handlers; 949 sb->s_time_gran = 1; 950 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 951 sb->s_flags |= MS_POSIXACL; 952 #endif 953 sb->s_flags |= MS_I_VERSION; 954 err = open_ctree(sb, fs_devices, (char *)data); 955 if (err) { 956 printk(KERN_ERR "BTRFS: open_ctree failed\n"); 957 return err; 958 } 959 960 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 961 key.type = BTRFS_INODE_ITEM_KEY; 962 key.offset = 0; 963 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 964 if (IS_ERR(inode)) { 965 err = PTR_ERR(inode); 966 goto fail_close; 967 } 968 969 sb->s_root = d_make_root(inode); 970 if (!sb->s_root) { 971 err = -ENOMEM; 972 goto fail_close; 973 } 974 975 save_mount_options(sb, data); 976 cleancache_init_fs(sb); 977 sb->s_flags |= MS_ACTIVE; 978 return 0; 979 980 fail_close: 981 close_ctree(fs_info->tree_root); 982 return err; 983 } 984 985 int btrfs_sync_fs(struct super_block *sb, int wait) 986 { 987 struct btrfs_trans_handle *trans; 988 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 989 struct btrfs_root *root = fs_info->tree_root; 990 991 trace_btrfs_sync_fs(wait); 992 993 if (!wait) { 994 filemap_flush(fs_info->btree_inode->i_mapping); 995 return 0; 996 } 997 998 btrfs_wait_ordered_roots(fs_info, -1); 999 1000 trans = btrfs_attach_transaction_barrier(root); 1001 if (IS_ERR(trans)) { 1002 /* no transaction, don't bother */ 1003 if (PTR_ERR(trans) == -ENOENT) 1004 return 0; 1005 return PTR_ERR(trans); 1006 } 1007 return btrfs_commit_transaction(trans, root); 1008 } 1009 1010 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1011 { 1012 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1013 struct btrfs_root *root = info->tree_root; 1014 char *compress_type; 1015 1016 if (btrfs_test_opt(root, DEGRADED)) 1017 seq_puts(seq, ",degraded"); 1018 if (btrfs_test_opt(root, NODATASUM)) 1019 seq_puts(seq, ",nodatasum"); 1020 if (btrfs_test_opt(root, NODATACOW)) 1021 seq_puts(seq, ",nodatacow"); 1022 if (btrfs_test_opt(root, NOBARRIER)) 1023 seq_puts(seq, ",nobarrier"); 1024 if (info->max_inline != 8192 * 1024) 1025 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1026 if (info->alloc_start != 0) 1027 seq_printf(seq, ",alloc_start=%llu", info->alloc_start); 1028 if (info->thread_pool_size != min_t(unsigned long, 1029 num_online_cpus() + 2, 8)) 1030 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 1031 if (btrfs_test_opt(root, COMPRESS)) { 1032 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 1033 compress_type = "zlib"; 1034 else 1035 compress_type = "lzo"; 1036 if (btrfs_test_opt(root, FORCE_COMPRESS)) 1037 seq_printf(seq, ",compress-force=%s", compress_type); 1038 else 1039 seq_printf(seq, ",compress=%s", compress_type); 1040 } 1041 if (btrfs_test_opt(root, NOSSD)) 1042 seq_puts(seq, ",nossd"); 1043 if (btrfs_test_opt(root, SSD_SPREAD)) 1044 seq_puts(seq, ",ssd_spread"); 1045 else if (btrfs_test_opt(root, SSD)) 1046 seq_puts(seq, ",ssd"); 1047 if (btrfs_test_opt(root, NOTREELOG)) 1048 seq_puts(seq, ",notreelog"); 1049 if (btrfs_test_opt(root, FLUSHONCOMMIT)) 1050 seq_puts(seq, ",flushoncommit"); 1051 if (btrfs_test_opt(root, DISCARD)) 1052 seq_puts(seq, ",discard"); 1053 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 1054 seq_puts(seq, ",noacl"); 1055 if (btrfs_test_opt(root, SPACE_CACHE)) 1056 seq_puts(seq, ",space_cache"); 1057 else 1058 seq_puts(seq, ",nospace_cache"); 1059 if (btrfs_test_opt(root, RESCAN_UUID_TREE)) 1060 seq_puts(seq, ",rescan_uuid_tree"); 1061 if (btrfs_test_opt(root, CLEAR_CACHE)) 1062 seq_puts(seq, ",clear_cache"); 1063 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 1064 seq_puts(seq, ",user_subvol_rm_allowed"); 1065 if (btrfs_test_opt(root, ENOSPC_DEBUG)) 1066 seq_puts(seq, ",enospc_debug"); 1067 if (btrfs_test_opt(root, AUTO_DEFRAG)) 1068 seq_puts(seq, ",autodefrag"); 1069 if (btrfs_test_opt(root, INODE_MAP_CACHE)) 