xref: /openbmc/linux/fs/btrfs/super.c (revision d0b73b48)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/btrfs.h>
62 
63 static const struct super_operations btrfs_super_ops;
64 static struct file_system_type btrfs_fs_type;
65 
66 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
67 				      char nbuf[16])
68 {
69 	char *errstr = NULL;
70 
71 	switch (errno) {
72 	case -EIO:
73 		errstr = "IO failure";
74 		break;
75 	case -ENOMEM:
76 		errstr = "Out of memory";
77 		break;
78 	case -EROFS:
79 		errstr = "Readonly filesystem";
80 		break;
81 	case -EEXIST:
82 		errstr = "Object already exists";
83 		break;
84 	default:
85 		if (nbuf) {
86 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
87 				errstr = nbuf;
88 		}
89 		break;
90 	}
91 
92 	return errstr;
93 }
94 
95 static void __save_error_info(struct btrfs_fs_info *fs_info)
96 {
97 	/*
98 	 * today we only save the error info into ram.  Long term we'll
99 	 * also send it down to the disk
100 	 */
101 	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
102 }
103 
104 static void save_error_info(struct btrfs_fs_info *fs_info)
105 {
106 	__save_error_info(fs_info);
107 }
108 
109 /* btrfs handle error by forcing the filesystem readonly */
110 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111 {
112 	struct super_block *sb = fs_info->sb;
113 
114 	if (sb->s_flags & MS_RDONLY)
115 		return;
116 
117 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
118 		sb->s_flags |= MS_RDONLY;
119 		printk(KERN_INFO "btrfs is forced readonly\n");
120 		/*
121 		 * Note that a running device replace operation is not
122 		 * canceled here although there is no way to update
123 		 * the progress. It would add the risk of a deadlock,
124 		 * therefore the canceling is ommited. The only penalty
125 		 * is that some I/O remains active until the procedure
126 		 * completes. The next time when the filesystem is
127 		 * mounted writeable again, the device replace
128 		 * operation continues.
129 		 */
130 //		WARN_ON(1);
131 	}
132 }
133 
134 #ifdef CONFIG_PRINTK
135 /*
136  * __btrfs_std_error decodes expected errors from the caller and
137  * invokes the approciate error response.
138  */
139 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
140 		       unsigned int line, int errno, const char *fmt, ...)
141 {
142 	struct super_block *sb = fs_info->sb;
143 	char nbuf[16];
144 	const char *errstr;
145 	va_list args;
146 	va_start(args, fmt);
147 
148 	/*
149 	 * Special case: if the error is EROFS, and we're already
150 	 * under MS_RDONLY, then it is safe here.
151 	 */
152 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
153   		return;
154 
155   	errstr = btrfs_decode_error(fs_info, errno, nbuf);
156 	if (fmt) {
157 		struct va_format vaf = {
158 			.fmt = fmt,
159 			.va = &args,
160 		};
161 
162 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
163 			sb->s_id, function, line, errstr, &vaf);
164 	} else {
165 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
166 			sb->s_id, function, line, errstr);
167 	}
168 
169 	/* Don't go through full error handling during mount */
170 	if (sb->s_flags & MS_BORN) {
171 		save_error_info(fs_info);
172 		btrfs_handle_error(fs_info);
173 	}
174 	va_end(args);
175 }
176 
177 static const char * const logtypes[] = {
178 	"emergency",
179 	"alert",
180 	"critical",
181 	"error",
182 	"warning",
183 	"notice",
184 	"info",
185 	"debug",
186 };
187 
188 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
189 {
190 	struct super_block *sb = fs_info->sb;
191 	char lvl[4];
192 	struct va_format vaf;
193 	va_list args;
194 	const char *type = logtypes[4];
195 	int kern_level;
196 
197 	va_start(args, fmt);
198 
199 	kern_level = printk_get_level(fmt);
200 	if (kern_level) {
201 		size_t size = printk_skip_level(fmt) - fmt;
202 		memcpy(lvl, fmt,  size);
203 		lvl[size] = '\0';
204 		fmt += size;
205 		type = logtypes[kern_level - '0'];
206 	} else
207 		*lvl = '\0';
208 
209 	vaf.fmt = fmt;
210 	vaf.va = &args;
211 
212 	printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
213 
214 	va_end(args);
215 }
216 
217 #else
218 
219 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
220 		       unsigned int line, int errno, const char *fmt, ...)
221 {
222 	struct super_block *sb = fs_info->sb;
223 
224 	/*
225 	 * Special case: if the error is EROFS, and we're already
226 	 * under MS_RDONLY, then it is safe here.
227 	 */
228 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
229 		return;
230 
231 	/* Don't go through full error handling during mount */
232 	if (sb->s_flags & MS_BORN) {
233 		save_error_info(fs_info);
234 		btrfs_handle_error(fs_info);
235 	}
236 }
237 #endif
238 
239 /*
240  * We only mark the transaction aborted and then set the file system read-only.
241  * This will prevent new transactions from starting or trying to join this
242  * one.
243  *
244  * This means that error recovery at the call site is limited to freeing
245  * any local memory allocations and passing the error code up without
246  * further cleanup. The transaction should complete as it normally would
247  * in the call path but will return -EIO.
248  *
249  * We'll complete the cleanup in btrfs_end_transaction and
250  * btrfs_commit_transaction.
251  */
252 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
253 			       struct btrfs_root *root, const char *function,
254 			       unsigned int line, int errno)
255 {
256 	WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted\n");
257 	trans->aborted = errno;
258 	/* Nothing used. The other threads that have joined this
259 	 * transaction may be able to continue. */
260 	if (!trans->blocks_used) {
261 		char nbuf[16];
262 		const char *errstr;
263 
264 		errstr = btrfs_decode_error(root->fs_info, errno, nbuf);
265 		btrfs_printk(root->fs_info,
266 			     "%s:%d: Aborting unused transaction(%s).\n",
267 			     function, line, errstr);
268 		return;
269 	}
270 	ACCESS_ONCE(trans->transaction->aborted) = errno;
271 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
272 }
273 /*
274  * __btrfs_panic decodes unexpected, fatal errors from the caller,
275  * issues an alert, and either panics or BUGs, depending on mount options.
276  */
277 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
278 		   unsigned int line, int errno, const char *fmt, ...)
279 {
280 	char nbuf[16];
281 	char *s_id = "<unknown>";
282 	const char *errstr;
283 	struct va_format vaf = { .fmt = fmt };
284 	va_list args;
285 
286 	if (fs_info)
287 		s_id = fs_info->sb->s_id;
288 
289 	va_start(args, fmt);
290 	vaf.va = &args;
291 
292 	errstr = btrfs_decode_error(fs_info, errno, nbuf);
293 	if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
294 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
295 			s_id, function, line, &vaf, errstr);
296 
297 	printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
298 	       s_id, function, line, &vaf, errstr);
299 	va_end(args);
300 	/* Caller calls BUG() */
301 }
302 
303 static void btrfs_put_super(struct super_block *sb)
304 {
305 	(void)close_ctree(btrfs_sb(sb)->tree_root);
306 	/* FIXME: need to fix VFS to return error? */
307 	/* AV: return it _where_?  ->put_super() can be triggered by any number
308 	 * of async events, up to and including delivery of SIGKILL to the
309 	 * last process that kept it busy.  Or segfault in the aforementioned
310 	 * process...  Whom would you report that to?