1070 seq_puts(seq, ",inode_cache"); 1071 if (btrfs_test_opt(root, SKIP_BALANCE)) 1072 seq_puts(seq, ",skip_balance"); 1073 if (btrfs_test_opt(root, RECOVERY)) 1074 seq_puts(seq, ",recovery"); 1075 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1076 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1077 seq_puts(seq, ",check_int_data"); 1078 else if (btrfs_test_opt(root, CHECK_INTEGRITY)) 1079 seq_puts(seq, ",check_int"); 1080 if (info->check_integrity_print_mask) 1081 seq_printf(seq, ",check_int_print_mask=%d", 1082 info->check_integrity_print_mask); 1083 #endif 1084 if (info->metadata_ratio) 1085 seq_printf(seq, ",metadata_ratio=%d", 1086 info->metadata_ratio); 1087 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR)) 1088 seq_puts(seq, ",fatal_errors=panic"); 1089 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1090 seq_printf(seq, ",commit=%d", info->commit_interval); 1091 return 0; 1092 } 1093 1094 static int btrfs_test_super(struct super_block *s, void *data) 1095 { 1096 struct btrfs_fs_info *p = data; 1097 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1098 1099 return fs_info->fs_devices == p->fs_devices; 1100 } 1101 1102 static int btrfs_set_super(struct super_block *s, void *data) 1103 { 1104 int err = set_anon_super(s, data); 1105 if (!err) 1106 s->s_fs_info = data; 1107 return err; 1108 } 1109 1110 /* 1111 * subvolumes are identified by ino 256 1112 */ 1113 static inline int is_subvolume_inode(struct inode *inode) 1114 { 1115 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1116 return 1; 1117 return 0; 1118 } 1119 1120 /* 1121 * This will strip out the subvol=%s argument for an argument string and add 1122 * subvolid=0 to make sure we get the actual tree root for path walking to the 1123 * subvol we want. 1124 */ 1125 static char *setup_root_args(char *args) 1126 { 1127 unsigned len = strlen(args) + 2 + 1; 1128 char *src, *dst, *buf; 1129 1130 /* 1131 * We need the same args as before, but with this substitution: 1132 * s!subvol=[^,]+!subvolid=0! 1133 * 1134 * Since the replacement string is up to 2 bytes longer than the 1135 * original, allocate strlen(args) + 2 + 1 bytes. 1136 */ 1137 1138 src = strstr(args, "subvol="); 1139 /* This shouldn't happen, but just in case.. */ 1140 if (!src) 1141 return NULL; 1142 1143 buf = dst = kmalloc(len, GFP_NOFS); 1144 if (!buf) 1145 return NULL; 1146 1147 /* 1148 * If the subvol= arg is not at the start of the string, 1149 * copy whatever precedes it into buf. 1150 */ 1151 if (src != args) { 1152 *src++ = '\0'; 1153 strcpy(buf, args); 1154 dst += strlen(args); 1155 } 1156 1157 strcpy(dst, "subvolid=0"); 1158 dst += strlen("subvolid=0"); 1159 1160 /* 1161 * If there is a "," after the original subvol=... string, 1162 * copy that suffix into our buffer. Otherwise, we're done. 1163 */ 1164 src = strchr(src, ','); 1165 if (src) 1166 strcpy(dst, src); 1167 1168 return buf; 1169 } 1170 1171 static struct dentry *mount_subvol(const char *subvol_name, int flags, 1172 const char *device_name, char *data) 1173 { 1174 struct dentry *root; 1175 struct vfsmount *mnt; 1176 char *newargs; 1177 1178 newargs = setup_root_args(data); 1179 if (!newargs) 1180 return ERR_PTR(-ENOMEM); 1181 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, 1182 newargs); 1183 1184 if (PTR_RET(mnt) == -EBUSY) { 1185 if (flags & MS_RDONLY) { 1186 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name, 1187 newargs); 1188 } else { 1189 int r; 1190 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name, 1191 newargs); 1192 if (IS_ERR(mnt)) { 1193 kfree(newargs); 1194 return ERR_CAST(mnt); 1195 } 1196 1197 r = btrfs_remount(mnt->mnt_sb, &flags, NULL); 1198 if (r < 0) { 1199 /* FIXME: release vfsmount mnt ??*/ 1200 kfree(newargs); 1201 return ERR_PTR(r); 1202 } 1203 } 1204 } 1205 1206 kfree(newargs); 1207 1208 if (IS_ERR(mnt)) 1209 return ERR_CAST(mnt); 1210 1211 root = mount_subtree(mnt, subvol_name); 1212 1213 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) { 1214 struct super_block *s = root->d_sb; 1215 dput(root); 1216 root = ERR_PTR(-EINVAL); 1217 deactivate_locked_super(s); 1218 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n", 1219 subvol_name); 1220 } 1221 1222 return root; 1223 } 1224 1225 /* 1226 * Find a superblock for the given device / mount point. 1227 * 1228 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1229 * for multiple device setup. Make sure to keep it in sync. 1230 */ 1231 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1232 const char *device_name, void *data) 1233 { 1234 struct block_device *bdev = NULL; 1235 struct super_block *s; 1236 struct dentry *root; 1237 struct btrfs_fs_devices *fs_devices = NULL; 1238 struct btrfs_fs_info *fs_info = NULL; 1239 fmode_t mode = FMODE_READ; 1240 char *subvol_name = NULL; 1241 u64 subvol_objectid = 0; 1242 int error = 0; 1243 1244 if (!(flags & MS_RDONLY)) 1245 mode |= FMODE_WRITE; 1246 1247 error = btrfs_parse_early_options(data, mode, fs_type, 1248 &subvol_name, &subvol_objectid, 1249 &fs_devices); 1250 if (error) { 1251 kfree(subvol_name); 1252 return ERR_PTR(error); 1253 } 1254 1255 if (subvol_name) { 1256 root = mount_subvol(subvol_name, flags, device_name, data); 1257 kfree(subvol_name); 1258 return root; 1259 } 1260 1261 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1262 if (error) 1263 return ERR_PTR(error); 1264 1265 /* 1266 * Setup a dummy root and fs_info for test/set super. This is because 1267 * we don't actually fill this stuff out until open_ctree, but we need 1268 * it for searching for existing supers, so this lets us do that and 1269 * then open_ctree will properly initialize everything later. 1270 */ 1271 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 1272 if (!fs_info) 1273 return ERR_PTR(-ENOMEM); 1274 1275 fs_info->fs_devices = fs_devices; 1276 1277 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1278 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1279 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1280 error = -ENOMEM; 1281 goto error_fs_info; 1282 } 1283 1284 error = btrfs_open_devices(fs_devices, mode, fs_type); 1285 if (error) 1286 goto error_fs_info; 1287 1288 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1289 error = -EACCES; 1290 goto error_close_devices; 1291 } 1292 1293 bdev = fs_devices->latest_bdev; 1294 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1295 fs_info); 1296 if (IS_ERR(s)) { 1297 error = PTR_ERR(s); 1298 goto error_close_devices; 1299 } 1300 1301 if (s->s_root) { 1302 btrfs_close_devices(fs_devices); 1303 free_fs_info(fs_info); 1304 if ((flags ^ s->s_flags) & MS_RDONLY) 1305 error = -EBUSY; 1306 } else { 1307 char b[BDEVNAME_SIZE]; 1308 1309 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1310 btrfs_sb(s)->bdev_holder = fs_type; 1311 error = btrfs_fill_super(s, fs_devices, data, 1312 flags & MS_SILENT ? 1 : 0); 1313 } 1314 1315 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error); 1316 if (IS_ERR(root)) 1317 deactivate_locked_super(s); 1318 1319 return root; 1320 1321 error_close_devices: 1322 btrfs_close_devices(fs_devices); 1323 error_fs_info: 1324 free_fs_info(fs_info); 1325 return ERR_PTR(error); 1326 } 1327 1328 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1329 int new_pool_size, int old_pool_size) 1330 { 1331 if (new_pool_size == old_pool_size) 1332 return; 1333 1334 fs_info->thread_pool_size = new_pool_size; 1335 1336 btrfs_info(fs_info, "resize thread pool %d -> %d", 1337 old_pool_size, new_pool_size); 1338 1339 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1340 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1341 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1342 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1343 