311 	 */
312 }
313 
314 enum {
315 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
316 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
317 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
318 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
319 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
320 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
321 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
322 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
323 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
324 	Opt_check_integrity_print_mask, Opt_fatal_errors,
325 	Opt_err,
326 };
327 
328 static match_table_t tokens = {
329 	{Opt_degraded, "degraded"},
330 	{Opt_subvol, "subvol=%s"},
331 	{Opt_subvolid, "subvolid=%d"},
332 	{Opt_device, "device=%s"},
333 	{Opt_nodatasum, "nodatasum"},
334 	{Opt_nodatacow, "nodatacow"},
335 	{Opt_nobarrier, "nobarrier"},
336 	{Opt_max_inline, "max_inline=%s"},
337 	{Opt_alloc_start, "alloc_start=%s"},
338 	{Opt_thread_pool, "thread_pool=%d"},
339 	{Opt_compress, "compress"},
340 	{Opt_compress_type, "compress=%s"},
341 	{Opt_compress_force, "compress-force"},
342 	{Opt_compress_force_type, "compress-force=%s"},
343 	{Opt_ssd, "ssd"},
344 	{Opt_ssd_spread, "ssd_spread"},
345 	{Opt_nossd, "nossd"},
346 	{Opt_noacl, "noacl"},
347 	{Opt_notreelog, "notreelog"},
348 	{Opt_flushoncommit, "flushoncommit"},
349 	{Opt_ratio, "metadata_ratio=%d"},
350 	{Opt_discard, "discard"},
351 	{Opt_space_cache, "space_cache"},
352 	{Opt_clear_cache, "clear_cache"},
353 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
354 	{Opt_enospc_debug, "enospc_debug"},
355 	{Opt_subvolrootid, "subvolrootid=%d"},
356 	{Opt_defrag, "autodefrag"},
357 	{Opt_inode_cache, "inode_cache"},
358 	{Opt_no_space_cache, "nospace_cache"},
359 	{Opt_recovery, "recovery"},
360 	{Opt_skip_balance, "skip_balance"},
361 	{Opt_check_integrity, "check_int"},
362 	{Opt_check_integrity_including_extent_data, "check_int_data"},
363 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
364 	{Opt_fatal_errors, "fatal_errors=%s"},
365 	{Opt_err, NULL},
366 };
367 
368 /*
369  * Regular mount options parser.  Everything that is needed only when
370  * reading in a new superblock is parsed here.
371  * XXX JDM: This needs to be cleaned up for remount.
372  */
373 int btrfs_parse_options(struct btrfs_root *root, char *options)
374 {
375 	struct btrfs_fs_info *info = root->fs_info;
376 	substring_t args[MAX_OPT_ARGS];
377 	char *p, *num, *orig = NULL;
378 	u64 cache_gen;
379 	int intarg;
380 	int ret = 0;
381 	char *compress_type;
382 	bool compress_force = false;
383 
384 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
385 	if (cache_gen)
386 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
387 
388 	if (!options)
389 		goto out;
390 
391 	/*
392 	 * strsep changes the string, duplicate it because parse_options
393 	 * gets called twice
394 	 */
395 	options = kstrdup(options, GFP_NOFS);
396 	if (!options)
397 		return -ENOMEM;
398 
399 	orig = options;
400 
401 	while ((p = strsep(&options, ",")) != NULL) {
402 		int token;
403 		if (!*p)
404 			continue;
405 
406 		token = match_token(p, tokens, args);
407 		switch (token) {
408 		case Opt_degraded:
409 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
410 			btrfs_set_opt(info->mount_opt, DEGRADED);
411 			break;
412 		case Opt_subvol:
413 		case Opt_subvolid:
414 		case Opt_subvolrootid:
415 		case Opt_device:
416 			/*
417 			 * These are parsed by btrfs_parse_early_options
418 			 * and can be happily ignored here.
419 			 */
420 			break;
421 		case Opt_nodatasum:
422 			printk(KERN_INFO "btrfs: setting nodatasum\n");
423 			btrfs_set_opt(info->mount_opt, NODATASUM);
424 			break;
425 		case Opt_nodatacow:
426 			if (!btrfs_test_opt(root, COMPRESS) ||
427 				!btrfs_test_opt(root, FORCE_COMPRESS)) {
428 					printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
429 			} else {
430 				printk(KERN_INFO "btrfs: setting nodatacow\n");
431 			}
432 			info->compress_type = BTRFS_COMPRESS_NONE;
433 			btrfs_clear_opt(info->mount_opt, COMPRESS);
434 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
435 			btrfs_set_opt(info->mount_opt, NODATACOW);
436 			btrfs_set_opt(info->mount_opt, NODATASUM);
437 			break;
438 		case Opt_compress_force:
439 		case Opt_compress_force_type:
440 			compress_force = true;
441 		case Opt_compress:
442 		case Opt_compress_type:
443 			if (token == Opt_compress ||
444 			    token == Opt_compress_force ||
445 			    strcmp(args[0].from, "zlib") == 0) {
446 				compress_type = "zlib";
447 				info->compress_type = BTRFS_COMPRESS_ZLIB;
448 				btrfs_set_opt(info->mount_opt, COMPRESS);
449 				btrfs_clear_opt(info->mount_opt, NODATACOW);
450 				btrfs_clear_opt(info->mount_opt, NODATASUM);
451 			} else if (strcmp(args[0].from, "lzo") == 0) {
452 				compress_type = "lzo";
453 				info->compress_type = BTRFS_COMPRESS_LZO;
454 				btrfs_set_opt(info->mount_opt, COMPRESS);
455 				btrfs_clear_opt(info->mount_opt, NODATACOW);
456 				btrfs_clear_opt(info->mount_opt, NODATASUM);
457 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
458 			} else if (strncmp(args[0].from, "no", 2) == 0) {
459 				compress_type = "no";
460 				info->compress_type = BTRFS_COMPRESS_NONE;
461 				btrfs_clear_opt(info->mount_opt, COMPRESS);
462 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
463 				compress_force = false;
464 			} else {
465 				ret = -EINVAL;
466 				goto out;
467 			}
468 
469 			if (compress_force) {
470 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
471 				pr_info("btrfs: force %s compression\n",
472 					compress_type);
473 			} else
474 				pr_info("btrfs: use %s compression\n",
475 					compress_type);