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1344 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1345 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1346 new_pool_size); 1347 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1348 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1349 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1350 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1351 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1352 new_pool_size); 1353 } 1354 1355 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1356 { 1357 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1358 } 1359 1360 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1361 unsigned long old_opts, int flags) 1362 { 1363 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1364 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1365 (flags & MS_RDONLY))) { 1366 /* wait for any defraggers to finish */ 1367 wait_event(fs_info->transaction_wait, 1368 (atomic_read(&fs_info->defrag_running) == 0)); 1369 if (flags & MS_RDONLY) 1370 sync_filesystem(fs_info->sb); 1371 } 1372 } 1373 1374 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1375 unsigned long old_opts) 1376 { 1377 /* 1378 * We need cleanup all defragable inodes if the autodefragment is 1379 * close or the fs is R/O. 1380 */ 1381 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1382 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1383 (fs_info->sb->s_flags & MS_RDONLY))) { 1384 btrfs_cleanup_defrag_inodes(fs_info); 1385 } 1386 1387 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1388 } 1389 1390 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1391 { 1392 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1393 struct btrfs_root *root = fs_info->tree_root; 1394 unsigned old_flags = sb->s_flags; 1395 unsigned long old_opts = fs_info->mount_opt; 1396 unsigned long old_compress_type = fs_info->compress_type; 1397 u64 old_max_inline = fs_info->max_inline; 1398 u64 old_alloc_start = fs_info->alloc_start; 1399 int old_thread_pool_size = fs_info->thread_pool_size; 1400 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1401 int ret; 1402 1403 sync_filesystem(sb); 1404 btrfs_remount_prepare(fs_info); 1405 1406 ret = btrfs_parse_options(root, data); 1407 if (ret) { 1408 ret = -EINVAL; 1409 goto restore; 1410 } 1411 1412 btrfs_remount_begin(fs_info, old_opts, *flags); 1413 btrfs_resize_thread_pool(fs_info, 1414 fs_info->thread_pool_size, old_thread_pool_size); 1415 1416 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1417 goto out; 1418 1419 if (*flags & MS_RDONLY) { 1420 /* 1421 * this also happens on 'umount -rf' or on shutdown, when 1422 * the filesystem is busy. 1423 */ 1424 cancel_work_sync(&fs_info->async_reclaim_work); 1425 1426 /* wait for the uuid_scan task to finish */ 1427 down(&fs_info->uuid_tree_rescan_sem); 1428 /* avoid complains from lockdep et al. */ 1429 up(&fs_info->uuid_tree_rescan_sem); 1430 1431 sb->s_flags |= MS_RDONLY; 1432 1433 btrfs_dev_replace_suspend_for_unmount(fs_info); 1434 btrfs_scrub_cancel(fs_info); 1435 btrfs_pause_balance(fs_info); 1436 1437 ret = btrfs_commit_super(root); 1438 if (ret) 1439 goto restore; 1440 } else { 1441 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1442 btrfs_err(fs_info, 1443 "Remounting read-write after error is not allowed"); 1444 ret = -EINVAL; 1445 goto restore; 1446 } 1447 if (fs_info->fs_devices->rw_devices == 0) { 1448 ret = -EACCES; 1449 goto restore; 1450 } 1451 1452 if (fs_info->fs_devices->missing_devices > 1453 fs_info->num_tolerated_disk_barrier_failures && 1454 !