476 			break;
477 		case Opt_ssd:
478 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
479 			btrfs_set_opt(info->mount_opt, SSD);
480 			break;
481 		case Opt_ssd_spread:
482 			printk(KERN_INFO "btrfs: use spread ssd "
483 			       "allocation scheme\n");
484 			btrfs_set_opt(info->mount_opt, SSD);
485 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
486 			break;
487 		case Opt_nossd:
488 			printk(KERN_INFO "btrfs: not using ssd allocation "
489 			       "scheme\n");
490 			btrfs_set_opt(info->mount_opt, NOSSD);
491 			btrfs_clear_opt(info->mount_opt, SSD);
492 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
493 			break;
494 		case Opt_nobarrier:
495 			printk(KERN_INFO "btrfs: turning off barriers\n");
496 			btrfs_set_opt(info->mount_opt, NOBARRIER);
497 			break;
498 		case Opt_thread_pool:
499 			intarg = 0;
500 			match_int(&args[0], &intarg);
501 			if (intarg)
502 				info->thread_pool_size = intarg;
503 			break;
504 		case Opt_max_inline:
505 			num = match_strdup(&args[0]);
506 			if (num) {
507 				info->max_inline = memparse(num, NULL);
508 				kfree(num);
509 
510 				if (info->max_inline) {
511 					info->max_inline = max_t(u64,
512 						info->max_inline,
513 						root->sectorsize);
514 				}
515 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
516 					(unsigned long long)info->max_inline);
517 			}
518 			break;
519 		case Opt_alloc_start:
520 			num = match_strdup(&args[0]);
521 			if (num) {
522 				info->alloc_start = memparse(num, NULL);
523 				kfree(num);
524 				printk(KERN_INFO
525 					"btrfs: allocations start at %llu\n",
526 					(unsigned long long)info->alloc_start);
527 			}
528 			break;
529 		case Opt_noacl:
530 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
531 			break;
532 		case Opt_notreelog:
533 			printk(KERN_INFO "btrfs: disabling tree log\n");
534 			btrfs_set_opt(info->mount_opt, NOTREELOG);
535 			break;
536 		case Opt_flushoncommit:
537 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
538 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
539 			break;
540 		case Opt_ratio:
541 			intarg = 0;
542 			match_int(&args[0], &intarg);
543 			if (intarg) {
544 				info->metadata_ratio = intarg;
545 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
546 				       info->metadata_ratio);
547 			}
548 			break;
549 		case Opt_discard:
550 			btrfs_set_opt(info->mount_opt, DISCARD);
551 			break;
552 		case Opt_space_cache:
553 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
554 			break;
555 		case Opt_no_space_cache:
556 			printk(KERN_INFO "btrfs: disabling disk space caching\n");
557 			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
558 			break;
559 		case Opt_inode_cache:
560 			printk(KERN_INFO "btrfs: enabling inode map caching\n");
561 			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
562 			break;
563 		case Opt_clear_cache:
564 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
565 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
566 			break;
567 		case Opt_user_subvol_rm_allowed:
568 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
569 			break;
570 		case Opt_enospc_debug:
571 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
572 			break;
573 		case Opt_defrag:
574 			printk(KERN_INFO "btrfs: enabling auto defrag\n");
575 			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
576 			break;
577 		case Opt_recovery:
578 			printk(KERN_INFO "btrfs: enabling auto recovery\n");
579 			btrfs_set_opt(info->mount_opt, RECOVERY);
580 			break;
581 		case Opt_skip_balance:
582 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
583 			break;
584 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
585 		case Opt_check_integrity_including_extent_data:
586 			printk(KERN_INFO "btrfs: enabling check integrity"
587 			       " including extent data\n");
588 			btrfs_set_opt(info->mount_opt,
589 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
590 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
591 			break;
592 		case Opt_check_integrity:
593 			printk(KERN_INFO "btrfs: enabling check integrity\n");
594 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
595 			break;
596 		case Opt_check_integrity_print_mask:
597 			intarg = 0;
598 			match_int(&args[0], &intarg);
599 			if (intarg) {
600 				info->check_integrity_print_mask = intarg;
601 				printk(KERN_INFO "btrfs:"
602 				       " check_integrity_print_mask 0x%x\n",
603 				       info->check_integrity_print_mask);
604 			}
605 			break;
606 #else
607 		case Opt_check_integrity_including_extent_data:
608 		case Opt_check_integrity:
609 		case Opt_check_integrity_print_mask:
610 			printk(KERN_ERR "btrfs: support for check_integrity*"
611 			       " not compiled in!\n");
612 			ret = -EINVAL;
613 			goto out;
614 #endif
615 		case Opt_fatal_errors:
616 			if (strcmp(args[0].from, "panic") == 0)
617 				btrfs_set_opt(info->mount_opt,
618 					      PANIC_ON_FATAL_ERROR);
619 			else if (strcmp(args[0].from, "bug") == 0)
620 				btrfs_clear_opt(info->mount_opt,
621 					      PANIC_ON_FATAL_ERROR);
622 			else {
623 				ret = -EINVAL;
624 				goto out;
625 			}
626 			break;
627 		case Opt_err:
628 			printk(KERN_INFO "btrfs: unrecognized mount option "
629 			       "'%s'\n", p);
630 			ret = -EINVAL;
631 			goto out;
632 		default:
633 			break;
634 		}
635 	}
636 out:
637 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
638 		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
639 	kfree(orig);
640 	return ret;
641 }
642 
643 /*
644  * Parse mount options that are required early in the mount process.
645  *
646  * All other options will be parsed on much later in the mount process and
647  * only when we need to allocate a new super block.