(*flags & MS_RDONLY)) { 1455 btrfs_warn(fs_info, 1456 "too many missing devices, writeable remount is not allowed"); 1457 ret = -EACCES; 1458 goto restore; 1459 } 1460 1461 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1462 ret = -EINVAL; 1463 goto restore; 1464 } 1465 1466 ret = btrfs_cleanup_fs_roots(fs_info); 1467 if (ret) 1468 goto restore; 1469 1470 /* recover relocation */ 1471 mutex_lock(&fs_info->cleaner_mutex); 1472 ret = btrfs_recover_relocation(root); 1473 mutex_unlock(&fs_info->cleaner_mutex); 1474 if (ret) 1475 goto restore; 1476 1477 ret = btrfs_resume_balance_async(fs_info); 1478 if (ret) 1479 goto restore; 1480 1481 ret = btrfs_resume_dev_replace_async(fs_info); 1482 if (ret) { 1483 btrfs_warn(fs_info, "failed to resume dev_replace"); 1484 goto restore; 1485 } 1486 1487 if (!fs_info->uuid_root) { 1488 btrfs_info(fs_info, "creating UUID tree"); 1489 ret = btrfs_create_uuid_tree(fs_info); 1490 if (ret) { 1491 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret); 1492 goto restore; 1493 } 1494 } 1495 sb->s_flags &= ~MS_RDONLY; 1496 } 1497 out: 1498 wake_up_process(fs_info->transaction_kthread); 1499 btrfs_remount_cleanup(fs_info, old_opts); 1500 return 0; 1501 1502 restore: 1503 /* We've hit an error - don't reset MS_RDONLY */ 1504 if (sb->s_flags & MS_RDONLY) 1505 old_flags |= MS_RDONLY; 1506 sb->s_flags = old_flags; 1507 fs_info->mount_opt = old_opts; 1508 fs_info->compress_type = old_compress_type; 1509 fs_info->max_inline = old_max_inline; 1510 mutex_lock(&fs_info->chunk_mutex); 1511 fs_info->alloc_start = old_alloc_start; 1512 mutex_unlock(&fs_info->chunk_mutex); 1513 btrfs_resize_thread_pool(fs_info, 1514 old_thread_pool_size, fs_info->thread_pool_size); 1515 fs_info->metadata_ratio = old_metadata_ratio; 1516 btrfs_remount_cleanup(fs_info, old_opts); 1517 return ret; 1518 } 1519 1520 /* Used to sort the devices by max_avail(descending sort) */ 1521 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1522 const void *dev_info2) 1523 { 1524 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1525 ((struct btrfs_device_info *)dev_info2)->max_avail) 1526 return -1; 1527 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1528 ((struct btrfs_device_info *)dev_info2)->max_avail) 1529 return 1; 1530 else 1531 return 0; 1532 } 1533 1534 /* 1535 * sort the devices by max_avail, in which max free extent size of each device 1536 * is stored.(Descending Sort) 1537 */ 1538 static inline void btrfs_descending_sort_devices( 1539 struct btrfs_device_info *devices, 1540 size_t nr_devices) 1541 { 1542 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1543 btrfs_cmp_device_free_bytes, NULL); 1544 } 1545 1546 /* 1547 * The helper to calc the free space on the devices that can be used to store 1548 * file data. 1549 */ 1550 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 1551 { 1552 struct btrfs_fs_info *fs_info = root->fs_info; 1553 struct btrfs_device_info *devices_info; 1554 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1555 struct btrfs_device *device; 1556 u64 skip_space; 1557 u64 type; 1558 u64 avail_space; 1559 u64 used_space; 1560 u64 min_stripe_size; 1561 int min_stripes = 1, num_stripes = 1; 1562 int i = 0, nr_devices; 1563 int ret; 1564 1565 nr_devices = fs_info->fs_devices->open_devices; 1566 BUG_ON(!nr_devices); 1567 1568 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1569 GFP_NOFS); 1570 if (!devices_info) 1571 return -ENOMEM; 1572 1573 /* calc min stripe number for data space alloction */ 1574 type = btrfs_get_alloc_profile(root, 1); 1575 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1576 min_stripes = 2; 1577 num_stripes = nr_devices; 1578 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1579 min_stripes = 2; 1580 num_stripes = 2; 1581 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1582 min_stripes = 4; 1583 num_stripes = 4; 1584 } 1585 1586 if (type & BTRFS_BLOCK_GROUP_DUP) 1587 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1588 else 1589 min_stripe_size = BTRFS_STRIPE_LEN; 1590 1591 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1592 if (!device->in_fs_metadata || !device->bdev || 1593 device->is_tgtdev_for_dev_replace) 1594 continue; 1595 1596 avail_space = device->total_bytes - device->bytes_used; 1597 1598 /* align with stripe_len */ 1599 do_div(avail_space, BTRFS_STRIPE_LEN); 1600 avail_space *= BTRFS_STRIPE_LEN; 1601 1602 /* 1603 * In order to avoid overwritting the superblock on the drive, 1604 * btrfs starts at an offset of at least 1MB when doing chunk 1605 * allocation. 