648  */
649 static int btrfs_parse_early_options(const char *options, fmode_t flags,
650 		void *holder, char **subvol_name, u64 *subvol_objectid,
651 		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
652 {
653 	substring_t args[MAX_OPT_ARGS];
654 	char *device_name, *opts, *orig, *p;
655 	int error = 0;
656 	int intarg;
657 
658 	if (!options)
659 		return 0;
660 
661 	/*
662 	 * strsep changes the string, duplicate it because parse_options
663 	 * gets called twice
664 	 */
665 	opts = kstrdup(options, GFP_KERNEL);
666 	if (!opts)
667 		return -ENOMEM;
668 	orig = opts;
669 
670 	while ((p = strsep(&opts, ",")) != NULL) {
671 		int token;
672 		if (!*p)
673 			continue;
674 
675 		token = match_token(p, tokens, args);
676 		switch (token) {
677 		case Opt_subvol:
678 			kfree(*subvol_name);
679 			*subvol_name = match_strdup(&args[0]);
680 			break;
681 		case Opt_subvolid:
682 			intarg = 0;
683 			error = match_int(&args[0], &intarg);
684 			if (!error) {
685 				/* we want the original fs_tree */
686 				if (!intarg)
687 					*subvol_objectid =
688 						BTRFS_FS_TREE_OBJECTID;
689 				else
690 					*subvol_objectid = intarg;
691 			}
692 			break;
693 		case Opt_subvolrootid:
694 			intarg = 0;
695 			error = match_int(&args[0], &intarg);
696 			if (!error) {
697 				/* we want the original fs_tree */
698 				if (!intarg)
699 					*subvol_rootid =
700 						BTRFS_FS_TREE_OBJECTID;
701 				else
702 					*subvol_rootid = intarg;
703 			}
704 			break;
705 		case Opt_device:
706 			device_name = match_strdup(&args[0]);
707 			if (!device_name) {
708 				error = -ENOMEM;
709 				goto out;
710 			}
711 			error = btrfs_scan_one_device(device_name,
712 					flags, holder, fs_devices);
713 			kfree(device_name);
714 			if (error)
715 				goto out;
716 			break;
717 		default:
718 			break;
719 		}
720 	}
721 
722 out:
723 	kfree(orig);
724 	return error;
725 }
726 
727 static struct dentry *get_default_root(struct super_block *sb,
728 				       u64 subvol_objectid)
729 {
730 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
731 	struct btrfs_root *root = fs_info->tree_root;
732 	struct btrfs_root *new_root;
733 	struct btrfs_dir_item *di;
734 	struct btrfs_path *path;
735 	struct btrfs_key location;
736 	struct inode *inode;
737 	u64 dir_id;
738 	int new = 0;
739 
740 	/*
741 	 * We have a specific subvol we want to mount, just setup location and
742 	 * go look up the root.
743 	 */
744 	if (subvol_objectid) {
745 		location.objectid = subvol_objectid;
746 		location.type = BTRFS_ROOT_ITEM_KEY;
747 		location.offset = (u64)-1;
748 		goto find_root;
749 	}
750 
751 	path = btrfs_alloc_path();
752 	if (!path)
753 		return ERR_PTR(-ENOMEM);
754 	path->leave_spinning = 1;
755 
756 	/*
757 	 * Find the "default" dir item which points to the root item that we
758 	 * will mount by default if we haven't been given a specific subvolume
759 	 * to mount.
760 	 */
761 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
762 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
763 	if (IS_ERR(di)) {
764 		btrfs_free_path(path);
765 		return ERR_CAST(di);
766 	}
767 	if (!di) {
768 		/*
769 		 * Ok the default dir item isn't there.  This is weird since
770 		 * it's always been there, but don't freak out, just try and
771 		 * mount to root most subvolume.
772 		 */
773 		btrfs_free_path(path);
774 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
775 		new_root = fs_info->fs_root;
776 		goto setup_root;
777 	}
778 
779 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
780 	btrfs_free_path(path);
781 
782 find_root:
783 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
784 	if (IS_ERR(new_root))
785 		return ERR_CAST(new_root);
786 
787 	if (btrfs_root_refs(&new_root->root_item) == 0)
788 		return ERR_PTR(-ENOENT);
789 
790 	dir_id = btrfs_root_dirid(&new_root->root_item);
791 setup_root:
792 	location.objectid = dir_id;
793 	location.type = BTRFS_INODE_ITEM_KEY;
794 	location.offset = 0;
795 
796 	inode = btrfs_iget(sb, &location, new_root, &new);
797 	if (IS_ERR(inode))
798 		return ERR_CAST(inode);
799 
800 	/*
801 	 * If we're just mounting the root most subvol put the inode and return
802 	 * a reference to the dentry.  We will have already gotten a reference
803 	 * to the inode in btrfs_fill_super so we're good to go.
804 	 */
805 	if (!new && sb->s_root->d_inode == inode) {
806 		iput(inode);
807 		return dget(sb->s_root);
808 	}
809 
810 	return d_obtain_alias(inode);
811 }
812 
813 static int btrfs_fill_super(struct super_block *sb,
814 			    struct btrfs_fs_devices *fs_devices,
815 			    void *data, int silent)
816 {
817 	struct inode *inode;
818 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
819 	struct btrfs_key key;
820 	int err;
821 
822 	sb->s_maxbytes = MAX_LFS_FILESIZE;
823 	sb->s_magic = BTRFS_SUPER_MAGIC;
824 	sb->s_op = &btrfs_super_ops;
825 	sb->s_d_op = &btrfs_dentry_operations;
826 	sb->s_export_op = &btrfs_export_ops;
827 	sb->s_xattr = btrfs_xattr_handlers;
828 	sb->s_time_gran = 1;
829 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
830 	sb->s_flags |= MS_POSIXACL;
831 #endif
832 	sb->s_flags |= MS_I_VERSION;
833 	err = open_ctree(sb, fs_devices, (char *)data);
834 	if (err) {
835 		printk("btrfs: open_ctree failed\n");
836 		return err;
837 	}
838 
839 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
840 	key.type = BTRFS_INODE_ITEM_KEY;
841 	key.offset = 0;
842 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
843 	if (IS_ERR(inode)) {
844 		err = PTR_ERR(inode);
845 		goto fail_close;
846 	}
847 
848 	sb->s_root = d_make_root(inode);
849 	if (!sb->s_root) {
850 		err = -ENOMEM;
851 		goto fail_close;
852 	}
853 
854 	save_mount_options(sb, data);
855 	cleancache_init_fs(sb);
856 	sb->s_flags |= MS_ACTIVE;
857 	return 0;
858 
859 fail_close:
860 	close_ctree(fs_info->tree_root);
861 	return err;
862 }
863 
864 int btrfs_sync_fs(struct super_block *sb, int wait)
865 {
866 	struct btrfs_trans_handle *trans;
867 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
868 	struct btrfs_root *root = fs_info->tree_root;
869 
870 	trace_btrfs_sync_fs(wait);
871 
872 	if (!wait) {
873 		filemap_flush(fs_info->btree_inode->i_mapping);
874 		return 0;
875 	}
876 
877 	btrfs_wait_ordered_extents(root, 0);
878 
879 	trans = btrfs_attach_transaction(root);
880 	if (IS_ERR(trans)) {
881 		/* no transaction, don't bother */
882 		if (PTR_ERR(trans) == -ENOENT)
883 			return 0;
884 		return PTR_ERR(trans);
885 	}
886 	return btrfs_commit_transaction(trans, root);
887 }
888 
889 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
890 {
891 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
892 	struct btrfs_root *root = info->tree_root;
893 	char *compress_type;
894 
895 	if (btrfs_test_opt(root, DEGRADED))