1606 */ 1607 skip_space = 1024 * 1024; 1608 1609 /* user can set the offset in fs_info->alloc_start. */ 1610 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1611 device->total_bytes) 1612 skip_space = max(fs_info->alloc_start, skip_space); 1613 1614 /* 1615 * btrfs can not use the free space in [0, skip_space - 1], 1616 * we must subtract it from the total. In order to implement 1617 * it, we account the used space in this range first. 1618 */ 1619 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1, 1620 &used_space); 1621 if (ret) { 1622 kfree(devices_info); 1623 return ret; 1624 } 1625 1626 /* calc the free space in [0, skip_space - 1] */ 1627 skip_space -= used_space; 1628 1629 /* 1630 * we can use the free space in [0, skip_space - 1], subtract 1631 * it from the total. 1632 */ 1633 if (avail_space && avail_space >= skip_space) 1634 avail_space -= skip_space; 1635 else 1636 avail_space = 0; 1637 1638 if (avail_space < min_stripe_size) 1639 continue; 1640 1641 devices_info[i].dev = device; 1642 devices_info[i].max_avail = avail_space; 1643 1644 i++; 1645 } 1646 1647 nr_devices = i; 1648 1649 btrfs_descending_sort_devices(devices_info, nr_devices); 1650 1651 i = nr_devices - 1; 1652 avail_space = 0; 1653 while (nr_devices >= min_stripes) { 1654 if (num_stripes > nr_devices) 1655 num_stripes = nr_devices; 1656 1657 if (devices_info[i].max_avail >= min_stripe_size) { 1658 int j; 1659 u64 alloc_size; 1660 1661 avail_space += devices_info[i].max_avail * num_stripes; 1662 alloc_size = devices_info[i].max_avail; 1663 for (j = i + 1 - num_stripes; j <= i; j++) 1664 devices_info[j].max_avail -= alloc_size; 1665 } 1666 i--; 1667 nr_devices--; 1668 } 1669 1670 kfree(devices_info); 1671 *free_bytes = avail_space; 1672 return 0; 1673 } 1674 1675 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1676 { 1677 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1678 struct btrfs_super_block *disk_super = fs_info->super_copy; 1679 struct list_head *head = &fs_info->space_info; 1680 struct btrfs_space_info *found; 1681 u64 total_used = 0; 1682 u64 total_free_data = 0; 1683 int bits = dentry->d_sb->s_blocksize_bits; 1684 __be32 *fsid = (__be32 *)fs_info->fsid; 1685 int ret; 1686 1687 /* holding chunk_muext to avoid allocating new chunks */ 1688 mutex_lock(&fs_info->chunk_mutex); 1689 rcu_read_lock(); 1690 list_for_each_entry_rcu(found, head, list) { 1691 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1692 total_free_data += found->disk_total - found->disk_used; 1693 total_free_data -= 1694 btrfs_account_ro_block_groups_free_space(found); 1695 } 1696 1697 total_used += found->disk_used; 1698 } 1699 rcu_read_unlock(); 1700 1701 buf->f_namelen = BTRFS_NAME_LEN; 1702 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits; 1703 buf->f_bfree = buf->f_blocks - (total_used >> bits); 1704 buf->f_bsize = dentry->d_sb->s_blocksize; 1705 buf->f_type = BTRFS_SUPER_MAGIC; 1706 buf->f_bavail = total_free_data; 1707 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); 1708 if (ret) { 1709 mutex_unlock(&fs_info->chunk_mutex); 1710 return ret; 1711 } 1712 buf->f_bavail += total_free_data; 1713 buf->f_bavail = buf->f_bavail >> bits; 1714 mutex_unlock(&fs_info->chunk_mutex); 1715 1716 /* We treat it as constant endianness (it doesn't matter _which_) 1717 because we want the fsid to come out the same whether mounted 1718 on a big-endian or little-endian host */ 