896 		seq_puts(seq, ",degraded");
897 	if (btrfs_test_opt(root, NODATASUM))
898 		seq_puts(seq, ",nodatasum");
899 	if (btrfs_test_opt(root, NODATACOW))
900 		seq_puts(seq, ",nodatacow");
901 	if (btrfs_test_opt(root, NOBARRIER))
902 		seq_puts(seq, ",nobarrier");
903 	if (info->max_inline != 8192 * 1024)
904 		seq_printf(seq, ",max_inline=%llu",
905 			   (unsigned long long)info->max_inline);
906 	if (info->alloc_start != 0)
907 		seq_printf(seq, ",alloc_start=%llu",
908 			   (unsigned long long)info->alloc_start);
909 	if (info->thread_pool_size !=  min_t(unsigned long,
910 					     num_online_cpus() + 2, 8))
911 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
912 	if (btrfs_test_opt(root, COMPRESS)) {
913 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
914 			compress_type = "zlib";
915 		else
916 			compress_type = "lzo";
917 		if (btrfs_test_opt(root, FORCE_COMPRESS))
918 			seq_printf(seq, ",compress-force=%s", compress_type);
919 		else
920 			seq_printf(seq, ",compress=%s", compress_type);
921 	}
922 	if (btrfs_test_opt(root, NOSSD))
923 		seq_puts(seq, ",nossd");
924 	if (btrfs_test_opt(root, SSD_SPREAD))
925 		seq_puts(seq, ",ssd_spread");
926 	else if (btrfs_test_opt(root, SSD))
927 		seq_puts(seq, ",ssd");
928 	if (btrfs_test_opt(root, NOTREELOG))
929 		seq_puts(seq, ",notreelog");
930 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
931 		seq_puts(seq, ",flushoncommit");
932 	if (btrfs_test_opt(root, DISCARD))
933 		seq_puts(seq, ",discard");
934 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
935 		seq_puts(seq, ",noacl");
936 	if (btrfs_test_opt(root, SPACE_CACHE))
937 		seq_puts(seq, ",space_cache");
938 	else
939 		seq_puts(seq, ",nospace_cache");
940 	if (btrfs_test_opt(root, CLEAR_CACHE))
941 		seq_puts(seq, ",clear_cache");
942 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
943 		seq_puts(seq, ",user_subvol_rm_allowed");
944 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
945 		seq_puts(seq, ",enospc_debug");
946 	if (btrfs_test_opt(root, AUTO_DEFRAG))
947 		seq_puts(seq, ",autodefrag");
948 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
949 		seq_puts(seq, ",inode_cache");
950 	if (btrfs_test_opt(root, SKIP_BALANCE))
951 		seq_puts(seq, ",skip_balance");
952 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
953 		seq_puts(seq, ",fatal_errors=panic");
954 	return 0;
955 }
956 
957 static int btrfs_test_super(struct super_block *s, void *data)
958 {
959 	struct btrfs_fs_info *p = data;
960 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
961 
962 	return fs_info->fs_devices == p->fs_devices;
963 }
964 
965 static int btrfs_set_super(struct super_block *s, void *data)
966 {
967 	int err = set_anon_super(s, data);
968 	if (!err)
969 		s->s_fs_info = data;
970 	return err;
971 }
972 
973 /*
974  * subvolumes are identified by ino 256
975  */
976 static inline int is_subvolume_inode(struct inode *inode)
977 {
978 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
979 		return 1;
980 	return 0;
981 }
982 
983 /*
984  * This will strip out the subvol=%s argument for an argument string and add
985  * subvolid=0 to make sure we get the actual tree root for path walking to the
986  * subvol we want.
987  */
988 static char *setup_root_args(char *args)
989 {
990 	unsigned len = strlen(args) + 2 + 1;
991 	char *src, *dst, *buf;
992 
993 	/*
994 	 * We need the same args as before, but with this substitution:
995 	 * s!subvol=[^,]+!subvolid=0!
996 	 *
997 	 * Since the replacement string is up to 2 bytes longer than the
998 	 * original, allocate strlen(args) + 2 + 1 bytes.
999 	 */
1000 
1001 	src = strstr(args, "subvol=");
1002 	/* This shouldn't happen, but just in case.. */
1003 	if (!src)
1004 		return NULL;
1005 
1006 	buf = dst = kmalloc(len, GFP_NOFS);
1007 	if (!buf)
1008 		return NULL;
1009 
1010 	/*
1011 	 * If the subvol= arg is not at the start of the string,
1012 	 * copy whatever precedes it into buf.
1013 	 */
1014 	if (src != args) {
1015 		*src++ = '\0';
1016 		strcpy(buf, args);
1017 		dst += strlen(args);
1018 	}
1019 
1020 	strcpy(dst, "subvolid=0");
1021 	dst += strlen("subvolid=0");
1022 
1023 	/*
1024 	 * If there is a "," after the original subvol=... string,
1025 	 * copy that suffix into our buffer.  Otherwise, we're done.
1026 	 */
1027 	src = strchr(src, ',');
1028 	if (src)
1029 		strcpy(dst, src);
1030 
1031 	return buf;
1032 }
1033 
1034 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1035 				   const char *device_name, char *data)
1036 {
1037 	struct dentry *root;
1038 	struct vfsmount *mnt;
1039 	char *newargs;
1040 
1041 	newargs = setup_root_args(data);
1042 	if (!newargs)
1043 		return ERR_PTR(-ENOMEM);
1044 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1045 			     newargs);
1046 	kfree(newargs);
1047 	if (IS_ERR(mnt))
1048 		return ERR_CAST(mnt);
1049 
1050 	root = mount_subtree(mnt, subvol_name);
1051 
1052 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1053 		struct super_block *s = root->d_sb;
1054 		dput(root);
1055 		root = ERR_PTR(-EINVAL);
1056 		deactivate_locked_super(s);
1057 		printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1058 				subvol_name);
1059 	}
1060 
1061 	return root;
1062 }
1063 
1064 /*
1065  * Find a superblock for the given device / mount point.
1066  *
1067  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1068  *	  for multiple device setup.  Make sure to keep it in sync.
1069  */
1070 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1071 		const char *device_name, void *data)
1072 {
1073 	struct block_device *bdev = NULL;
1074 	struct super_block *s;
1075 	struct dentry *root;
1076 	struct btrfs_fs_devices *fs_devices = NULL;
1077 	struct btrfs_fs_info *fs_info = NULL;
1078 	fmode_t mode = FMODE_READ;
1079 	char *subvol_name = NULL;
1080 	u64 subvol_objectid = 0;
1081 	u64 subvol_rootid = 0;
1082 	int error = 0;
1083 
1084 	if (!(flags & MS_RDONLY))
1085 		mode |= FMODE_WRITE;
1086 
1087 	error = btrfs_parse_early_options(data, mode, fs_type,
1088 					  &subvol_name, &subvol_objectid,
1089 					  &subvol_rootid, &fs_devices);
1090 	if (error) {
1091 		kfree(subvol_name);
1092 		return ERR_PTR(error);
1093 	}
1094 
1095 	if (subvol_name) {
1096 		root = mount_subvol(subvol_name, flags, device_name, data);
1097 		kfree(subvol_name);
1098 		return root;
1099 	}
1100 
1101 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1102 	if (error)
1103 		return ERR_PTR(error);
1104 
1105 	/*
1106 	 * Setup a dummy root and fs_info for test/set super.  This is because
1107 	 * we don't actually fill this stuff out until open_ctree, but we need
1108 	 * it for searching for existing supers, so this lets us do that and
1109 	 * then open_ctree will properly initialize everything later.
1110 	 */
1111 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1112 	if (!fs_info)
1113 		return ERR_PTR(-ENOMEM);
1114 
1115 	fs_info->fs_devices = fs_devices;
1116 
1117 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1118 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1119 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1120 		error = -ENOMEM;
1121 		goto error_fs_info;
1122 	}
1123 
1124 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1125 	if (error)
1126 		goto error_fs_info;
1127 
1128 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1129 		error = -EACCES;
1130 		goto error_close_devices;
1131 	}
1132 
1133 	bdev = fs_devices->latest_bdev;
1134 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1135 		 fs_info);
1136 	if (IS_ERR(s)) {
1137 		error = PTR_ERR(s);
1138 		goto error_close_devices;
1139 	}
1140 
1141 	if (s->s_root) {
1142 		btrfs_close_devices(fs_devices);
1143 		free_fs_info(fs_info);
1144 		if ((flags ^ s->s_flags) & MS_RDONLY)
1145 			error = -EBUSY;
1146 	} else {
1147 		char b[BDEVNAME_SIZE];
1148 
1149 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1150 		btrfs_sb(s)->bdev_holder = fs_type;
1151 		error = btrfs_fill_super(s, fs_devices, data,
1152 					 flags & MS_SILENT ? 1 : 0);
1153 	}
1154 
1155 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1156 	if (IS_ERR(root))
1157 		deactivate_locked_super(s);
1158 
1159 	return root;
1160 
1161 error_close_devices:
1162 	btrfs_close_devices(fs_devices);
1163 error_fs_info:
1164 	free_fs_info(fs_info);
1165 	return ERR_PTR(error);
1166 }
1167 
1168 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1169 {
1170 	spin_lock_irq(&workers->lock);
1171 	workers->max_workers = new_limit;
1172 	spin_unlock_irq(&workers->lock);
1173 }
1174 
1175 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1176 				     int new_pool_size, int old_pool_size)
1177 {
1178 	if (new_pool_size == old_pool_size)
1179 		return;
1180 
1181 	fs_info->thread_pool_size = new_pool_size;
1182 
1183 	printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1184 	       old_pool_size, new_pool_size);
1185 
1186 	btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1187 	btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1188 	btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1189 	btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1190 	btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1191 	btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1192 	btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1193 	btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1194 	btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1195 	btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1196 	btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1197 	btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1198 	btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1199 	btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1200 			      new_pool_size);
1201 }
1202 
1203 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1204 {
1205 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1206 	struct btrfs_root *root = fs_info->tree_root;
1207 	unsigned old_flags = sb->s_flags;
1208 	unsigned long old_opts = fs_info->mount_opt;
1209 	unsigned long old_compress_type = fs_info->compress_type;
1210 	u64 old_max_inline = fs_info->max_inline;
1211 	u64 old_alloc_start = fs_info->alloc_start;
1212 	int old_thread_pool_size = fs_info->thread_pool_size;
1213 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1214 	int ret;
1215 
1216 	ret = btrfs_parse_options(root, data);
1217 	if (ret) {
1218 		ret = -EINVAL;
1219 		goto restore;
1220 	}
1221 
1222 	btrfs_resize_thread_pool(fs_info,
1223 		fs_info->thread_pool_size, old_thread_pool_size);
1224 
1225 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1226 		return 0;
1227 
1228 	if (*flags & MS_RDONLY) {
1229 		/*
1230 		 * this also happens on 'umount -rf' or on shutdown, when
1231 		 * the filesystem is busy.
1232 		 */
1233 		sb->s_flags |= MS_RDONLY;
1234 
1235 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1236 		btrfs_scrub_cancel(fs_info);
1237 
1238 		ret = btrfs_commit_super(root);
1239 		if (ret)
1240 			goto restore;
1241 	} else {
1242 		if (fs_info->fs_devices->rw_devices == 0) {
1243 			ret = -EACCES;
1244 			goto restore;
1245 		}
1246 
1247 		if (fs_info->fs_devices->missing_devices >
1248 		     fs_info->num_tolerated_disk_barrier_failures &&
1249 		    !(*flags & MS_RDONLY)) {
1250 			printk(KERN_WARNING
1251 			       "Btrfs: too many missing devices, writeable remount is not allowed\n");
1252 			ret = -EACCES;
1253 			goto restore;
1254 		}
1255 
1256 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1257 			ret = -EINVAL;
1258 			goto restore;
1259 		}
1260 
1261 		ret = btrfs_cleanup_fs_roots(fs_info);
1262 		if (ret)
1263 			goto restore;
1264 
1265 		/* recover relocation */
1266 		ret = btrfs_recover_relocation(root);
1267 		if (ret)
1268 			goto restore;
1269 
1270 		ret = btrfs_resume_balance_async(fs_info);
1271 		if (ret)
1272 			goto restore;
1273 
1274 		ret = btrfs_resume_dev_replace_async(fs_info);
1275 		if (ret) {
1276 			pr_warn("btrfs: failed to resume dev_replace\n");
1277 			goto restore;
1278 		}
1279 		sb->s_flags &= ~MS_RDONLY;
1280 	}
1281 
1282 	return 0;
1283 
1284 restore:
1285 	/* We've hit an error - don't reset MS_RDONLY */
1286 	if (sb->s_flags & MS_RDONLY)
1287 		old_flags |= MS_RDONLY;
1288 	sb->s_flags = old_flags;
1289 	fs_info->mount_opt = old_opts;
1290 	fs_info->compress_type = old_compress_type;
1291 	fs_info->max_inline = old_max_inline;
1292 	fs_info->alloc_start = old_alloc_start;
1293 	btrfs_resize_thread_pool(fs_info,
1294 		old_thread_pool_size, fs_info->thread_pool_size);
1295 	fs_info->metadata_ratio = old_metadata_ratio;
1296 	return ret;
1297 }
1298 
1299 /* Used to sort the devices by max_avail(descending sort) */
1300 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1301 				       const void *dev_info2)
1302 {
1303 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1304 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1305 		return -1;
1306 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1307 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1308 		return 1;
1309 	else
1310 	return 0;
1311 }
1312 
1313 /*
1314  * sort the devices by max_avail, in which max free extent size of each device
1315  * is stored.(Descending Sort)
1316  */
1317 static inline void btrfs_descending_sort_devices(
1318 					struct btrfs_device_info *devices,
1319 					size_t nr_devices)
1320 {
1321 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1322 	     btrfs_cmp_device_free_bytes, NULL);
1323 }
1324 
1325 /*
1326  * The helper to calc the free space on the devices that can be used to store
1327  * file data.