1719 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1720 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1721 /* Mask in the root object ID too, to disambiguate subvols */ 1722 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32; 1723 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid; 1724 1725 return 0; 1726 } 1727 1728 static void btrfs_kill_super(struct super_block *sb) 1729 { 1730 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1731 kill_anon_super(sb); 1732 free_fs_info(fs_info); 1733 } 1734 1735 static struct file_system_type btrfs_fs_type = { 1736 .owner = THIS_MODULE, 1737 .name = "btrfs", 1738 .mount = btrfs_mount, 1739 .kill_sb = btrfs_kill_super, 1740 .fs_flags = FS_REQUIRES_DEV, 1741 }; 1742 MODULE_ALIAS_FS("btrfs"); 1743 1744 /* 1745 * used by btrfsctl to scan devices when no FS is mounted 1746 */ 1747 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 1748 unsigned long arg) 1749 { 1750 struct btrfs_ioctl_vol_args *vol; 1751 struct btrfs_fs_devices *fs_devices; 1752 int ret = -ENOTTY; 1753 1754 if (!capable(CAP_SYS_ADMIN)) 1755 return -EPERM; 1756 1757 vol = memdup_user((void __user *)arg, sizeof(*vol)); 1758 if (IS_ERR(vol)) 1759 return PTR_ERR(vol); 1760 1761 switch (cmd) { 1762 case BTRFS_IOC_SCAN_DEV: 1763 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1764 &btrfs_fs_type, &fs_devices); 1765 break; 1766 case BTRFS_IOC_DEVICES_READY: 1767 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1768 &btrfs_fs_type, &fs_devices); 1769 if (ret) 1770 break; 1771 ret = !(fs_devices->num_devices == fs_devices->total_devices); 1772 break; 1773 } 1774 1775 kfree(vol); 1776 return ret; 1777 } 1778 1779 static int btrfs_freeze(struct super_block *sb) 1780 { 1781 struct btrfs_trans_handle *trans; 1782 struct btrfs_root *root = btrfs_sb(sb)->tree_root; 1783 1784 trans = btrfs_attach_transaction_barrier(root); 1785 if (IS_ERR(trans)) { 1786 /* no transaction, don't bother */ 1787 if (PTR_ERR(trans) == -ENOENT) 1788 return 0; 1789 return PTR_ERR(trans); 1790 } 1791 return btrfs_commit_transaction(trans, root); 1792 } 1793 1794 static int btrfs_unfreeze(struct super_block *sb) 1795 { 1796 return 0; 1797 } 1798 1799 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 1800 { 1801 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 1802 struct btrfs_fs_devices *cur_devices; 1803 struct btrfs_device *dev, *first_dev = NULL; 1804 struct list_head *head; 1805 struct rcu_string *name; 1806 1807 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1808 cur_devices = fs_info->fs_devices; 1809 while (cur_devices) { 1810 head = &cur_devices->devices; 1811 list_for_each_entry(dev, head, dev_list) { 1812 if (dev->missing) 1813 continue; 1814 if (!dev->name) 1815 continue; 1816 if (!first_dev || dev->devid < first_dev->devid) 1817 first_dev = dev; 1818 } 1819 cur_devices = cur_devices->seed; 1820 } 1821 1822 if (first_dev) { 1823 rcu_read_lock(); 1824 name = rcu_dereference(first_dev->name); 1825 seq_escape(m, name->str, " \t\n\\"); 1826 rcu_read_unlock(); 1827 } else { 1828 WARN_ON(1); 1829 } 1830 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1831 return 0; 1832 } 1833 1834 static const struct super_operations btrfs_super_ops = { 1835 .drop_inode = btrfs_drop_inode, 1836 .evict_inode = btrfs_evict_inode, 1837 .put_super = btrfs_put_super, 1838 .sync_fs = btrfs_sync_fs, 1839 .show_options = btrfs_show_options, 1840 .show_devname = btrfs_show_devname, 1841 .write_inode = btrfs_write_inode, 1842 .alloc_inode = btrfs_alloc_inode, 1843 .destroy_inode = btrfs_destroy_inode, 1844 .statfs = btrfs_statfs, 1845 .remount_fs = btrfs_remount, 1846 .freeze_fs = btrfs_freeze, 1847 .unfreeze_fs = btrfs_unfreeze, 1848 }; 1849 1850 static const struct file_operations btrfs_ctl_fops = { 1851 .unlocked_ioctl = btrfs_control_ioctl, 1852 .compat_ioctl = btrfs_control_ioctl, 1853 .owner = THIS_MODULE, 1854 .llseek = noop_llseek, 1855 }; 1856 1857 static struct miscdevice btrfs_misc = { 1858 .minor = BTRFS_MINOR, 1859 .name = "btrfs-control", 1860 .fops = &btrfs_ctl_fops 1861 }; 1862 1863 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 1864 MODULE_ALIAS("devname:btrfs-control"); 1865 1866 static int btrfs_interface_init(void) 1867 { 1868 return misc_register(&btrfs_misc); 1869 } 1870 1871 static void btrfs_interface_exit(void) 1872 { 1873 if (misc_deregister(&btrfs_misc) < 0) 1874 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n"); 1875 } 1876 1877 static void btrfs_print_info(void) 1878 { 1879 printk(KERN_INFO "Btrfs loaded" 1880 #ifdef CONFIG_BTRFS_DEBUG 1881 ", debug=on" 1882 #endif 1883 #ifdef CONFIG_BTRFS_ASSERT 1884 ", assert=on" 1885 #endif 1886 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1887 ", integrity-checker=on" 1888 #endif 1889 "\n"); 1890 } 1891 1892 static int btrfs_run_sanity_tests(void) 1893 { 1894 int ret; 1895 1896 ret = btrfs_init_test_fs(); 1897 if (ret) 1898 return ret; 1899 1900 ret = btrfs_test_free_space_cache(); 1901 if (ret) 1902 goto out; 1903 ret = btrfs_test_extent_buffer_operations(); 1904 if (ret) 1905 goto out; 1906 ret = btrfs_test_extent_io(); 1907 if (ret) 1908 goto out; 1909 ret = btrfs_test_inodes(); 1910 if (ret) 1911 goto out; 1912 ret = btrfs_test_qgroups(); 1913 out: 1914 btrfs_destroy_test_fs(); 1915 return ret; 1916 } 1917 1918 static int __init init_btrfs_fs(void) 1919 { 1920 int err; 1921 1922 err = btrfs_hash_init(); 1923 if (err) 1924 return err; 1925 1926 btrfs_props_init(); 1927 1928 err = btrfs_init_sysfs(); 1929 if (err) 1930 goto free_hash; 1931 1932 btrfs_init_compress(); 1933 1934 err = btrfs_init_cachep(); 1935 if (err) 1936 goto free_compress; 1937 1938 err = extent_io_init(); 1939 if (err) 1940 goto free_cachep; 1941 1942 err = extent_map_init(); 1943 if (err) 1944 goto free_extent_io; 1945 1946 err = ordered_data_init(); 1947 if (err) 1948 goto free_extent_map; 1949 1950 err = btrfs_delayed_inode_init(); 1951 if (err) 1952 goto free_ordered_data; 1953 1954 err = btrfs_auto_defrag_init(); 1955 if (err) 1956 goto free_delayed_inode; 1957 1958 err = btrfs_delayed_ref_init(); 1959 if (err) 1960 goto free_auto_defrag; 1961 1962 err = btrfs_prelim_ref_init(); 1963 if (err) 1964 goto free_prelim_ref; 1965 1966 err = btrfs_interface_init(); 1967 if (err) 1968 goto free_delayed_ref; 1969 1970 btrfs_init_lockdep(); 1971 1972 btrfs_print_info(); 1973 1974 err = btrfs_run_sanity_tests(); 1975 if (err) 1976 goto unregister_ioctl; 1977 1978 err = register_filesystem(&btrfs_fs_type); 1979 if (err) 1980 goto unregister_ioctl; 1981 1982 return 0; 1983 1984 unregister_ioctl: 1985 btrfs_interface_exit(); 1986 free_prelim_ref: 1987 btrfs_prelim_ref_exit(); 1988 free_delayed_ref: 1989 btrfs_delayed_ref_exit(); 1990 free_auto_defrag: 1991 btrfs_auto_defrag_exit(); 1992 free_delayed_inode: 1993 btrfs_delayed_inode_exit(); 1994 free_ordered_data: 1995 ordered_data_exit(); 1996 free_extent_map: 1997 extent_map_exit(); 1998 free_extent_io: 1999 extent_io_exit(); 2000 free_cachep: 2001 btrfs_destroy_cachep(); 2002 free_compress: 2003 btrfs_exit_compress(); 2004 btrfs_exit_sysfs(); 2005 free_hash: 2006 btrfs_hash_exit(); 2007 return err; 2008 } 2009 2010 static void __exit exit_btrfs_fs(void) 2011 { 2012 btrfs_destroy_cachep(); 2013 btrfs_delayed_ref_exit(); 2014 btrfs_auto_defrag_exit(); 2015 btrfs_delayed_inode_exit(); 2016 btrfs_prelim_ref_exit(); 2017 ordered_data_exit(); 2018 extent_map_exit(); 2019 extent_io_exit(); 2020 btrfs_interface_exit(); 2021 unregister_filesystem(&btrfs_fs_type); 2022 btrfs_exit_sysfs(); 2023 btrfs_cleanup_fs_uuids(); 2024 btrfs_exit_compress(); 2025 btrfs_hash_exit(); 2026 } 2027 2028 late_initcall(init_btrfs_fs); 2029 module_exit(exit_btrfs_fs) 2030 2031 MODULE_LICENSE("GPL"); 2032