1328  */
1329 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1330 {
1331 	struct btrfs_fs_info *fs_info = root->fs_info;
1332 	struct btrfs_device_info *devices_info;
1333 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1334 	struct btrfs_device *device;
1335 	u64 skip_space;
1336 	u64 type;
1337 	u64 avail_space;
1338 	u64 used_space;
1339 	u64 min_stripe_size;
1340 	int min_stripes = 1, num_stripes = 1;
1341 	int i = 0, nr_devices;
1342 	int ret;
1343 
1344 	nr_devices = fs_info->fs_devices->open_devices;
1345 	BUG_ON(!nr_devices);
1346 
1347 	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1348 			       GFP_NOFS);
1349 	if (!devices_info)
1350 		return -ENOMEM;
1351 
1352 	/* calc min stripe number for data space alloction */
1353 	type = btrfs_get_alloc_profile(root, 1);
1354 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1355 		min_stripes = 2;
1356 		num_stripes = nr_devices;
1357 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1358 		min_stripes = 2;
1359 		num_stripes = 2;
1360 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1361 		min_stripes = 4;
1362 		num_stripes = 4;
1363 	}
1364 
1365 	if (type & BTRFS_BLOCK_GROUP_DUP)
1366 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1367 	else
1368 		min_stripe_size = BTRFS_STRIPE_LEN;
1369 
1370 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1371 		if (!device->in_fs_metadata || !device->bdev ||
1372 		    device->is_tgtdev_for_dev_replace)
1373 			continue;
1374 
1375 		avail_space = device->total_bytes - device->bytes_used;
1376 
1377 		/* align with stripe_len */
1378 		do_div(avail_space, BTRFS_STRIPE_LEN);
1379 		avail_space *= BTRFS_STRIPE_LEN;
1380 
1381 		/*
1382 		 * In order to avoid overwritting the superblock on the drive,
1383 		 * btrfs starts at an offset of at least 1MB when doing chunk
1384 		 * allocation.
1385 		 */
1386 		skip_space = 1024 * 1024;
1387 
1388 		/* user can set the offset in fs_info->alloc_start. */
1389 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1390 		    device->total_bytes)
1391 			skip_space = max(fs_info->alloc_start, skip_space);
1392 
1393 		/*
1394 		 * btrfs can not use the free space in [0, skip_space - 1],
1395 		 * we must subtract it from the total. In order to implement
1396 		 * it, we account the used space in this range first.
1397 		 */
1398 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1399 						     &used_space);
1400 		if (ret) {
1401 			kfree(devices_info);
1402 			return ret;
1403 		}
1404 
1405 		/* calc the free space in [0, skip_space - 1] */
1406 		skip_space -= used_space;
1407 
1408 		/*
1409 		 * we can use the free space in [0, skip_space - 1], subtract
1410 		 * it from the total.
1411 		 */
1412 		if (avail_space && avail_space >= skip_space)
1413 			avail_space -= skip_space;
1414 		else
1415 			avail_space = 0;
1416 
1417 		if (avail_space < min_stripe_size)
1418 			continue;
1419 
1420 		devices_info[i].dev = device;
1421 		devices_info[i].max_avail = avail_space;
1422 
1423 		i++;
1424 	}
1425 
1426 	nr_devices = i;
1427 
1428 	btrfs_descending_sort_devices(devices_info, nr_devices);
1429 
1430 	i = nr_devices - 1;
1431 	avail_space = 0;
1432 	while (nr_devices >= min_stripes) {
1433 		if (num_stripes > nr_devices)
1434 			num_stripes = nr_devices;
1435 
1436 		if (devices_info[i].max_avail >= min_stripe_size) {
1437 			int j;
1438 			u64 alloc_size;
1439 
1440 			avail_space += devices_info[i].max_avail * num_stripes;
1441 			alloc_size = devices_info[i].max_avail;
1442 			for (j = i + 1 - num_stripes; j <= i; j++)
1443 				devices_info[j].max_avail -= alloc_size;
1444 		}
1445 		i--;
1446 		nr_devices--;
1447 	}
1448 
1449 	kfree(devices_info);
1450 	*free_bytes = avail_space;
1451 	return 0;
1452 }
1453 
1454 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1455 {
1456 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1457 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1458 	struct list_head *head = &fs_info->space_info;
1459 	struct btrfs_space_info *found;
1460 	u64 total_used = 0;
1461 	u64 total_free_data = 0;
1462 	int bits = dentry->d_sb->s_blocksize_bits;
1463 	__be32 *fsid = (__be32 *)fs_info->fsid;
1464 	int ret;
1465 
1466 	/* holding chunk_muext to avoid allocating new chunks */
1467 	mutex_lock(&fs_info->chunk_mutex);
1468 	rcu_read_lock();
1469 	list_for_each_entry_rcu(found, head, list) {
1470 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1471 			total_free_data += found->disk_total - found->disk_used;
1472 			total_free_data -=
1473 				btrfs_account_ro_block_groups_free_space(found);
1474 		}
1475 
1476 		total_used += found->disk_used;
1477 	}
1478 	rcu_read_unlock();
1479 
1480 	buf->f_namelen = BTRFS_NAME_LEN;
1481 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1482 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1483 	buf->f_bsize = dentry->d_sb->s_blocksize;
1484 	buf->f_type = BTRFS_SUPER_MAGIC;
1485 	buf->f_bavail = total_free_data;
1486 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1487 	if (ret) {
1488 		mutex_unlock(&fs_info->chunk_mutex);
1489 		return ret;
1490 	}
1491 	buf->f_bavail += total_free_data;
1492 	buf->f_bavail = buf->f_bavail >> bits;
1493 	mutex_unlock(&fs_info->chunk_mutex);
1494 
1495 	/* We treat it as constant endianness (it doesn't matter _which_)
1496 	   because we want the fsid to come out the same whether mounted
1497 	   on a big-endian or little-endian host */
1498 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1499 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1500 	/* Mask in the root object ID too, to disambiguate subvols */
1501 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1502 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1503 
1504 	return 0;
1505 }
1506 
1507 static void btrfs_kill_super(struct super_block *sb)
1508 {
1509 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1510 	kill_anon_super(sb);
1511 	free_fs_info(fs_info);
1512 }
1513 
1514 static struct file_system_type btrfs_fs_type = {
1515 	.owner		= THIS_MODULE,
1516 	.name		= "btrfs",
1517 	.mount		= btrfs_mount,
1518 	.kill_sb	= btrfs_kill_super,
1519 	.fs_flags	= FS_REQUIRES_DEV,
1520 };
1521 
1522 /*
1523  * used by btrfsctl to scan devices when no FS is mounted
1524  */
1525 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1526 				unsigned long arg)
1527 {
1528 	struct btrfs_ioctl_vol_args *vol;
1529 	struct btrfs_fs_devices *fs_devices;
1530 	int ret = -ENOTTY;
1531 
1532 	if (!capable(CAP_SYS_ADMIN))
1533 		return -EPERM;
1534 
1535 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1536 	if (IS_ERR(vol))
1537 		return PTR_ERR(vol);
1538 
1539 	switch (cmd) {
1540 	case BTRFS_IOC_SCAN_DEV:
1541 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1542 					    &btrfs_fs_type, &fs_devices);
1543 		break;
1544 	case BTRFS_IOC_DEVICES_READY:
1545 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1546 					    &btrfs_fs_type, &fs_devices);
1547 		if (ret)
1548 			break;
1549 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
1550 		break;
1551 	}
1552 
1553 	kfree(vol);
1554 	return ret;
1555 }
1556 
1557 static int btrfs_freeze(struct super_block *sb)
1558 {
1559 	struct btrfs_trans_handle *trans;
1560 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1561 
1562 	trans = btrfs_attach_transaction(root);
1563 	if (IS_ERR(trans)) {
1564 		/* no transaction, don't bother */
1565 		if (PTR_ERR(trans) == -ENOENT)
1566 			return 0;
1567 		return PTR_ERR(trans);
1568 	}
1569 	return btrfs_commit_transaction(trans, root);
1570 }
1571 
1572 static int btrfs_unfreeze(struct super_block *sb)
1573 {
1574 	return 0;
1575 }
1576 
1577 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1578 {
1579 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1580 	struct btrfs_fs_devices *cur_devices;
1581 	struct btrfs_device *dev, *first_dev = NULL;
1582 	struct list_head *head;
1583 	struct rcu_string *name;
1584 
1585 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1586 	cur_devices = fs_info->fs_devices;
1587 	while (cur_devices) {
1588 		head = &cur_devices->devices;
1589 		list_for_each_entry(dev, head, dev_list) {
1590 			if (dev->missing)
1591 				continue;
1592 			if (!first_dev || dev->devid < first_dev->devid)
1593 				first_dev = dev;
1594 		}
1595 		cur_devices = cur_devices->seed;
1596 	}
1597 
1598 	if (first_dev) {
1599 		rcu_read_lock();
1600 		name = rcu_dereference(first_dev->name);
1601 		seq_escape(m, name->str, " \t\n\\");
1602 		rcu_read_unlock();
1603 	} else {
1604 		WARN_ON(1);
1605 	}
1606 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1607 	return 0;
1608 }
1609 
1610 static const struct super_operations btrfs_super_ops = {
1611 	.drop_inode	= btrfs_drop_inode,
1612 	.evict_inode	= btrfs_evict_inode,
1613 	.put_super	= btrfs_put_super,
1614 	.sync_fs	= btrfs_sync_fs,
1615 	.show_options	= btrfs_show_options,
1616 	.show_devname	= btrfs_show_devname,
1617 	.write_inode	= btrfs_write_inode,
1618 	.alloc_inode	= btrfs_alloc_inode,
1619 	.destroy_inode	= btrfs_destroy_inode,
1620 	.statfs		= btrfs_statfs,
1621 	.remount_fs	= btrfs_remount,
1622 	.freeze_fs	= btrfs_freeze,
1623 	.unfreeze_fs	= btrfs_unfreeze,
1624 };
1625 
1626 static const struct file_operations btrfs_ctl_fops = {
1627 	.unlocked_ioctl	 = btrfs_control_ioctl,
1628 	.compat_ioctl = btrfs_control_ioctl,
1629 	.owner	 = THIS_MODULE,
1630 	.llseek = noop_llseek,
1631 };
1632 
1633 static struct miscdevice btrfs_misc = {
1634 	.minor		= BTRFS_MINOR,
1635 	.name		= "btrfs-control",
1636 	.fops		= &btrfs_ctl_fops
1637 };
1638 
1639 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1640 MODULE_ALIAS("devname:btrfs-control");
1641 
1642 static int btrfs_interface_init(void)
1643 {
1644 	return misc_register(&btrfs_misc);
1645 }
1646 
1647 static void btrfs_interface_exit(void)
1648 {
1649 	if (misc_deregister(&btrfs_misc) < 0)
1650 		printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1651 }
1652 
1653 static int __init init_btrfs_fs(void)
1654 {
1655 	int err;
1656 
1657 	err = btrfs_init_sysfs();
1658 	if (err)
1659 		return err;
1660 
1661 	btrfs_init_compress();
1662 
1663 	err = btrfs_init_cachep();
1664 	if (err)
1665 		goto free_compress;
1666 
1667 	err = extent_io_init();
1668 	if (err)
1669 		goto free_cachep;
1670 
1671 	err = extent_map_init();
1672 	if (err)
1673 		goto free_extent_io;
1674 
1675 	err = ordered_data_init();
1676 	if (err)
1677 		goto free_extent_map;
1678 
1679 	err = btrfs_delayed_inode_init();
1680 	if (err)
1681 		goto free_ordered_data;
1682 
1683 	err = btrfs_auto_defrag_init();
1684 	if (err)
1685 		goto free_delayed_inode;
1686 
1687 	err = btrfs_interface_init();
1688 	if (err)
1689 		goto free_auto_defrag;
1690 
1691 	err = register_filesystem(&btrfs_fs_type);
1692 	if (err)
1693 		goto unregister_ioctl;
1694 
1695 	btrfs_init_lockdep();
1696 
1697 	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1698 	return 0;
1699 
1700 unregister_ioctl:
1701 	btrfs_interface_exit();
1702 free_auto_defrag:
1703 	btrfs_auto_defrag_exit();
1704 free_delayed_inode:
1705 	btrfs_delayed_inode_exit();
1706 free_ordered_data:
1707 	ordered_data_exit();
1708 free_extent_map:
1709 	extent_map_exit();
1710 free_extent_io:
1711 	extent_io_exit();
1712 free_cachep:
1713 	btrfs_destroy_cachep();
1714 free_compress:
1715 	btrfs_exit_compress();
1716 	btrfs_exit_sysfs();
1717 	return err;
1718 }
1719 
1720 static void __exit exit_btrfs_fs(void)
1721 {
1722 	btrfs_destroy_cachep();
1723 	btrfs_auto_defrag_exit();
1724 	btrfs_delayed_inode_exit();
1725 	ordered_data_exit();
1726 	extent_map_exit();
1727 	extent_io_exit();
1728 	btrfs_interface_exit();
1729 	unregister_filesystem(&btrfs_fs_type);
1730 	btrfs_exit_sysfs();
1731 	btrfs_cleanup_fs_uuids();
1732 	btrfs_exit_compress();
1733 }
1734 
1735 module_init(init_btrfs_fs)
1736 module_exit(exit_btrfs_fs)
1737 
1738 MODULE_LICENSE("GPL");
1739